WorldWideScience

Sample records for understanding simulation solutions

  1. [Using Molecular Simulations to Understand Complex Nanoscale Dynamic Phenomena in Polymer Solutions

    Science.gov (United States)

    Smith, Grant

    2004-01-01

    The first half of the project concentrated on molecular simulation studies of the translocation of model molecules for single-stranded DNA through a nanosized pore. This has resulted in the publication, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, by Pu Tian and Grant D. Smith, JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 21 1 DECEMBER 2003, which is attached to this report. In this work we carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient) designed to mimic an electrostatic field. The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient). We focused on the latter case in our studies. Calculation of radius of gyration of the translocating chain at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tube-like pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied. Attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation

  2. Understanding molecular simulation from algorithms to applications

    CERN Document Server

    Frenkel, Daan

    2001-01-01

    Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the ""recipes"" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practic

  3. Understanding molecular simulation: from algorithms to applications

    NARCIS (Netherlands)

    Frenkel, D.; Smit, B.

    2002-01-01

    Second and revised edition Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique

  4. Understanding homelessness using a simulated nursing experience.

    Science.gov (United States)

    Barry, Charlotte D; Blum, Cynthia Ann; Eggenberger, Terry L; Palmer-Hickman, Candice L; Mosley, Rebecca

    2009-01-01

    Students have an opportunity to understand the full experience of being homeless using simulated community nursing situations with a high-fidelity simulator. The Community Nursing Practice Model provides a context for using this innovative teaching strategy to enable students to respond holistically to the needs of the homeless.

  5. Simulating History to Understand International Politics

    Science.gov (United States)

    Weir, Kimberly; Baranowski, Michael

    2011-01-01

    To understand world politics, one must appreciate the context in which international systems develop and operate. Pedagogy studies demonstrate that the more active students are in their learning, the more they learn. As such, using computer simulations can complement and enhance classroom instruction. CIVILIZATION is a computer simulation game…

  6. Atomistic simulations of dilute polyelectrolyte solutions.

    Science.gov (United States)

    Park, Soohyung; Zhu, Xiao; Yethiraj, Arun

    2012-04-12

    The properties of short chains of poly-(styrene)-co-(styrene sulfonate) are studied using atomistic molecular dynamics simulations with explicit solvent. We study single 8-mers and 16-mers with two species of counterions, Na(+) and Mg(2+), and for various degrees of sulfonation, f. We find that single trajectories do not efficiently sample configurational space, even for fairly long 100-ns simulations, because of rotational barriers caused by nonbonded interactions. Hamiltonian replica exchange molecular dynamics (HREMD) simulations or averages over multiple trajectories are required in order to obtain equilibrium properties. A polystyrene sulfonate chain adopts collapsed conformations at low f, in which the sulfonate groups are located outside the globule and benzene rings form the inner region, and adopts extended conformations as f is increased. Interestingly, the pair correlation functions between side groups of polystyrene chains are not sensitive to f and species of counterion, i.e., the balance of electrostatic repulsion between charged groups and hydrophobic attraction between benzene rings is achieved by conformational change in a way preserving pair correlations between side groups in a polymer chain. For Na(+) counterions, no localization is observed in the simulations. For Mg(2+) counterions, there is a large free energy barrier to contact pair formation between the sulfonate groups and the Mg(2+) counterions. As a consequence we do not observe the formation or breaking of contact pairs during the course of a simulation. The simulations provide insight into the important interactions and correlations in polyelectrolyte solutions.

  7. Fluctuation Solution Theory Properties from Molecular Simulation

    DEFF Research Database (Denmark)

    Abildskov, Jens; Wedberg, R.; O’Connell, John P.

    2013-01-01

    The thermodynamic properties obtained in the Fluctuation Solution Theory are based on spatial integrals of molecular TCFs between component pairs in the mixture. Molecular simulation, via either MD or MC calculations, can yield these correlation functions for model inter- and intramolecular...... potential functions. However, system-size limitations and statistical noise cause uncertainties in the functions at long range, and thus uncertainties or errors in the integrals. A number of methods such as truncation, distance shifting, long-range modeling, transforms, DCF matching, finite-size scaling...

  8. Global solutions through simulation for better decommissioning

    International Nuclear Information System (INIS)

    Scoto Di Suoccio, Ines; Testard, Vincent

    2016-01-01

    Decommissioning is a new activity in sense that it only exists a limited experience. Moreover, each facility is different due to their own history and there is no rule about choosing a decommissioning strategy. There are three major decommissioning strategies. First, 'immediate dismantling', which means the action of decommissioning begins immediately after the transfer of waste and nuclear material. Second, 'deferred dismantling strategy', which means that the facility is maintained into a containment zone from thirty to one hundred years before being decommissioned. Finally, 'entombment', means the facility is placed into a reinforced containment until the radionuclides decay and reach a level allowing the site release. When a strategy is decided many factors have to be taken into account. Into a major project such as a reactor decommissioning, there are many smaller projects. The decommissioning strategy can be different among these smaller projects. For some reasons, some entry data are not perfectly known. For example, dosimetric activity has not been updated through time or after specific events. Indeed, because of uncertainties and/or hypothesis existing around projects and their high level of interdependency, global solutions are a good way to choose the best decommissioning strategy. Actually, each entry data has consequences on output results whether it is on costs, cumulated dose, waste or delays. These output data are interdependent and cannot be taken apart from each other. Whether the dose, delays or waste management, all have impact on costs. To obtain an optimal scenario into a special environment, it is necessary to deal with all these items together. This global solution can be implemented thanks to simulation in dedicated software which helps to define the global strategy, to optimize the scenario, and to prevent contingencies. As a complete scenario simulation can be done quickly and efficiently, many strategies can

  9. Understanding the defect structure of solution grown zinc oxide

    International Nuclear Information System (INIS)

    Liew, Laura-Lynn; Sankar, Gopinathan; Handoko, Albertus D.; Goh, Gregory K.L.; Kohara, Shinji

    2012-01-01

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown (≤90 °C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn–Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: ► ZnO powders have been synthesized through an aqueous solution method. ► Defect structure studied using XAS and XPDF. ► Zn–Zn correlations are less in the ZnO powders synthesized in solution than bulk. ► Zn vacancies are present in the powders synthesized. ► EXAFS and XPDF, when used complementary, are useful characterization techniques.

  10. Simulating human behavior for understanding and managing environmental resource use

    NARCIS (Netherlands)

    Jager, Wander; Mosler, Hans Joachim

    2007-01-01

    Computer simulation allows for the experimental study of dynamic interactions between human behavior and complex environmental systems. Behavioral determinants and processes as identified in social-scientific theory may be formalized in simulated agents to obtain a better understanding of

  11. Understanding quantum measurement from the solution of dynamical models

    International Nuclear Information System (INIS)

    Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.

    2013-01-01

    The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D -hat (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D -hat (t f ) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D -hat (t f ) has the form expected for ideal measurements, it only describes a large set of runs. Individual runs are

  12. Understanding quantum measurement from the solution of dynamical models

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdyan, Armen E. [Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 Av. Bartholdi, 72000 Le Mans (France); Balian, Roger [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Nieuwenhuizen, Theo M., E-mail: T.M.Nieuwenhuizen@uva.nl [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-04-15

    The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D{sup -hat} (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D{sup -hat} (t{sub f}) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D{sup -hat} (t{sub f}) has the form expected for ideal measurements, it only describes a large set of

  13. Spreadsheet Simulation for Understanding Manufacturing Flexibility

    Directory of Open Access Journals (Sweden)

    Deepak K Subedi

    2012-07-01

    Full Text Available We have developed two simulation models to conduct experiments on process flexibility, following the frameworks provided by Jordan and Graves (1995 paper. Our models deal with process, which have multiple products and multiple production facilities. By default each product can be produced in one of the facilities. And, flexibility can be added to system to make it possible for products to be produced in two or more facilities. These models allow researchers to experiment on impacts of change in values of product demand, variation in product demand, plant capacity and number of plants (or models and overall flexibility on customer service and plant utilization.

  14. The science and art of simulation I exploring, understanding, knowing

    CERN Document Server

    Kaminski, Andreas; Gehring, Petra

    2017-01-01

    The new book series “The Science and Art of Simulation” (SAS) addresses computer simulations as a scientific activity and engineering artistry (in the sense of a technē). The first volume is devoted to three topics: 1. The Art of Exploring Computer Simulations Philosophy began devoting attention to computer simulations at a relatively early stage. Since then, the unquestioned point of view has been that computer simulation is a new scientific method; the philosophy of simulation is therefore part of the philosophy of science. The first section of this volume discusses this implicit, unchallenged assumption by addressing, from different perspectives, the question of how to explore (and how not to explore) research on computer simulations. Scientists discuss what is still lacking or considered problematic, while philosophers draft new directions for research, and both examine the art of exploring computer simulations. 2. The Art of Understanding Computer Simulations The results of computer simulations are ...

  15. Challenges and solutions for realistic room simulation

    Science.gov (United States)

    Begault, Durand R.

    2002-05-01

    Virtual room acoustic simulation (auralization) techniques have traditionally focused on answering questions related to speech intelligibility or musical quality, typically in large volumetric spaces. More recently, auralization techniques have been found to be important for the externalization of headphone-reproduced virtual acoustic images. Although externalization can be accomplished using a minimal simulation, data indicate that realistic auralizations need to be responsive to head motion cues for accurate localization. Computational demands increase when providing for the simulation of coupled spaces, small rooms lacking meaningful reverberant decays, or reflective surfaces in outdoor environments. Auditory threshold data for both early reflections and late reverberant energy levels indicate that much of the information captured in acoustical measurements is inaudible, minimizing the intensive computational requirements of real-time auralization systems. Results are presented for early reflection thresholds as a function of azimuth angle, arrival time, and sound-source type, and reverberation thresholds as a function of reverberation time and level within 250-Hz-2-kHz octave bands. Good agreement is found between data obtained in virtual room simulations and those obtained in real rooms, allowing a strategy for minimizing computational requirements of real-time auralization systems.

  16. A Framework for Understanding Learning from Management Simulations.

    Science.gov (United States)

    Tonks, David; Armitage, S.

    1997-01-01

    Proposes a framework for understanding aspects of learning from computer-based management simulations based on research with MBA (Masters of Business Administration) students in three European business schools that identified students' perceptions of learning outcomes from experience using computer-based management simulations. Learning style and…

  17. Development of solute transport models in YMPYRÄ framework to simulate solute migration in military shooting and training areas

    Science.gov (United States)

    Warsta, L.; Karvonen, T.

    2017-12-01

    There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the

  18. Polymer solution phase separation: Microgravity simulation

    Science.gov (United States)

    Cerny, Lawrence C.; Sutter, James K.

    1989-01-01

    In many multicomponent systems, a transition from a single phase of uniform composition to a multiphase state with separated regions of different composition can be induced by changes in temperature and shear. The density difference between the phase and thermal and/or shear gradients within the system results in buoyancy driven convection. These differences affect kinetics of the phase separation if the system has a sufficiently low viscosity. This investigation presents more preliminary developments of a theoretical model in order to describe effects of the buoyancy driven convection in phase separation kinetics. Polymer solutions were employed as model systems because of the ease with which density differences can be systematically varied and because of the importance of phase separation in the processing and properties of polymeric materials. The results indicate that the kinetics of the phase separation can be performed viscometrically using laser light scattering as a principle means of following the process quantitatively. Isopycnic polymer solutions were used to determine the viscosity and density difference limits for polymer phase separation.

  19. Enhancing Dental Students' Understanding of Poverty Through Simulation.

    Science.gov (United States)

    Lampiris, Lewis N; White, Alex; Sams, Lattice D; White, Tiffany; Weintraub, Jane A

    2017-09-01

    Dental students should develop an understanding of the barriers to and frustrations with accessing dental care and maintaining optimal oral health experienced by persons with limited resources rather than blaming the patient or caregiver. Developing this understanding may be aided by helping students learn about the lives of underserved and vulnerable patients they will encounter not only in extramural rotations, but throughout their careers. The aim of this study was to determine if dental students' understanding of daily challenges faced by families with low income changed as a result of a poverty simulation. In 2015 and 2016, an experiential poverty simulation was used to prepare third-year dental students at one U.S. dental school for their upcoming required community-based rotations. In 2015, United Way staff conducted the simulation using the Missouri Community Action Poverty Simulation (CAPS); in 2016, faculty members trained in CAPS conducted the simulation using a modified version of the tool. In the simulation, students were assigned to family units experiencing various types of hardship and were given specific identities for role-playing. A retrospective pretest and a posttest were used to assess change in levels of student understanding after the simulation. Students assessed their level of understanding in five domains: financial pressures, difficult choices, difficulties in improving one's situation, emotional stressors, and impact of community resources for those living in poverty. The survey response rates in 2015 and 2016 were 86% and 74%, respectively. For each of the five domains, students' understanding increased from 58% to 74% per domain. The majority reported that the exercise was very valuable or somewhat valuable (74% in 2015, 88% in 2016). This study found that a poverty simulation was effective in raising dental students' understanding of the challenges faced by low-income families. It also discovered that framing the issues in the

  20. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Zobrist et al. (2008) Arizona test dust, silver iodide, nonadecanol and silicon dioxide suspensions in various solutes showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust particles at a microphysical scale. To improve our understanding how solute and mineral dust particle surface interaction, we run freezing experiments using a differential scanning calorimeter (DSC) with microcline, sanidine, plagioclase, kaolinite and quartz particles suspended in pure water and solutions containing ammonia, ammonium bisulfate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium sulfate, sodium sulfate and sulfuric acid. Methodology Suspensions of mineral dust samples (2 - 5 wt%) are prepared in water with varying solute concentrations (0 - 15 wt%). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich

  1. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  2. Using PHREEQC to simulate solute transport in fractured bedrock.

    Science.gov (United States)

    Lipson, David S; McCray, John E; Thyne, Geoffrey D

    2007-01-01

    The geochemical computer model PHREEQC can simulate solute transport in fractured bedrock aquifers that can be conceptualized as dual-porosity flow systems subject to one-dimensional advective-dispersive transport in the bedrock fractures and diffusive transport in the bedrock matrix. This article demonstrates how the physical characteristics of such flow systems can be parameterized for use in PHREEQC, it provides a method for minimizing numerical dispersion in PHREEQC simulations, and it compares PHREEQC simulations with results of an analytical solution. The simulations assumed a dual-porosity conceptual model involving advective-reactive-dispersive transport in the mobile zone (bedrock fracture) and diffusive-reactive transport in the immobile zone (bedrock matrix). The results from the PHREEQC dual-porosity transport model that uses a finite-difference approach showed excellent agreement compared with an analytical solution.

  3. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  4. Understanding Islamist political violence through computational social simulation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  5. Numerical solution of the differential equation for simulation of the ...

    African Journals Online (AJOL)

    The Euler's method is used to approximate the solutions of the ODEs. According to the RMSE, the simulation results were good agreement with the field collection data. Therefore, the numerical methods can be the technical tool for solving the severity of rice blast disease. Keywords: EPIRICE model, Khao Dawk Mali 105, ...

  6. Probability: Actual Trials, Computer Simulations, and Mathematical Solutions.

    Science.gov (United States)

    Walton, Karen Doyle; Walton, J. Doyle

    The purpose of this teaching unit is to approach elementary probability problems in three ways. First, actual trials are performed and results are recorded. Second, a simple computer simulation of the problem provided on diskette and written for Apple IIe and IIc computers, is run several times. Finally, the mathematical solution of the problem is…

  7. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...

  8. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    International Nuclear Information System (INIS)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-01-01

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies

  9. Issues and Solutions of International Understanding Education in China

    Science.gov (United States)

    Qin, Li

    2013-01-01

    School in China has actively implemented International Understanding Education to foster a cosmopolitan perspective. The educational principle is to respect people of various socio-cultural backgrounds through comparing China's culture with that of other countries. However, my survey revealed that such education in practice is limited to…

  10. Simulation and the Monte Carlo Method, Student Solutions Manual

    CERN Document Server

    Rubinstein, Reuven Y

    2012-01-01

    This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, suc

  11. Enhancing physiologic simulations using supervised learning on coarse mesh solutions.

    Science.gov (United States)

    Kolandaivelu, Kumaran; O'Brien, Caroline C; Shazly, Tarek; Edelman, Elazer R; Kolachalama, Vijaya B

    2015-03-06

    Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes--a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion.

  12. Colloids dragged through a polymer solution: Experiment, theory, and simulation.

    Science.gov (United States)

    Gutsche, Christof; Kremer, Friedrich; Krüger, Matthias; Rauscher, Markus; Weeber, Rudolf; Harting, Jens

    2008-08-28

    We present microrheological measurements of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a drag force that is larger than expected from the Stokes formula and the independently measured viscosity of the DNA solution. We attribute this to the accumulation of DNA in front of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.

  13. Understanding bulk behavior of particulate materials from particle scale simulations

    Science.gov (United States)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not

  14. Molecular-dynamics simulations of urea nucleation from aqueous solution

    Science.gov (United States)

    Salvalaglio, Matteo; Perego, Claudio; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2015-01-01

    Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete. PMID:25492932

  15. The Crucible simulation: Behavioral simulation improves clinical leadership skills and understanding of complex health policy change.

    Science.gov (United States)

    Cohen, Daniel; Vlaev, Ivo; McMahon, Laurie; Harvey, Sarah; Mitchell, Andy; Borovoi, Leah; Darzi, Ara

    2017-05-11

    The Health and Social Care Act 2012 represents the most complex National Health Service reforms in history. High-quality clinical leadership is important for successful implementation of health service reform. However, little is known about the effectiveness of current leadership training. This study describes the use of a behavioral simulation to improve the knowledge and leadership of a cohort of medical doctors expected to take leadership roles in the National Health Service. A day-long behavioral simulation (The Crucible) was developed and run based on a fictitious but realistic health economy. Participants completed pre- and postsimulation questionnaires generating qualitative and quantitative data. Leadership skills, knowledge, and behavior change processes described by the "theory of planned behavior" were self-assessed pre- and postsimulation. Sixty-nine medical doctors attended. Participants deemed the simulation immersive and relevant. Significant improvements were shown in perceived knowledge, capability, attitudes, subjective norms, intentions, and leadership competency following the program. Nearly one third of participants reported that they had implemented knowledge and skills from the simulation into practice within 4 weeks. This study systematically demonstrates the effectiveness of behavioral simulation for clinical management training and understanding of health policy reform. Potential future uses and strategies for analysis are discussed. High-quality care requires understanding of health systems and strong leadership. Policymakers should consider the use of behavioral simulation to improve understanding of health service reform and development of leadership skills in clinicians, who readily adopt skills from simulation into everyday practice.

  16. Understanding quantum tunneling using diffusion Monte Carlo simulations

    Science.gov (United States)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  17. Density of simulated americium/curium melter feed solution

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.S.

    1997-09-22

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70{degrees} C. The measured density decreased linearly at a rate of 0.0007 g/cm3/{degree} C from an average value of 1.2326 g/cm{sup 3} at 20{degrees} C to an average value of 1.1973g/cm{sup 3} at 70{degrees} C.

  18. Density of simulated americium/curium melter feed solution

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1997-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to Oak Ridge National Laboratory and use in heavy isotope production programs. Prior to vitrification, a series of in-tank oxalate precipitation and nitric/oxalic acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Following nitric acid dissolution and oxalate destruction, the solution will be denitrated and evaporated to a dissolved solids concentration of approximately 100 g/l (on an oxide basis). During the Am/Cm vitrification, an airlift will be used to supply the concentrated feed solution to a constant head tank which drains through a filter and an in-line orifice to the melter. Since the delivery system is sensitive to the physical properties of the feed, a simulated solution was prepared and used to measure the density as a function of temperature between 20 to 70 degrees C. The measured density decreased linearly at a rate of 0.0007 g/cm3/degree C from an average value of 1.2326 g/cm 3 at 20 degrees C to an average value of 1.1973g/cm 3 at 70 degrees C

  19. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emily Snyder; John Drake; Ryan James

    2012-02-01

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors

  20. Understanding dynamics using sensitivity analysis: caveat and solution

    Science.gov (United States)

    2011-01-01

    Background Parametric sensitivity analysis (PSA) has become one of the most commonly used tools in computational systems biology, in which the sensitivity coefficients are used to study the parametric dependence of biological models. As many of these models describe dynamical behaviour of biological systems, the PSA has subsequently been used to elucidate important cellular processes that regulate this dynamics. However, in this paper, we show that the PSA coefficients are not suitable in inferring the mechanisms by which dynamical behaviour arises and in fact it can even lead to incorrect conclusions. Results A careful interpretation of parametric perturbations used in the PSA is presented here to explain the issue of using this analysis in inferring dynamics. In short, the PSA coefficients quantify the integrated change in the system behaviour due to persistent parametric perturbations, and thus the dynamical information of when a parameter perturbation matters is lost. To get around this issue, we present a new sensitivity analysis based on impulse perturbations on system parameters, which is named impulse parametric sensitivity analysis (iPSA). The inability of PSA and the efficacy of iPSA in revealing mechanistic information of a dynamical system are illustrated using two examples involving switch activation. Conclusions The interpretation of the PSA coefficients of dynamical systems should take into account the persistent nature of parametric perturbations involved in the derivation of this analysis. The application of PSA to identify the controlling mechanism of dynamical behaviour can be misleading. By using impulse perturbations, introduced at different times, the iPSA provides the necessary information to understand how dynamics is achieved, i.e. which parameters are essential and when they become important. PMID:21406095

  1. Novel embalming solution for neurosurgical simulation in cadavers.

    Science.gov (United States)

    Benet, Arnau; Rincon-Torroella, Jordina; Lawton, Michael T; González Sánchez, J J

    2014-05-01

    Surgical simulation using postmortem human heads is one of the most valid strategies for neurosurgical research and training. The authors customized an embalming formula that provides an optimal retraction profile and lifelike physical properties while preventing microorganism growth and brain decay for neurosurgical simulations in cadavers. They studied the properties of the customized formula and compared its use with the standard postmortem processing techniques: cryopreservation and formaldehyde-based embalming. Eighteen specimens were prepared for neurosurgical simulation: 6 formaldehyde embalmed, 6 cryopreserved, and 6 custom embalmed. The customized formula is a mixture of ethanol 62.4%, glycerol 17%, phenol 10.2%, formaldehyde 2.3%, and water 8.1%. After a standard pterional craniotomy, retraction profiles and brain stiffness were studied using an intracranial pressure transducer and monitor. Preservation time-that is, time that tissue remained in optimal condition-between specimen groups was also compared through periodical reports during a 48-hour simulation. The mean (± standard deviation) retraction pressures were highest in the formaldehyde group and lowest in the cryopreserved group. The customized formula provided a mean retraction pressure almost 3 times lower than formaldehyde (36 ± 3 vs 103 ± 14 mm Hg, p embalming solution described herein is optimal for allowing retraction and surgical maneuverability while preventing decay. The authors were able to significantly lower the formaldehyde content as compared with that in standard formulas. The custom embalming solution has the benefits from both cryopreservation (for example, biological brain tissue properties) and formaldehyde embalming (for example, preservation time and microorganism growth prevention) and minimizes their drawbacks, that is, rapid decay in the former and stiffness in the latter. The presented embalming formula provides an important advance for neurosurgical simulations in

  2. Molecular dynamics simulations of solutions at constant chemical potential

    Science.gov (United States)

    Perego, C.; Salvalaglio, M.; Parrinello, M.

    2015-04-01

    Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.

  3. Simulation and understanding of atomic and molecular quantum crystals

    Science.gov (United States)

    Cazorla, Claudio; Boronat, Jordi

    2017-07-01

    Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (He 4 and Ne), molecular solids (H2 and CH4 ), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.

  4. Rippled shock front solutions for testing hydrodynamic stability simulations

    International Nuclear Information System (INIS)

    Munro, D.H.

    1989-01-01

    The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength

  5. Simulation of transportation of low enriched uranium solutions

    International Nuclear Information System (INIS)

    Hope, E.P.; Ades, M.J.

    1996-01-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes

  6. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    Science.gov (United States)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes

  7. Methods for simulating solute breakthrough curves in pumping groundwater wells

    Science.gov (United States)

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios C.; Robbins, Gary A.

    2012-01-01

    In modeling there is always a trade-off between execution time and accuracy. For gradient-based parameter estimation methods, where a simulation model is run repeatedly to populate a Jacobian (sensitivity) matrix, there exists a need for rapid simulation methods of known accuracy that can decrease execution time, and thus make the model more useful without sacrificing accuracy. Convolution-based methods can be executed rapidly for any desired input function once the residence-time distribution is known. The residence-time distribution can be calculated efficiently using particle tracking, but particle tracking can be ambiguous near a pumping well if the grid is too coarse. We present several embedded analytical expressions for improving particle tracking near a pumping well and compare them with a finely gridded finite-difference solution in terms of accuracy and CPU usage. Even though the embedded analytical approach can improve particle tracking near a well, particle methods reduce, but do not eliminate, reliance on a grid because velocity fields typically are calculated on a grid, and additional error is incurred using linear interpolation of velocity. A dilution rate can be calculated for a given grid and pumping well to determine if the grid is sufficiently refined. Embedded analytical expressions increase accuracy but add significantly to CPU usage. Structural error introduced by the numerical solution method may affect parameter estimates.

  8. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between

  9. Bioremediation of {sup 60}Co from simulated spent decontamination solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G

    2004-07-26

    Bioremediation of {sup 60}Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 {mu}M) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 {mu}M) and varying iron concentrations so as to yield [Fe/Co]{sub initial} ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup.

  10. Bioremediation of 60Co from simulated spent decontamination solutions

    International Nuclear Information System (INIS)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.

    2004-01-01

    Bioremediation of 60 Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 μM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 μM) and varying iron concentrations so as to yield [Fe/Co] initial ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup

  11. Simulation of vapor compression heat pumps with solution circuits

    Science.gov (United States)

    Amrane, Karim

    Vapor compression heat pumps with solution circuits (VCHSC) offer two main advantages compared to conventional heat pumps: capacity control by adjustment of the circulating mixture composition and performance improvement by approximating the Lorenz process. The objective of this work is two fold: (1) Development and verification of computer models simulating single and two-stage VCHSC. (2) Investigation of the performance potentials of VCHSC using the models and second law analysis. Steady state model for the single and two-stage VCHSC are developed based on energy and mass balances and heat transfer relationships for components of the cycles. The heat exchangers are described by their UA values. Comparisons between experimental and simulated data are good, validating the models, although pointing out several needed refinements such as the assumptions of negligible pressure drops and heat losses to the surroundings. Performance curves a single-state VCHSC and two of its modified versions are generated and are compared based on the same total UA value based on the same total UA value including all heat exchangers. The parameters studied are the COP, the solution heat exchanger effectiveness, the pressure ratio, the temperature glides in the desorber and absorber, the cooling capacity and the distribution of the UA values. The principle of capacity control is clearly demonstrated as the cooling load is changed by up to a factor of ten by varying the concentration. Improvement in COP by as much as 23 percent is obtained by incorporating a preheater and an additional desorber. By staging the solution circuits in parallel, the effective vapor pressure curve of the refrigerant is manipulated leading to a two-stage cycle capable of very high temperature lifts (over 100 C) with very low pressure ratios (as low as 7). Simulation results show that the absorbent balance in the cycle is more efficiently done by using a bleed line instead of rectifying the refrigerant vapor

  12. Molecular dynamics simulations of lysozyme in water/sugar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lerbret, A. [Department of Food Science, Cornell University, 101 Stocking Hall, Ithaca, NY 14853 (United States); Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: frederic.affouard@univ-lille1.fr; Bordat, P. [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, Universite de Pau et des Pays de l' Adour, 64000 Pau (France); Hedoux, A.; Guinet, Y.; Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)

    2008-04-18

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  13. Molecular dynamics simulations of lysozyme in water/sugar solutions

    International Nuclear Information System (INIS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hedoux, A.; Guinet, Y.; Descamps, M.

    2008-01-01

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface

  14. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    Science.gov (United States)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn

  15. Corrosion of construction steel in pore simulated solution

    International Nuclear Information System (INIS)

    Valdes, Matias; Vasquez, Marcela

    2004-01-01

    The corrosion of steel for reinforcing reinforced cement structures is a common problem particularly in structures that are exposed to a marine environment. Loosened masonry originating by the diametrical stress that iron oxides place on the cement is not unusual. These situations involve risk to people and goods and make it necessary to repair the structure to prolong its useful service life. Some preliminary results are presented from the reproduction of the corrosive process with the use of a solution that simulates the chemical surroundings in the concrete pores. These results will help to evaluate the incidence of contaminants (CO 2 , chloride ions), inhibitors and coatings, among others, in the following stages by conveniently adjusting the solution's composition. The composition of the chosen solution is: 0.01 mol NaOH - 0.002 mol/l Ca(OH) 2 . The effect was evaluated of a passive film generated on the surface of the steel of the reinforcements at 100 mV for 14 minutes and for 12 hours. This potential corresponds to the passive region, as determined by recording tests with cyclic volt amperometry and in accordance with the Pourbaix diagram for steel. The corrosion current was defined by recording the resistance to polarization using different electrochemical methods: potential sweep, potentiostatic jump and sweep electrochemical impedance. The results show that neither of the two times selected are enough to generate the metal's passive state and that the potential of 100 mV used to generate the passive film may be too low to produce a compact and long lasting layer, considering that the passive zone interval comes to 700 mV, according to the volt amperometry readings (CW)

  16. Understand ATLAS NSW Thin Gap Chamber from Garfield Simulation

    CERN Document Server

    Chapman, J; Diehl, E; Feng, H; Guan, L; Mikenberg, G; Smakhtin, V; Yu, J M; Zhou, B; Zhu, J; Zhao, Z

    2014-01-01

    The LHC will be upgraded in several phases with the goal of obtaining an instantaneous lumi- nosity of 5-7 x 10^34 cm-2s-s at the center of mass energy of 14 TeV and integrated luminosity of 3000 fb-1. In order to profit from the high luminosity and high energy runs of the LHC, the ATLAS collaboration plans to upgrade the present endcap small wheel muon spectrometer to im- prove the muon triggering as well as precision tracking. The proposed New Small Wheel (nSW) will be composed of two four-layer Micromegas detectors (MM) detector sandwiched between two four-layer small-strip Thin Gap Chambers (sTGC) quadruplets, where MM for precision tracking and sTGC for Level-1 triggering. In this paper, we focus on the Garfield [ 1 ] simulation of the sTGC detector to understand its timing performance and charge production. We also stud- ied the sTGC timing under different magnetic fields and high voltages. These studies provide important guide lines for the sTGC detector and electronics development.

  17. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  18. Correction of MHS Viscosimetric Constants upon Numerical Simulation of Temperature Induced Degradation Kinetic of Chitosan Solutions

    Directory of Open Access Journals (Sweden)

    Vincenzo Maria De Benedictis

    2016-05-01

    Full Text Available The Mark–Houwink–Sakurada (MHS equation allows for estimation of rheological properties, if the molecular weight is known along with good understanding of the polymer conformation. The intrinsic viscosity of a polymer solution is related to the polymer molecular weight according to the MHS equation, where the value of the constants is related to the specific solvent and its concentration. However, MHS constants do not account for other characteristics of the polymeric solutions, i.e., Deacetilation Degree (DD when the solute is chitosan. In this paper, the degradation of chitosan in different acidic environments by thermal treatment is addressed. In particular, two different solutions are investigated (used as solvent acetic or hydrochloric acid with different concentrations used for the preparation of chitosan solutions. The samples were treated at different temperatures (4, 30, and 80 °C and time points (3, 6 and 24 h. Rheological, Gel Permeation Chromatography (GPC, Fourier Transform Infrared Spectroscopy (FT-IR, Differential Scanning Calorimetry (DSC and Thermal Gravimetric Analyses (TGA were performed in order to assess the degradation rate of the polymer backbones. Measured values of molecular weight have been integrated in the simulation of the batch degradation of chitosan solutions for evaluating MHS coefficients to be compared with their corresponding experimental values. Evaluating the relationship between the different parameters used in the preparation of chitosan solutions (e.g., temperature, time, acid type and concentration, and their contribution to the degradation of chitosan backbone, it is important to have a mathematical frame that could account for phenomena involved in polymer degradation that go beyond the solvent-solute combination. Therefore, the goal of the present work is to propose an integration of MHS coefficients for chitosan solutions that contemplate a deacetylation degree for chitosan systems or a more

  19. Simulation of nonadiabatic dynamics in matrix and solution

    International Nuclear Information System (INIS)

    Ruckenbauer, M. B.

    2011-01-01

    The ab-initio electronic structure program suite Columbus and the nonadiabatic molecular dynamics program Newton-X were extended with the capabilities for nonadiabatic hybrid quantum mechanic/- molecular mechanic calculations. The Columbus code was extended with the ability to include the influence of a set of point charges in the calculation of energies, gradients and nonadiabatic coupling vectors on all levels of theory available. In Newton-X a new module facilitating the organization of the hybrid energy and gradient calculations and the collection and merging of the partial results in an overall energy and gradient has been implemented. A new paradigm for the treatment of nonadiabatic coupling vectors in hybrid calculations called core control has been developed. A scheme to create hybrid initial conditions apt for thermalized nonadiabatic dynamics has been created. The Newton-X hybrid module was used in the simulation of various systems, first and foremost for the comparative study on the nonadiabatic dynamics of the penta-2,4-dien-1-iminium and the 4-methylpenta- 2,4-dien-1-iminium in gas phase and in apolar solution and for the simulation of the nonadiabatic short time dynamics of azomethane in solvents of different polarity. In collaboration with the Faculty for Computer Science a framework for the easy, flexible, secure and transparent access to local and remote computational resources has been developed and used in the computational campaigns using the Newton-X hybrid module. The created framework was used for the implementation of an automated scientific workflow. (author) [de

  20. Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Robson, S.G.; Saulnier, G.J.

    1981-01-01

    Oil-shale mining activities in Piceance basin in northwestern Colorado could adversely affect the ground- and surface-water quality in the basin. This study of the hydrology and geochemistry of the area used ground-water solute-transport-modeling techniques to investigate the possible impact of the mines on water quality. Maps of the extent and structure of the aquifer were prepared and show that a saturated thickness of 2,000 feet occurs in the northeast part of the basin. Ground-water recharge in the upland areas in the east, south, and west parts of the basin moves down into deeper zones in the aquifer and laterally to the discharge areas along Piceance and Yellow Creeks. The saline zone and the unsaturated zone provide the majority of the dissolved solids found in the ground water. Precipitation, ion-exchange, and oxidation-reduction reactions are also occuring in the aquifer. Model simulations of ground-water pumpage in tracts C-a and C-b indicate that the altered direction of ground-water movement near the pumped mines will cause an improvement in ground-water quality near the mines and a degradation of water quality downgradient from the tracts. Model simulations of mine leaching in tract C-a and C-b indicate that equal rates of mine leaching in the tracts will produce much different effects on the water quality in the basin. Tract C-a, by virtue of its remote location from perennial streams, will primarily degrade the ground-water quality over a large area to the northeast of the tract. Tract C-b, by contrast, will primarily degrade the surface-water quality in Piceance Creek, with only localized effects on the ground-water quality. (USGS)

  1. Development of Multi-physics (Multiphase CFD + MCNP) simulation for generic solution vessel power calculation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-17

    The current study aims to predict the steady state power of a generic solution vessel and to develop a corresponding heat transfer coefficient correlation for a Moly99 production facility by conducting a fully coupled multi-physics simulation. A prediction of steady state power for the current application is inherently interconnected between thermal hydraulic characteristics (i.e. Multiphase computational fluid dynamics solved by ANSYS-Fluent 17.2) and the corresponding neutronic behavior (i.e. particle transport solved by MCNP6.2) in the solution vessel. Thus, the development of a coupling methodology is vital to understand the system behavior at a variety of system design and postulated operating scenarios. In this study, we report on the k-effective (keff) calculation for the baseline solution vessel configuration with a selected solution concentration using MCNP K-code modeling. The associated correlation of thermal properties (e.g. density, viscosity, thermal conductivity, specific heat) at the selected solution concentration are developed based on existing experimental measurements in the open literature. The numerical coupling methodology between multiphase CFD and MCNP is successfully demonstrated, and the detailed coupling procedure is documented. In addition, improved coupling methods capturing realistic physics in the solution vessel thermal-neutronic dynamics are proposed and tested further (i.e. dynamic height adjustment, mull-cell approach). As a key outcome of the current study, a multi-physics coupling methodology between MCFD and MCNP is demonstrated and tested for four different operating conditions. Those different operating conditions are determined based on the neutron source strength at a fixed geometry condition. The steady state powers for the generic solution vessel at various operating conditions are reported, and a generalized correlation of the heat transfer coefficient for the current application is discussed. The assessment of multi

  2. Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions.

    Science.gov (United States)

    Ardestani, Masoud M; van Gestel, Cornelis A M

    2013-12-01

    To improve our understanding of metal bioavailability to soil-living invertebrates, the effect of porewater composition on the toxicodynamics of copper and cadmium in Folsomia candida (Collembola) was investigated. Assuming that porewater is the main exposure route, F. candida was exposed to simulated soil solutions of different composition. Toxicity of copper was slightly lower in a calcium-only solution than in a multication solution. With increasing copper concentrations from 0.005 mM to 1.37 mM, internal copper concentrations similarly increased in both exposure solutions, suggesting that a single cation nutrient solution is suitable for testing F. candida. In the second experiment, animals were exposed for 7 d to copper and cadmium in simplified soil solutions with different calcium (0.2 mM, 0.8 mM, 3.2 mM, 12.8 mM) and pH (5.0, 6.0, 7.0) levels. The median lethal concentration (LC50) values decreased with time in both the calcium and pH series. A hormetic-type effect was observed for copper in the second test, as well as in the calcium-only solution in the first experiment. Because of stronger hormesis, LC50s for copper were higher at lower calcium concentrations. For cadmium, LC50 values were higher at higher calcium concentrations, suggesting competition of calcium with the free cadmium ion. Toxicity of cadmium increased with decreasing pH, while copper was more toxic at intermediate pH. The results show that a toxicodynamics approach can help to improve the interpretation of metal toxicity to soil invertebrates, taking into account soil solution properties. © 2013 SETAC.

  3. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-01-01

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  4. Extensions to Dynamic System Simulation of Fissile Solution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bernardin, John David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  5. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Day, Christy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  6. Assessing 16-Year-Old Students' Understanding of Aqueous Solution at Submicroscopic Level

    Science.gov (United States)

    Devetak, Iztok; Vogrinc, Janez; Glazar, Sasa Aleksij

    2009-01-01

    Submicrorepresentations (SMR) could be an important element, not only for explaining the experimental observations to students, but also in the process of evaluating students' knowledge and identifying their chemical misconceptions. This study investigated the level of students' understanding of the solution concentration and the process of…

  7. Enhancing Pre-Service Elementary Teachers' Conceptual Understanding of Solution Chemistry with Conceptual Change Text

    Science.gov (United States)

    Calik, Muammer; Ayas, Alipasa; Coll, Richard Kevin

    2007-01-01

    This paper reports on the use of a constructivist-based pedagogy to enhance understanding of some features of solution chemistry. Pre-service science teacher trainees' prior knowledge about the dissolution of salts and sugar in water were elicited by the use of a simple diagnostic tool. The test revealed widespread alternative conceptions. These…

  8. Computational model for simulation small testing launcher, technical solution

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Cristian, Barbu; Chelaru, Adrian

    2014-12-01

    The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project "Suborbital Launcher for Testing" (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle

  9. Electrolysis of iron (II) ions from a simulated decontamination solution

    International Nuclear Information System (INIS)

    Rajesh, Puspalata; Suresh, Sumathi; Balaji, V.; Rangarajan, S.

    2012-09-01

    During decontamination of nuclear power plants, a large volume of metal ions, mostly Fe (II) along with other radioactive metal nuclides are removed on ion exchange columns, from the dissolution of various metal oxides formed over the years of reactor operating conditions. This results in generating a large volume of radioactive organic waste which can cause problem in long term storage. Hence, efforts have been made to make electrodeposition of these metal ions by application of suitable voltage and contain all the radioactive wastes as a more stable inorganic waste in a comparatively smaller volume. Suitable metal electrodes in combination with cation-permeable membrane are usually used for electro-depositing the metal ions. This method not only addresses a long term storage problem but also provides a more competent way compared with other mechanical methods. In this regard, efforts were made to optimize the current-potential characteristics of a three compartment cell separated from each other by cation-permeable nafion membranes (N - 115, Na - form) to have a maximum transport across the membrane and better current efficiency. The cell with Titanium metal mesh as cathode and a Platinum-coated (1μ) Titanium mesh as anode was designed, fabricated and tested with (a) simulated decontamination solutions of varying Fe (II) concentration (1000 -7500 ppm) complexed with chelants like nitrilotriacetic acid, citric acid and (b) iron-loaded cation exchange resin containing equivalent amount of Fe (II) and the results were compared. During the experiment the changes in pH, conductivity, iron concentration in the feed (middle compartment), catholyte and anolyte compartments and the cell current were continuously monitored. To study the transport of metal ions from the resin, the cation resin was first loaded with deaerated Fe (II) solution (flow rate of 20 ml/min) in once through mode (without channeling in the resin comportment) till saturation and then washed with

  10. Corrosion behaviour of steel during accelerated carbonation of solutions which simulate the pore concrete solution

    Directory of Open Access Journals (Sweden)

    Alonso, C.

    1987-06-01

    Full Text Available In spite of the numerous studies carried out on carbonation of the concrete, very few data have been published on the mechanism of steel depassivation and the corrosion rates involved in this type of phenomenon. Also some uncertainties remain as to the chemical composition of the pore solution of a carbonated concrete. Random behaviours related with the changes in the corrosion rate of steel during accelerated carbonation of cement mortars have suggested the need to study the process in a more simple medium which allows the isolation of the different parameters. Thus, saturated Ca(0H2 -base solutions with different additions of KOH and NaOH have been used to simulate the real pore concrete solution. In the present work, simultaneous changes in the pH value, corrosion potential and corrosion rate (measured by means of the determination of the Polarization Resistance of steel roads have been monitored during accelerated carbonation produced by a constant flux through the solution of CO2 gas and/or air.

    A pesar de los numerosos estudios realizados en torno a la carbonatación del hormigón, son muy pocos los datos publicados acerca del mecanismo de despasivación del acero y las velocidades de corrosión implicadas en el proceso de corrosión por carbonatación. Por otra parte, aún no se conoce la composición de la fase acuosa de un hormigón carbonatado. Cierta erraticidad en los cambios registrados en la velocidad de corrosión del acero durante la carbonatación acelerada de morteros de cemento, puso de manifiesto la necesidad del estudio del proceso en un sistema simplificado que permitiera considerar aisladamente cada uno de los distintos parámetros. A este fin se utilizaron como disoluciones de simulación de la fase acuosa intersticial del hormigón, disoluciones saturadas de Ca(0H2 con distintas adiciones de NaOH o KOH. En el presente trabajo, se han registrado simultáneamente los cambios en

  11. Spatial distribution of solute leaching with snowmelt and irrigation: measurements and simulations

    NARCIS (Netherlands)

    Schotanus, D.; Ploeg, van der M.J.; Zee, van der S.E.A.T.M.

    2013-01-01

    Transport of a tracer and a degradable solute in a heterogeneous soil was measured in the field, and simulated with several transient and steady state infiltration rates. Leaching surfaces were used to investigate the solute leaching in space and time simultaneously. In the simulations, a random

  12. Digital simulation of an enrichment process for solutions by means of an advection-diffusion chamber

    International Nuclear Information System (INIS)

    Artucio, G.; Suarez, R.; Uruguay Catholic University)

    1995-01-01

    An ab-initio digital simulation of the space-time dynamics of the concentration field of a solute in an advection-diffusion chamber is done. Some questions related to the digital simulation of the concentration field using the analytical solution obtained in a previous paper are discussed

  13. Simulation and similarity using models to understand the world

    CERN Document Server

    Weisberg, Michael

    2013-01-01

    In the 1950s, John Reber convinced many Californians that the best way to solve the state's water shortage problem was to dam up the San Francisco Bay. Against massive political pressure, Reber's opponents persuaded lawmakers that doing so would lead to disaster. They did this not by empirical measurement alone, but also through the construction of a model. Simulation and Similarity explains why this was a good strategy while simultaneously providing an account of modeling and idealization in modern scientific practice. Michael Weisberg focuses on concrete, mathematical, and computational models in his consideration of the nature of models, the practice of modeling, and nature of the relationship between models and real-world phenomena. In addition to a careful analysis of physical, computational, and mathematical models, Simulation and Similarity offers a novel account of the model/world relationship. Breaking with the dominant tradition, which favors the analysis of this relation through logical notions suc...

  14. Comparison of MHD simulation codes for understanding nonlinear ELMs dynamics in KSTAR H-mode plasma

    Science.gov (United States)

    Kim, M.; Lee, J.; Park, H. K.; Yun, G. S.; Xu, X.; Jardin, S. C.; Becoulet, M.

    2017-10-01

    KSTAR electron cyclotron emission imaging (ECEI) systems have contributed to understanding the fundamental physics of ELMs by high-quality 2D and quasi-3D images of ELMs. However, in the highly nonlinear phase of ELM dynamics, the interpretation of ECE signals becomes complicated intrinsically. Theoretical and numerical approaches are necessary to enhance the understanding of ELM physics. Well-established MHD codes (BOUT + + , JOREK, and M3D-C1) are introduced for comparative study with the observations. The nonlinear solutions are obtained using the same equilibrium of the KSTAR H-mode plasma. Each code shows the partial difference in mode evolution, probably, due to the difference in optimized operation window of initial conditions. The nonlinear simulation results show that low- n (n qualitatively matches with the recent ECEI observation just before ELM-crash, or excitation of non-modal solitary perturbation (typically, n = 1) which is highly localized in poloidal and toroidal. Regardless of differences in details, qualitative similarity can provide inspiration to understand the triggering of ELM-crash. This work is supported by NRF of Korea under Contract No. NRF-2014M1A7A1A03029865.

  15. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  16. Computational simulation to understand vision changes during prolonged weightlessness.

    Science.gov (United States)

    Rose, William C

    2013-01-01

    A mathematical model of whole body and cerebral hemodynamics is a useful tool for investigating visual impairment and intracranial pressure (VIIP), a recently described condition associated with space flight. VIIP involves loss of visual acuity, anatomical changes to the eye, and, usually, elevated cerebrospinal fluid pressure. Loss of visual acuity is a significant threat to astronaut health and performance. It is therefore important to understand the pathogenesis of VIIP. Some of the experimental measurements that could lead to better understanding of the pathophysiology are impossible or infeasible on orbit. A computational implementation of a mathematical model of hypothetical pathophysiological processes is therefore valuable. Such a model is developed, and is used to investigate how changes in vascular compliance or pressure can influence intraocular or intracranial pressure.

  17. Computer simulations of alkali-acetate solutions: Accuracy of the forcefields in difference concentrations

    Science.gov (United States)

    Ahlstrand, Emma; Zukerman Schpector, Julio; Friedman, Ran

    2017-11-01

    When proteins are solvated in electrolyte solutions that contain alkali ions, the ions interact mostly with carboxylates on the protein surface. Correctly accounting for alkali-carboxylate interactions is thus important for realistic simulations of proteins. Acetates are the simplest carboxylates that are amphipathic, and experimental data for alkali acetate solutions are available and can be compared with observables obtained from simulations. We carried out molecular dynamics simulations of alkali acetate solutions using polarizable and non-polarizable forcefields and examined the ion-acetate interactions. In particular, activity coefficients and association constants were studied in a range of concentrations (0.03, 0.1, and 1M). In addition, quantum-mechanics (QM) based energy decomposition analysis was performed in order to estimate the contribution of polarization, electrostatics, dispersion, and QM (non-classical) effects on the cation-acetate and cation-water interactions. Simulations of Li-acetate solutions in general overestimated the binding of Li+ and acetates. In lower concentrations, the activity coefficients of alkali-acetate solutions were too high, which is suggested to be due to the simulation protocol and not the forcefields. Energy decomposition analysis suggested that improvement of the forcefield parameters to enable accurate simulations of Li-acetate solutions can be achieved but may require the use of a polarizable forcefield. Importantly, simulations with some ion parameters could not reproduce the correct ion-oxygen distances, which calls for caution in the choice of ion parameters when protein simulations are performed in electrolyte solutions.

  18. Simulating Retention in Gas-Liquid Chromatography: Benzene, Toluene, and Xylene Solutes

    Energy Technology Data Exchange (ETDEWEB)

    WICK,COLLIN D.; MARTIN,MARCUS G.; SIEPMANN, J. ILJA; SCHURE,MARK R.

    2000-07-12

    Accurate predictions of retention times, retention indices, and partition constants are a long sought-after goal for theoretical studies in chromatography. Although advances in computational chemistry have improved the understanding of molecular interactions, little attention has been focused on chromatography, let alone calculations of retention properties. Configurational-bias Monte Carlo simulations in the isobaric-isothermal Gibbs ensemble were used to investigate the partitioning of benzene, toluene, and the three xylene isomers between a squalane liquid phase and a helium vapor phase. The united-atom representation of the TraPPE (Transferable Potentials for Phase Equilibria) force field was used for all solutes and squalane. The Gibbs free energies of transfer and Kovats retention indices of the solutes were calculated directly from the partition constants (which were averaged over several independent simulations). While the calculated Kovats indices of benzene and toluene at T = 403 K are significantly higher than their experimental counterparts, much better agreement is found for the xylene isomers at T = 365 K.

  19. Colloids dragged through a polymer solution: experiment, theory and simulation

    OpenAIRE

    Gutsche, Christof; Kremer, Friedrich; Krüger, Matthias; Rauscher, Markus; Weeber, Rudolf; Harting, Jens

    2007-01-01

    We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborat...

  20. An adaptive nonlinear solution scheme for reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lett, G.S. [Scientific Software - Intercomp, Inc., Denver, CO (United States)

    1996-12-31

    Numerical reservoir simulation involves solving large, nonlinear systems of PDE with strongly discontinuous coefficients. Because of the large demands on computer memory and CPU, most users must perform simulations on very coarse grids. The average properties of the fluids and rocks must be estimated on these grids. These coarse grid {open_quotes}effective{close_quotes} properties are costly to determine, and risky to use, since their optimal values depend on the fluid flow being simulated. Thus, they must be found by trial-and-error techniques, and the more coarse the grid, the poorer the results. This paper describes a numerical reservoir simulator which accepts fine scale properties and automatically generates multiple levels of coarse grid rock and fluid properties. The fine grid properties and the coarse grid simulation results are used to estimate discretization errors with multilevel error expansions. These expansions are local, and identify areas requiring local grid refinement. These refinements are added adoptively by the simulator, and the resulting composite grid equations are solved by a nonlinear Fast Adaptive Composite (FAC) Grid method, with a damped Newton algorithm being used on each local grid. The nonsymmetric linear system of equations resulting from Newton`s method are in turn solved by a preconditioned Conjugate Gradients-like algorithm. The scheme is demonstrated by performing fine and coarse grid simulations of several multiphase reservoirs from around the world.

  1. Molecular dynamics simulations of water, solution, and clay mineral-water systems (Invited)

    Science.gov (United States)

    Kawamura, K.

    2009-12-01

    Clays and clay minerals together with zeolites are major mineral components in the earth's surface environment. These minerals interact with the atmosphere, natural water, inorganic and organic components in soils, etc. Physicochemical processes in the surface region are generally complex and difficult to understand because of the complicated "molecular" structures and the ambient conditions under wet circumstances. We have investigated the structure and physical/dynamical properties of the mineral-gas/liquid systems by means of molecular simulation methods; molecular dynamics and Metropolis Monte Carlo methods. Swelling of smectite and adsorption of inorganic molecules in clay minerals and zeolites, etc. were simulated and analyzed on the basis of the atomic and molecular processes. We have developed atomic and molecular interaction models of inorganic systems. The models compose of electrostatic, short range repulsive, van der Waals and covalent (radial and angular) terms with respect to all the elements appeared in the mineral-water systems. All of our molecular dynamics simulations (MD) were performed with full degree of freedom of atom motions. Using the model for H2O molecule, the structure and physical properties such as density, diffusion coefficients, etc. of ice polymorphs and water are well reproduced. Alkaliharide aqueous solutions and gas hydrates and their (hydrophobic) solutions are also reasonably simulated. Clay mineral-water interactions are particularly important to understand the mechanical and chemical processes in the environments, in order to develop nano-composite materials, and to use clays in engineering applications. Absorption and swelling are the most remarkable properties of clay minerals, specially smectite. We have investigate these properties by means of molecular simulation methods using various clay minerals-water/solution systems. The swelling curves, the relation between humidity and the basal spacings, were reproduced

  2. Brown & Smith Communication Solutions: A Staffing System Simulation

    Science.gov (United States)

    Small, Erika E.; Doll, Jessica L.; Bergman, Shawn M.; Heggestad, Eric D.

    2018-01-01

    Developing students' practical skills in strategic staffing and selection within the classroom can be challenging. This article describes a staffing system simulation designed to engage students and develop applied skills in strategic recruiting, assessment, and evaluation of job applicants. Instructors looking for a multifaceted team project…

  3. Open Source AV solution supporting In Situ Simulation

    DEFF Research Database (Denmark)

    Krogh, Kristian; Pociunas, Gintas; Dahl, Mads Ronald

    the software to meet our expectations for a portable AV system for VAD. The system would make use of “off the shelf” hardware components which are widely available and easily replaced or expanded. The developed AV software and coding is contracted to be available as Copyleft Open Source to ensure low cost...... a stable AV software that has be developed and implemented for an in situ simulation initiative. This version (1.3) is the first on released as Open Source (Copyleft) software (see QR tag). We have found that it is possible to deliver multi-camera video assisted debriefing in a mobile, in situ simulation...... environment using an AV system constructed from “off the shelf” components and Open Source software....

  4. Passive Filter Solutions and Simulation Performance in Industrial Plants

    OpenAIRE

    Cengiz, Mehmet Sait; Rüstemli, Sabir

    2016-01-01

    In this study, the information of the structure and application manners of passive filtration systems (series inductance attached compansation system) that are used in filtration of harmonics in energy systems, was given. In various points of distribution system measurement was made with harmonic analyser. Similarity was made with Simplorer Simulation Center 6.0 (SSC 6.0) programme which presents successful results in power electronics application of harmonic involved energy system. In simula...

  5. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    Science.gov (United States)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  6. Evaluation of element migration from food plastic packagings into simulated solutions using radiometric method

    International Nuclear Information System (INIS)

    Soares, Eufemia Paez; Saiki, Mitiko; Wiebeck, Helio

    2005-01-01

    In the present study a radiometric method was established to determine the migration of elements from food plastic packagings to a simulated acetic acid solution. This radiometric method consisted of irradiating plastic samples with neutrons at IEA-R1 nuclear reactor for a period of 16 hours under a neutron flux of 10 12 n cm -2 s -1 and, then to expose them to the element migration into a simulated solution. The radioactivity of the activated elements transferred to the solutions was measured to evaluate the migration. The experimental conditions were: time of exposure of 10 days at 40 deg C and 3% acetic acid solution was used as simulated solution, according to the procedure established by the National Agency of Sanitary Monitoring (ANVISA). The migration study was applied for plastic samples from soft drink and juice packagings. The results obtained indicated the migration of elements Co, Cr and Sb. The advantage of this methodology was no need to analyse the blank of simulantes, as well as the use of high purity simulated solutions. Besides, the method allows to evaluate the migration of the elements into the food content instead of simulated solution. The detention limits indicated high sensitivity of the radiometric method. (author)

  7. Tsunami Simulators in Physical Modelling - Concept to Practical Solutions

    Science.gov (United States)

    Chandler, Ian; Allsop, William; Robinson, David; Rossetto, Tiziana; McGovern, David; Todd, David

    2017-04-01

    Whilst many researchers have conducted simple 'tsunami impact' studies, few engineering tools are available to assess the onshore impacts of tsunami, with no agreed methods available to predict loadings on coastal defences, buildings or related infrastructure. Most previous impact studies have relied upon unrealistic waveforms (solitary or dam-break waves and bores) rather than full-duration tsunami waves, or have used simplified models of nearshore and over-land flows. Over the last 10+ years, pneumatic Tsunami Simulators for the hydraulic laboratory have been developed into an exciting and versatile technology, allowing the forces of real-world tsunami to be reproduced and measured in a laboratory environment for the first time. These devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example coastal defences and infrastructure. They have also reproduced full-duration tsunamis including Mercator 2004 and Tohoku 2011, both at 1:50 scale. Engineering scale models of these tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences, pressures / forces on buildings, and scour at idealised buildings. This presentation will describe how these Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facilities within which they operate, and will present research results from three generations of Tsunami Simulators. Highlights of direct importance to natural hazard modellers and coastal engineers include measurements of wave run-up levels, forces on single and multiple buildings and comparison with previous theoretical predictions. Multiple buildings have two malign effects. The density of buildings to flow area (blockage ratio) increases water depths and flow velocities in the 'streets'. But the increased building densities themselves also increase the cost of flow per unit area (both personal and monetary). The most recent study with the Tsunami

  8. Simulations and experiments of self-associating telechelic polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cass, M J; Heyes, D M [Division of Chemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Blanchard, R-L; English, R J [Centre for Water Soluble Polymers, North East Wales Institute of Higher Education, Plas Coch Campus, Mold Road, Wrexham LL11 2AW (United Kingdom)], E-mail: d.heyes@surrey.ac.uk, E-mail: englishr@newi.ac.uk

    2008-08-20

    A Brownian dynamics computer simulation study of a highly coarse-grained model of telechelic associating polymers has been carried out. In a critical concentration range the model produces the so-called 'loops-to-bridges' transition, thought to exist in the experimental systems, in which the two hydrophobic groups are in different micelles, thereby forming a highly interconnected, ultimately percolating, network. The fraction of bridged polymers produced by the model correlates well with the experimental viscosity at corresponding concentrations. The distribution of micelle sizes compares favorably with the predictions of the Meng-Russell free energy theory. The mean cluster size scales well with volume occupancy according to a simple mean-field theory. The stress relaxation function is a stretched exponential at short times and not too high concentrations but develops a longer time plateau in the percolation region, both in agreement with experiment. New experimental data for the concentration dependence of the self-diffusion coefficient, viscosity, elastic modulus and relaxation time of telechelic associative polymers are presented, which show broad qualitative agreement with the simulation data.

  9. Synergistic extraction behaviour of americium from simulated acidic waste solutions

    International Nuclear Information System (INIS)

    Pathak, P.N.; Veeraraghavan, R.; Mohapatra, P.K.; Manchanda, V.K.

    1998-01-01

    The extraction behaviour of americium has been investigated with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (PBI) and oxodonors viz. tri-n-butyl phosphate (TBP), tri-n-octyl phosphine oxide (TOPO) and di-n-butyl octanamide (DBOA) using dodecane as the diluent from 1-6 M HNO 3 media. It is observed that D Am remains unaltered with PBI concentration (in the range 0.06-0.1 M) at 1.47 M TBP in the entire range of HNO 3 concentration. PBI and TBP in combination appears more promising compared to other synergistic systems. The possibility of using this mixture for americium removal from high level liquid waste solution has been explored. Extraction studies indicated that prior removal of uranium by 20% TBP in dodecane is helpful in the quantitative recovery of americium in three contacts. Effect of lanthanides on D Am is found to be marginal. (orig.)

  10. The Effects of Poverty Simulation, an Experiential Learning Modality, on Students' Understanding of Life in Poverty

    Science.gov (United States)

    Vandsburger, Etty; Duncan-Daston, Rana; Akerson, Emily; Dillon, Tom

    2010-01-01

    This research examines the impact of the Poverty Simulation Project, an experiential learning modality, on students' understanding of life in poverty. A total of 101 students representing 5 undergraduate majors in the College of Health and Human Services completed measures of critical thinking, understanding of others, and the active learning…

  11. Calculus Problem Solution And Simulation Using GUI Of Matlab

    Directory of Open Access Journals (Sweden)

    Syaharuddin

    2017-09-01

    Full Text Available This research aims to develop the project application in teaching and learning Calculus using Grapichal User Interface GUI of Matlab. The scope of the development result includes 1 PreCalculus 2 Function Limit 3 Derivative and its application and 4 Integral and its application. Every aspect of development is presented according to the standards of material competence learning achievement indicators and solutions or settlement steps on each issue presented. This project application can be used by lecturers and students in universities to improve motivation mastery of material and student learning outcomes in the Calculus course. Development of this project application is done through 4 stages called 4-D namely Define Design Development and Dissemination. Based on the data analysis the results obtained at the validation stage of expert validity level average of 3.575 which means quite valid. Then on a limited trial the average student gave a response of 92.00 which means very good. While in the first field trial the average student gave a response of 89.30 which means very good and in the second field trial the average student gave a responded of 90.15 which means very good. Besides that we also solve computational calculus problems in Edwin J. Purcell Dale Varbergs Book of Volume 1 of Edition 5 of 48 questions that are divided into 64 cases.

  12. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    Science.gov (United States)

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  13. Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model

    Science.gov (United States)

    Ganguly, Moumita; Chakraborty, Aniruddha

    2017-10-01

    A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.

  14. The effect of breath alcohol simulator solution volume on measurement results.

    Science.gov (United States)

    Speck, P R; McElroy, A J; Gullberg, R G

    1991-01-01

    Breath alcohol simulator devices (simulators) containing alcohol and water solutions are used to calibrate and test breath-testing instruments. The manufacturers of simulators design them to contain 500 mL of solution. This study evaluated the variability observed among three different groups of data: one group (experimental) in which the solution volume varied from 400 mL to 600 mL, one group (control) in which the simulator volume remained constant at 500 mL for each aliquot, and finally one group consisting of field simulator measurements collected over time. The infrared breath test instrument employed was a BAC Verifier Datamaster. A one-way analysis of variance and the Cochran's C for equal variances were applied to the data. The results indicated that when the solution volume remained at 500 mL, there was nearly as much or greater within-run variability as when the volumes were varied from 400 mL to 600 mL. Both the experimental and control groups showed statistical significance for the one-way ANOVA and were considered within-run measurements. The high within-run instrumental precision (CV approx. 1%) probably accounts for these results. The field data, considered between-day measurements, had larger within-group variability and resulted in a nonsignificant ANOVA. Small variations from the 500-mL volume in a simulator do not result in a statistically significant difference where between-day measurements are evaluated.

  15. Effectiveness of Dry Cell Microscopic Simulation (DCMS) to Promote Conceptual Understanding about Battery

    Science.gov (United States)

    Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh

    2017-07-01

    Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.

  16. Solution structure of NaNO3 in water: diffraction and molecular dynamics simulation study.

    Science.gov (United States)

    Megyes, Tünde; Bálint, Szabolcs; Peter, Emanuel; Grósz, Tamás; Bakó, Imre; Krienke, Hartmut; Bellissent-Funel, Marie-Claire

    2009-04-02

    The structure of a series of aqueous sodium nitrate solutions (1.9-7.6 M) was studied using a combination of experimental and theoretical methods. The results obtained from diffraction (X-ray, neutron) and molecular dynamics simulation have been compared and the capabilities and limitations of the methods in describing solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in description of hydration spheres of the sodium ion but do not yield detailed structural information on the anion's hydration structure. Molecular dynamics simulations proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions, ion pair formation, and bulk structure of solutions.

  17. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  18. Steady and Unsteady Nozzle Simulations Using the Conservation Element and Solution Element Method

    Science.gov (United States)

    Friedlander, David Joshua; Wang, Xiao-Yen J.

    2014-01-01

    This paper presents results from computational fluid dynamic (CFD) simulations of a three-stream plug nozzle. Time-accurate, Euler, quasi-1D and 2D-axisymmetric simulations were performed as part of an effort to provide a CFD-based approach to modeling nozzle dynamics. The CFD code used for the simulations is based on the space-time Conservation Element and Solution Element (CESE) method. Steady-state results were validated using the Wind-US code and a code utilizing the MacCormack method while the unsteady results were partially validated via an aeroacoustic benchmark problem. The CESE steady-state flow field solutions showed excellent agreement with solutions derived from the other methods and codes while preliminary unsteady results for the three-stream plug nozzle are also shown. Additionally, a study was performed to explore the sensitivity of gross thrust computations to the control surface definition. The results showed that most of the sensitivity while computing the gross thrust is attributed to the control surface stencil resolution and choice of stencil end points and not to the control surface definition itself.Finally, comparisons between the quasi-1D and 2D-axisymetric solutions were performed in order to gain insight on whether a quasi-1D solution can capture the steady and unsteady nozzle phenomena without the cost of a 2D-axisymmetric simulation. Initial results show that while the quasi-1D solutions are similar to the 2D-axisymmetric solutions, the inability of the quasi-1D simulations to predict two dimensional phenomena limits its accuracy.

  19. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    International Nuclear Information System (INIS)

    Rockhold, M.L.

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration

  20. North American water availability under stress and duress: building understanding from simulations, observations and data products

    Science.gov (United States)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  1. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition

    Science.gov (United States)

    Rémond, Didier; Shahar, Danit R.; Gille, Doreen; Pinto, Paula; Kachal, Josefa; Peyron, Marie-Agnès; Dos Santos, Claudia Nunes; Walther, Barbara; Bordoni, Alessandra; Dupont, Didier; Tomás-Cobos, Lidia; Vergères, Guy

    2015-01-01

    Although the prevalence of malnutrition in the old age is increasing worldwide a synthetic understanding of the impact of aging on the intake, digestion, and absorption of nutrients is still lacking. This review article aims at filling the gap in knowledge between the functional decline of the aging gastrointestinal tract (GIT) and the consequences of malnutrition on the health status of elderly. Changes in the aging GIT include the mechanical disintegration of food, gastrointestinal motor function, food transit, chemical food digestion, and functionality of the intestinal wall. These alterations progressively decrease the ability of the GIT to provide the aging organism with adequate levels of nutrients, what contributes to the development of malnutrition. Malnutrition, in turn, increases the risks for the development of a range of pathologies associated with most organ systems, in particular the nervous-, muscoskeletal-, cardiovascular-, immune-, and skin systems. In addition to psychological, economics, and societal factors, dietary solutions preventing malnutrition should thus propose dietary guidelines and food products that integrate knowledge on the functionality of the aging GIT and the nutritional status of the elderly. Achieving this goal will request the identification, validation, and correlative analysis of biomarkers of food intake, nutrient bioavailability, and malnutrition. PMID:26091351

  2. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali

    2006-02-23

    Combined ab initio quantum mechanical and molecular mechanical (QM/MM) simulations coupled with the block-localized wave function energy decomposition (BLW-ED) method have been conducted to study the solvation of two prototypical ionic systems, acetate and methylammonium ions in aqueous solution. Calculations reveal that the electronic polarization between the targeted solutes and water is the primary many-body effect, whereas the charge-transfer term only makes a small fraction of the total solute-solvent interaction energy. In particular, the polarization effect is dominated by the solvent (water) polarization.

  3. Thorium determination by X-ray Fluorescence Spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1989-01-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP-n-dodecane) solutions is described. The thin film-technique for sample preparation and a suitable internal standard have been used. Some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions were studied. Uranium, fission products, corrosion products and thorex reagent components were studied as interfering elements in the thorium analysis, as well as the matrix effect by using the thorex process simulated solutions the method to thorium determination in irradiated thorium solutions was applied. (M.J.C.) [pt

  4. Development of Three-Layer Simulation Model for Freezing Process of Food Solution Systems

    Science.gov (United States)

    Kaminishi, Koji; Araki, Tetsuya; Shirakashi, Ryo; Ueno, Shigeaki; Sagara, Yasuyuki

    A numerical model has been developed for simulating freezing phenomena of food solution systems. The cell model was simplified to apply to food solution systems, incorporating with the existence of 3 parts such as unfrozen, frozen and moving boundary layers. Moreover, the moving rate of freezing front model was also introduced and calculated by using the variable space network method proposed by Murray and Landis (1957). To demonstrate the validity of the model, it was applied to the freezing processes of coffee solutions. Since the model required the phase diagram of the material to be frozen, the initial freezing temperatures of 1-55 % coffee solutions were measured by the DSC method. The effective thermal conductivity for coffee solutions was determined as a function of temperature and solute concentration by using the Maxwell - Eucken model. One-dimensional freezing process of 10 % coffee solution was simulated based on its phase diagram and thermo-physical properties. The results were good agreement with the experimental data and then showed that the model could accurately describe the change in the location of the freezing front and the distributions of temperature as well as ice fraction during a freezing process.

  5. Real Experiments versus Phet Simulations for Better High-School Students' Understanding of Electrostatic Charging

    Science.gov (United States)

    Ajredini, Fadil; Izairi, Neset; Zajkov, Oliver

    2014-01-01

    This research investigates the influence of computer simulations (virtual experiments) on one hand and real experiments on the other hand on the conceptual understanding of electrical charging. The investigated sample consists of students in the second year (10th grade) of three gymnasiums in Macedonia. There were two experimental groups and one…

  6. Students' Independent Use of Screencasts and Simulations to Construct Understanding of Solubility Concepts

    Science.gov (United States)

    Herrington, Deborah G.; Sweeder, Ryan D.; VandenPlas, Jessica R.

    2017-01-01

    As students increasingly use online chemistry animations and simulations, it is becoming more important to understand how students independently engage with such materials and to develop a set of best practices for students' use of these resources outside of the classroom. Most of the literature examining students' use of animations and…

  7. Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model

    Science.gov (United States)

    Bencala, Kenneth E.; Walters, Roy A.

    1983-01-01

    The physical characteristics of mountain streams differ from the uniform and conceptually well- defined open channels for which the analysis of solute transport has been oriented in the past and is now well understood. These physical conditions significantly influence solute transport behavior, as demonstrated by a transient storage model simulation of solute transport in a very small (0.0125 m3s−1) mountain pool-and-riffle stream. The application is to a carefully controlled and intensively monitored chloride injection experiment. The data from the experiment are not explained by the standard convection-dispersion mechanisms alone. A transient storage model, which couples dead zones with the one-dimensional convection-dispersion equation, simulates the general characteristics of the solute transport behavior and a set of simulation parameters were determined that yield an adequate fit to the data. However, considerable uncertainty remains in determining physically realistic values of these parameters. The values of the simulation parameters used are compared to values used by other authors for other streams. The comparison supports, at least qualitatively, the determined parameter values.

  8. Understanding the concept of resolving power in the Fabry-Perot interferometer using a digital simulation

    International Nuclear Information System (INIS)

    Juvells, I; Carnicer, A; Ferre-Borrull, J; MartIn-Badosa, E; Montes-Usategui, M

    2006-01-01

    The resolution concept in connection with the Fabry-Perot interferometer is difficult to understand for undergraduate students enrolled in physical optics courses. The resolution criterion proposed in textbooks for distinguishing equal intensity maxima and the deduction of the resolving power equation is formal and non-intuitive. In this paper, we study the practical meaning of the resolution criterion and resolution power using a computer simulation of a Fabry-Perot interferometer. The light source in the program has two monochromatic components, the wavelength difference being tunable by the user. The student can also adjust other physical parameters so as to obtain different simulation results. By analysing the images and graphics of the simulation, the resolving power concept becomes intuitive and understandable

  9. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    Science.gov (United States)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  10. THE STRUCTURE OF CONCENTRATED Li-AMMONIA SOLUTIONS AS DERIVED FROM MD SIMULATIONS

    Directory of Open Access Journals (Sweden)

    K.Heinzinger

    2003-01-01

    Full Text Available The results of Molecular Dynamics simulations of lithium-ammonia solutions over the whole concentration range from 0.5 to 19.6 MPM at 240 K are reported. The pseudopotential theory is employed at the higher concentrations and the direct contribution to the total potential which has been derived from ab initio calculations has been supplemented by three-body terms. The resulting partial structure and radial distribution functions are compared in detail with recent X-ray and neutron diffraction studies with isotopic substitution. There is an overall good agreement between simulation and experiment. Differences are discussed. The solvation number of the lithium ion is found to be six for the dilute solution and four for the higher concentrations in analogy to the hydration of Li+ found for various aqueous solutions.

  11. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  12. Student-Developed Simulations: Enhancing Cultural Awareness and Understanding Social Determinants of Health.

    Science.gov (United States)

    Cantey, Danette S; Randolph, Schenita D; Molloy, Margory A; Carter, Brigit; Cary, Michael P

    2017-04-01

    National and global initiatives to address the social determinants of health (SDH) are on the rise. On a parallel trajectory, increased cultural awareness is emerging as an integral strategy to improve the understanding of these social contributions to disease states, health inequities, and health disparities. Undergraduate nursing students developed modalities and role-played simulations as a teaching and learning strategy. The simulations demonstrated how nurses assess patients' unique needs and offer support and resources regarding patients' socioeconomic, cultural, and environmental needs. The student-developed simulations were an interactive teaching and learning strategy that offered several benefits, such as improved interpersonal skills, learned specific nursing roles, and improved cultural awareness. Student-developed simulations are an innovative teaching strategy for improving cultural awareness and learning more about SDH. [J Nurs Educ. 2017;56(4):243-246.]. Copyright 2017, SLACK Incorporated.

  13. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Mereghetti, Paolo; Wade, Rebecca C.

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  14. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  15. Mechanism simulation of H2O2 formation by γ-rays irradiation in boric acid solution

    International Nuclear Information System (INIS)

    Sunaryo, Geni Rina; Sumijanto; Arifal; Latifah, Siti Nurul; Santoso, Urip

    1998-01-01

    The mechanism reaction analysis of boric aid solutions up to temperature of 150 o C was done to understand the reaction mechanism, so the further action for reducing the diluted oxygen in cooling system can be determined. The analysis was done by using fitting method between experimental and simulation results by F acsimile s oftware. The inputs data is one of the probable scheme reactions in aeration boric acid which is irradiated by using γ-rays including the rate constants, G-value, doses and the temperature dependence systems concentration. The unknown rate constant at high temperature is calculated by using the activation energy of 3 kcal. From the fitting simulation, it is known that the presence of proton and oxygen in the solution will in crease the oxidizer of H 2 O 2 production 10 times, but higher oxygen concentration of 1μM will not give the significant effect anymore. The most reactive species for oxygen degradation is H radical at 25 o C. The fraction reaction of H atom and oxygen increase 10 times higher at 150 o C. The degradation reaction of oxygen by hydrated electron at 150 o C become significant. From the fitting simulation, it is known that the reaction between boric acid and hydrogen peroxide degradation species such OH and H was assumed to be occurred with the rate constants of 6 magnitude

  16. The Effect of Three-Dimensional Simulations on the Understanding of Chemical Structures and Their Properties

    Science.gov (United States)

    Urhahne, Detlef; Nick, Sabine; Schanze, Sascha

    2009-08-01

    In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer’s generative theory of multimedia learning. Simulations might lead to a decrease in cognitive load and thus support active learning. In our studies, the learning effectiveness of three-dimensional simulations was compared to two-dimensional illustrations by use of different versions of a computer programme concerning the modifications of carbon. The first and third study with freshman students of chemistry and biochemistry show that no more knowledge was acquired when participants learnt with three-dimensional simulations than with two-dimensional figures. In the second study with 16-year old secondary school students, use of simulations facilitated the acquisition of conceptual knowledge. It was concluded that three-dimensional simulations are more effective for younger students who lack the experience of learning with different visual representation formats in chemistry. In all three studies, a significant relationship between spatial ability and conceptual knowledge about the modifications of carbon was detected.

  17. An embodied approach to understanding: Making sense of the world through simulated bodily activity

    Directory of Open Access Journals (Sweden)

    Firat Soylu

    2016-12-01

    Full Text Available Even though understanding is a very widely used concept, both colloquially and in scholarly work, its definition is nebulous and it is not well-studied as a psychological construct, compared to other psychological constructs like learning and memory. It is hard to study understanding based on third-person behavioral data or neural data alone. Understanding refers to a first-person experience of making sense of an event or conceptual domain, and therefore requires incorporation of multiple levels of study, at the first-person (phenomenological, behavioral, and neural levels. Previously, psychological understanding was defined as a form of conscious knowing. Alternatively, biofunctional approach not only refers to conscious knowing but also extends to unconscious, implicit, automatic, and intuitive aspects of cognition. Here, to bridge these two approaches an embodied and evolutionary perspective is provided to situate biofunctional understanding in theories of embodiment, and to discuss how simulation theories of cognition, which regard simulation of sensorimotor and affective states as a central tenet of cognition, can bridge the gap between biofunctional and psychological understanding.

  18. Potentiometric determination of uranium in simulated Purex Process solutions by acidiometry

    International Nuclear Information System (INIS)

    Cohen, V.H.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A. de

    1983-01-01

    A potentiometric methods for sequential free acidity and uranium determination in simulated Purex Process solutions is described. An oxalate solution or a mixture of fluoride-oxalate pellets were used as complexing agent for free titration. Following this first equivalent point, uranium is determined-by indirect titration of H + liberated in the peruanate reaction. Some elements present in the standard fuel elements with a burn-up of 33.000 Mwd/t, neutron flux of 3,2 x 10 13 n.cm -2 .s -1 and cooling time of two years were considered as interfering elements in uranium analyses. As a substitute of Pu-IV, Th(NO 3 ) 4 solution was used. The method can be applied to aqueous and organic (TBP/diluent) solutions with 2% precision and 2% accuracy. (Autor) [pt

  19. Understanding subtropical cloud feedbacks in anthropogenic climate change simulations of CMIP5 models

    Science.gov (United States)

    Myers, T. A.; Norris, J. R.

    2014-12-01

    Subtropical marine boundary layer clouds over the eastern subtropics are poorly simulated by climate models and contribute substantially to inter-model differences in climate sensitivity. The aim of the present study is to better understand inter-model differences in projected cloud changes and to constrain the cloud feedback to warming. To do this, we compute independent relationships of cloud properties (cloud fraction, cloud-top height, and cloud radiative effect) to interannual variations in sea surface temperature, estimated inversion strength, horizontal surface temperature advection, free-tropospheric humidity, and subsidence using observations and as simulated by models participating in the Coupled Model Intercomparison Project phase 5. Each relationship is considered to be independent because it represents the association between some cloud property and a meteorological parameter when the other parameters are held constant. We approximate modelled cloud trends in climate change simulations as the sum of the simulated cloud/meteorology relationships multiplied by the respective meteorological trends. We compare these estimated cloud trends to the sum of the observed cloud/meteorology relationships multiplied by the simulated meteorological trends. This method allows us to better understand the sources of inter-model differences in projected cloud changes, including whether cloud/meteorology relationships or meteorological trends dominate the spread of cloud changes. We approximate the true cloud trend due to climate change as the sum of the observed cloud/meteorology relationships multiplied by the multi-model mean meteorological trends. The results may provide an observational and model constraint on climate sensitivity.

  20. Enhancing Student’s Understanding in Entrepreneurship Through Business Plan Simulation

    Directory of Open Access Journals (Sweden)

    Guzairy M.

    2018-01-01

    Full Text Available Business Plan is an important document for entrepreneurs to guide them managing their business. Business Plan also assist the entrepreneur to strategies their business and manage future growth. That is why Malaysian government has foster all Higher Education Provider to set entrepreneurship education as compulsory course. One of the entrepreneurship education learning outcome is the student can write effective business plan. This study focused on enhancing student’s understanding in entrepreneurship through business plan simulation. This study also considers which of the factor that most facilitate the business simulation that help the student to prepare effective business plan. The methodology of this study using quantitative approach with pre-and post-research design. 114 students take part as respondent in the business simulation and answer quantitative survey pre-question and post question. The crucial findings of this study are student characteristic factor after playing the simulation contribute much on facilitate business plan learning. The result has shown that the business plan simulation can enhance undergraduate student in understanding entrepreneurship by preparing effective business plan before opening new startup.

  1. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  2. Monte Carlo Simulations of Compressible Ising Models: Do We Understand Them?

    Science.gov (United States)

    Landau, D. P.; Dünweg, B.; Laradji, M.; Tavazza, F.; Adler, J.; Cannavaccioulo, L.; Zhu, X.

    Extensive Monte Carlo simulations have begun to shed light on our understanding of phase transitions and universality classes for compressible Ising models. A comprehensive analysis of a Landau-Ginsburg-Wilson hamiltonian for systems with elastic degrees of freedom resulted in the prediction that there should be four distinct cases that would have different behavior, depending upon symmetries and thermodynamic constraints. We shall provide an account of the results of careful Monte Carlo simulations for a simple compressible Ising model that can be suitably modified so as to replicate all four cases.

  3. Simulation of macromolecule self-assembly in solution: A multiscale approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Istituto di Ingegneria Chimica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Pasquale, Nicodemo di, E-mail: nicodemo.dipasquale@manchester.ac.uk [School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UnitedKingdom (United Kingdom); Carbone, Paola, E-mail: paola.carbone@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UnitedKingdom (United Kingdom)

    2015-12-17

    One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: full atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.

  4. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoqing [Iowa State Univ., Ames, IA (United States). Dept. of Geological and Atmospheric Sciences

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  5. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  6. Removal and Recovery of Chromium from Solutions Simulating Tannery Wastewater by Strong Acid Cation Exchanger

    OpenAIRE

    Cetin, Gulten; Kocaoba, Sevgi; Akcin, Goksel

    2013-01-01

    The process in this study was conducted on removal of chromium(III) in a solution simulating a typical spent chrome tanning bath by the resin having matrix of styrene-divinylbenzene-based macroporous sulphonate, Amberjet 1200Na. The column experiments were carried out with the bed volumes of the resin as 751 mL and 1016 mL for different installation systems of the laboratory-scale pilot plant. The feeding solutions in the bed volumes of 200 and 190 were used for each installation system. The ...

  7. Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols by Combining Funnel Metadynamics, Solution NMR, and Steady-State Kinetics.

    Science.gov (United States)

    Chow, Melissa L; Troussicot, Laura; Martin, Marie; Doumèche, Bastien; Guillière, Florence; Lancelin, Jean-Marc

    2016-06-21

    Funnel metadynamics is a kind of computational simulation used to enhance the sampling of protein-ligand binding events in solution. By characterization of the binding interaction events, an estimated absolute binding free energy can be calculated. Nuclear magnetic resonance and funnel metadynamics were used to evaluate the binding of pyrocatechol derivatives (catechol, 4-methylcatechol, and 4-tert-butylcatechol) to human peroxiredoxin 5. Human peroxiredoxins are peroxidases involved in cellular peroxide homeostasis. Recently, overexpressed or suppressed peroxiredoxin levels have been linked to various diseases. Here, the catechol derivatives were found to be inhibitors against human peroxiredoxin 5 through a partial mixed type noncompetitive mechanism. Funnel metadynamics provided a microscopic model for interpreting the inhibition mechanism. Correlations were observed between the inhibition constants and the absolute binding free energy. Overall, this study showcases the fact that funnel metadynamics simulations can be employed as a preliminary approach to gain an in-depth understanding of potential enzyme inhibitors.

  8. Understanding the Interaction between Low-Energy Electrons and DNA Nucleotides in Aqueous Solution.

    Science.gov (United States)

    McAllister, Maeve; Smyth, Maeve; Gu, Bin; Tribello, Gareth A; Kohanoff, Jorge

    2015-08-06

    Reactions that can damage DNA have been simulated using a combination of molecular dynamics and density functional theory. In particular, the damage caused by the attachment of a low energy electron to the nucleobase. Simulations of anionic single nucleotides of DNA in an aqueous environment that was modeled explicitly have been performed. This has allowed us to examine the role played by the water molecules that surround the DNA in radiation damage mechanisms. Our simulations show that hydrogen bonding and protonation of the nucleotide by the water can have a significant effect on the barriers to strand breaking reactions. Furthermore, these effects are not the same for all four of the bases.

  9. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations

    OpenAIRE

    Byrne, Michael P.; O'Gorman, Paul A.

    2016-01-01

    Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspira...

  10. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  11. Thorium determination by x-ray fluorescence spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1991-11-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP/n-dodecane) solutions is described. The thin film technique for sample preparation and a suitable internal standard had been used. The best conditions for Thorium determination had been established studying some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions. With the established conditions, thorium was concentration range of to 200 g Th/L and in organic solutions (2-63g Th/L) with 1,5% of precision. The accuracy of the proposed method was 3% in aqueous and organic phases. The detection limit was 1,2μg thorium for aqueous solutions and 1,4μg for organic solutions. Uranium, fission products, corrosion products and Thorex reagent components were studied as interfering elements in the thorium analysis. The matrix effect was also studied using the Thorex process simulated solutions. Finally, the method was applied to thorium determination in irradiated thorium solutions with satisfactory results. (author)

  12. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.

    Science.gov (United States)

    Burov, S V; Shchekin, A K

    2010-12-28

    General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.

  13. Comparative study of structural properties of trehalose water solutions by neutron diffraction, synchrotron radiation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaro, A.; Magazu, V.; Migliardo, F.; Sussich, F.; Vadala, M

    2004-07-15

    Neutron diffraction measurements combined with H/D substitution have been performed on trehalose aqueous solutions as a function of temperature and concentration by using the SANDALS diffractometer at ISIS Facility (UK). The findings point out a high capability of trehalose to strongly affect the tetrahedral hydrogen bond network of water. The neutron diffraction results are also compared with simulation and experimental data obtained by synchrotron radiation on the phospholipid bilayer membranes (DPPC)/trehalose/H{sub 2}O ternary system.

  14. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  15. Finding Solutions to Different Problems Simultaneously in a Multi-molecule Simulated Reactor

    Directory of Open Access Journals (Sweden)

    Jaderick P. Pabico

    2014-12-01

    Full Text Available – In recent years, the chemical metaphor has emerged as a computational paradigm based on the observation of different researchers that the chemical systems of living organisms possess inherent computational properties. In this metaphor, artificial molecules are considered as data or solutions, while the interactions among molecules are defined by an algorithm. In recent studies, the chemical metaphor was used as a distributed stochastic algorithm that simulates an abstract reactor to solve the traveling salesperson problem (TSP. Here, the artificial molecules represent Hamiltonian cycles, while the reactor is governed by reactions that can re-order Hamiltonian cycles. In this paper, a multi-molecule reactor (MMR-n that simulates chemical catalysis is introduced. The MMR-n solves in parallel three NP-hard computational problems namely, the optimization of the genetic parameters of a plant growth simulation model, the solution to large instances of symmetric and asymmetric TSP, and the static aircraft landing scheduling problems (ALSP. The MMR-n was shown as a computational metaphor capable of optimizing the cultivar coefficients of CERES-Rice model, and at the same time, able to find solutions to TSP and ALSP. The MMR-n as a computational paradigm has a better computational wall clock time compared to when these three problems are solved individually by a single-molecule reactor (MMR-1.

  16. Raman Spectroscopy for Understanding of Lithium Intercalation into Graphite in Propylene Carbonated-Based Solutions

    Directory of Open Access Journals (Sweden)

    Yang-Soo Kim

    2015-01-01

    Full Text Available Electrochemical lithium intercalation within graphite was investigated in propylene carbonate (PC containing different concentrations, 0.4, 0.9, 1.2, 2.2, 2.8, 3.8, and 4.7 mol dm−3, of lithium perchlorate, LiClO4. Lithium ion was reversibly intercalated into and deintercalated from graphite in 3.8 and 4.7 mol dm−3 solutions despite the use of pure PC as the solvent. However, ceaseless solvent decomposition and intense exfoliation of the graphene layers occurred in other solutions. The results of the Raman spectroscopic analysis indicated that contact ion pairs are present in 3.8 and 4.7 mol dm−3 solutions, which suggested that the presence of contact ion pairs is an important factor that determines the solid electrolyte interphase- (SEI- forming ability in PC-based electrolytes.

  17. Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry.

    Science.gov (United States)

    de Oliveira, Heitor Fernando Nunes; Rinaldi, Roberto

    2015-05-11

    In this report, the interactions between fifteen selected ionic liquids (ILs) and cellobiose (CB) are examined by high-precision solution microcalorimetry. The heat of mixing (Δmix H) of CB and ILs, or CB and IL/molecular solvent (MS) solutions, provides the first ever-published measure of the affinity of CB with ILs. Most importantly, we found that there is a very good correlation between the nature of the results found for Δmix H(CB) and the solubility behavior of cellulose. This correlation suggests that Δmix H(CB) offers a good estimate of the enthalpy of dissolution of cellulose even in solvents in which cellulose is insoluble. Therefore, the current findings open up new horizons for unravelling the intricacies of the thermodynamic factors accounting for the spontaneity of cellulose dissolution in ILs or IL/MS solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    The understanding of the structural and thermodynamic properties of moderately or highly concentrated solutions is fundamental, e.g., in medicine and biology and also in many technical processes, In this work, we have used the small-angle neutron scattering method (SANS), in combination with Monte...... Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...

  19. Students' understanding of teamwork and professional roles after interprofessional simulation-a qualitative analysis.

    Science.gov (United States)

    Oxelmark, Lena; Nordahl Amorøe, Torben; Carlzon, Liisa; Rystedt, Hans

    2017-01-01

    This study explores how interprofessional simulation-based education (IPSE) can contribute to a change in students' understanding of teamwork and professional roles. A series of 1-day training sessions was arranged involving undergraduate nursing and medical students. Scenarios were designed for practicing teamwork principles and interprofessional communication skills by endorsing active participation by all team members. Four focus groups occurred 2-4 weeks after the training. Thematic analysis of the transcribed focus groups was applied, guided by questions on what changes in students' understanding of teamwork and professional roles were identified and how such changes had been achieved. The first question, aiming to identify changes in students' understanding of teamwork, resulted in three categories: realizing and embracing teamwork fundamentals, reconsidering professional roles, and achieving increased confidence. The second question, regarding how participation in IPSE could support the transformation of students' understanding of teamwork and of professional roles, embraced another three categories: feeling confident in the learning environment, embodying experiences, and obtaining an outside perspective. This study showed the potential of IPSE to transform students' understanding of others' professional roles and responsibilities. Students displayed extensive knowledge on fundamental teamwork principles and what these meant in the midst of participating in the scenarios. A critical prerequisite for the development of these new insights was to feel confident in the learning environment. The significance of how the environment was set up calls for further research on the design of IPSE in influencing role understanding and communicative skills in significant ways.

  20. Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1990-11-01

    Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr

  1. Numerical simulation of two consecutive nasal respiratory cycles: toward a better understanding of nasal physiology.

    Science.gov (United States)

    de Gabory, Ludovic; Reville, Nicolas; Baux, Yannick; Boisson, Nicolas; Bordenave, Laurence

    2018-01-16

    Computational fluid dynamic (CFD) simulations have greatly improved the understanding of nasal physiology. We postulate that simulating the entire and repeated respiratory nasal cycles, within the whole sinonasal cavities, is mandatory to gather more accurate observations and better understand airflow patterns. A 3-dimensional (3D) sinonasal model was constructed from a healthy adult computed tomography (CT) scan which discretized in 6.6 million cells (mean volume, 0.008 mm 3 ). CFD simulations were performed with ANSYS©FluentTMv16.0.0 software with transient and turbulent airflow (k-ω model). Two respiratory cycles (8 seconds) were simulated to assess pressure, velocity, wall shear stress, and particle residence time. The pressure gradients within the sinus cavities varied according to their place of connection to the main passage. Alternations in pressure gradients induced a slight pumping phenomenon close to the ostia but no movement of air was observed within the sinus cavities. Strong movements were observed within the inferior meatus during expiration contrary to the inspiration, as in the olfactory cleft at the same time. Particle residence time was longer during expiration than inspiration due to nasal valve resistance, as if the expiratory phase was preparing the next inspiratory phase. Throughout expiration, some particles remained in contact with the lower turbinates. The posterior part of the olfactory cleft was gradually filled with particles that did not leave the nose at the next respiratory cycle. This pattern increased as the respiratory cycle was repeated. CFD is more efficient and reliable when the entire respiratory cycle is simulated and repeated to avoid losing information. © 2018 ARS-AAOA, LLC.

  2. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  3. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  4. Interpersonal violence on college campuses: understanding risk factors and working to find solutions.

    Science.gov (United States)

    Littleton, Heather

    2014-10-01

    This commentary discusses the contributions of Drs. Antonia Abbey and Catherine Kaukinen to our understanding of risk factors for sexual and physical aggression among college students. Major contributions of their work are outlined. These include Abbey's contributions to our understanding of trajectories of sexually aggressive behavior among college men, risk factors for engaging in sexual aggression among men, and the role of alcohol in sexual aggression. In addition, Kaukinen's work has increased our understanding of the frequency of violence in college dating relationships as well as the association of violent relationships with health risk behaviors. Directions for future research are also outlined including a need to identify trajectories of violence risk as well as a need to understand the complex interrelationships among health risk behaviors and interpersonal violence. Finally, implications for practice and university policy are discussed, including a focus on the development of effective preventive strategies and proactive responses to violence. © The Author(s) 2014.

  5. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  6. Removal and Recovery of Chromium from Solutions Simulating Tannery Wastewater by Strong Acid Cation Exchanger

    Directory of Open Access Journals (Sweden)

    Gulten Cetin

    2013-01-01

    Full Text Available The process in this study was conducted on removal of chromium(III in a solution simulating a typical spent chrome tanning bath by the resin having matrix of styrene-divinylbenzene-based macroporous sulphonate, Amberjet 1200Na. The column experiments were carried out with the bed volumes of the resin as 751 mL and 1016 mL for different installation systems of the laboratory-scale pilot plant. The feeding solutions in the bed volumes of 200 and 190 were used for each installation system. The regeneration behaviour of the resin was determined by using reverse regeneration procedure with the solution of hydrogen peroxide in alkaline. The regeneration kinetics of the exhausted resin was examined with a range of the solutions having different concentration series of the alkaline hydrogen peroxide. The solutions of the basic chromium sulphate were recycled for each installation system following the regeneration cycles. The chromium ions in effluent were quantitatively eluted, and satisfactory removal of chromium(III and recovery of chromium(VI were achieved.

  7. Effect of Computer Simulations at the Particulate and Macroscopic Levels on Students' Understanding of the Particulate Nature of Matter

    Science.gov (United States)

    Tang, Hui; Abraham, Michael R.

    2016-01-01

    Computer-based simulations can help students visualize chemical representations and understand chemistry concepts, but simulations at different levels of representation may vary in effectiveness on student learning. This study investigated the influence of computer activities that simulate chemical reactions at different levels of representation…

  8. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    Science.gov (United States)

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  9. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways

    OpenAIRE

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-01-01

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann’s approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thu...

  10. Using Modeling and Simulation to Complement Testing for Increased Understanding of Weapon Subassembly Response.

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davidson, Megan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to the deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping

  11. Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding

    Directory of Open Access Journals (Sweden)

    Birgit Kopainsky

    2015-10-01

    Full Text Available Prior exploration is an instructional strategy that has improved performance and understanding in system-dynamics-based simulators, but only to a limited degree. This study investigates whether model transparency, that is, showing users the internal structure of models, can extend the prior exploration strategy and improve learning even more. In an experimental study, participants in a web-based simulation learned about and managed a small developing nation. All participants were provided the prior exploration strategy but only half received prior exploration embedded in a structure-behavior diagram intended to make the underlying model’s structure more transparent. Participants provided with the more transparent strategy demonstrated better understanding of the underlying model. Their performance, however, was the equivalent to those in the less transparent condition. Combined with previous studies, our results suggest that while prior exploration is a beneficial strategy for both performance and understanding, making the model structure transparent with structure-behavior diagrams is more limited in its effect.

  12. Modeling and simulation of storm surge on Staten Island to understand inundation mitigation strategies

    Science.gov (United States)

    Kress, Michael E.; Benimoff, Alan I.; Fritz, William J.; Thatcher, Cindy A.; Blanton, Brian O.; Dzedzits, Eugene

    2016-01-01

    Hurricane Sandy made landfall on October 29, 2012, near Brigantine, New Jersey, and had a transformative impact on Staten Island and the New York Metropolitan area. Of the 43 New York City fatalities, 23 occurred on Staten Island. The borough, with a population of approximately 500,000, experienced some of the most devastating impacts of the storm. Since Hurricane Sandy, protective dunes have been constructed on the southeast shore of Staten Island. ADCIRC+SWAN model simulations run on The City University of New York's Cray XE6M, housed at the College of Staten Island, using updated topographic data show that the coast of Staten Island is still susceptible to tidal surge similar to those generated by Hurricane Sandy. Sandy hindcast simulations of storm surges focusing on Staten Island are in good agreement with observed storm tide measurements. Model results calculated from fine-scaled and coarse-scaled computational grids demonstrate that finer grids better resolve small differences in the topography of critical hydraulic control structures, which affect storm surge inundation levels. The storm surge simulations, based on post-storm topography obtained from high-resolution lidar, provide much-needed information to understand Staten Island's changing vulnerability to storm surge inundation. The results of fine-scale storm surge simulations can be used to inform efforts to improve resiliency to future storms. For example, protective barriers contain planned gaps in the dunes to provide for beach access that may inadvertently increase the vulnerability of the area.

  13. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

    Science.gov (United States)

    Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.

    2010-09-01

    The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full

  14. Real-time Solution via Dynamic Simulation for the Six Degree of Freedom Platform

    Directory of Open Access Journals (Sweden)

    Lin Lizong

    2017-01-01

    Full Text Available In order to provide a new way for dynamic simulation experiments, a real-time solution for the six degree of freedom platform was developed. The mathematical model of an improved Six-DOF Stewart platform was used to study positive solutions and inverse solutions. According to the parameters of different platforms, different function signals were selected to generate motion control data by using Visual C++ programming. Motion control card was embedded into industrial computer, data was sent automatically to the control card by the program when the platform ran. The output of the control card was analog voltage, and it was amplified to send to the proportional valve, then the flows of six hydraulic cylinders were controlled by the six proportional valves. So a closed-loop control CNC system was formed. The expected action could be realized by the platform. Experiments have proved that the method is simple, efficient and easy to operate. It can not only accompany the implementation moving of relevant actions in the 3D movie theater, but also provide the signal source for the road spectrum of simulated driving test of the automobile.

  15. Solution of the optimal plant location and sizing problem using simulated annealing and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.; Buescher, K.L.; Hanagandi, V.

    1995-12-31

    In the optimal plant location and sizing problem it is desired to optimize cost function involving plant sizes, locations, and production schedules in the face of supply-demand and plant capacity constraints. We will use simulated annealing (SA) and a genetic algorithm (GA) to solve this problem. We will compare these techniques with respect to computational expenses, constraint handling capabilities, and the quality of the solution obtained in general. Simulated Annealing is a combinatorial stochastic optimization technique which has been shown to be effective in obtaining fast suboptimal solutions for computationally, hard problems. The technique is especially attractive since solutions are obtained in polynomial time for problems where an exhaustive search for the global optimum would require exponential time. We propose a synergy between the cluster analysis technique, popular in classical stochastic global optimization, and the GA to accomplish global optimization. This synergy minimizes redundant searches around local optima and enhances the capable it of the GA to explore new areas in the search space.

  16. The challenges of understanding glycolipid functions: An open outlook based on molecular simulations

    DEFF Research Database (Denmark)

    Manna, M.; Rog, T.; Vattulainen, I.

    2014-01-01

    and molecular simulations can be used to shed light on the role of glycolipids in membrane structure and dynamics, receptor function, and other phenomena related to emergence of diseases such as Parkinson's. The cases we discuss highlight the challenge to understand how glycolipids function in cell membranes......Glycolipids are the most complex lipid type in cell membranes, characterized by a great diversity of different structures and functions. The underlying atomistic/molecular interactions and mechanisms associated with these functions are not well understood. Here we discuss how atomistic...

  17. Finite element simulation of moisture movement and solute transport in a large caisson

    International Nuclear Information System (INIS)

    Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.

    1987-01-01

    The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed

  18. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a

  19. Implementing Mobile Phone Solutions for Health in Resource Constrained Areas: Understanding the Opportunities and Challenges

    Science.gov (United States)

    Manda, Tiwonge Davis; Herstad, Jo

    This paper presents results from a study on mobile phone use to connect two rural hospitals in Malawi with community health workers (CHWs), the hospitals work with. Mobile phone use at the hospitals has helped reduce the need for face-to-face communication to permit patient information exchange, meetings and appointments scheduling, as well as work coordination. On the other hand mobile phone use has proved paradoxical as it has introduced users to challenges, like recharging of phone batteries, they did not anticipate. The paper highlights use context-centric and solution based opportunities and challenges associated with mobile phone use in rural settings.

  20. Copy of Using Emulation and Simulation to Understand the Large-Scale Behavior of the Internet.

    Energy Technology Data Exchange (ETDEWEB)

    Adalsteinsson, Helgi; Armstrong, Robert C.; Chiang, Ken; Gentile, Ann C.; Lloyd, Levi; Minnich, Ronald G.; Vanderveen, Keith; Van Randwyk, Jamie A; Rudish, Don W.

    2008-10-01

    We report on the work done in the late-start LDRDUsing Emulation and Simulation toUnderstand the Large-Scale Behavior of the Internet. We describe the creation of a researchplatform that emulates many thousands of machines to be used for the study of large-scale inter-net behavior. We describe a proof-of-concept simple attack we performed in this environment.We describe the successful capture of a Storm bot and, from the study of the bot and furtherliterature search, establish large-scale aspects we seek to understand via emulation of Storm onour research platform in possible follow-on work. Finally, we discuss possible future work.3

  1. Calculation of diffusion coefficients for carbon dioxide + solute system near the critical conditions by non-equilibrium molecular dynamics simulation

    OpenAIRE

    Higashi, Hidenori; Oda, Tsuyoshi; Iwai, Yoshio; Arai, Yasuhiko

    2004-01-01

    A non-equilibrium molecular dynamics simulation was adopted to calculate the diffusion coefficients for a pseudo-binary system of carbon dioxide and for a carbon dioxide + solute system at 308.2 and 318.2K. The calculated results were compared with the self- and tracer diffusion coefficients calculated by an equilibrium molecular dynamics simulation. The simulated results for the pseudo-binary system of carbon dioxide by the non-equilibrium molecular dynamics simulation are in good agreement ...

  2. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    International Nuclear Information System (INIS)

    Pirvu, Cristian; Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana

    2011-01-01

    Highlights: → Electrochemical monitoring of PPy and PPy-PEG films over immersion time. → Electrochemical and surface analysis showed that PEG improves the stability of PPy films. → Mott-Schottky analysis reveals p-type conductance for both films. → In situ AFM analysis sustains electrochemical behaviour. → A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O 2 inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  3. VM-based infrastructure for simulating different cluster and storage solutions in ATLAS

    CERN Document Server

    KUTOUSKI, M; The ATLAS collaboration; PETROSYAN, A; KADOCHNIKOV, I; BELOV, S; KORENKOV, V

    2012-01-01

    The current ATLAS Tier3 infrastructure consists of a variety of sites of different sizes and with a mix of local resource management systems (LRMS) and mass storage system (MSS) implementations. The Tier3 monitoring suite, having been developed in order to satisfy the needs of Tier3 site administrators and to aggregate Tier3 monitoring information on the global VO level, needs to be validated for various combinations of LRMS and MSS solutions along with the corresponding Ganglia and/or Nagios plugins. For this purpose the Testbed infrastructure, which allows simulation of various computational cluster and storage solutions, had been set up at JINR (Dubna). This infrastructure provides the ability to run testbeds with various LRMS and MSS implementations, and with the capability to quickly redeploy particular testbeds or their components. Performance of specific components is not a critical issue for development and validation, whereas easy management and deployment are crucial. Therefore virtual machines were...

  4. Reusable Object-Oriented Solutions for Numerical Simulation of PDEs in a High Performance Environment

    Directory of Open Access Journals (Sweden)

    Andrea Lani

    2006-01-01

    Full Text Available Object-oriented platforms developed for the numerical solution of PDEs must combine flexibility and reusability, in order to ease the integration of new functionalities and algorithms. While designing similar frameworks, a built-in support for high performance should be provided and enforced transparently, especially in parallel simulations. The paper presents solutions developed to effectively tackle these and other more specific problems (data handling and storage, implementation of physical models and numerical methods that have arisen in the development of COOLFluiD, an environment for PDE solvers. Particular attention is devoted to describe a data storage facility, highly suitable for both serial and parallel computing, and to discuss the application of two design patterns, Perspective and Method-Command-Strategy, that support extensibility and run-time flexibility in the implementation of physical models and generic numerical algorithms respectively.

  5. The Effect of Simulated Interaural Frequency Mismatch on Speech Understanding and Spatial Release From Masking.

    Science.gov (United States)

    Goupell, Matthew J; Stoelb, Corey A; Kan, Alan; Litovsky, Ruth Y

    2018-01-15

    The binaural-hearing system interaurally compares inputs, which underlies the ability to localize sound sources and to better understand speech in complex acoustic environments. Cochlear implants (CIs) are provided in both ears to increase binaural-hearing benefits; however, bilateral CI users continue to struggle with understanding speech in the presence of interfering sounds and do not achieve the same level of spatial release from masking (SRM) as normal-hearing listeners. One reason for diminished SRM in CI users could be that the electrode arrays are inserted at different depths in each ear, which would cause an interaural frequency mismatch. Because interaural frequency mismatch diminishes the salience of interaural differences for relatively simple stimuli, it may also diminish binaural benefits for spectral-temporally complex stimuli like speech. This study evaluated the effect of simulated frequency-to-place mismatch on speech understanding and SRM. Eleven normal-hearing listeners were tested on a speech understanding task. There was a female target talker who spoke five-word sentences from a closed set of words. There were two interfering male talkers who spoke unrelated sentences. Nonindividualized head-related transfer functions were used to simulate a virtual auditory space. The target was presented from the front (0°), and the interfering speech was either presented from the front (colocated) or from 90° to the right (spatially separated). Stimuli were then processed by an eight-channel vocoder with tonal carriers to simulate aspects of listening through a CI. Frequency-to-place mismatch ("shift") was introduced by increasing the center frequency of the synthesis filters compared with the corresponding analysis filters. Speech understanding was measured for different shifts (0, 3, 4.5, and 6 mm) and target-to-masker ratios (TMRs: +10 to -10 dB). SRM was calculated as the difference in the percentage of correct words for the colocated and separated

  6. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    Science.gov (United States)

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  7. Water and clay: MD simulations and their relevance to solute migration in argillaceous media

    International Nuclear Information System (INIS)

    Bourg, Ian C.

    2012-01-01

    Document available in extended abstract form only. Full text of document follows: Clay minerals play important roles in regulating the migration of water and ions near high-level radioactive waste repositories, both in engineered clay barriers and in natural geologic formations such as clay shales. In particular, because of their high surface area and high cation exchange capacity, clay minerals impose conditions where molecular diffusion is a key transport process and where aquatic geochemistry is strongly influenced by interfacial phenomena. Here, we discuss how molecular dynamics (MD) simulations provide insights into the behavior of solutes in water and near clay surfaces (on length scales of a few nano-meters) that are directly relevant to solute migration in argillaceous media. We focus on three examples: noble gas diffusion in lacustrine sediments [1,2], ion adsorption in the electrical double layer on clay surfaces [3], and water and ion diffusion in clay interlayer nano-pores [4]. [1] Bourg IC and Sposito G (2008) Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications. Geochim. Cosmochim. Acta 72, 2237-2247. [2] Bourg IC, Richter FM, Christensen JN and Sposito G (2010) Isotopic mass dependence of metal cation diffusion coefficients in liquid water. Geochim. Cosmochim. Acta 74, 2249-2256. [3] Bourg IC and Sposito G (2011) Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting mixed electrolyte (NaCl-CaCl 2 ) solutions. J. Colloid Interface Sci. 360, 701-715. [4] Bourg IC and Sposito G (2010) Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media. Environ. Sci. Technol. 44, 2085-2091. (authors)

  8. Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations

    International Nuclear Information System (INIS)

    Duvail, M.; Guilbaud, Ph.

    2011-01-01

    Coordination of nitrate anions with lanthanoid cations (Ln 3+ ) in water, methanol and octanol-1 has been studied by means of molecular dynamics simulations with explicit polarization. Potential of mean force (PMF) profiles have been calculated for a mono-complex of lanthanoid nitrate (Ln(NO 3 ) 2+ ) in these solvents using umbrella-sampling molecular dynamics. In pure water, no difference in the nitrato coordination to lanthanoids (Nd 3+ , Eu 3+ and Dy 3+ ) is observed, i.e. the nitrate anion prefers the monodentate coordination, which promotes the salt dissociation. Then, the influence of the nature of the solvating molecules on the nitrato coordination to Eu 3+ has been investigated. PMF profiles point out that both monodentate and bidentate coordinations are stable in neat methanol, while in neat octanol, only the bidentate one is. MD simulations of Eu(NO 3 ) 3 in water-octanol mixtures with different concentrations of water have been then performed and confirm the importance of the water molecules' presence on the nitrate ion's coordination mode. (authors)

  9. Mixing of Process Heels, Process Solutions and Recycle Streams: Small-Scale Simulant

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2001-01-01

    The overall objective of this small-scale simulant mixing study was to identify the processes within the Hanford Site River Protection Project - Waste Treatment Plant (RPP-WTP) that may generate precipitates and to identify the types of precipitates formed. This information can be used to identify where mixtures of various solutions will cause precipitation of solids, potentially causing operational problems such as fouling equipment or increasing the amount of High Level Waste glass produced. Having this information will help guide protocols for flushing or draining tanks, mixing internal recycle streams, and mixing waste tank supernates. This report contains the discussion and thermodynamic chemical speciation modeling of the raw data

  10. Parallel shooting methods for finding steady state solutions to engine simulation models

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2007-01-01

    Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...... as test case. A parallel speedup factor of 23 on 33 processors was achieved with multiple shooting. But fast transients at the beginnings of sub intervals caused significant overhead for the multiple shooting methods and limited the best speedup to 3.8 relative to the fastest sequential method: Single...

  11. Ammonia and carbon dioxide regeneration from multicomponent solutions: II - Simulation and analysis of results

    Directory of Open Access Journals (Sweden)

    Jotanović Milovan B.

    2002-01-01

    Full Text Available This study describes the simulation of the technological process of NH3 and CO2 regeneration from the multicomponent solution NH3-CO2-NaCl-NH4Cl, based on a developed mathematical model of the process. All the parameters of the technological process were obtained from the simulation, and they represent the mass flow rates as well as the physical and chemical properties (pressure, temperature,.. of all the flows shown on the process flowsheet. The calculation of numerous variations of the process also enabled the analysis and establishment for a relation between the crucial process variables and the steam and liquid phase supply. These relations are important for the absorption-desorption process of synthesis, operating process analysis and process control.

  12. Self-Assembly of Pluronic Block Copolymers in Solutions: Simulation and Neutron Scattering

    Science.gov (United States)

    Zhang, Zhe; Hong, Kunlun; Do, Changwoo; Biology and Soft-Matter Division, Oak Ridge National Laboratory Team; Chemical Science Division, Oak Ridge National Laboratory Team

    2014-03-01

    Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers in water solution display various phase behaviors such as micellar, lamellar, and hexagonal phases and have been of great interest to researchers for their wide range of applications including templates of various nanostructures in solar cell and transportation of nanoparticles in drug delivery. In this study, we combined density functional theory-based mesoscale simulation and small-angle neutron scattering (SANS) experiments to investigate equilibrium structures of L62/water systems at different concentrations. Various simulation parameters found in the literature have been revisited with the experimental findings. Scattering experiments were found to be an excellent. This research is supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Energy Division.

  13. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    the Monte Carlo simulations. It is found that the SANS data can be explained by a model where the HSA molecules behave as hard ellipsoids of revolution with semiaxes a = 6.8 nm, b = c = 1.9 nm. In addition to the hard core interaction, the particles are also surrounded by a soft, repulsive rectangular......The understanding of the structural and thermodynamic properties of moderately or highly concentrated solutions is fundamental, e.g., in medicine and biology and also in many technical processes, In this work, we have used the small-angle neutron scattering method (SANS), in combination with Monte...... Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...

  14. Corrosion protection performance of corrosion inhibitors and epoxy-coated reinforcing steel in a simulated concrete pore water solution.

    Science.gov (United States)

    1998-06-01

    We used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three ...

  15. Extraction of water and solutes from argillaceous rocks for geochemical characterisation: Methods, processes and current understanding

    Science.gov (United States)

    Sacchi, Elisa; Michelot, Jean-Luc; Pitsch, Helmut; Lalieux, Philippe; Aranyossy, Jean-François

    2001-01-01

    This paper summarises the results of a comprehensive critical review, initiated by the OECD/NEA "Clay Club," of the extraction techniques available to obtain water and solutes from argillaceous rocks. The paper focuses on the mechanisms involved in the extraction processes, the consequences on the isotopic and chemical composition of the extracted pore water and the attempts made to reconstruct its original composition. Finally, it provides some examples of reliable techniques and information, as a function of the purpose of the geochemical study. Résumé. Cet article résume les résultats d'une synthèse critique d'ensemble, lancée par le OECD/NEA "Clay Club", sur les techniques d'extraction disponibles pour obtenir l'eau et les solutés de roches argileuses. L'article est consacré aux mécanismes impliqués dans les processus d'extraction, aux conséquences sur la composition isotopique et chimique de l'eau porale extraite et aux tentatives faites pour reconstituer sa composition originelle. Finalement, il donne quelques exemples de techniques fiables et d'informations, en fonction du but de l'étude géochimique. Resúmen. Este artículo resume los resultados de una revisión crítica exhaustiva (iniciada por el "Clay Club" OECD/NEA) de las técnicas de extracción disponibles para obtener agua y solutos en rocas arcillosas. El artículo se centra en los mecanismos involucrados en los procesos extractivos, las consecuencias en la composición isotópica y química del agua intersticial extraída, y en los intentos realizados para reconstruir su composición original. Finalmente, se presentan algunos ejemplos de técnicas fiables e información, en función del propósito del estudio geoquímico.

  16. Understanding resonance graphs using Easy Java Simulations (EJS) and why we use EJS

    Science.gov (United States)

    Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel

    2015-03-01

    This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of equal amplitude but different driving frequencies, and (2) different amounts of damping. The simulation aims to create a visually intuitive way of understanding how the series of amplitude versus driving frequency graphs are obtained by showing how the displacement of the system changes over time as it transits from the transient to the steady state. A suggested ‘how to use’ the model is added to help educators and students in their teaching and learning, where we explain the theoretical steady-state equation time conditions when the model begins to allow data recording of maximum amplitudes to closely match the theoretical equation, and the steps to collect different runs of the degree of damping. We also discuss two of the design features in our computer model: displaying the instantaneous oscillation together with the achieved steady-state amplitudes, and the explicit world view overlay with scientific representation with different degrees of damping runs. Three advantages of using EJS include: (1) open source codes and creative commons attribution licenses for scaling up of interactively engaging educational practices; (2) the models made can run on almost any device, including Android and iOS; and (3) it allows the redefinition of physics educational practices through computer modeling.

  17. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  18. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-12-15

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin's law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst's law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions.

  19. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    Science.gov (United States)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  20. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  1. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    International Nuclear Information System (INIS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  2. Simulating charge transport to understand the spectral response of Swept Charge Devices

    Science.gov (United States)

    Athiray, P. S.; Sreekumar, P.; Narendranath, S.; Gow, J. P. D.

    2015-11-01

    Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. Aims: The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs. Methods: Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum. Results: We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at

  3. Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Binder, K; Paul, W; Strauch, T; Rampf, F; Ivanov, V; Luettmer-Strathmann, J

    2008-01-01

    The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of small molecule systems, since the thermodynamic limit can also be approached when the number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute limit) is approaching infinity. One can introduce effective attractive interactions into a simulation model for a single chain such that a swollen coil contracts when the temperature is reduced, until excluded volume interactions are effectively canceled by attractive forces, and the chain conformation becomes almost Gaussian at the theta point. This state corresponds to a tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid globule is predicted (at nonzero concentration then phase separation between dilute and semidilute solutions occurs), while at still lower temperature a transition to a solid phase (crystal or glass) occurs. Monte Carlo simulations have shown, however, that the fluid globule phase may become suppressed, when the range of the effective attractive forces becomes too short, with the result that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This behavior is analogous to the behavior of colloidal particles with a very short range of attractive forces, where liquid-vapor-type phase separation may be suppressed. Analogous first-order transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions are addressed.

  4. Solidification of a binary alloy: Finite-element, single-domain simulation and new benchmark solutions

    Science.gov (United States)

    Le Bars, Michael; Worster, M. Grae

    2006-07-01

    A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are

  5. Autolysis of cell walls from polygalacturonase-antisense tomato fruit in simulated apoplastic solutions.

    Science.gov (United States)

    Almeida, Domingos P F; Huber, Donald J

    2011-06-01

    Autolysis of cell walls from polygalacturonase (PG)-antisense tomato fruit was studied in a conventional buffer designed to maximize the catalytic activity of PG (30 mM sodium acetate, 150 mM NaCl, pH 4.5), and in solutions mimicking the pH and mineral composition of the fruit apoplast at the mature-green and ripe stages. Autolytic release of uronic acids was very limited under simulated apoplastic conditions compared with the conventional buffer, but minimal differences in the release of reducing groups were observed among the incubation conditions. Autolytic release of uronic acids from active walls was lower than solubilization from enzymically inactive walls. Uronic acids that remained ionically bound to the cell walls during autolysis were subsequently extracted and analyzed by size exclusion chromatography. The elution profiles of ionically bound uronic acids from cell walls incubated under optimal conditions were similar for all ripening stages. In solutions mimicking the pH and mineral composition of the apoplast of mature-green and ripe fruit, uronic acids extracted from pink and ripe fruit cell walls showed a decrease in average molecular mass compared with polymers from mature-green cell walls. The results suggest that the composition of the incubation solution exert strong influence on PG-independent cell wall autolysis and that enzymically active walls restrain PG-independent pectin solubilization. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2014-05-28

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  7. Computer simulations of ionenes, hydrophobic ions with unusual solution thermodynamic properties. The ion-specific effects.

    Science.gov (United States)

    Druchok, M; Vlachy, V; Dill, K A

    2009-10-29

    Ionenes are alkyl polymer chains in which different numbers of methylene groups separate quaternary ammonium groups. They are ideal molecules for studying the balance between hydrophobic and charge effects in water. Implicit-solvent models predict osmotic coefficients that are too high (too low water vapor pressures), compared to experiments. We present a molecular dynamics simulation, in explicit SPC/E water, of a solution of aliphatic 6,6 ionene oligocations with sodium co-ions and fluorine, chlorine, bromine, or iodine counterions. In the 6,6 ionene solution, the latter polyion has more hydrophobic groups than its 3,3 counterpart, the waters are displaced more from the oligoion surface. Also, we find that the large ions, such as iodine, act like hydrophobic groups insofar as they bind to ionene's methylene groups. The water-mediated attraction between fluorine ions is enhanced in presence of weakly charged 6,6 ionene molecules. This effect may additionally reduce the osmotic pressure in such systems. Our results can explain some experimental trends in ionene solutions and weakly charged polyelectrolytes in general.

  8. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  9. Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution

    Directory of Open Access Journals (Sweden)

    Oelmeier Stefan A

    2012-08-01

    Full Text Available Abstract Background Molecular Dynamics (MD simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood. Results In this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity. Conclusions We were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG.

  10. Adsorbed Conformations of PCE Superplasticizers in Cement Pore Solution Unraveled by Molecular Dynamics Simulations.

    Science.gov (United States)

    Hirata, Tsuyoshi; Ye, Jun; Branicio, Paulo; Zheng, Jianwei; Lange, Alex; Plank, Johann; Sullivan, Michael

    2017-11-30

    The conformations of polycarboxylate ether (PCE) type superplasticizer polymers adsorbed on the surface of MgO in cement pore solution are simulated by molecular dynamics (MD). Three types of PCEs commonly applied to concrete are simulated, namely a methacrylate type PCE (PCEM-P), an allyl ether type PCE (PCEA-P), and an isoprenyl ether type PCE (PCEI-P) with ethylene oxide (EO) unit numbers (P) of 25, 34 and 25, respectively. It is observed that the adsorbed layer thickness is inversely proportional to the experimentally measured adsorbed amount at the initial paste flow of 26 ± 0.5 cm. Simulation results indicate that the adsorbed layer thickness is sensitive to the initial polymer orientations against the model MgO surface. I.e., polymer molecules initially placed parallel/perpendicularly against the MgO surface gradually forms a train shaped or a loop and tail adsorption profile, respectively. As a result, the loop and tail shaped conformation gives a higher layer thickness.

  11. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.

    Science.gov (United States)

    Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G

    2014-01-01

    The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions

    International Nuclear Information System (INIS)

    Milošev, Ingrid

    2012-01-01

    Highlights: ► The behaviour of CoCrMo alloy is investigated in four simulated physiological solutions. ► The effect of synovial fluid significantly differs from the effect of organic components hitherto studied. ► In the presence of organic components carbon and nitrogen containing species are formed. ► Composition, structure and thickness of surface layers were determined by XPS. - Abstract: CoCrMo orthopaedic alloy was oxidized potentiostatically in various simulated physiological solutions in order to reveal differences in the composition, thickness and structure of the surface layers formed as a function of solution composition. X-ray photoelectron spectroscopy, combined with angle-resolved measurements and depth profiling, was used for the purpose. The following simulated physiological solutions were used: (1) 0.9% NaCl, (2) simulated Hanks physiological solution containing various inorganic salts, (3) simulated Hanks physiological solution containing an aliquot of synovial fluid retrieved at a primary operation, and (4) minimum essential medium containing various inorganic salts, amino acids and vitamins. No significant differences between alloy treated in these solutions were observed after oxidation in the passive region; the oxide films are a few nanometres thick and, except in NaCl solution, contain a small amount of calcium phosphate. After oxidation at a potential in the transpassive range, however, the oxide thickness increases considerably due to incorporation of cobalt and molybdenum oxides. Further, the concentration of calcium phosphate increases. The layers formed in minimum essential medium and Hanks solution containing synovial fluid comprise nitrogen and carbon containing species. The addition of synovial fluid significantly affects the behaviour in Hanks solution.

  13. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.

    Science.gov (United States)

    Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan

    2017-10-18

    We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore

  14. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B.M.; Quinn, M.J

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces

  15. Accelerating Our Understanding of Supernova Explosion Mechanism via Simulations and Visualizations with GenASiS

    Energy Technology Data Exchange (ETDEWEB)

    Budiardja, R. D. [University of Tennessee, Knoxville (UTK); Cardall, Christian Y [ORNL; Endeve, Eirik [ORNL

    2015-01-01

    Core-collapse supernovae are among the most powerful explosions in the Universe, releasing about 1053 erg of energy on timescales of a few tens of seconds. These explosion events are also responsible for the production and dissemination of most of the heavy elements, making life as we know it possible. Yet exactly how they work is still unresolved. One reason for this is the sheer complexity and cost of a self-consistent, multi-physics, and multi-dimensional core-collapse supernova simulation, which is impractical, and often impossible, even on the largest supercomputers we have available today. To advance our understanding we instead must often use simplified models, teasing out the most important ingredients for successful explosions, while helping us to interpret results from higher fidelity multi-physics models. In this paper we investigate the role of instabilities in the core-collapse supernova environment. We present here simulation and visualization results produced by our code GenASiS.

  16. Simulated jury and brain storm: Understanding the implementation of Belo Monte Hydroelectric dam

    Directory of Open Access Journals (Sweden)

    Marcos Marques Formigosa

    2017-12-01

    Full Text Available The physics teaching still finds many obstacles in basic education, mainly because of the strong resistance that we find within its methodologies, still centered in the didactic book and the memorization of formulas and laws. This manuscript aims to present the results of the strategies of Simulated Jury and Brain Storm developed in a Countryside Education Degree (emphasis in Natural Sciences, specifically at Fundamentals of Physics III in two classes of the 4th Period, in the countryside Of Paraense Amazon. In one class we used the strategy Cerebral Storm and another strategy was the Simulated Jury, the Electricity content. The analyzes were made based on the reports of the students in the class and notes made by the teacher/researcher. These developed strategies allowed the rupture of the stereotypes presented among the students about the methodologies used by their teachers in teaching Physics contents, which was based on traditional expository classes, and with the strategies used they realized that they can approach the contents of and, above all, led them to a critical reality understanding in which they are inserted.

  17. Understanding the Dynamics of the Coupled Ring Current Radiation Belt System Using 4D VERB Simulations

    Science.gov (United States)

    Shprits, Y.; Kellerman, A. C.; Drozdov, A.; Orlova, K.; Spasojevic, M.

    2014-12-01

    Predicting and understanding the non-linear response of different electron populations in the inner magnetosphere, including ring current and higher energy radiation belts, has been a grand challenge since the beginning of the space age. During this past decade, there have been a number of long-term simulations that used lower energy boundary condition observations around geosynchronous orbit. In this study, we set up observations at around 15 RE and study how the combined convective-diffusive transport can result in the acceleration of keV to relativistic and ultra-relativistic energies. We show that while lower energy radial transport is dominated by the convection, higher energy transport is dominated by the diffusive radial transport. MLT dependent diffusion confidents allow us to study how difference in wave properties at different MLT can influence the dynamics of the particles. Inclusion of adiabatic changes also allows us to study the radial transport that results from pitch-angle scattering and adiabatic changes. We also show that there exists an intermediate range of energies for electrons for which both processes work simultaneously. We show the comparison of the 4D VERB simulations with the Van Allen Probes measurements.

  18. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    Science.gov (United States)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection

  19. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    Science.gov (United States)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    Science.gov (United States)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  1. Determination of in-process limits during parenteral solution manufacturing using Monte Carlo Simulation.

    Science.gov (United States)

    Kuu, Wei Y; Chilamkurti, Rao

    2003-01-01

    The purpose of this study is to utilize Monte Carlo Simulation methodology to determine the in-process limits for the parenteral solution manufacturing process. The Monte Carlo Simulation predicts the distribution of a dependable variable (such as drug concentration) in a naturally occurring process through random value generation considering the variability associated with the depended variable. The propagation of variation in drug concentration from batch to batch is cascading in nature during the following four formulation steps: 1) determination of drug raw material potency (or purity), 2) weighing of drug raw material, 3) measurement of batch volume, and 4) determination of drug concentration in the mix tank. The coefficients of variation for these four steps are denoted as CV1, CV2, CV3, and CV4, respectively. The Monte Carlo Simulation was performed for each of the above four cascading steps. The results of the simulation demonstrate that the in-process limits of the drug can be successfully determined using the Monte Carlo Simulation. Once the specification limits are determined, the Monte Carlo Simulation can be used to study the effect of each variability on the percent out of specification limits (OOL) for the in-process testing. Demonstrations were performed using the acceptance criterion of less than 5% of OOL batches, and the typical values of CV2 and CV3 being equal to 0.03% and 0.5%, respectively. The results show that for the in-process limits of +/- 1%, the values of CV1 and CV4 should not be greater than 0.1%. These assay requirements appear to be difficult to achieve for a given chemical analytical method. By comparison, for the In-process limits of +/- 4%, the requirements are much easier to achieve. The values of CV1 and CV4 should not be greater than 1.38%. In addition, the relationship between the percent OOL versus CV1 or CV4 is nonlinear per se. The number of OOL batches increases rapidly with increasing variability of CV1 or CV4.

  2. Physical compatibility of various drugs with neonatal total parenteral nutrient solution during simulated Y-site administration.

    Science.gov (United States)

    Fox, Laura M; Wilder, Alyson G; Foushee, Jaime A

    2013-03-15

    The physical compatibility of various drugs with neonatal total parenteral nutrient (TPN) solution during simulated Y-site administration was evaluated. Study drugs were selected based on the lack of compatibility data with them and neonatal TPN solution and the frequency of use in a local neonatal unit. These drugs included amiodarone, caffeine citrate, clindamycin, enalaprilat, epinephrine, fluconazole, fosphenytoin sodium, hydrocortisone, metoclopramide, midazolam, pentobarbital, phenobarbital, and rifampin. Equal volumes of neonatal TPN solution or sterile water for injection were combined with study drugs or sterile water for injection at concentrations used clinically in neonates. Each test was performed in triplicate. The samples were examined via turbidimetric analysis and visually against light and dark backgrounds immediately after mixing and at 0.25, 0.5, 1, 2, and 3 hours after mixing. Analysis of variance was used to determine statistically significant differences between the test and control solutions. Many of the drugs studied exhibited no visual or turbidimetric evidence of incompatibility when combined with neonatal TPN solution for up to three hours in a simulated Y-site injection. Pentobarbital, phenobarbital, and rifampin formed visible precipitation immediately after mixing with the neonatal TPN solution. Caffeine citrate, clindamycin, enalaprilat, epinephrine, fluconazole, fosphenytoin sodium, hydrocortisone, metoclopramide, and midazolam exhibited no visual or turbidimetric evidence of incompatibility when combined with a neonatal TPN solution for up to three hours in a simulated Y-site injection. Amiodarone, pentobarbital, phenobarbital, and rifampin were not compatible with the neonatal TPN solution and should not be coadministered via Y-site injection.

  3. Understanding the microscopic moisture migration in pore space using DEM simulation

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2015-04-01

    Full Text Available The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggering of and damages by liquefaction. The influence of pore fluid migration during earthquake has been demonstrated from recent model experiments and field case studies. Most of the current liquefaction assessment models are based on testing of isotropic liquefiable materials. However the recent New Zealand earthquake shows much severer damages than those predicted by existing models. A fundamental cause has been contributed to the embedded layers of low permeability silts. The existence of these silt layers inhibits water migration under seismic loads, which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories. This study intends to understand the process of moisture migration in the pore space of sand using discrete element method (DEM simulation. Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant confining pressure and axial loading. The porosity distribution was monitored during the axial loading process. The spatial distribution of porosity change was determined, which had a direct relationship with the distribution of excess pore water pressure. The non-uniform distribution of excess pore water pressure causes moisture migration. From this, the migration of pore water during the loading process can be estimated. The results of DEM simulation show a few important observations: (1 External forces are mainly carried and transmitted by the particle chains of the soil sample; (2 Porosity distribution during loading is not uniform due to non-homogeneous soil fabric (i.e. the initial particle arrangement and existence of particle chains; (3 Excess pore water pressure develops differently at different loading stages. At the early stage of loading, zones with a high initial porosity feature higher

  4. A simulation study of CS2 solutions in two related ionic liquids with dications and monocations

    Science.gov (United States)

    Lynden-Bell, R. M.; Quitevis, E. L.

    2018-05-01

    Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.

  5. Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution

    Energy Technology Data Exchange (ETDEWEB)

    Pilic, Zora; Martinovic, Ivana [Mostar Univ. (Bosnia and Herzegovina). Dept. of Chemistry

    2016-10-15

    The growth mechanism and properties of the oxide films on iron and AISI 304 stainless steel were studied in simulated acid rain (pH 4.5) by means of electrochemical techniques and atomic absorption spectrometry. The layer-pore resistance model was applied to explain a potentiodynamic formation of surface oxides. It was found that the growth of the oxide film on iron takes place by the low-field migration mechanism, while that on the stainless steel takes place by the high-field mechanism. Kinetic parameters were determined. Impedance measurements revealed that Fe surface film has no protective properties at the open circuit potential, while the resistance of stainless steel oxide film is very high. The concentration of the metallic ions released into solution and measured by atomic absorption spectroscopy was in accordance with the results obtained from the electrochemical techniques.

  6. Molecular dynamics simulations of poly (ethylene oxide) hydration and conformation in solutions

    Science.gov (United States)

    Dahal, Udaya; Dormidontova, Elena

    Polyethylene oxide (PEO) is one of the most actively used polymers, especially in biomedical applications due to its high hydrophilicity, biocompatibility and potency to inhibit protein adsorption. PEO solubility and conformation in water depends on its capability to form hydrogen bonds. Using atomistic molecular dynamics simulations we investigated the details of water packing around PEO chain and characterized the type and lifetime of hydrogen bonds in aqueous and mixed solvent solutions. The observed polymer chain conformation varies from an extended coil in pure water to collapsed globule in hexane and a helical-like conformation in pure isobutyric acid or isobutyric acid -water mixture in agreement with experimental observations. We'll discuss the implications of protic solvent arrangement and stability of hydrogen bonds on PEO chain conformation and mobility. This research is supported by NSF (DMR-1410928).

  7. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-02-01

    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  8. Understanding Galaxy Shapes Across Cosmic Time Using The IllustrisTNG Simulation

    Science.gov (United States)

    Genel, Shy

    2017-08-01

    Legacy HST observations have enabled groundbreaking measurements of galaxy structure over cosmic time, measurements that still require theoretical interpretation in the context of a comprehensive galaxy evolution model. This proposed research aims at significantly promoting our understanding of the shapes of galaxies as quantified by their principal axes ratios. The main tool we propose to use is IllustrisTNG, a suite consisting of two of the largest cosmological hydrodynamical simulations run to date, which contain resolved galaxy populations (thousands of L* galaxies) that represent a state-of-the-art match to observed galaxies. In Part I of the program, we will use the simulations to create mock images and study the dependence of projected shape measurements on various factors: shape estimator, observed band, the presence of dust, radial and surface brightness cuts, and noise. We will then perform apples-to-apples comparison with observations (including HST), and provide predictions for archival as well as future observations. Further, we will quantify the intrinsic, three-dimensional, shape distribution of galaxies as a function of various galaxy parameters: redshift, mass, color, and size. In Part II of the program, we will develop theoretical insights into the physical mechanisms driving these results. We will study how galaxy shapes relate to angular momentum and merger history, and will follow the shape evolution of individual galaxies over time, looking for correlations to the evolution of other galaxy properties, e.g. size and SFR. We will also study galaxy shape relations to dark matter halo shape, thereby providing input for high-precision cosmic shear models.

  9. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  10. Passivation of duplex stainless steel in solutions simulating chloride-contaminated concrete

    Directory of Open Access Journals (Sweden)

    Takenouti, H.

    2007-12-01

    Full Text Available Most studies published to date on the corrosion behaviour of stainless reinforcing steel are based on austenitic steel. The market presence of corrugated duplex steel is growing, however. The present study compared passivity in 2205 type duplex and 304 type austenitic stainless steel. Polarization tests in chloride-containing Ca(OH2 solutions confirmed the exceptional performance of duplex steels. X-ray photoelectronic spectroscopy (XPS showed that the passive layer generated on duplex stainless steel in media simulating concrete pore solutions had a higher Cr content than the layer formed on steel in contact with the air. The XPS results also revealed that in duplex steel the form adopted by the passive layer Fe oxides was Fe3O4 in the solutions simulating concrete, rather than Fe2O3, as in duplex steel exposed to air. Electrochemical impedance spectroscopy (EIS can be used to monitor the transformations taking place in the passive layer and analyze the factors involved.La mayoría de los estudios publicados hasta el momento sobre el comportamiento frente a la corrosión de armaduras de acero inoxidable se basan en aceros austeníticos. Sin embargo, la presencia en el mercado de aceros corrugados dúplex es cada vez más importante. En este trabajo se analiza la pasividad de un acero inoxidable dúplex tipo 2205 en comparación con la de un inoxidable austenítico tipo 304. Los ensayos de polarización en disoluciones de Ca(OH2 con cloruros confirman el excepcional comportamiento de los aceros dúplex. La espectroscopía fotoelectrónica de rayos X (XPS informa de que la capa pasiva generada en aceros inoxidables dúplex en medios que simulan la disolución de los poros del hormigón posee mayor contenido en óxidos de Cr que la formada en aire. También se puede deducir de los resultados de XPS que los óxidos de Fe de la capa pasiva de los aceros dúplex se encuentran en forma de Fe3O4 en las disoluciones que simulan el hormigón en vez de en

  11. Comparison of three-dimensional Poisson solution methods for particle-based simulation and inhomogeneous dielectrics

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P.; Eisenberg, Robert S.; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda [J. Chem. Phys.JCPSA60021-960610.1063/1.2212423 125, 034901 (2006)]. The qualocation method is described by J. Tausch [IEEE Transactions on Computer-Aided Design of Integrated Circuits and SystemsITCSDI0278-007010.1109/43.969433 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary

  12. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the

  13. Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: Insights from simulations.

    Science.gov (United States)

    Azamat, Jafar; Sattary, Batoul Shirforush; Khataee, Alireza; Joo, Sang Woo

    2015-09-01

    A computer simulation was performed to investigate the removal of Zn(2+) as a heavy metal from aqueous solution using the functionalized pore of a graphene nanosheet and boron nitride nanosheet (BNNS). The simulated systems were comprised of a graphene nanosheet or BNNS with a functionalized pore containing an aqueous ionic solution of zinc chloride. In order to remove heavy metal from an aqueous solution using the functionalized pore of a graphene nanosheet and BNNS, an external voltage was applied along the z-axis of the simulated box. For the selective removal of zinc ions, the pores of graphene and BNNS were functionalized by passivating each atom at the pore edge with appropriate atoms. For complete analysis systems, we calculated the potential of the mean force of ions, the radial distribution function of ion-water, the residence time of ions, the hydrogen bond, and the autocorrelation function of the hydrogen bond. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Toward an Understanding of Thin-Film Transistor Performance in Solution-Processed Amorphous Zinc Tin Oxide (ZTO) Thin Films.

    Science.gov (United States)

    Sanctis, Shawn; Koslowski, Nico; Hoffmann, Rudolf; Guhl, Conrad; Erdem, Emre; Weber, Stefan; Schneider, Jörg J

    2017-06-28

    Amorphous zinc tin oxide (ZTO) thin films are accessible by a molecular precursor approach using mononuclear zinc(II) and tin(II) compounds with methoxyiminopropionic acid ligands. Solution processing of two precursor solutions containing a mixture of zinc and tin(II)-methoxyiminopropinato complexes results in the formation of smooth homogeneous thin films, which upon calcination are converted into the desired semiconducting amorphous ZTO thin films. ZTO films integrated within a field-effect transistor (FET) device exhibit an active semiconducting behavior in the temperature range between 250 and 400 °C, giving an increased performance, with mobility values between μ = 0.03 and 5.5 cm 2 /V s, with on/off ratios increasing from 10 5 to 10 8 when going from 250 to 400 °C. Herein, our main emphasis, however, was on an improved understanding of the material transformation pathway from weak to high performance of the semiconductor in a solution-processed FET as a function of the processing temperature. We have correlated this with the chemical composition and defects states within the microstructure of the obtained ZTO thin film via photoelectron spectroscopy (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy), Auger electron spectroscopy, electron paramagnetic resonance spectroscopy, atomic force microscopy, and photoluminescence investigations. The critical factor observed for the improved performance within this ZTO material could be attributed to a higher tin concentration, wherein the contributions of point defects arising from the tin oxide within the final amorphous ZTO material play the dominant role in governing the transistor performance.

  15. Simulation-based education: understanding the socio-cultural complexity of a surgical training 'boot camp'.

    Science.gov (United States)

    Cleland, Jennifer; Walker, Kenneth G; Gale, Michael; Nicol, Laura G

    2016-08-01

    The focus of simulation-based education (SBE) research has been limited to outcome and effectiveness studies. The effect of social and cultural influences on SBE is unclear and empirical work is lacking. Our objective in this study was to explore and understand the complexity of context and social factors at a surgical boot camp (BC). A rapid ethnographic study, employing the theoretical lenses of complexity and activity theory and Bourdieu's concept of 'capital', to better understand the socio-cultural influences acting upon, and during, two surgical BCs, and their implications for SBE. Over two 4-day BCs held in Scotland, UK, an observer and two preceptors conducted 81 hours of observations, 14 field interviews and 11 formal interviews with faculty members (n = 10, including the lead faculty member, session leaders and junior faculty members) and participants (n = 19 core surgical trainees and early-stage residents). Data collection and inductive analysis for emergent themes proceeded iteratively. This paper focuses on three analytical themes. First, the complexity of the surgical training system and wider health care education context, and how this influenced the development of the BC. Second, participants' views of the BC as a vehicle not just for learning skills but for gaining 'insider information' on how best to progress in surgical training. Finally, the explicit aim of faculty members to use the Scottish Surgical Bootcamp to welcome trainees and residents into the world of surgery, and how this occurred. To the best of our knowledge, this is the first empirical study of a surgical BC that takes a socio-cultural approach to exploring and understanding context, complexities, uncertainties and learning associated with one example of SBE. Our findings suggest that a BC is as much about social and cultural processes as it is about individual, cognitive and acquisitive learning. Acknowledging this explicitly will help those planning similar enterprises and

  16. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves

    Science.gov (United States)

    Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M.

    2009-01-01

    In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the opportunity to study sand wave variation between locations, within one well-measured, large area. The nonlinear model used in this paper is presently the only tool that provides information on the nonlinear evolution of large-amplitude sand waves. The model is used to increase our understanding of the coupling between the variability in environmental conditions and the sand wave characteristics. Results show that the model is able to describe the variation in the Golden Gate sand waves well when both the local oscillating tidal current and the residual current are taken into account. Current and water depth seem to be the most important factors influencing sand wave characteristics. The simulation results give further confidence in the underlying model hypothesis and assumptions. Copyright 2009 by the American Geophysical Union.

  17. The effect of Phet Simulation media for physics teacher candidate understanding on photoelectric effect concept

    Directory of Open Access Journals (Sweden)

    Supurwoko Supurwoko

    2017-02-01

    Full Text Available Indonesian new Curriculum for senior high school students required student-centered learning. One of the curriculum implementation constraint was the difficulty of providing learning media. PhET simulations media is one of the options that can help implementation of new curriculum on learning. However, the use of this media in Indonesia still needs to be studied comprehensively. The learning was conducted on students of physics education Study Program in sebelas maret university in 2013. The sample consisted of 62 students that was taking quantum physics course. The method that was used in the research was descriptive qualitative.  The method that was used in learning was demonstration’s method that used PhET media and accompanied by a question and answer and groups discussion. The data was collected using multiple choice test and interview through email. We found that any students still did not understand about photoelectric effect concept. They were confused when asked about the thick material and cross section of the targets as related with the regardless of electrons in the photoelectric effect event. Other than that, the concept of the waves as a particle and its relation with the kinetic energy of the electrons was not understood by most students.

  18. Simulated PUREX Solvent Extraction Experiments Using {sup 238}U, {sup 239}Np and {sup 85}Sr Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju hyeong; Park, Kwangheon; Kim, Tae hoon; Park, Hyoung gyu; Kim, Jisu [Kyunghee University, Yongin (Korea, Republic of); Song, Hyuk jin [Dongguk University, Gyeongju (Korea, Republic of); Lee, Chan ki; Kang, Do kyu; Jeong, Hyeon jun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    PUREX (plutonium uranium redox extraction) is an aqueous reprocessing method that separates U from spent nuclear fuel using a solvent extraction process. In solvent extraction process, predicting the behavior of U, MA (minor actinides) and TRU (transuranic elements) is important, because efficiency of U recovery is determined by their combined behavior. In this study, PUREX-simulated aqueous solution was prepared by varying [HNO{sub 3}] as 0.1 M, 1 M, and 5 M, to measure U extraction behavior. It is hard to determine the optimum nitric acid concentration for extraction of only uranium because the mechanism is very complicated. It can’t be calculated by mathematics, but, in this experiment, only 3 points of nitric acid concentration exist. Anyway, the optimum point is at 0.5 M of nitric acid. Therefore, estimation of the optimum point is not correct. If more accurate estimation should be needed, more experiments are needed. How to increase the separation efficiency of uranium and plutonium is very important for PUREX process. However, in real spent nuclear fuel, there are many nuclides, about 50 elements of FPs and MAs. The mechanism of solvent extraction is more complicated, as elements participated in reaction are increased. Therefore, understanding the behaviors of FPs and MAs during the solvent extraction is very important. The highest separation efficiency can be obtained and designed, when we make the appropriate modeling of the solvent extraction process in the view of engineering.

  19. On the solution self-assembly of nanocolloidal brushes: insights from simulations

    International Nuclear Information System (INIS)

    Striolo, Alberto

    2008-01-01

    The synthesis of novel nanoparticles with exceptional properties continues to stimulate the search for advanced applications in fields as diverse as solar energy harvesting and polymer reinforcement. It is widely recognized that to practically exploit the promised benefits it is necessary to guide the assembly of the various nanoparticles into well-defined supra-molecular structures. Towards this goal, we report Monte Carlo simulation results for the self-assembly of spherical nanoparticles in implicit solvent. The nanoparticles interact solely via dispersive interactions, modeled as square-well potentials. To control the morphology of the self-assembled aggregates, side chains are grafted on specific locations on the nanoparticle surface (i.e., on the equator, on the tropics, on the entire tropical region, or uniformly on the nanoparticle surface). The results are discussed in terms of average cluster size, probability of observing aggregates of given size, and aggregate radius of gyration and asphericity as a function of the aggregate size. The parameters of interest are the solution conditions and the nanoparticle volume fraction (always in the dilute regime). As shown in previous reports (e.g., Striolo 2007 Small 3 628), the nanoparticles form insoluble agglomerates in the absence of the side chains. When the side chains are long and uniformly distributed on the nanoparticles, these remain individually dispersed in solution. More importantly, when the side chains are grafted on selected locations on the nanoparticles, these self-assemble, yielding structures composed of up to 7-10 nanoparticles. The number of grafted side chains is the parameter that predominantly determines the average aggregate size, while the aggregate morphology can be tuned by appropriately controlling the distribution and length of the grafted side chains.

  20. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    Energy Technology Data Exchange (ETDEWEB)

    Meixner, Tom (University of Arizona, Tucson, AZ); Tidwell, Vincent Carroll; Oelsner, Gretchen (University of Arizona, Tucson, AZ); Brooks, Paul (University of Arizona, Tucson, AZ); Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  1. Understanding the discrete element method simulation of non-spherical particles for granular and multi-body systems

    CERN Document Server

    Matuttis, Hans-Georg

    2014-01-01

    Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particlesProvides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulationHighlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiment

  2. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo

    2014-07-31

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.

  3. An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-02-01

    Full Text Available An integrated optimization simulation model has been developed based on an input-output approach to mitigate water pollution and water scarcity through embedding environmental economic policies and applicable technologies into a complex environ-economic system to obtain an optimal set of policies and technologies that promotes the maximization of the regional economy under the constraints of water pollutant discharge and water availability. An empirical study is undertaken with the Source Region of Liao River as the target area to verify the performance of the model. The relationships between the water environment and socio-economic systems are presented by clarifying the trends in economic development, water pollutant discharge and water supply and demand during a time horizon from 2011 to 2020. The endogenously-formed optimal set of policies and industrial restructuring simultaneously facilitate the reduction of water pollutant discharge and water consumption and increase the water supply. The extent of the mitigation of water pollution and water scarcity via applied policies and technologies promoted by the subsidies provided by the government are specified, and the mechanism of the policy application and subsidization distribution is explained. This model has applicability for other regions in terms of giving an optimal solution via comprehensive assessment of all of the proposed sustainability-related policies with sufficient data accessibility to achieve regional sustainable development.

  4. Contribution to the understanding and to the simulation of processes occurring at the vicinity of a radioactive waste repository

    International Nuclear Information System (INIS)

    Trotignon, L.

    2004-04-01

    The author gives an overview of his research activities between 1986 and 2004. These activities were focused on the observation, analysis and simulation of solid-solution interactions, with application to radioactive waste storage in deep geologic formations. More precisely, these works dealt with the evolution of rock porosity (dissolution-crystallization under stress), the aqueous corrosion of nuclear glasses, the redox transient (how and at which rate a disturbance related to dissolved oxygen intrusion will be resorbed), and the transport-chemistry simulation and natural analogues

  5. Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions

    NARCIS (Netherlands)

    Conradi, Marjetka; Schön, Peter Manfred; Kocijan, Aleksandra; Jenko, M.; Vancso, Gyula J.

    2011-01-01

    We report on cyclic voltammetry and in situ electrochemical atomic force microscopy (EC-AFM) studies of localized corrosion of duplex 2205 stainless steel (DSS 2205) and austenitic stainless steel of the type AISI 316L in two model solutions, including artificial saliva (AS) and a simulated

  6. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    Science.gov (United States)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at solutions have on the accuracy of the final product, the digital surface model (DSM), by using recently acquired data. Specifically, when applied in a structurally complex field site with irregular surface roughness patterns, over a land use gradient, from livestock grazing to agricultural crops. We will demonstrate the added value of using very fine detail data

  7. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  8. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Science.gov (United States)

    Jakobtorweihen, S.; Zuniga, A. Chaides; Ingram, T.; Gerlach, T.; Keil, F. J.; Smirnova, I.

    2014-07-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  9. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    International Nuclear Information System (INIS)

    Jakobtorweihen, S.; Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-01-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations

  10. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  11. Understanding the influence of topography on the dynamics of the North American monsoon in climate model simulations

    Science.gov (United States)

    Varuolo-Clarke, A. M.; Medeiros, B.; Reed, K. A.

    2017-12-01

    This project examines the influence of topography on the dynamics of the North American monsoon (NAM), including the genesis, peak, and demise of the monsoon. The monsoon season occurs from July to September in the southwestern United States and northwestern Mexico and is characterized by an increase in rainfall that accounts for 40-80% of the total annual rainfall. We use a simple "monsoon index" and show that simulations with the Community Atmosphere model capture the essential nature of the NAM. Comparing standard low-resolution (1o latitude x 1o longitude) simulations where the topography over North America is either retained or removed we evaluate the models' representations of the NAM. To understand the origin of differences between the simulations we analyze the moist static energy budget in the monsoon region. Our preliminary results from simulations with realistic topography indicate that the simulated NAM is driven by locally-generated convection, with advection processes being secondary; this is consistent with the NAM being a result of the thermal contrast between the hot, summertime continent and relatively cool ocean. When topography is removed the simulated NAM will be relatively weak and be driven primarily by locally-generated convection. A better understanding of the monsoon dynamics and the impact topography has on these dynamics will allow for a more accurate representation of the monsoon in projections of future climate.

  12. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions.

    Science.gov (United States)

    Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei

    2009-10-21

    In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.

  13. The combined effect of food-simulating solutions, brushing and staining on color stability of composite resins.

    Science.gov (United States)

    Silva, Tânia Mara Da; Sales, Ana Luísa Leme Simões; Pucci, Cesar Rogerio; Borges, Alessandra Bühler; Torres, Carlos Rocha Gomes

    2017-01-01

    Objective: This study evaluated the effect of food-simulating media associated with brushing and coffee staining on color stability of different composite resins. Materials and methods: Eighty specimens were prepared for each composite: Grandio SO (Voco), Amaris (Voco), Filtek Z350XT (3M/ESPE), Filtek P90 (3M/ESPE). They were divided into four groups according to food-simulating media for 7 days: artificial saliva (control), heptane, citric acid and ethanol. The composite surface was submitted to 10,950 brushing cycles (200 g load) in an automatic toothbrushing machine. The specimens were darkened with coffee solution at 37 °C for 24 h. After each treatment, color measurements were assessed by spectrophotometry, using CIE L*a*b* system. The overall color change (Δ E ) was determined for each specimen at baseline ( C 1) and after the treatments (food-simulating media immersion/ C 2, brushing/ C 3 and dye solution/ C 4). Data were analyzed by two-way repeated measures ANOVA and Tukey's tests ( p Grandio (3.75) bc , P90 (3.36) c . According to food-simulating media: heptane (4.41) a , citric acid (4.24) a , ethanol (4.02) ab , artificial saliva (3.76) b . For the treatments: dye solution (4.53) a , brushing (4.26) a , after food-simulating media (3.52) b . Conclusions: The composite resin Filtek Z350XT showed significantly higher staining than all other composite resin tested. The immersion in heptane and citric acid produced the highest color alteration than other food-simulating media. The exposure of samples to brushing protocols and darkening in coffee solution resulted in significant color alteration of the composite resins.

  14. Interactive simulations for promoting transdisciplinary understanding: a case study of the Western Cape fisheries, South Africa

    Directory of Open Access Journals (Sweden)

    Cecile Proches

    2012-07-01

    Full Text Available Simulations have proven beneficial in enabling participants from various backgrounds to meaningfully engage in learning from experience. The aim of this paper is to investigate how interactive simulations can play a role in navigating the changes faced in a multi- stakeholder setting, characterised by users dependent on marine resources and an authorising institution. Relevant literature in the areas of simulation and gaming, change management, systems thinking, and complexity theory was examined. A qualitative research approach and purposive sampling were employed. Interviews were first conducted with diverse stakeholders in the Western Cape fisheries of South Africa to determine the issues. A simulation was thereafter designed. The main findings from this study indicate that simulation use illustrates how the various stakeholders in a system interact, and how their actions and decisions influence each other. The simulation may be used in other areas of natural resource management, as well as in other kinds of multi- stakeholder scenarios. Keywords: Simulation and gaming, Change management, Fisheries, Multi-stakeholder scenarios, Systems thinking, Complexity theory Disciplines: Conflict Resolution, Leadership Studies, Management Studies, Natural Resource Management

  15. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  16. Sunlight simulators-the key to understanding the physiological effects of the sun

    CSIR Research Space (South Africa)

    Singh, A

    2006-07-01

    Full Text Available CA sunlight simulator includes an elongated, cylindrical housing, an artificial light source disposed along the longitudinal axis thereof, and a plurality of light collecting subassemblies equidistantly spaced radially from and around the light...

  17. Using Simulations in Linked Courses to Foster Student Understanding of Complex Political Institutions

    Science.gov (United States)

    Williams, Michelle Hale

    2015-01-01

    Political institutions provide basic building blocks for understanding and comparing political systems. Yet, students often struggle to understand the implications of institutional choice, such as electoral system rules, especially when the formulas and calculations used to determine seat allocation can be multilevel and complex. This study brings…

  18. An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction

    Science.gov (United States)

    Tomshaw, Stephen G.

    Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain in students' conceptual understanding was measured using the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards physics and computers were probed using the Views About Science Survey (VASS) and the Computer Attitude Scale (CAS). While it may be possible to obtain an equivalent level of conceptual understanding using computer simulations in combination with an active-engagement environment, this study found no significant gains in students' conceptual understanding ( = -0.02) after they completed a series of nine simulated experiments from the Tools for Scientific Thinking curriculum (Thornton & Sokoloff, 1990). The absence of gains in conceptual understanding may indicate that either the simulations were ineffective in promoting conceptual change or problems with the implementation of the treatment inhibited its effectiveness. There was a positive shift in students' attitudes towards physics in the VASS dimensions of structure and reflective thinking, while

  19. Qualitative exploration of public and smoker understanding of, and reactions to, an endgame solution to the tobacco epidemic

    Directory of Open Access Journals (Sweden)

    Edwards Richard

    2012-09-01

    Full Text Available Abstract Background There is increasing interest in ending the tobacco epidemic and in applying ‘endgame’ solutions to achieve that goal at national levels. We explored the understanding of, and reactions to, a tobacco-free vision and an endgame approach to tobacco control among New Zealand smokers and non-smokers. Methods We recruited participants in four focus groups held in June 2009: Māori (indigenous people smokers (n=7; non-Māori smokers (n=6; Māori non-smokers (n=7; and non-Māori non-smokers (n=4. Participants were from the city of Whanganui, New Zealand. We introduced to them the vision of a tobacco-free New Zealand and the concept of a semi-autonomous agency (Tobacco-Free Commission [TFC] that would control the tobacco market as part of an endgame approach. Results There was mostly strong support for the tobacco-free New Zealand vision among all groups of participants. The reason most commonly given for supporting the vision was to protect children from tobacco. Most participants stated that they understood the TFC concept and reacted positively to it. Nevertheless, rather than focusing on organisational or structural arrangements, participants tended to focus on supporting the specific measures which a future TFC might facilitate such as plain packaging of tobacco products. Various concerns were also raised around the TFC, particularly around the feasibility of its establishment. Conclusions We were able to successfully communicate a complex and novel supply-side focused tobacco control policy intervention to smokers and non-smokers. The findings add to the evidence from national surveys that there is public support, including from smokers, for achieving a tobacco-free vision and using regulatory and policy measures to achieve it. Support for such measures may be enhanced if they are clearly communicated and explained with a rationale which stresses protecting children and future generations from tobacco smoking.

  20. Teaching Thermodynamics of Ideal Solutions: An Entropy-Based Approach to Help Students Better Understand and Appreciate the Subtleties of Solution Models

    Science.gov (United States)

    Tomba, J. Pablo

    2015-01-01

    The thermodynamic formalism of ideal solutions is developed in most of the textbooks postulating a form for the chemical potential of a generic component, which is adapted from the thermodynamics of ideal gas mixtures. From this basis, the rest of useful thermodynamic properties can be derived straightforwardly without further hypothesis. Although…

  1. On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data

    Science.gov (United States)

    Kizhner, Semion; Day, John H. (Technical Monitor)

    2000-01-01

    Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.

  2. A closed-loop forward osmosis-nanofiltration hybrid system: Understanding process implications through full-scale simulation

    KAUST Repository

    Phuntsho, Sherub

    2016-12-30

    This study presents simulation of a closed-loop forward osmosis (FO)-nanofiltration (NF) hybrid system using fertiliser draw solution (DS) based on thermodynamic mass balance in a full-scale system neglecting the non-idealities such as finite membrane area that may exist in a real process. The simulation shows that the DS input parameters such as initial concentrations and its flow rates cannot be arbitrarily selected for a plant with defined volume output. For a fixed FO-NF plant capacity and feed concentration, the required initial DS flow rate varies inversely with the initial DS concentration or vice-versa. The net DS mass flow rate, a parameter constant for a fixed plant capacity but that increases linearly with the plant capacity and feed concentration, is the most important operational parameter of a closed-loop system. Increasing either of them or both increases the mass flow rate to the system directly affecting the final concentration of the diluted DS with direct energy implications to the NF process. Besides, the initial DS concentration and flow rates are also limited by the optimum recovery rates at which NF process can be operated which otherwise also have direct implications to the NF energy. This simulation also presents quantitative analysis of the reverse diffusion of fertiliser nutrients towards feed brine and the gradual accumulation of feed solutes within the closed system.

  3. Lattice Boltzmann simulation of solute transport in heterogeneous porous media with conduits to estimate macroscopic continuous time random walk model parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, S.; Cortis, A.; Sukop, M.

    2008-10-20

    Lattice Boltzmann models simulate solute transport in porous media traversed by conduits. Resulting solute breakthrough curves are fitted with Continuous Time Random Walk models. Porous media are simulated by damping flow inertia and, when the damping is large enough, a Darcy's Law solution instead of the Navier-Stokes solution normally provided by the lattice Boltzmann model is obtained. Anisotropic dispersion is incorporated using a direction-dependent relaxation time. Our particular interest is to simulate transport processes outside the applicability of the standard Advection-Dispersion Equation (ADE) including eddy mixing in conduits. The ADE fails to adequately fit any of these breakthrough curves.

  4. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    Science.gov (United States)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  5. Computer Simulations and Their Influence on Students' Understanding of Oscillatory Motion

    Science.gov (United States)

    Spodniaková Pfefferová, Miriam

    2015-01-01

    Nowadays, the use of information technology (ICT) in education is nothing new. But the question is where the limit is when the use of ICT does not have the desired effect. In the paper we discuss the use of simulations in the teaching process that can positively influence students' achievements. At the beginning of the paper we present the results…

  6. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    NARCIS (Netherlands)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J.H.; van Huis, M.A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of

  7. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  8. Concentrated Aqueous Sodium Chloride Solution in Clays at Thermodynamic Conditions of Hydraulic Fracturing: Insight from Molecular Dynamics Simulations.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Lísal, Martin

    2018-01-01

    Roč. 148, č. 22 (2018), č. článku 222806. ISSN 0021-9606 R&D Projects: GA ČR GA17-25100S EU Projects: European Commission(XE) 640979 - ShaleXenvironmenT Institutional support: RVO:67985858 Keywords : aqueous NaCl solutions * hydrogen bond networks * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.965, year: 2016

  9. Simulation modeling to understand how selective foraging by beaver can drive the structure and function of a willow community

    Science.gov (United States)

    Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.

    2009-01-01

    Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.

  10. A Proposed Engineering Process and Prototype Toolset for Developing C2-to-Simulation Interoperability Solutions

    NARCIS (Netherlands)

    Gautreau, B.; Khimeche, L.; Reus, N.M. de; Heffner, K.; Mevassvik, O.M.

    2014-01-01

    The Coalition Battle Management Language (C-BML) is an open standard being developed for the exchange of digitized military information among command and control (C2), simulation and autonomous systems by the Simulation Interoperability Standards Organization (SISO). As the first phase of the C-BML

  11. Improved understanding of the ball-pen probe through particle-in-cell simulations

    Science.gov (United States)

    Murphy-Sugrue, S.; Harrison, J.; Walkden, N. R.; Bryant, P.; Bradley, J. W.

    2017-05-01

    Ball-pen probes (BPP) have been deployed in the SOL of numerous tokamak experiments and low-temperature magnetised plasmas to make direct measurements of the plasma potential and electron temperature. Despite strong empirical evidence for the success of the BPP it lacks a theoretical underpinning of its collection mechanism. In this paper we investigate the capability of the probe to measure the plasma potential by means of particle-in-cell simulations. The BPP is found to float at a potential offset from the plasma potential by a factor {T}{{e}}{α }{{BPP}}. By simulating BPPs and Langmuir probes, excellent agreement has been found between the measured electron temperature and the specified source temperature. The transport mechanism for both ions and electrons has been determined. E × B drifts are observed to drive electrons and ions down the tunnel. This mechanism is sensitive to the diameter of the probe.

  12. Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation

    Directory of Open Access Journals (Sweden)

    R.A. Mangkuto

    2014-12-01

    Full Text Available This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS, which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the illuminance distribution on workplane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building׳s façade. It is found that the investigated prototype yields a less rapidly drop illuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx and partly cloudy (102 lx compared to 80 lx sky scenes. Under the clear sky scene, the real window yields a larger average illuminance (97 lx compared to the prototype (71 lx, due to the influence of direct sunlight.

  13. Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Yao

    2016-01-01

    Full Text Available The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV and laser Doppler velocimetry (LDV. It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.

  14. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations

    Science.gov (United States)

    Mahata, Avik; Asle Zaeem, Mohsen; Baskes, Michael I.

    2018-02-01

    Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, and solid-state grain growth regimes. The main crystalline phase was identified as face-centered cubic, but a hexagonal close-packed (hcp) and an amorphous solid phase were also detected. The hcp phase was created due to the formation of stacking faults during solidification of Al melt. By slowing down the cooling rate, the volume fraction of hcp and amorphous phases decreased. After the box was completely solid, grain growth was simulated and the grain growth exponent was determined for different annealing temperatures.

  15. Can Simulation Credibility Be Improved Using Sensitivity Analysis to Understand Input Data Effects on Model Outcome?

    Science.gov (United States)

    Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.

    2015-01-01

    Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.

  16. Towards an understanding of the attributes of simulation that enable learning in undergraduate nurse education: A grounded theory study.

    Science.gov (United States)

    Bland, Andrew J; Tobbell, Jane

    2016-09-01

    Simulation has become an established feature of nurse education yet little is understood about the mechanisms that lead to learning. To explore the attributes of simulation-based education that enable student learning in undergraduate nurse education. Final year students drawn from one UK University (n=46) participated in a grounded theory study. First, nonparticipant observation and video recording of student activity was undertaken. Following initial analysis, recordings and observations were deconstructed during focus group interviews that enabled both the researcher and participants to unpack meaning. Lastly emergent findings were verified with final year students drawn from a second UK University (n=6). A staged approach to learning emerged from engagement in simulation. This began with initial hesitation as students moved through nonlinear stages to making connections and thinking like a nurse. Core findings suggest that simulation enables curiosity and intellect (main concern) through doing (core category) and interaction with others identified as social collaboration (category). This study offers a theoretical basis for understanding simulation-based education and integration of strategies that maximise the potential for learning. Additionally it offers direction for further research, particularly with regards to how the application of theory to practice is accelerated through learning by doing and working collaboratively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Videogame Construction by Engineering Students for Understanding Modelling Processes: The Case of Simulating Water Behaviour

    Science.gov (United States)

    Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel

    2015-01-01

    We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…

  18. Stock Simulation and Mutual Funds: A Pedagogical Tool for Faith-Based Investing and Interfaith Understanding

    Science.gov (United States)

    Porter, Brian E.

    2013-01-01

    It is increasingly important to understand the fundamentals of investing and, for many, the ability to integrate faith and ethics with investing decisions. This is especially relevant for employees and students in Christian higher education. Most employees in Christian higher education are enrolled in retirement plans that obligate them to make…

  19. Preliminary results from uranium/americium affinity studies under experimental conditions for cesium removal from NPP ''Kozloduy'' simulated wastes solutions

    International Nuclear Information System (INIS)

    Nikiforova, A.; Kinova, L.; Peneva, C.; Taskaeva, I.; Petrova, P.

    2005-01-01

    We use the approach described by Westinghouse Savannah River Company using ammonium molybdophosphate (AMP) to remove elevated concentrations of radioactive cesium to facilitate handling waste samples from NPP K ozloduy . Preliminary series of tests were carried out to determine the exact conditions for sufficient cesium removal from five simulated waste solutions with concentrations of compounds, whose complexing power complicates any subsequent processing. Simulated wastes solutions contain high concentrations of nitrates, borates, H 2 C 2 O 4 , ethylenediaminetetraacetate (EDTA) and Citric acid, according to the composition of the real waste from the NPP. On this basis a laboratory treatment protocol was created. This experiment is a preparation for the analysis of real waste samples. In this sense the results are preliminary. Unwanted removal of non-cesium radioactive species from simulated waste solutions was studied with gamma spectrometry with the aim to find a compromise between on the one hand the AMP effectiveness and on the other hand unwanted affinity to AMP of Uranium and Americium. Success for the treatment protocol is defined by proving minimal uptake of U and Am, while at the same time demonstrating good removal effectiveness through the use of AMP. Uptake of U and Am were determined as influenced by oxidizing agents at nitric acid concentrations, proposed by Savannah River National laboratory. It was found that AMP does not significantly remove U and Am when concentration of oxidizing agents is more than 0.1M for simulated waste solutions and for contact times inherent in laboratory treatment protocol. Uranium and Americium affinity under experimental conditions for cesium removal were evaluated from gamma spectrometric data. Results are given for the model experiment and an approach for the real waste analysis is chosen. Under our experimental conditions simulated wastes solutions showed minimal affinity to AMP when U and Am are most probably in

  20. The combined effect of food-simulating solutions, brushing and staining on color stability of composite resins

    Science.gov (United States)

    Silva, Tânia Mara Da; Sales, Ana Luísa Leme Simões; Pucci, Cesar Rogerio; Borges, Alessandra Bühler; Torres, Carlos Rocha Gomes

    2017-01-01

    Abstract Objective: This study evaluated the effect of food-simulating media associated with brushing and coffee staining on color stability of different composite resins. Materials and methods: Eighty specimens were prepared for each composite: Grandio SO (Voco), Amaris (Voco), Filtek Z350XT (3M/ESPE), Filtek P90 (3M/ESPE). They were divided into four groups according to food-simulating media for 7 days: artificial saliva (control), heptane, citric acid and ethanol. The composite surface was submitted to 10,950 brushing cycles (200 g load) in an automatic toothbrushing machine. The specimens were darkened with coffee solution at 37 °C for 24 h. After each treatment, color measurements were assessed by spectrophotometry, using CIE L*a*b* system. The overall color change (ΔE) was determined for each specimen at baseline (C1) and after the treatments (food-simulating media immersion/C2, brushing/C3 and dye solution/C4). Data were analyzed by two-way repeated measures ANOVA and Tukey’s tests (p composites (p = .001), time (p = .001) and chemical degradation (p = .002). The mean of ΔE for composites were: Z350XT (5.39)a, Amaris (3.89)b, Grandio (3.75)bc, P90 (3.36)c. According to food-simulating media: heptane (4.41)a, citric acid (4.24)a, ethanol (4.02)ab, artificial saliva (3.76)b. For the treatments: dye solution (4.53)a, brushing (4.26)a, after food-simulating media (3.52)b. Conclusions: The composite resin Filtek Z350XT showed significantly higher staining than all other composite resin tested. The immersion in heptane and citric acid produced the highest color alteration than other food-simulating media. The exposure of samples to brushing protocols and darkening in coffee solution resulted in significant color alteration of the composite resins. PMID:28642926

  1. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  2. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    Science.gov (United States)

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  3. Understanding LTE with Matlab from mathematical modeling to simulation and prototyping

    CERN Document Server

    Zarrinkoub, Houman

    2014-01-01

    An introduction to technical details related to the Physical Layer of the LTE standard with MATLAB® The LTE (Long Term Evolution) and LTE-Advanced are among the latest mobile communications standards, designed to realize the dream of a truly global, fast, all-IP-based, secure broadband mobile access technology. This book examines the Physical Layer (PHY) of the LTE standards by incorporating three conceptual elements: an overview of the theory behind key enabling technologies; a concise discussion regarding standard specifications; and the MATLAB® algorithms needed to simulate the standard.

  4. Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations

    Science.gov (United States)

    Topping, Michael W.; Shapley, Alice E.; Steidel, Charles C.; Naoz, Smadar; Primack, Joel R.

    2018-01-01

    We investigate the nature and evolution of large-scale structure within the SSA22 protocluster region at z = 3.09 using cosmological simulations. A redshift histogram constructed from current spectroscopic observations of the SSA22 protocluster reveals two separate peaks at z = 3.065 (blue) and z = 3.095 (red). Based on these data, we report updated overdensity and mass calculations for the SSA22 protocluster. We find {δ }b,{gal}=4.8+/- 1.8 and {δ }r,{gal}=9.5+/- 2.0 for the blue and red peaks, respectively, and {δ }t,{gal}=7.6+/- 1.4 for the entire region. These overdensities correspond to masses of {M}b=(0.76+/- 0.17)× {10}15{h}-1 {M}ȯ , {M}r=(2.15+/- 0.32)× {10}15{h}-1 {M}ȯ , and {M}t=(3.19+/- 0.40)× {10}15{h}-1 {M}ȯ for the red, blue, and total peaks, respectively. We use the Small MultiDark Planck (SMDPL) simulation to identify comparably massive z∼ 3 protoclusters, and uncover the underlying structure and ultimate fate of the SSA22 protocluster. For this analysis, we construct mock redshift histograms for each simulated z∼ 3 protocluster, quantitatively comparing them with the observed SSA22 data. We find that the observed double-peaked structure in the SSA22 redshift histogram corresponds not to a single coalescing cluster, but rather the proximity of a ∼ {10}15{h}-1 {M}ȯ protocluster and at least one > {10}14{h}-1 {M}ȯ cluster progenitor. Such associations in the SMDPL simulation are easily understood within the framework of hierarchical clustering of dark matter halos. We finally find that the opportunity to observe such a phenomenon is incredibly rare, with an occurrence rate of 7.4{h}3 {{{Gpc}}}-3. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W.M. Keck Foundation.

  5. Understanding price discovery in interconnected markets: Generalized Langevin process approach and simulation

    Science.gov (United States)

    Schenck, Natalya A.; Horvath, Philip A.; Sinha, Amit K.

    2018-02-01

    While the literature on price discovery process and information flow between dominant and satellite market is exhaustive, most studies have applied an approach that can be traced back to Hasbrouck (1995) or Gonzalo and Granger (1995). In this paper, however, we propose a Generalized Langevin process with asymmetric double-well potential function, with co-integrated time series and interconnected diffusion processes to model the information flow and price discovery process in two, a dominant and a satellite, interconnected markets. A simulated illustration of the model is also provided.

  6. Modeling and simulation in inquiry learning: Checking solutions and giving intelligent advice

    NARCIS (Netherlands)

    Bravo, C.; van Joolingen, W.R.; de Jong, T.

    2006-01-01

    Inquiry learning is a didactic approach in which students acquire knowledge and skills through processes of theory building and experimentation. Computer modeling and simulation can play a prominent role within this approach. Students construct representations of physical systems using modeling.

  7. Enhancing Student’s Understanding in Entrepreneurship Through Business Plan Simulation

    OpenAIRE

    Guzairy M.; Mohamad N.; Yunus A.R.

    2018-01-01

    Business Plan is an important document for entrepreneurs to guide them managing their business. Business Plan also assist the entrepreneur to strategies their business and manage future growth. That is why Malaysian government has foster all Higher Education Provider to set entrepreneurship education as compulsory course. One of the entrepreneurship education learning outcome is the student can write effective business plan. This study focused on enhancing student’s understanding in entrepren...

  8. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    Science.gov (United States)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  9. Parallel Solutions for Voxel-Based Simulations of Reaction-Diffusion Systems

    Directory of Open Access Journals (Sweden)

    Daniele D’Agostino

    2014-01-01

    Full Text Available There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the Sτ-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures.

  10. Analytical solutions and particle simulations of cross-field plasma sheaths

    International Nuclear Information System (INIS)

    Gerver, M.J.; Parker, S.E.; Theilhaber, K.

    1989-01-01

    Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye length wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs

  11. Innovative ICT solution to steer rural communities to global understanding: a case study from Durban, South Africa

    CSIR Research Space (South Africa)

    Greyling, E

    2008-07-01

    Full Text Available on the aptly named Digital Doorway units includes the Open Office suite, educational games and programs, interactive science simulations, and a snapshot of the Wikipedia. Health and education curriculum material are continuously updated through a satellite...

  12. GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

    Science.gov (United States)

    Rundle, J. B.; Rundle, P. B.; Klein, W.; de sa Martins, J.; Tiampo, K. F.; Donnellan, A.; Kellogg, L. H.

    The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://www.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition

  13. Understanding the space environment: simulations, statistics and space weather (Julius Bartels Medal Lecture)

    Science.gov (United States)

    Pulkkinen, Tuija

    2017-04-01

    Three disruptive transformations have taken place since the 1990's that have reshaped space research in a major way: Increased computational capacity and improved numerical methods have transformed numerical simulations from rough description of the large-scale dynamics to detailed models capable of describing magnetospheric processes to the accuracy that they compare well with in-situ observations. Coordinated satellite programs and multi-satellite missions have increased the coverage of the near-Earth space from single-satellite observations to statistical databases that allow analysis of the environment changes under varying conditions. The increased use of space assets in non-space-related applications has increased the need for accurate space weather monitoring and forecasts that set new requirements for the accuracy and processing times for as well observations and models. In this presentation, we focus on plasma and energy transfer across the bow shock from the solar wind into the magnetosheath, transport through the magnetosheath, and entry into the magnetosphere across the magnetopause. To that end, we use the GUMICS global magnetohydrodynamic simulation and the Themis 5-spacecraft mission plasma and magnetic field measurements. We show that the transport processes are not uniform, but are different during southward and northward IMF, and during strong and weak driving. We conclude by assessing how these results relate to our capabilities of producing valuable space weather services.

  14. Comparison of the performance of traditional advection-dispersion equation and mobile-immobile model for simulating solute transport in heterogeneous soils

    Directory of Open Access Journals (Sweden)

    Haizhu HU,Xiaomin MAO

    2016-09-01

    Full Text Available The traditional advection-dispersion equation (ADE and the mobile-immobile model (MIM are widely used to describe solute transport in heterogeneous porous media. However, the fitness of the two models is case-dependent. In this paper, the transport of conservative, adsorbing and degradable solutes through a 1 m heterogeneous soil column under steady flow condition was simulated by ADE and MIM, and sensitivity analysis was conducted. Results show that MIM tends to prolong the breakthrough process and decrease peak concentration for all three solutes, and tailing and skewness are more pronounced with increasing dispersivity. Breakthrough curves of the adsorbing solute simulated by MIM are less sensitive to the retardation factor compared with the results simulated by ADE. The breakthrough curves of degradable solute obtained by MIM and ADE nearly overlap with a high degradation rate coefficient, indicating that MIM and ADE perform similarly for simulating degradable solute transport when biochemical degradation prevails over the mass exchange between mobile and immobile zones. The results suggest that the physical significance of dispersivity should be carefully considered when MIM is applied to simulate the degradable solute transport and/or ADE is applied to simulate the adsorbing solute transport in highly dispersive soils.

  15. Numerical simulation of solidification in a horizontal cylindrical annulus charged with an aqueous salt solution

    Science.gov (United States)

    Neilson, D. G.; Incropera, F. D.; Bennon, W. D.

    1990-01-01

    A computational study of solidification of a binary Na2CO3 solution in a horizontal cylindrical annulus is performed using a continuum formulation with a control-volume based, finite-difference scheme. The initial conditions were selected to facilitate the study of counter thermal and solutal convection, accompanied by extensive mushy region growth. Numerical results are compared with experimental data with mixed success. Qualitative agreement is obtained for the overall solidification process and associated physical phenomena. However, the plume thickness calculated for the solutally-driven convective upflow is substantially smaller than the observed value. Evolution of double-diffusive layers is predicted, but over a time scale much smaller than that observed experimentally. Good agreement is obtained between predicted and measured results for solid growth, but the mushy region thickness is significantly overpredicted.

  16. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  17. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B

    1997-12-31

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  18. Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study

    Science.gov (United States)

    Fajardo, S.; Bastidas, D. M.; Ryan, M. P.; Criado, M.; McPhail, D. S.; Bastidas, J. M.

    2010-08-01

    Low-nickel and AISI 304 austenitic stainless steel (SS) passive films were studied using secondary ion mass spectrometry (SIMS). An alkaline Ca(OH) 2 saturated test solution containing different chloride additions was used at room temperature. The passive film formed consists mainly of an inner chromium-rich oxide layer and an outer iron-rich oxide layer. The chemistry of the passive film depends strongly on the chloride content in the alkaline solution. Under these exposure conditions nickel was detected in the outer part of the oxide, whereas chloride ions were not found in the passive film for either the low-nickel or AISI 304 SS alloys.

  19. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk

    2011-01-01

    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed......-coordinated active sites is found, and their reactivities are extracted from models based on Density Functional Theory calculations. This enables us to determine the chemical activity of clusters in the same range of particle sizes that is accessible experimentally. The variation of reactivity with particle size...... is in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but the presence...

  20. Understanding the Pathophysiology of Portosystemic Shunt by Simulation Using an Electric Circuit.

    Science.gov (United States)

    Kim, Moonhwan; Lee, Keon-Young

    2016-01-01

    Portosystemic shunt (PSS) without a definable cause is a rare condition, and most of the studies on this topic are small series or based on case reports. Moreover, no firm agreement has been reached on the definition and classification of various forms of PSS, which makes it difficult to compare and analyze the management. The blood flow can be seen very similar to an electric current, governed by Ohm's law. The simulation of PSS using an electric circuit, combined with the interpretation of reported management results, can provide intuitive insights into the underlying mechanism of PSS development. In this article, we have built a model of PSS using electric circuit symbols and explained clinical manifestations as well as the possible mechanisms underlying a PSS formation.

  1. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations.

    Directory of Open Access Journals (Sweden)

    Guillem Portella

    Full Text Available Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.

  2. N-body simulations of planet formation: understanding exoplanet system architectures

    Science.gov (United States)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  3. Understanding the impact of simulated patients on health care learners' communication skills: a systematic review.

    Science.gov (United States)

    Kaplonyi, Jessica; Bowles, Kelly-Ann; Nestel, Debra; Kiegaldie, Debra; Maloney, Stephen; Haines, Terry; Williams, Cylie

    2017-12-01

    Effective communication skills are at the core of good health care. Simulated patients (SPs) are increasingly engaged as an interactive means of teaching, applying and practising communication skills with immediate feedback. There is a large body of research into the use of manikin-based simulation but a gap exists in the body of research on the effectiveness of SP-based education to teach communication skills that impact patient outcomes. The aim of this systematic review was to critically analyse the existing research, investigating whether SP-based communication skills training improves learner-patient communication, how communication skill improvement is measured, and who measures these improvements. The databases Medline, ProQuest (Health & Medical Complete, Nursing and Allied Health Source) and CINAHL (EBSCOhost) Education Resources Information Centre (ERIC) were searched for articles that investigated the effects of SP-based education on the communication skills of medical, nursing and allied health learners. There were 60 studies included in the review. Only two studies reported direct patient outcomes, one reporting some negative impact, and no studies included an economic analysis. Many studies reported statistically significant third-party ratings of improved communication effectiveness following SP-based education; however, studies were unable to be pooled for meta-analysis because of the outcome collection methods. There were a small number of studies comparing SP with no training at all and there were no differences between communication skills, contradicting the results from studies reporting benefits. Of the 60 studies included for analysis, 54 (90%) met the minimum quality score of 7/11, with four articles (7%) scoring 11/11. SP-based education is widely accepted as a valuable and effective means of teaching communication skills but there is limited evidence of how this translates to patient outcomes and no indication of economic benefit for this

  4. Comparing an Approximate Queuing Approach with Simulation for the Solution of a Cross-Docking Problem

    Directory of Open Access Journals (Sweden)

    Roberta Briesemeister

    2017-01-01

    Full Text Available Cross-docking is a logistics management concept in which products are temporarily unloaded at intermediate facilities and loaded onto output trucks to be sent to their final destination. In this paper, we propose an approximate nonstationary queuing model to size the number of docks to receive the trucks, so that their unloading will be as short as possible at the receiving dock, thus making the cross-docking process more efficient. It is observed that the stochastic queuing process may not reach the steady equilibrium state. A type of modeling that does not depend on the stationary characteristics of the process developed is applied. In order to measure the efficiency, performance, and possible adjustments of the parameters of the algorithm, an alternative simulation model is proposed using the Arena® software. The simulation uses analytic tools to make the problem more detailed, which is not allowed in the theoretical model. The computational analysis compares the results of the simulated model with the ones obtained with the theoretical algorithm, considering the queue length and the average waiting time of the trucks. Based on the results obtained, the simulation represented very well the proposed problem and possible changes can be easily detected with small adjustments in the simulated model.

  5. Atomistic simulations of nanocrystalline U0.5Th0.5O2 solid solution under uniaxial tension

    Directory of Open Access Journals (Sweden)

    Hongxing Xiao

    2017-12-01

    Full Text Available Molecular dynamics simulations were performed to investigate the uniaxial tensile properties of nanocrystalline U0.5Th0.5O2 solid solution with the Born–Mayer–Huggins potential. The results indicated that the elastic modulus increased linearly with the density relative to a single crystal, but decreased with increasing temperature. The simulated nanocrystalline U0.5Th0.5O2 exhibited a breakdown in the Hall–Petch relation with mean grain size varying from 3.0 nm to 18.0 nm. Moreover, the elastic modulus of U1-yThyO2 solid solutions with different content of thorium at 300 K was also studied and the results accorded well with the experimental data available in the literature. In addition, the fracture mode of nanocrystalline U0.5Th0.5O2 was inclined to be ductile because the fracture behavior was preceded by some moderate amount of plastic deformation, which is different from what has been seen earlier in simulations of pure UO2.

  6. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  7. Protocol for classical molecular dynamics simulations of nano-junctions in solution

    KAUST Repository

    Gkionis, Konstantinos

    2012-10-19

    Modeling of nanoscale electronic devices in water requires the evaluation of the transport properties averaged over the possible configurations of the solvent. They can be obtained from classical molecular dynamics for water confined in the device. A series of classical molecular dynamics simulations is performed to establish a methodology for estimating the average number of water molecules N confined between two static and semi-infinite goldelectrodes. Variations in key parameters of the simulations, as well as simulations with non-static infinite goldsurfaces of constant area and with anisotropically fluctuating cell dimensions lead to less than 1% discrepancies in the calculated N. Our approach is then applied to a carbon nanotube placed between the goldelectrodes. The atomic density profile along the axis separating the slabs shows the typical pattern of confined liquids, irrespective of the presence of the nanotube, while parallel to the slabs the nanotube perturbs the obtained profile.

  8. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    International Nuclear Information System (INIS)

    Naqvi, S

    2014-01-01

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physical principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as

  9. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  10. Computing Liquid-Liquid Phase Equilibria: An Exercise for Understanding the Nature of False Solutions and How to Avoid Them

    Science.gov (United States)

    Olaya, Maria del Mar; Ibarra, Isabel; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio

    2007-01-01

    An exercise to compute LLE data is presented to illustrate the problems that can arise when the isoactivity equilibrium condition is used in the LLE calculations. A much more efficient condition is obtained when isoactivity is combined with the common tangent line criterion, avoiding false solutions that correspond with very low values of the…

  11. Trends in Modelling, Simulation and Design of Water Hydraulic Systems – Motion Control and Open-Ended Solutions

    DEFF Research Database (Denmark)

    Conrad, Finn

    2006-01-01

    is that the components operate with pure water from the tap without additives of any kind. Hence water hydraulics takes the benefit of pure water as fluid being environmentally friendly, easy to clean sanitary design, non-toxic, non-flammable, inexpensive, readily available and easily disposable. The low-pressure tap......, dedicated pumps and accessories running with sea-water as fluid are available. A unique solution is to use reverse osmosis to generate drinking water from sea-water, and furthermore for several off-shore applications. Furthermore, tap water hydraulic components of the Nessie® family and examples of measured......The paper presents and discusses a R&D-view on trends in development and best practise in modelling, simulation and design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus...

  12. Understanding the effect of polylysine architecture on DNA binding using molecular dynamics simulations.

    Science.gov (United States)

    Elder, Robert M; Emrick, Todd; Jayaraman, Arthi

    2011-11-14

    Polycations with varying chemistries and architectures have been synthesized and used in DNA transfection. In this paper we connect poly-L-lysine (PLL) architecture to DNA-binding strength, and in turn transfection efficiency, since experiments have shown that graft-type oligolysine architectures [e.g., poly(cyclooctene-g-oligolysine)] exhibit higher transfection efficiency than linear PLL. We use atomistic molecular dynamics simulations to study structural and thermodynamic effects of polycation-DNA binding for linear PLL and grafted oligolysines of varying graft lengths. Structurally, linear PLL binds in a concerted manner, while each oligolysine graft binds independently of its neighbors in the grafted architecture. Additionally, the presence of a hydrophobic backbone in the grafted architecture weakens binding to DNA compared to linear PLL. The binding free energy varies nonmonotonically with the graft length primarily due to entropic contributions. The binding free energy normalized to the number of bound amines is similar between the grafted and linear architectures at the largest (Poly5) and smallest (Poly2) graft length and stronger than the intermediate graft lengths (Poly3 and Poly4). These trends agree with experimental results that show higher transfection efficiency for Poly3 and Poly4 grafted oligolysines than for Poly5, Poly2, and linear PLL.

  13. Understanding for convergence monitoring for probabilistic risk assessment based on Markov Chain Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Jang, Han Ki; Jang, Sol Ah; Park, Tae Jin

    2014-01-01

    There is a question that the simulation actually leads to draws from its target distribution and the most basic one is whether such Markov chains can always be constructed and all chain values sampled from them. The problem to be solved is the determination of how large this iteration should be to achieve the target distribution. This problem can be answered as convergence monitoring. In this paper, two widely used methods, such as autocorrelation and potential scale reduction factor (PSRF) in MCMC are characterized. There is no general agreement on the subject of the convergence. Although it is generally agreed that running n parallel chains in practice is computationally inefficient and unnecessary, running multiple parallel chains is generally applied for the convergence monitoring due to easy implementation. The main debate is the number of parallel chains needed. If the convergence properties of the chain are well understood then clearly a single chain suffices. Therefore, autocorrelation using single chain and multiple parallel ones are tried and their results then compared with each other in this study. And, the following question is answered from the two convergence results: Have the Markov chain realizations for achieved the target distribution?

  14. Proton transport in a binary biomimetic solution revealed by molecular dynamics simulation

    NARCIS (Netherlands)

    Liang, Chungwen; Jansen, Thomas L. C.

    2011-01-01

    We report the simulation results of the proton transport in a binary mixture of amphiphilic tetramethylurea (TMU) molecules and water. We identify different mechanisms that either facilitate or retard the proton transport. The efficiency of these mechanisms depends on the TMU concentration. The

  15. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yishan; Zuo, Yu, E-mail: zuoy@mail.buct.edu.cn; Zhao, Xuhui; Zha, Shanshan

    2016-08-30

    Graphical abstract: CLS adsorbs preferentially around active sites on steel surface. - Highlights: • Calcium lignosulfonate is effective inhibitor for steel in simulated pore solution. • Both general corrosion and pitting can be inhibited by CLS. • The preferential adsorption of CLS around pits was detected by M-IR. • At beginning CLS adsorbs on surface unevenly and preferentially at active sites. • After pre-filming time an intact adsorption CLS film forms on steel surface. - Abstract: The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH){sub 2} + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of E{sub b} value and a decrease of i{sub corr} value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the E{sub b} value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Ca−O−S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  16. Modeling and simulation of pit chemistry of 304 austenitic stainless steel under applied stress in sodium chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuhui, E-mail: yhhuang@ecust.edu.cn [Key Laboratory of Pressure Systems and Safety, MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Tu, Shan-Tung; Xuan, Fu-Zhen [Key Laboratory of Pressure Systems and Safety, MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2013-04-15

    Highlights: ► A corrosion model was developed to simulate a stressed metal surface with a pit. ► The stress state in the pit bottom was coupled with the local corrosion environment. ► An analytical expression was established for current density of deformed pit surface. ► Local deformation had a strong effect on potential and species concentration in pits. -- Abstract: A mathematical model for simulating the active dissolution of a pit on stressed metal surface had been developed. Based on active dissolution mechanism, dissolution current density on the pit surface was assumed and extended through accounting for the thermal activation energy and the multiaxial stress state in pit bottom. The influence of applied tensile stress, pit radius and temperature was addressed. The distribution of solution potential and species concentration was predicted for different applied tensile stresses based on finite element calculations.

  17. Simulation of nucleation and growth processes. Application to nickel electrocrystallization in aqueous solutions

    Science.gov (United States)

    Lantelme, F.; Seghiouer, A.; Berghoute, Y.; Chevalet, J.

    1999-04-01

    A comprehensive approach of the mechanisms of electrochemical processes involving nucleation and crystal growth is described. The study is based on the use of transient electrochemical techniques which prove to be useful in determining the kinetics of reaction steps. Fundamental equations are derived to obtain a precise knowledge of transport and growth processes in solids. Since algebraic solutions are not available, quantitative results are obtained by numerical calculations. An application to the study of nickel deposition in acidic solutions is given. Les phénomènes de nucléation et de croissance cristalline se produisant au cours des réactions électrochimiques sont étudiés à partir des techniques électrochimiques impulsionnelles. Pour obtenir une vision précise du processus réactionnel la technique de modélisation par calcul numérique a été utilisée. Ce travail est basé sur la résolution par la méthode des différences finies des équations de transport et des bilans de charge et de matière en tenant compte de l'évolution de la surface réactionnelle sous l'action de la croissance des cristaux. Un exemple d'application est donné concernant l'étude par chronoampérométrie des dépôts de nickel en solution aqueuse.

  18. Actinides in Hanford Tank Waste Simulants: Chemistry of Selected Species in Oxidizing Alkaline Solutions

    International Nuclear Information System (INIS)

    Nash, Kenneth L.; Laszak, Ivan; Borkowski, Marian; Hancock, Melissa; Rao, Linfeng; Reed, Wendy

    2004-01-01

    To enhance removal of selected troublesome nonradioactive matrix elements (P, Cr, Al, S) from the sludges in radioactive waste tanks at the Hanford site, various chemical washing procedures have been evaluated. It is intended that leaching should leave the actinides in the residual sludge phase for direct vitrification. Oxidative treatment with strongly alkaline solutions has emerged as the best approach to accomplishing this feat. However, because the most important actinide ions in the sludge can exist in multiple oxidation states, it is conceivable that changes in actinide oxidation state speciation could interfere with hopes and plans for actinide insolubility. In this presentation, we discuss both the impact of oxidative alkaline leachants on actinide oxidation state speciation and the chemistry of oxidized actinide species in the solution phase. Actinide oxidation does occur during leaching, but the solubility behavior is complex. Mixed ligand complexes may dominate solution phase speciation of actinides under some circumstances. This work was supported by the U.S. Department of Energy, Offices of Science and Waste Management, Environmental Management Science Program under Contract DEAC03- 76SF0098 at Lawrence Berkeley National Laboratory and Contract W-31-109- ENG-38 at Argonne National Laboratory

  19. Understanding the mechanisms of sickle cell disease by simulations with a discrete particle model

    Science.gov (United States)

    Hui, Katrina; Lin, Guang; Pan, Wenxiao

    2013-01-01

    Sickle cell disease (SCD) is an inherited blood disorder characterized by rigid, sickle-shaped red blood cells (RBCs). Because of their rigidity and shape, sickle cells can get stuck in smaller blood vessels, causing blockages and depriving oxygen to tissues. This study develops and applies mathematical models to better understand the mechanism of SCD. Two-dimensional models of RBCs and blood vessels have been constructed by representing them as discrete particles interacting with different forces. The nonlinear, elastic property of healthy RBCs could be adequately reproduced using a cosine angle bending force and a worm-like chain spring force. With the ability to deform, RBCs can squeeze through narrow blood vessels. In modeling sickle cells as rigid bodies and applying repelling and friction forces from the blood vessel, this study shows that geometrical factors (dimensions of the sickle cell and blood vessels) as well as rigidity and adhesiveness of the sickle cell all play an important role in determining how, and if, sickle cells become trapped within narrow blood capillaries. With lack of data to validate the model, this study primarily provides a sensitivity analysis of factors influencing sickle cell occlusion and identified critical data to support future modeling.

  20. Visualizing Network Traffic to Understand the Performance of Massively Parallel Simulations

    KAUST Repository

    Landge, A. G.

    2012-12-01

    The performance of massively parallel applications is often heavily impacted by the cost of communication among compute nodes. However, determining how to best use the network is a formidable task, made challenging by the ever increasing size and complexity of modern supercomputers. This paper applies visualization techniques to aid parallel application developers in understanding the network activity by enabling a detailed exploration of the flow of packets through the hardware interconnect. In order to visualize this large and complex data, we employ two linked views of the hardware network. The first is a 2D view, that represents the network structure as one of several simplified planar projections. This view is designed to allow a user to easily identify trends and patterns in the network traffic. The second is a 3D view that augments the 2D view by preserving the physical network topology and providing a context that is familiar to the application developers. Using the massively parallel multi-physics code pF3D as a case study, we demonstrate that our tool provides valuable insight that we use to explain and optimize pF3D-s performance on an IBM Blue Gene/P system. © 1995-2012 IEEE.

  1. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically......-numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...

  2. Formulation and make-up of simulated concentrated water, high ionic content aqueous solution

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Concentrated Water (SCW), a high-ionic-content water to be used for Activity E-20-50 Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of a thousand higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal thousand times higher ionic content was chosen to simulate the water that would result from the wetting of salts which have been previously deposited on a container surface

  3. UNDERSTANDING BLACK HOLE MASS ASSEMBLY VIA ACCRETION AND MERGERS AT LATE TIMES IN COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Kulier, Andrea; Ostriker, Jeremiah P.; Lackner, Claire N.; Cen, Renyue; Natarajan, Priyamvada

    2015-01-01

    Accretion is thought to primarily contribute to the mass accumulation history of supermassive black holes (SMBHs) throughout cosmic time. While this may be true at high redshifts, at lower redshifts and for the most massive black holes (BHs) mergers themselves might add significantly to the mass budget. We explore this in two disparate environments—a massive cluster and a void region. We evolve SMBHs from 4 > z > 0 using merger trees derived from hydrodynamical cosmological simulations of these two regions, scaled to the observed value of the stellar mass fraction to account for overcooling. Mass gains from gas accretion proportional to bulge growth and BH-BH mergers are tracked, as are BHs that remain ''orbiting'' due to insufficient dynamical friction in a merger remnant, as well as those that are ejected due to gravitational recoil. We find that gas accretion remains the dominant source of mass accumulation in almost all SMBHs; mergers contribute 2.5% ± 0.1% for all SMBHs in the cluster and 1.0% ± 0.1% in the void since z = 4. However, mergers are significant for massive SMBHs. The fraction of mass accumulated from mergers for central BHs generally increases for larger values of the host bulge mass: in the void, the fraction is 2% at M *, bul = 10 10 M ☉ , increasing to 4% at M *, bul ≳ 10 11 M ☉ , and in the cluster it is 4% at M *, bul = 10 10 M ☉ and 23% at 10 12 M ☉ . We also find that the total mass in orbiting SMBHs is negligible in the void, but significant in the cluster, in which a potentially detectable 40% of SMBHs and ≈8% of the total SMBH mass (where the total includes central, orbiting, and ejected SMBHs) is found orbiting at z = 0. The existence of orbiting and ejected SMBHs requires modification of the Soltan argument. We estimate this correction to the integrated accreted mass density of SMBHs to be in the range 6%-21%, with a mean value of 11% ± 3%. Quantifying the growth due to mergers at these late times

  4. Open Source AV solution supporting In Situ Simulation and Clinical education

    DEFF Research Database (Denmark)

    Simonsen, Eivind Ortind; Pociunas, Gintas; Dahl, Mads Ronald

    2015-01-01

    for a portable AV system for VAD. The system would make use of components widely available and easily replaceable. The developed AV software and coding is contracted to be available as Copyleft Open Source to ensure low cost and a potential continues improvement and expansion of the AV system. Summary of results...... debriefing in a mobile, in situ simulation environment using an AV system constructed from “off the shelf” components and Open Source software....

  5. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  6. Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: mesoscopic simulation.

    Science.gov (United States)

    Dai, Xingxing; Shi, Xinyuan; Wang, Yuguang; Qiao, Yanjiang

    2012-10-15

    Ginsenoside Ro (Ro), a natural anionic biosurfactant derived from ginseng, has been found to markedly increase the solubility of saikosaponin a (SSa), which is the active ingredient of Radix Bupleuri. SSa is minimally soluble in water. To determine the mechanism by which Ro solubilizes SSa, the self-assembly behavior of Ro and the phase behavior of blended Ro and SSa systems were studied by mesoscopic dynamics (MesoDyn) and dissipative particle dynamics (DPD) simulations. The simulation results show that Ro can form vesicles via the closure of oblate membranes. At low concentrations, SSa molecules are solubilized in the palisade layer of the Ro vesicles. At high concentrations, they interact with Ro molecules to form mixed vesicles with Ro adsorbing on the surfaces of the vesicles. The evaluation of the SSa solubilization process reveals that, at low concentrations, Ro aggregates preferentially to form vesicles, which then absorb SSa into themselves. However, at high concentrations, SSa first self-aggregates and then dissolves. This is because the solubilization behavior of Ro shifts the precipitation-dissolution equilibrium in the direction of dissolution. These results of the simulations are consistent with those of transmission electron microscopy (TEM) and dynamic light scattering (DLS). Copyright © 2012 Elsevier Inc. All rights reserved.

  7. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  8. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  9. Exploring challenges and solutions for container transportation using rail: A modelling and simulation gaming study

    NARCIS (Netherlands)

    Kurapati, S.; Kourounioti, I.; Lukosch, H.; Tavaszzy, L.; Verbraeck, A.; Veen, L. van; Nuland, B. van; Smit, T.

    2017-01-01

    Rail is a cost-effective and environment friendly freight transport modality when used efficiently. Stakeholders around Dutch ports are discouraged to choose rail due to uncertain train schedules and the dispersed nature of freight flows across terminals in the port. To understand the challenges and

  10. Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions.

    NARCIS (Netherlands)

    Ardestani, M.M.; van Gestel, C.A.M.

    2013-01-01

    To improve our understanding of metal bioavailability to soil-living invertebrates, the effect of porewater composition on the toxicodynamics of copper and cadmium in Folsomia candida (Collembola) was investigated. Assuming that porewater is the main exposure route, F. candida was exposed to

  11. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    International Nuclear Information System (INIS)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  12. Volumetric and UV absorption studies on understanding the solvation behavior of polyhydroxy solutes in l-ascorbic acid(aq) solutions at T=(288.15 to 318.15)K.

    Science.gov (United States)

    Banipal, Parampaul K; Sharma, Mousmee; Banipal, Tarlok S

    2016-02-01

    Thermodynamic and spectroscopic data characterizing the solvation behavior of polyhydroxy compounds are in demand to get better understanding about the mechanisms of taste chemoreception, protein stabilization, etc. Apparent molar volumes for monosaccharides, disaccharides, derivatives, and polyols in (0.05, 0.15, 0.25 and 0.35) mol kg(-1) aqueous solutions of l-ascorbic acid have been determined from density data measured at (288.15, 298.15, 308.15 and 318.15)K under atmospheric pressure. Standard partial molar volumes at infinite-dilution and corresponding volumes of transfer of solutes from water to L-ascorbic acid(aq) have been calculated. Interaction coefficients and standard partial molar expansibilities have also been evaluated. The basic taste quality of studied solutes has been assessed from apparent massic volumes. UV absorption studies support the interactions between solutes and L-ascorbic acid. Influence of pH variation was taken into consideration while evaluating chemical behavior and stability of L-ascorbic acid in aqueous and buffer solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Ohl, P.C.; Bell, G.E.C.; Wilson, D.F.

    1995-12-01

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO 3 with 0.3M NaOH at 90 C or 11M NaNO 3 with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage

  14. A study of elemental migration from poly(ethylene terephthalate) of food packagings to simulated solutions by radiometric method

    International Nuclear Information System (INIS)

    Soares, Eufemia Paez; Saki, Mitiko; Silva, Leonardo G.A.

    2007-01-01

    Brazilian plastic production for food packagings, in recent years, has grown in the same proportion as food consumption. Considering that the plastic manufacturing involves catalytic processes and the use of additives, when the foods are in direct contact with these materials, the components present in plastics may migrate to the food. The Brazilian Health Surveillance Agency (ANVISA) has established boundary-values of migrants as well as procedures to evaluate migration of elements and substances from plastic packaging to food. In this study elemental composition of poly (ethylene terephthalate) - PET - packaging and results of elemental migration were obtained. Instrumental Neutron Activation Analysis (INAA) was used to determine elemental concentrations in PET packagings and the radiometric method was applied for elemental migration determination. This radiometric method consisted of irradiating the PET samples with neutrons, followed by migration exposition and radioactivity measurement in food-simulated solution. Experimental conditions used for migration were 10 days exposure period at 40 deg C. Migration was evaluated for soft drink, juice and water PET packaging. The analytical results indicated that PET packagings contain Co and Sb and those elements are transferred to the simulated solutions. However, these migration results were lower than the maximum tolerance values established by ANVISA. The migration detection limits also indicated high sensitivity of the radiometric method. (author)

  15. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    Science.gov (United States)

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units.

  16. Parallel processing for a 1-D time-dependent solution to impurity rate equations for fusion plasma simulations

    International Nuclear Information System (INIS)

    Veerasingam, R.

    1990-01-01

    In fusion plasmas impurities such as carbon, oxygen or nickel can contaminate the plasma and cause degradation of the performance of a fusion device through radiation. However, impurities can also be used as diagnostics to obtain information about a plasma through spectroscopic experiments which can then be used in plasma modeling and simulations. In the past, serial algorithms have been described for either the time dependent or steady state problem. In this paper, we describe a parallel procedure adopted to solve the time-dependent problem. It can be shown that for the steady state problem a parallel procedure would not be a useful application of parallelization because a few seconds of the Central Processing Unit time on a CRAY-XMP or IBM 3090/600S would suffice to obtain the solution, while this is not the case for the time-dependent problem. In order to study the effects of low Z and high Z impurities on the final state of a plasma, time-dependent solutions are necessary. For purposes of diagnostics and comparisons with experiments, a fast turn around time of the simulations would be advantageous. We have implemented a parallel algorithm on and IBM 3090/600S and tested its performance for a typical set of fusion plasma parameters. 4 refs., 1 tab

  17. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study

    Science.gov (United States)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo

    2018-01-01

    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  18. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

    International Nuclear Information System (INIS)

    Moucka, Filip; Bratko, Dusan; Luzar, Alenka

    2015-01-01

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores

  19. The use of a virtual reality simulator to explore and understand the impact of Linac mis-calibrations

    International Nuclear Information System (INIS)

    Beavis, Andrew W; Ward, James W

    2014-01-01

    Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.

  20. An Analysis of Biomolecular Force Fields for Simulations of Polyglutamine in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Fluitt, Aaron M. [Univ. of Chicago, IL (United States); de Pablo, Juan J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Polyglutamine (polyQ) peptides are a useful model system for biophysical studies of protein folding and aggregation, both for their intriguing aggregation properties and their own relevance to human disease. The genetic expansion of a polyQ tract triggers the formation of amyloid aggregates associated with nine neurodegenerative diseases. Several clearly identifiable and separable factors, notably the length of the polyQ tract, influence the mechanism of aggregation, its associated kinetics, and the ensemble of structures formed. Atomistic simulations are well positioned to answer open questions regarding the thermodynamics and kinetics of polyQ folding and aggregation. The additional, explicit representation of water permits deeper investigation of the role of solvent dynamics, and it permits a direct comparison of simulation results with infrared spectroscopy experiments. The generation of meaningful simulation results hinges on satisfying two essential criteria: achieving sufficient conformational sampling to draw statistically valid conclusions, and accurately reproducing the intermolecular forces that govern system structure and dynamics. In this work, we examine the ability of 12 biomolecular force fields to reproduce the properties of a simple, 30-residue polyQ peptide (Q30) in explicit water. In addition to secondary and tertiary structure, we consider generic structural properties of polymers that provide additional dimensions for analysis of the highly degenerate disordered states of the molecule. We find that the 12 force fields produce a wide range of predictions. We identify AMBER ff99SB, AMBER ff99SB*, and OPLS-AA/L to be most suitable for studies of polyQ folding and aggregation.

  1. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    International Nuclear Information System (INIS)

    Danielson, M.J.; Pitman, S.G.

    2000-01-01

    Both the 316L stainless steel and Hastelloy C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment

  2. FELIX - a computer program for the simulation of criticality excursions in aqueous fissionable materials solutions

    International Nuclear Information System (INIS)

    Weber, J.; Denk, W.

    1984-01-01

    Knowledge of characteristic parameters like evolved power and fission yield during an accidental criticality excursion is of essential importance to estimate possible radiological consequences and resulting safety hazards. The computer code ''FELIX'' simulates excursion characteristics of aqueous critical assemblies: Starting out from given initial conditions the spacedependent neutron kinetic equations are solved in one-dimensional geometry. Power, fission yield, reactivity and temperature are calculated as a function of time. Reactivity-feedback includes density effects and radiolytic gas voids. Results from calculations and CRAC-experiments are compared in two cases. (orig.) [de

  3. Simulation of unsaturated flow and solute transport at the Las Cruces trench site using the PORFLO-3 computer code

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Wurstner, S.K.

    1991-03-01

    The objective of this work was to test the ability of the PORFLO-3 computer code to simulate water infiltration and solute transport in dry soils. Data from a field-scale unsaturated zone flow and transport experiment, conducted near Las Cruces, New Mexico, were used for model validation. A spatial moment analysis was used to provide a quantitative basis for comparing the mean simulated and observed flow behavior. The scope of this work was limited to two-dimensional simulations of the second experiment at the Las Cruces trench site. Three simulation cases are presented. The first case represents a uniform soil profile, with homogeneous, isotropic hydraulic and transport properties. The second and third cases represent single stochastic realizations of randomly heterogeneous hydraulic conductivity fields, generated from the cumulative probability distribution of the measured data. Two-dimensional simulations produced water content changes that matched the observed data reasonably well. Models that explicitly incorporated heterogeneous hydraulic conductivity fields reproduced the characteristics of the observed data somewhat better than a uniform, homogeneous model. Improved predictions of water content changes at specific spatial locations were obtained by adjusting the soil hydraulic properties. The results of this study should only be considered a qualitative validation of the PORFLO-3 code. However, the results of this study demonstrate the importance of site-specific data for model calibration. Applications of the code for waste management and remediation activities will require site-specific data for model calibration before defensible predictions of unsaturated flow and containment transport can be made. 23 refs., 16 figs., 3 tabs

  4. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  5. A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies

    International Nuclear Information System (INIS)

    Gupta, Bhupender S.; Taha, Mohamed; Lee, Ming-Jer

    2017-01-01

    Highlights: • A green conceptual design for separating propanols from their aqueous solutions is proposed. • TRIS is biocompatible and non-volatile and can be used as an auxiliary agent for the separation. • Isobaric VLE data for 1-propanol/2-propanol + water + TRIS were measured at 101.3 kPa. • The azeotropic compositions are significantly shifted in the presence of TRIS. • Intermolecular interactions were studied with fluorescence, COSMO-RS, and MD simulation. - Abstract: In the present study, we have found that a common and relatively inexpensive biological buffer tris(hydroxymethyl)aminomethane (TRIS) is potentially applicable to shift the azeotrope compositions of aqueous solutions of 1-propanol and 2-propanol. By taking the advantage of our findings, we are proposing a green process for the recovery of these organics from their respective aqueous solutions. In order to confirm the effect of TRIS buffer on vapor–liquid equilibrium behavior of the aqueous propanol systems, we measured the isobaric vapor–liquid equilibrium (VLE) data at 101.3 kPa for the 1-proponol + water + TRIS and 2-propanol + water + TRIS systems over the azeotropic range with various concentrations of TRIS (0.02, 0.04, 0.08, and 0.12 in mole fraction). The binary interaction parameters were obtained for TRIS with water, TRIS with 1-propanol, and TRIS with 2-propanol by correlating the new VLE data with the NRTL model. The isobaric VLE properties for the investigated propanol + water mixtures in the presence of various concentrations of TRIS were also predicted with the conductor-like screening model COSMO-RS. Based on the predicted excess molar enthalpies (H E m ) from the COSMO-RS, the interactions between all constituent pairs of molecules were estimated. To explore the mechanism of TRIS-based separation of 1-propanol/2-propanol from their aqueous solutions, the interactions between different pairs of molecules were also investigated by using fluorescence analysis and

  6. EOS9nT: A TOUGH2 module for the simulation of flow and solute/colloid transport

    International Nuclear Information System (INIS)

    Moridis, G.J.; Wu, Y.S.; Pruess, K.

    1998-04-01

    EOS9nT is a new TOUGH2 module for the simulation of flow and transport of an arbitrary number n of tracers (solutes and/or colloids) in the subsurface. The module first solves the flow-related equations, which are comprised of (a) the Richards equation and, depending on conditions, may also include (b) the flow equation of a dense brine or aqueous suspension and/or (c) the heat equation. A second set of transport equations, corresponding to the n tracers, are then solved sequentially. The low concentrations of the n tracers are considered to have no effect on the liquid phase, thus making possible the decoupling of their equations. The first set of equations in EOS9nT provides the flow regime and account for fluid density variations due to thermal and/or solute concentration effects. The n tracer transport equations account for sorption, radioactive decay, advection, hydrodynamic dispersion, molecular diffusion, as well as filtration (for colloids only). EOS9nT can handle gridblocks or irregular geometry in three-dimensional domains. Preliminary results from four 1-D verification problems show an excellent agreement between the numerical predictions and the known analytical solutions

  7. Factors responsible for the aggregation behavior of hydrophobic polyelectrolyte PEA in aqueous solution studied by molecular dynamics simulations.

    Science.gov (United States)

    Sappidi, Praveenkumar; Natarajan, Upendra

    2017-08-01

    Self-association (i.e. interchain aggregation) behavior of atactic poly(ethacrylic acid) PEA in dilute aqueous solution as function of degree-of-neutralization by Na + counter-ions (i.e. charge fraction f) was investigated by molecular dynamics simulations. Aggregation is found to occur in the range 0≤f≤0.7 in agreement with experimental results compared at specified polymer concentration C p =0.36mol/l in dilute solution. The macromolecular solution was characterized and analysed for radius-of-gyration, torsion angle distribution, inter and intra-molecular hydrogen bonds, radial distribution functions of intermolecular and inter-atomic pairs, inter-chain contacts and solvation enthalpy. The PEA chains form aggregate through attractive inter-chain interaction via hydrogen bonding, in the range fenthalpy. The PEA solvation enthalpy becomes increasingly favorable with increase in f. The transition enthalpy change, in going from uncharged (acid) state to fully charged state (f=1) is unfavorable towards aggregate formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    International Nuclear Information System (INIS)

    Yang, R; Li, X D; Lu, Y; Song, A; Yan, R; Xu, B; Li, X

    2014-01-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs

  9. Nanoscale colloids in a freely adsorbing polymer solution: a Monte Carlo simulation study.

    Science.gov (United States)

    Marla, Krishna Tej; Meredith, J Carson

    2004-02-17

    A key issue in nanoscale materials and chemical processing is the need for thermodynamic and kinetic models covering colloid-polymer systems over the mesoscopic length scale (approximately 1-100 nm). We have applied Monte Carlo simulations to attractive nanoscale colloid-polymer mixtures toward developing a molecular basis for models of these complex systems. The expanded ensemble Monte Carlo simulation method is applied to calculate colloid chemical potentials (micro(c)) and polymer adsorption (gamma) in the presence of freely adsorbing Lennard-Jones (LJ) homopolymers (surface modifiers). gamma and micro(c) are studied as a function of nanoparticle diameter (sigma(c)), modifier chain length (n) and concentration, and colloid-polymer attractive strength over 0.3 attractive regime, nanocolloid chemical potential decreases and adsorbed amount increases as sigma(c), or n is increased. The scaling of gamma with n from the simulations agrees with the theory of Aubouy and Raphael (Macromolecules 1998, 31, 4357) in the extreme limits of Rg/sigma(c). When Rg/sigma(c) is large, the "colloid" approaches a molecular size and interacts only locally with a few polymer segments and gamma approximately n. When Rg/sigma(c) is small, the system approaches the conventional colloid-polymer size regime where multiple chains interact with a single particle, and gamma approximately sigma(c)2, independent of n. In contrast, adsorption in the mesoscopic range of Rg/sigma(c) investigated here is represented well by a power law gamma approximately n(p), with 0 attractive strength. Likewise, the chemical potential from our results is fitted well with micro(c) approximately n(q)sigma(c)3, where the cubic term results from the sigma(c) dependence of particle surface area (approximately sigma(c)2) and LJ attractive magnitude (approximately sigma(c)). The q-exponent for micro(c) (micro(c) approximately n(q)) varies with composition and LJ attractive strength but is always very close to the power

  10. Hybrid method based on embedded coupled simulation of vortex particles in grid based solution

    Science.gov (United States)

    Kornev, Nikolai

    2017-09-01

    The paper presents a novel hybrid approach developed to improve the resolution of concentrated vortices in computational fluid mechanics. The method is based on combination of a grid based and the grid free computational vortex (CVM) methods. The large scale flow structures are simulated on the grid whereas the concentrated structures are modeled using CVM. Due to this combination the advantages of both methods are strengthened whereas the disadvantages are diminished. The procedure of the separation of small concentrated vortices from the large scale ones is based on LES filtering idea. The flow dynamics is governed by two coupled transport equations taking two-way interaction between large and fine structures into account. The fine structures are mapped back to the grid if their size grows due to diffusion. Algorithmic aspects of the hybrid method are discussed. Advantages of the new approach are illustrated on some simple two dimensional canonical flows containing concentrated vortices.

  11. Pareto Optimal Solutions for Stochastic Dynamic Programming Problems via Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    R. T. N. Cardoso

    2013-01-01

    Full Text Available A heuristic algorithm is proposed for a class of stochastic discrete-time continuous-variable dynamic programming problems submitted to non-Gaussian disturbances. Instead of using the expected values of the objective function, the randomness nature of the decision variables is kept along the process, while Pareto fronts weighted by all quantiles of the objective function are determined. Thus, decision makers are able to choose any quantile they wish. This new idea is carried out by using Monte Carlo simulations embedded in an approximate algorithm proposed to deterministic dynamic programming problems. The new method is tested in instances of the classical inventory control problem. The results obtained attest for the efficiency and efficacy of the algorithm in solving these important stochastic optimization problems.

  12. Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution.

    Science.gov (United States)

    Padilla, Norma; Bronson, Arturo

    2007-06-01

    The effect of oxygen and albumin on the electrochemical behavior of a Ti-6Al-4V alloy immersed in a simulated inorganic plasma (SIP) solution was studied with a rotating-cylindrical electrode configuration to focus on the surface/electrolyte reactions. Potentiokinetic scans and electrochemical impedance spectroscopy have been used to characterize the interface by determining the passive current density and capacitance. For the polarization scans, an albumin addition of 37.7 mg/cm(3) to the SIP solution (oxygenated and unoxygenated) decreased the passive current density, indicating a lowering of the corrosive rate. The surface capacitance for the Ti-6Al-4V alloy immersed in a SIP solution averaged 13 microF/cm(2), which transformed after albumin addition (37.7 mg/cm(3)) from a potential independent behavior to the capacitance ranging from 23 to 6 microF/cm(2) with increasing potentials from -800 to 1500 mV(SCE), respectively, indicative of albumin adsorption. Within the same potential range and albumin addition to oxygenated solutions, the capacitances expanded slightly with a similar decreasing trend from 31 to 6 microF/cm(2), although the capacitance depicts an interaction between the hydrated passive film and the adsorbed albumin from -550 to 500 mV(SCE) in which the capacitance plateaued at 15 microF/cm(2). The hydrated porous oxide film results from the porous rutile layer reacting with H(2)O(2) formed as an intermediary component of oxygen reduction at the Ti-6Al-4V surface. The passive film-albumin interaction would affect the processing of titanium alloys in their surface preparation for biocompatibility, as well as determining the reactivity of titanium alloys to proteins.

  13. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  14. Observation and simulation of heterogeneous 2D water and solute flow processes in ditch beds for subsequent catchment modelling

    Science.gov (United States)

    Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc

    2015-04-01

    Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last

  15. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy

    International Nuclear Information System (INIS)

    Rao, S.I.; Varvenne, C.; Woodward, C.; Parthasarathy, T.A.; Miracle, D.; Senkov, O.N.; Curtin, W.A.

    2017-01-01

    Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2〈111〉 dislocations in a randomly-distributed model-BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. Core structure variations along an individual dislocation line are found for a/2〈111〉 screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. - Graphical abstract: Measured critical resolved shear stress scaled by the (111) shear modulus (39 GPa) necessary to achieve on-going glide as a function of temperature, for the a/2[111] screw dislocation in the model BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. The upper and lower bounds of the critical resolved shear stress is shown in the plot. Also shown in is the measured strength for the mean-field A-atom material and BCC Fe as a function of

  16. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S

    2004-07-01

    It has previously been demonstrated that immobilization of Cs{sup +} and/or Sr{sup 2+} sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO{sub 3}){sub 3} solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO{sub 3}){sub 3} losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO{sub 3}){sub 3}. In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  17. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    International Nuclear Information System (INIS)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S.

    2004-01-01

    It has previously been demonstrated that immobilization of Cs + and/or Sr 2+ sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO 3 ) 3 solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO 3 ) 3 losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO 3 ) 3 . In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  18. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins.

    Science.gov (United States)

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.

    Science.gov (United States)

    Kocijan, Aleksandra; Conradi, Marjetka; Schön, Peter M

    2012-04-01

    A study of oxide layers grown on 2205 duplex stainless steel (DSS) and AISI 316L austenitic stainless steel in simulated physiological solution is presented here in order to establish the possibility of replacement of AISI 316 L with 2205 DSS in biomedical applications. The results of the potentiodynamic measurements show that the extent of the passive range significantly increased for DSS 2205 compared to AISI 316L stainless steel. Cyclic voltammetry was used to investigate electrochemical processes taking place on the steel surfaces. Oxide layers formed by electrochemical oxidation at different oxidation potentials were studied by X-ray photoelectron spectroscopy, and their compositions were analyzed as a function of depth. The main constituents on both the investigated materials were Cr- and Fe-oxides. Atomic force microscopy topography studies revealed the higher corrosion resistance of the DSS 2205 compared to the AISI 316L under the chosen experimental conditions. Copyright © 2012 Wiley Periodicals, Inc.

  20. Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y Alloys with Atomistic Simulation

    Directory of Open Access Journals (Sweden)

    Yurong Wu

    2008-01-01

    Full Text Available Molecular dynamic simulations have been performed to study the solid solution mechanism of Mg100-xREx (RE=Gd,Dy,Y, x=0.5,1,2,3,4  at.%. The obtained results reveal that the additions of Gd, Dy and Y increase the lattice constants of Mg-RE alloys. Also the axis ratio c/a remains unchanged with increase in temperature, restraining the occurrence of nonbasal slip and twinning. Furthermore, it is confirmed that bulk modulus of Mg alloys can be increased remarkably by adding the Gd, Dy, Y, especially Gd, because the solid solubility of Gd in Mg decrease sharply with temperature in comparison with Dy and Y. Consequently, the addition of the RE can enhance the strength of Mg-based alloys, which is in agreement with the experimental results.

  1. The Coupled Effect of Temperature and Carbonation on the Corrosion of Rebars in the Simulated Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Jiezhen Hu

    2015-01-01

    Full Text Available The reinforced concrete structures have to survive high temperature and carbonation at low latitude region. The research on the effect of temperature and the effect of carbonation are vital to the corrosion of the rebars in concrete structures. The coupled effect of temperature and carbonation on the corrosion of rebars was researched by using the open circuit potential (OCP, the electrochemical impedance spectroscopy (EIS, and the potentiodynamic polarization (PP measurement in the simulated concrete pore solutions (SPSs. The high temperature environment is conducive to the formation of passivated surface of rebars in SPSs, but the dissolution velocity of passivated surface is higher. The rebars have the greater capacity of passivity at lower temperature. The corrosion rate of rebars at higher temperature is smaller in moderate pH value (10.6 SPSs. The rebars suffer from serious corrosion in the pH = 9.6 SPSs at 318 K temperature.

  2. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    Science.gov (United States)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  3. Novel scheme for simulating the force-free equations: Boundary conditions and the evolution of solutions towards stationarity

    Science.gov (United States)

    Carrasco, F. L.; Reula, O. A.

    2017-09-01

    Force-free electrodynamics (FFE) describes a particular regime of magnetically dominated relativistic plasmas, which arises on several astrophysical scenarios of interest such as pulsars or active galactic nuclei. In this article, we present a full 3D numerical implementation of the FFE evolution around a Kerr black hole. The novelty of our approach is three-folded: (i) We use the "multiblock" technique [1 L. Lehner, O. Reula, and M.Tiglio, Multi-block simulations in general relativity: High-order discretizations, numerical stability and applications, Classical Quantum Gravity 22, 5283 (2005)., 10.1088/0264-9381/22/24/006] to represent a domain with S2×R+ topology within a stable finite-differences scheme. (ii) We employ as evolution equations those arising from a covariant hyperbolization of the FFE system [2 F. Carrasco and O. Reula, Covariant hyperbolization of force-free electrodynamics, Phys. Rev. D 93, 085013 (2016)., 10.1103/PhysRevD.93.085013]. (iii) We implement stable and constraint-preserving boundary conditions to represent an outer region given by a uniform magnetic field aligned or misaligned respect to the symmetry axis. The construction of appropriate and consistent boundary conditions, both preserving the constraints and physically immersing the system in a uniform magnetic field, has allowed us to obtain long-term stationary solutions representing jets of astrophysical relevance. These numerical solutions are shown to be consistent with previous studies.

  4. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  5. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation.

    Science.gov (United States)

    Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C

    2015-11-01

    Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.

  6. Glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101: a molecular simulation study

    Science.gov (United States)

    Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen

    2015-08-01

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.

  7. Neutron Scattering of Residual Hydrogen in 1,4-Dioxane-D8 Liquid. Understanding Measurements with Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Hongjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kidder, Michelle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-25

    That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to inter-molecular scattering and that uncertainty in the extent of deuteration account for discrepancies between simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen-deuterium pair, and complementary interference from the deuterium-deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298K and at 343K) protiated mole fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. Although we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids and similar systematic experimental/computational studies can be performed to either

  8. Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation.

    Science.gov (United States)

    Li, Yunqi; Zhao, Qin; Huang, Qingrong

    2014-01-30

    A combination of turbidimetric titration, a sigmoidal Boltzmann equation approach and Monte Carlo simulation has been used to study the complex coacervation in serum albumin and pectin mixtures. The effects of the mass ratio of protein to polysaccharide on the critical pH values, the probability of complex coacervation and the electrostatic interaction from charge patches in serum albumin were investigated. Turbidimetric titration results showed an optimum pH for complex coacervation (pHm), which corresponded to the maximum turbidity in the protein/polysaccharide mixture. The pHm monotonically decreased as the ratio decreased, and could be fitted using the sigmoidal Boltzmann equation. It suggests that pHm could be a good ordering parameter to characterize the phase behavior associated with protein/polysaccharide complex coacervation. Qualitative understanding of pHm by taking into account the minimization of electrostatic interaction, as well as quantitative matching of pHm according to the concept of charge neutralization were both achieved. Our results suggest that the serum albumin/pectin complexes were ultimately neutralized by the partial charges originated from the titratable residues in protein and polysaccharide chains at pHm. The Monte Carlo simulation provided consistent phase boundaries for complex coacervation in the same system, and the intermolecular association strength was determined to be several kBT below the given ionic strength. The strongest binding site in the protein is convergent to the largest positive charge patch if pure electrostatic interaction was considered. Further inclusion of contribution from excluded volume resulted in the binding site distribution over five different positive charge patches at different protein/polysaccharide ratios and pH values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. DOE Final Report: A Unified Understanding of Residual Stress in Thin Films: Kinetic Models, Experiments and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chason, Eric

    2018-02-01

    Thin films are critical for a wide range of advanced technologies. However, the deposited films often have high levels of residual stress that can limit their performance or lead to failure. The stress is known to depend on many variables, including the processing conditions, type of material, deposition technique and the film’s microstructure. The goal of this DOE program was to develop a fundamental understanding of how the different processes that control thin film growth under different conditions can be related to the development of stress. In the program, systematic experiments were performed or analyzed that related the stress to the processing conditions that were used. Measurements of stress were obtained for films that were grown at different rates, different solutions (for electrodeposition), different particle energies (for sputter deposition) and different microstructures. Based on this data, models were developed to explain the observed dependence on the different parameters. The models were based on considering the balance among different stress-inducing mechanism occurring as the film grows (for both non-energetic and energetic deposition). Comparison of the model predictions with the experiments enabled the kinetic parameters to be determined for different materials. The resulting model equations provide a comprehensive picture of how stress changes with the processing conditions that can be used to optimize the growth of thin films.

  10. Thermal and Physical Property Determinations for Ionsiv IE-911 Crystalline Silicotitanate and Savannah River Site Waste Simulant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Steele, W.V.

    1999-08-01

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site (SRS) waste streams using ion exchange on crystalline silicotitanate (CST). The research will aid in the understanding of potential issues associated with cooling of feed streams within SRS waste treatment processes. Toward this end, the thermophysical properties of engineered CST, manufactured under the trade name, Ionsive{reg_sign} IE-911 by UOP, Mobile, AL, were determined. The heating profiles of CST samples from several manufacturers' production runs were observed using differential scanning calorimetric (DSC) measurements. DSC data were obtained over the region of 10 to 215 C to check for the possibility of a phase transition or any other enthalpic event in that temperature region. Finally, the heat capacity, thermal conductivity, density, viscosity, and salting-out point were determined for SRS waste simulants designated as Average, High NO{sub 3}{sup {minus}} and High OH{sup {minus}} simulants.

  11. Scenario Based Education as a Framework for Understanding Students Engagement and Learning in a Project Management Simulation Game

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    In this paper I describe s how students use a project management simulation game based on an attack‑defense mechanism where two teams of players compete by challenging each other⠒s projects. The project management simulation game is intended to be playe d by pre‑service construction workers...... opponent⠒s building project for weak spots. The intention of the project management simulation game, is to provide students with an increased sensitivity towards the relation between planning and reality in complex construction projects. The project management simulation game can be interpreted both...... as a competitive game and as a simulation. Both of these views are meaningful and can be seen as supporting learnin g. Emphasizing the simulation aspect let us explain how students learn by being immersed into a simulated world, where the players identify with specific roles, live out specific situations...

  12. Anticorrosion performance of chromized coating prepared by pack cementation in simulated solution with H2S and CO2

    Science.gov (United States)

    Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li

    2017-10-01

    A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.

  13. User's guide of SWAP Version 2.0; simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment

    NARCIS (Netherlands)

    Kroes, J.G.; Dam, van J.C.; Huygen, J.; Vervoort, R.W.

    2002-01-01

    This manual describes how the numerical model SWAP version 2.0.9d can be used to simulate vertical transport of water, solutes and heat in variably saturated, cultivated soils. A brief theoretical description is followed by a technical description of model structure and general data flow. An

  14. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydration...

  15. The problem of complex eigensystems in the semianalytical solution for advancement of time in solute transport simulations: a new method using real arithmetic

    Science.gov (United States)

    Umari, Amjad M.J.; Gorelick, Steven M.

    1986-01-01

    In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.

  16. Implementing Data Acquisition Systems DAS1 and DAS2 at Cernavoda Full-Scope Simulator Main Control Room based on the SIEN2007 solution

    International Nuclear Information System (INIS)

    Ionescu, Ana Maria; Tutuianu, Bogdan; Ionescu, Teodor

    2009-01-01

    Modern personnel training, re-training and licensing is a guarantee of NPP's safe reliable operation. Cernavoda NPP personnel training system is the main objective of its specialized department built up as Training Center (TC), directly supervised by Administration of the National Nuclearelectrica Society (SNN) and National Regulatory Body for Nuclear Activities (CNCAN). It was implemented to ensure the abilities, skills and knowledge required by the safe reliable operation of the nuclear reactor by the Main Control Room (MCR) operators. This objective was reached through training lessons taught and tested on the Full Scope Simulator (FSS), the TC's main training tool, a replica of the MCR of the real plant. Its description is the subject of this paper. The TC's FSS includes a computer network equipped with a software connected to the specialized program DATAPATH supplied for Cernavoda FSS by the FSS provider, delivered by L-3/ MAPPS. An alternative to DATAPATH Communication of the L 3/MAPPS Simulation System, developed by Cernavoda Full Scope Simulator Staff, was presented in the previous edition of the symposium (see the SIEN 2007 paper). This original solution is now already applied in order to connect to simulation process Data Acquisition Systems DAS1 and DAS2, two new systems already installed in the real MCR but not included by the Cernavoda FSS initial design. Communication between simulation software and DAS1 and DAS2, considered to be simple receivers of simulated data both as much alike as the two DASs from real plant, is performed in parallel with DATAPATH in a safe mode and without affecting simulation process. This paperwork presents the above mentioned application of this communication solution, developed by the Cernavoda NPP Full Scope Simulator Staff with details about the hardware/software solutions and their performance, training impact, cost and benefits. (authors)

  17. Self-consistent field theoretic simulations of amphiphilic triblock copolymer solutions: Polymer concentration and chain length effects

    Directory of Open Access Journals (Sweden)

    X.-G. Han

    2014-06-01

    Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.

  18. The distress of voice-hearing: the use of simulation for awareness, understanding and communication skill development in undergraduate nursing education.

    Science.gov (United States)

    Orr, Fiona; Kellehear, Kevin; Armari, Elizabeth; Pearson, Arana; Holmes, Douglas

    2013-11-01

    Role-play scenarios are frequently used with undergraduate nursing students enrolled in mental health nursing subjects to simulate the experience of voice-hearing. However, role-play has limitations and typically does not involve those who hear voices. This collaborative project between mental health consumers who hear voices and nursing academics aimed to develop and assess simulated voice-hearing as an alternative learning tool that could provide a deeper understanding of the impact of voice-hearing, whilst enabling students to consider the communication skills required when interacting with voice-hearers. Simulated sounds and voices recorded by consumers on mp3 players were given to eighty final year nursing students undertaking a mental health elective. Students participated in various activities whilst listening to the simulations. Seventy-six (95%) students completed a written evaluation following the simulation, which assessed the benefits of the simulation and its implications for clinical practice. An analysis of the students' responses by an external evaluator indicated that there were three major learning outcomes: developing an understanding of voice-hearing, increasing students' awareness of its impact on functioning, and consideration of the communication skills necessary to engage with consumers who hear voices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Scenario Based Education as a Framework for Understanding Students Engagement and Learning in a Project Management Simulation Game

    Science.gov (United States)

    Misfeldt, Morten

    2015-01-01

    In this paper I describe how students use a project management simulation game based on an attack-defense mechanism where two teams of players compete by challenging each other's projects. The project management simulation game is intended to be played by pre-service construction workers and engineers. The gameplay has two parts: a planning part,…

  20. Corrosion Behaviour of a New Low-Nickel Stainless Steel Reinforcement: A Study in Simulated Pore Solutions and in Fly Ash Mortars

    Directory of Open Access Journals (Sweden)

    M. Criado

    2012-01-01

    Full Text Available The present paper studies the corrosion behaviour of a new lower-cost type of austenitic stainless steel (SS with a low nickel content in alkaline-saturated calcium hydroxide solution (a simulated concrete pore (SCP solution with sodium chloride (0.0%, 0.4%, 1.0%, 2.0%, 3.0%, and 5.0% NaCl and embedded in alkali-activated fly ash (AAFA mortars manufactured using two alkaline solutions, with and without chloride additions (2% and 5%, in an environment of constant 95% relative humidity. Measurements were performed at early age curing up to 180 days of experimentation. The evolution with time of electrochemical impedance spectroscopy was studied. Rct values obtained in SCP solution or in fly ash mortars were so high that low-nickel SS preserved its passivity, exhibiting high corrosion resistance

  1. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    Science.gov (United States)

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute

  2. Vision Paper : Integrating VV&A methods and cost-effectiveness analysis in the acquisition process for training simulation solutions

    NARCIS (Netherlands)

    Huiskamp, W.; Voogd, J.; Korteling, J.E.

    2013-01-01

    Simulation is an important technology that enables NATO and its member nations to train their soldiers. The benefits of simulation-based training include saving of time, money, and even lives, when training for unsafe scenarios. Simulation also facilitates joint and combined training. Moreover,

  3. Towards understanding the impact of assimilating along-track SLA data on simulated eddy characteristics in the Agulhas System

    CSIR Research Space (South Africa)

    De Vos, M

    2016-10-01

    Full Text Available The impact of assimilating along-track sea level anomaly (SLA) data into a regional Hybrid Coordinate Ocean Model (HYCOM) is investigated with regard to the simulation of mesoscale eddy characteristics in the Agulhas System. Eddy characteristics...

  4. Quantum Chemical Simulation of the Interaction of Functional Groups in Polyurethanes with 3 d-Metal Ions During Their Extraction from Aqueous Solutions

    Science.gov (United States)

    Ksenofontov, M. A.; Bobkova, E. Yu.; Shundalau, M. B.; Ostrovskaya, L. E.; Vasil'eva, V. S.

    2017-11-01

    The interaction of the functional groups in the polyurethane foam adsorbent Penopurm® with the cations of some 3d-metals upon their extraction from aqueous solutions has been studied by atomic emission spectroscopy, UV/Vis and vibrational IR spectroscopy, and quantum chemical simulation using density functional theory. Penopurm® absorbs 3d-metal cations from aqueous solutions in the pH range 5-7. Some spectral criteria have been found indicating a predominant interaction of Ni2+ ions with various fragments of the polyurethane foam structure.

  5. Solution des systemes de controle de grandes dimensions basee sur les boucles de retroaction dans la simulation des reseaux electriques

    Science.gov (United States)

    Mugombozi, Chuma Francis

    2. The GFBI method may offer some advantages in this case. A last analysis axis prompted further work in initialization. It is shown that GFBI method may modifies the convergence properties of iterations of the Newton method. The Newton- Kantorovich theorem, using bounds on the norms of the Jacobian, has been applied to the proposed GFBI and classic full representation of control equations. The expressions of the Jacobian norms have been established for generic cases using Coates graph. It appears from the analysis of a simple case, for the same initial conditions, the behaviour of the Newton- Kantorovich theorem differs in both cases. These differences may also be more pronounced in the non-linear case. Further work would be useful to investigate this aspect and, eventually, pave the way to new initialization approaches. Despite these limitations, not to mention areas for improvement in further work, one notes the contribution of this thesis to improve the gain of time on simulation for the solution of control systems. (Abstract shortened by UMI.).

  6. Exact solutions and numerical simulation of longitudinal vibration of the Rayleigh-Love rods with variable cross-sections

    CSIR Research Space (South Africa)

    Shatalov, M

    2012-09-01

    Full Text Available Exact solutions of equations of longitudinal vibration of conical and exponential rod are analyzed for the Rayleigh-Love model. These solutions are used as reference results for checking accuracy of the method of lines. It is shown that the method...

  7. Understanding the role of moisture transport on the dry bias in indian monsoon simulations by CFSv2

    Science.gov (United States)

    Sahana, A. S.; Pathak, Amey; Roxy, M. K.; Ghosh, Subimal

    2018-02-01

    We analyse the bias present in the Indian Summer Monsoon Rainfall (ISMR), as simulated by Climate Forecast System Model 2 (CFSv2), the operational model used for monsoon forecasts in India. In the simulations, the precipitation intensity is redistributed within the ITCZ band with southward shifts of precipitation maxima. We observe weakening of maximum intensity of precipitation over the region between 20°N and 14°N. In the simulations by CFSv2, there exists two rain bands: the northern one located slightly southward compared to reanalysis dataset and the southern one over the equator with intensified precipitation. This results in dry bias over land and wet bias over the ocean. We use a Dynamic Recycling Model, based on Lagrangian approach, to investigate the role of various moisture sources in generating these biases. We find that, the dry bias during June exists due to the delayed monsoon onset and reduced moisture flow from the Arabian Sea. As the monsoon progresses, deficiency in the simulated contributions from South Indian Ocean becomes the key source of bias. The reduced supply of moisture from oceanic sources is primarily attributed to the weaker northward transport of moisture flux from the Southern Ocean, associated with a weaker southward energy flux. Inefficiency of the model in simulating the heating in Tibetan plateau during the pre-monsoon period leads to this reduced cross equatorial energy flow. We also find that, towards the end of monsoon season, moisture contributions from land sources namely, Ganga Basin and North-Eastern forests become significant and underestimations of the same in the simulations by CFSv2 result into biases over Central and Eastern India.

  8. User's guide of SWAP Version 2.0; simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment

    OpenAIRE

    Kroes, J.G.; Dam, van, J.C.; Huygen, J.; Vervoort, R.W.

    2002-01-01

    This manual describes how the numerical model SWAP version 2.0.9d can be used to simulate vertical transport of water, solutes and heat in variably saturated, cultivated soils. A brief theoretical description is followed by a technical description of model structure and general data flow. An extensive explanation is given of program inputs and outputs based on ASCII text files. The manual ends with examples using important features of the model.

  9. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  10. Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution.

    Science.gov (United States)

    Andermatt, Samuel; Cha, Jinwoong; Schiffmann, Florian; VandeVondele, Joost

    2016-07-12

    In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) Kohn-Sham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules. The combination of SS and LS, which is an embedding approach, can result in a 10-fold speedup over a pure LS simulation for large systems in aqueous solution. In addition to a ground-state Born-Oppenheimer SS+LS implementation, a time-dependent density functional theory-based Ehrenfest molecular dynamics (EMD) using density matrix propagation is presented that allows for performing nonadiabatic dynamics. Density matrix-based EMD in the SS framework is naturally linear scaling and appears suitable to study the electronic dynamics of molecules in solution. In the LS framework, linear scaling results as long as the density matrix remains sparse during time propagation. However, we generally find a less than exponential decay of the density matrix after a sufficiently long EMD run, preventing LS EMD simulations with arbitrary accuracy. The methods are tested on various systems, including spectroscopy on dyes, the electronic structure of TiO2 nanoparticles, electronic transport in carbon nanotubes, and the satellite tobacco mosaic virus in explicit solution.

  11. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment

    NARCIS (Netherlands)

    Hardesty, Britta D.; Harari, Joseph; Isobe, Atsuhiko; Lebreton, Laurent; Maximenko, Nikolai; Potemra, Jim; van Sebille, Erik; Vethaak, A.Dick; Wilcox, Chris

    2017-01-01

    Numerical modeling is one of the key tools with which we can gain insight into the distribution of marine litter, especially micro-plastics. Over the past decade, a series of numerical simulations have been constructed that specifically target floating marine litter, based on ocean models of various

  12. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods.

    Science.gov (United States)

    Gujt, Jure; Bešter-Rogač, Marija; Hribar-Lee, Barbara

    2014-02-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions' properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a 'volcano relationship', when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins' law of matching water affinities.

  13. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated

  14. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  15. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.

    Science.gov (United States)

    Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok

    2014-11-04

    The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.

  16. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, Roman A., E-mail: era@jinr.ru [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kholmurodov, Kholmirzo T. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); International University “Dubna”, Dubna 141980 (Russian Federation); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv 03022 (Ukraine); Rosta, László [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Grigoryeva, Natalia A. [Faculty of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg (Russian Federation); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2015-11-05

    Highlights: • The model of the scattering particle for a reliable SANS analysis is proposed. • The structural parameters of saturated mono-carboxylic acids in solutions are obtained. • The differences in nematic transitions correlate to solvation peculiarities. - Abstract: The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute–solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.

  17. Experimental comparative study and fracture resistance simulation with irrigation solution of 0.2% chitosan, 2.5% NaOCl and 17% EDTA

    Directory of Open Access Journals (Sweden)

    Ernani Ernani

    2015-09-01

    Full Text Available Background: Preparation in endodontic need irrigation materials as root canal debridement and disinfectant. However, irrigation materials is one of the factors that influence the tendency of fracture. Purpose: This study was aimed to see the resistance and fracture distribution if teeth irrigated with high molecular horseshoe crab chitosan at 0.2% concentration, 2.5% NaOCl solution and 17% EDTA solution in endodontic treatment with finite element method (FEM simulation study and experimental studies. Method: Endodontic treatment performed on 28 maxillary premolars with group A: irrigation solution of 17% EDTA and 2.5% NaOCl solution; group B: 2.5% NaOCl irrigation solution; group C: 2.5% NaOCl irrigation solution and 0.2% chitosan solution; group D: 0.2% chitosan solution irrigation. Final restoration was done using prefabricated glass fiber post. Cementation of post using resin cement then restored with direct composite resin restorations. Pressure test was performed with a Universal Testing Machine with a speed of 0.5 mm/min until fracture occurred. A three dimensional finite element analysis was performed for total deformation, equivalent (von-mises stress, and equivalent elastic strains. Result: Anova test showed significant differences in fracture resistance (p0.05. Statistical analysis showed no significant difference (p>0.05 between the results of experiment and FEM analysis results using the t-test. Conclusion: The results of this study demonstrated that there was effect of the use of high molecular 0.2% chitosan as a combined irrigation with NaOCl, but did not affect the fracture pattern distribution of endodontically treated teeth both experimentally and FEM analysis test.

  18. Toward understanding solute-solvent interaction in room-temperature mono- and dicationic ionic liquids: a combined fluorescence spectroscopy and mass spectrometry analysis.

    Science.gov (United States)

    Sahu, Prabhat Kumar; Das, Sudhir Kumar; Sarkar, Moloy

    2014-02-20

    Rotational relaxation dynamics of nonpolar perylene, dipolar coumarin 153, and a negatively charged probe, sodium 8-methoxypyrene-1,3,6-sulfonate (MPTS), have been investigated in a dicationic ionic liquid, 1,6-bis-(3-methylimidazolium-1-yl)hexane bis-(trifluoromethylsulfonyl)amide ([C6(MIm)2][NTf2]2), and a structurally similar monocationic ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6MIm][NTf2]), to have a comprehensive and a quantitative understanding on the solute-solvent interaction in these media. Analysis of the rotational relaxation dynamics data by Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that perylene rotation is found to be the fastest compared to the other two probes and shows slip to sub-slip behavior, coumarin 153 rotation lies between the stick and slip boundary, and MPTS shows a superstick behavior in [C6MIm][NTf2]. Interestingly, MPTS exhibits a normal SED hydrodynamics in dicationic [C6(MIm)2][NTf2]2, in spite of the fact that dicationic ionic liquid contains two cationic sites bearing acidic hydrogen (C2-H) which may be available to form stronger interaction with the negatively charged MPTS. The difference in the rotational diffusion behavior of these three probes is a reflection of their location in different distinct environments of these ILs. Superstick behavior of MPTS in monocationic IL has been attributed to its specific hydrogen bonding interaction with the corresponding imidazolium cation. The relatively faster rotational behavior of MPTS in dicationic IL has been explained by resorting to mass spectrometry. Mass spectral analysis demonstrates that positively charged (imidazolium) sites in dicationic IL are strongly associated with negatively charged bis-(trifluoromethylsulfonyl)amide anion (NTf2(-)), which in turn makes it difficult for imidazolim cation to have stronger hydrogen bonding interaction with bulkier negatively charged molecule MPTS.

  19. Simulation versus Optimisation

    DEFF Research Database (Denmark)

    Lund, Henrik; Arler, Finn; Østergaard, Poul Alberg

    2017-01-01

    investment optimisation or optimal solutions approach. On the other hand the analytical simulation or alternatives assessment approach. Awareness of the dissimilar theoretical assumption behind the models clarifies differences between the models, explains dissimilarities in results, and provides...... a theoretical and methodological foundation for understanding and interpreting results from the two archetypes. Keywords: energy system analysis; investment optimisation models; simulations models; modelling theory;renewable energy...

  20. Understanding Dry Bias in the Simulations of Indian Monsoon by CFSv2 Through Analysis of Moisture Transport

    Science.gov (United States)

    Saheer, Sahana; Pathak, Amey; Mathew, Roxy; Ghosh, Subimal

    2016-04-01

    Simulations of Indian Summer Monsoon (ISM) with its seasonal and subseasonal characteristics is highly crucial for predictions/ projections towards sustainable agricultural planning and water resources management. The Climate forecast system version 2 (CFSv2), the state of the art coupled climate model developed by National Center for Environmental Prediction (NCEP), is evaluated here for the simulations of ISM. Even though CFSv2 is a fully coupled ocean-atmosphere-land model with advanced physics, increased resolution and refined initialization, its ISM simulations/ predictions/ projections, in terms of seasonal mean and variability are not satisfactory. Numerous works have been done for verifying the CFSv2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO)-monsoon interactions. Underestimation of JJAS precipitation over the Indian land mass is one of the major drawbacks of CFSv2. ISM gets the moisture required to maintain the precipitation from different oceanic and land sources. In this work, we find the fraction of moisture supplied by different sources in the CFSv2 simulations and the findings are compared with observed fractions. We also investigate the possible variations in the moisture contributions from these different sources. We suspect that the deviation in the relative moisture contribution from different sources to various sinks over the monsoon region has resulted in the observed dry bias. We also find that over the Arabian Sea region, which is the key moisture source of ISM, there is a premature built up of specific humidity during the month of May and a decline during the later months of JJAS. This is also one of the reasons for the underestimation of JJAS mean precipitation.

  1. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde

    2016-05-01

    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  2. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    Science.gov (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  3. The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations

    Science.gov (United States)

    Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.

    2018-01-01

    This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.

  4. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    Science.gov (United States)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17 Simulations predict that, given currently achievable levels of asymmetry, their effects negate all advantages of increased CR.

  5. Evaluating the effects of a new qualitative simulation software (DynaLearn) on learning behavior, factual and causal understanding

    NARCIS (Netherlands)

    Zitek, A.; Poppe, M.; Stelzhammer, M.; Muhar, S.; Bredeweg, B.; Biswas, G.; Bull, S.; Kay, J.; Mitrovic, A.

    2011-01-01

    The DynaLearn software, a new intelligent learning environment aimed at supporting a better conceptual and causal understanding of environmental sciences was evaluated. The main goals of these pilot evaluations were to provide information on (1) usability of the software and problems learners

  6. Solutions to Traffic Jam on East Road of Beijing Jiaotong University in Rush Hours Based on Analogue Simulation

    Directory of Open Access Journals (Sweden)

    Zou Yanwen

    2015-01-01

    Full Text Available Based on the simulation theory and method, this paper establishes a status analogue simulation model in peak hours, realizes an effective assessment on the road, finds out bottlenecks to improve the level of road services and puts forward the corresponding road improvement program. This paper simulates the improvement program by the use of VISSIM simulation model, and verifies the improvement effect of four programs and carries out promotion. The research obtains an effective method of solving the problem of jam on the sub-arterial road: It needs to set up by-pass and control over traffic flow of the by-pass, and give full play to the role of by-pass in city.

  7. TRAC Real Time: A high fidelity solution for NSSS modelling. Application to Lungmen and Grafenrheinfeld NPP simulators

    International Nuclear Information System (INIS)

    Munoz Cases, J.; Seewald, M.

    2006-01-01

    Nuclear Island (NSSS) modelling represents an essential part of a simulator software, as the accuracy and scope used is essential when representing appropriately the systems behaviour in operational transients, where the transitions of phase water-vapour are dominant such as: ATWS, LOCA, Feed and Bleed, Mid Loop Operation, etc. Tecnatom has been using, since the early 90's, its real-time simulation technology, the binomial TRAC-RT and NEMO, a 6-equations thermalhydraulic code and three-dimensional neutronic code for high fidelity modelling of the Primary System of several full scope simulators. Two latest projects which have been faced are the object of this paper. The first of them refers to Lungmen NPP Full scope simulator, an ABWR type being built by GE for Taiwan Power Company. The NSSS generated model is connected with the rest of BOP conventional simulation. The validation process has been carried out according to the methodology defined in ANSI 3.5 standard, taking like reference the engineering model that GE possesses for this Power Station. The second project describes the NSSS upgrading of D3 simulator, owned by KSG, having Grafenrheinfeld (KKG), a German PWRKWU NPP as reference unit. The development platform is Digital UNIX, connected by reflective memory (RMS) to the existing ENCORE simulator platform. Real-time requirements being fulfilled. In both projects, the model generated with TRAC-RT and NEMO represents, not only the primary circuit, but also the steam lines, given their complexity and importance. Once more, these two project show the trend of training simulators in incorporating more and more accurate models, using engineering grade models

  8. Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

    OpenAIRE

    Lucjan Setlak; Emil Ruda

    2015-01-01

    The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out on the base of a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and ...

  9. A comprehensive solution for simulating ultra-shallow junctions: From high dose/low energy implant to diffusion annealing

    International Nuclear Information System (INIS)

    Boucard, F.; Roger, F.; Chakarov, I.; Zhuk, V.; Temkin, M.; Montagner, X.; Guichard, E.; Mathiot, D.

    2005-01-01

    This paper presents a global approach permitting accurate simulation of the process of ultra-shallow junctions. Physically based models of dopant implantation (BCA) and diffusion (including point and extended defects coupling) are integrated within a unique simulation tool. A useful set of the relevant parameters has been obtained through an original calibration methodology. It is shown that this approach provides an efficient tool for process modelling

  10. A comprehensive solution for simulating ultra-shallow junctions: From high dose/low energy implant to diffusion annealing

    Energy Technology Data Exchange (ETDEWEB)

    Boucard, F. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France)]. E-mail: Frederic.Boucard@silvaco.com; Roger, F. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France); Chakarov, I. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France); Zhuk, V. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France); Temkin, M. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France); Montagner, X. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France); Guichard, E. [Silvaco Data Systems, 55 Rue Blaise Pascal, F38330 Montbonnot (France); Mathiot, D. [InESS, CNRS and Universite Louis Pasteur, 23 Rue du Loess, F67037 Strasbourg (France)]. E-mail: Daniel.Mathiot@iness.c-strasbourg.fr

    2005-12-05

    This paper presents a global approach permitting accurate simulation of the process of ultra-shallow junctions. Physically based models of dopant implantation (BCA) and diffusion (including point and extended defects coupling) are integrated within a unique simulation tool. A useful set of the relevant parameters has been obtained through an original calibration methodology. It is shown that this approach provides an efficient tool for process modelling.

  11. Understanding Demographic and Behavioral Mechanisms that Guide Responses of Neotropical Migratory Birds to Urbanization: a Simulation Approach

    Directory of Open Access Journals (Sweden)

    Daniel P. Shustack

    2008-12-01

    Full Text Available Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density-urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and

  12. The understanding of strategy in a business simulation by students of business administration [doi: 10.21529/RECADM.2017014

    Directory of Open Access Journals (Sweden)

    Uajará Pessoa Araújo

    2017-12-01

    Full Text Available The business simulation is an interesting tool for active experimental learning used in business courses in order to bring together theory and practice, comprising the knowledge of strategy. In this case study, we analyze this capability into a constructivist perspective, distinguishing our work from others that focus on the effectiveness of these business games. Once established the coherence between the study’s purpose and its epistemological approach of learning, taken as a mental effort that is at the same time social and personal, this paper attempted to reveal which concepts of strategy the students internalize after a business game course. We carried out a content analysis of the texts written by the students in their final exam. The results, while showing the possibilities of agency problems in the course, led the research team to conclude that students set partial dimensions of strategy, conceived as: mutual construction, management of errors, course of action, intention, path dependence and learned lessons, which were put together as a possible collective discourse built from individual fragments. Keywords Education in management; Teaching strategy; Business simulation.

  13. Understanding the lid movements of LolA in Escherichia coli using molecular dynamics simulation and in silico point mutation.

    Science.gov (United States)

    Murahari, Priyadarshini; Anishetty, Sharmila; Pennathur, Gautam

    2013-12-01

    The Lol system in Escherichia coli is involved in localization of lipoproteins and hence is essential for growth of the organism. LolA is a periplasmic chaperone that binds to outer-membrane specific lipoproteins and transports them from inner membrane to outer membrane through LolB. The hydrophobic lipid-binding cavity of LolA consists of α-helices which act as a lid in regulating the transfer of lipoproteins from LolA to LolB. The current study aims to investigate the structural changes observed in LolA during the transition from open to closed conformation in the absence of lipoprotein. Molecular dynamics (MD) simulations were carried out for two LolA crystal structures; LolA(R43L), and in silico mutated MsL43R for a simulation time of 50 ns in water environment. We have performed an in silico point mutation of leucine to arginine in MsL43R to evaluate the importance of arginine to induce structural changes and impact the stability of protein structure. A complete dynamic analysis of open to closed conformation reveals the existence of two distinct levels; closing of lid and closing of entrance of hydrophobic cavity. Our analysis reveals that the structural flexibility of LolA is an important factor for its role as a periplasmic chaperone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma cancer treatment

    Science.gov (United States)

    Yusupov, Maksudbek; Yan, Dayun; Cordeiro, Rodrigo M.; Bogaerts, Annemie

    2018-03-01

    Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H2O2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H2O2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H2O2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H2O2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.

  15. An easy-to-build, low-budget point-of-care ultrasound simulator: from Linux to a web-based solution.

    Science.gov (United States)

    Damjanovic, Domagoj; Goebel, Ulrich; Fischer, Benedikt; Huth, Martin; Breger, Hartmut; Buerkle, Hartmut; Schmutz, Axel

    2017-12-01

    Hands-on training in point-of-care ultrasound (POC-US) should ideally comprise bedside teaching, as well as simulated clinical scenarios. High-fidelity phantoms and portable ultrasound simulation systems are commercially available, however, at considerable costs. This limits their suitability for medical schools. A Linux-based software for Emergency Department Ultrasound Simulation (edus2TM) was developed by Kulyk and Olszynski in 2011. Its feasibility for POC-US education has been well-documented, and shows good acceptance. An important limitation to an even more widespread use of edus2, however, may be due to the need for a virtual machine for WINDOWS ® systems. Our aim was to adapt the original software toward an HTML-based solution, thus making it affordable and applicable in any simulation setting. We created an HTML browser-based ultrasound simulation application, which reads the input of different sensors, triggering an ultrasound video to be displayed on a respective device. RFID tags, NFC tags, and QR Codes™ have been integrated into training phantoms or were attached to standardized patients. The RFID antenna was hidden in a mock ultrasound probe. The application is independent from the respective device. Our application was used successfully with different trigger/scanner combinations and mounted readily into simulated training scenarios. The application runs independently from operating systems or electronic devices. This low-cost, browser-based ultrasound simulator is easy-to-build, very adaptive, and independent from operating systems. It has the potential to facilitate POC-US training throughout the world, especially in resource-limited areas.

  16. Modeling and Simulation of CO2 Absorption into Promoted Aqueous Potassium Carbonate Solution in Industrial Scale Packed Column

    Directory of Open Access Journals (Sweden)

    Ali Altway

    2015-01-01

    Full Text Available This paper aims to develop mathematical model for investigating the CO2 absorption into promoted hot potassium carbonate solution in industrial scale packed column. The absorber is used in a large-scale ammonia plant to remove CO2 from the process gas stream. The CO2 is removed from the gas stream by counter-current absorption in two stages column. Lean solution and semi lean solution were fed into the top of upper part column and lower part column, respectively. To represent the gas-liquid system, a rigorous mathematical model based on the two-film theory is considered. The heat effects are taken into account. The model consists of differential mass and heat balance and considers the interactions between mass-transfer and chemical kinetics using enhancement factor concept. The chemical reaction in the liquid phase is based on the bicarbonate ion formation from CO2 as the rate-determining step. Gas solubility, mass and heat transfer coefficients, reaction kinetics and equilibrium were estimated using correlations from literatures.Therefore, multi-component absorption phenomena were considered in the mathematical model. The model was validated using plant data and was used to compute temperature and concentration profiles in the absorber. The variation in percent CO2 recovery with respect to changes in some operating variables is evaluated. The effect of various kinds of promoters added into potassium carbonate solution on the carbon dioxide recovery was also investigated.

  17. Validation of CFD simulation for ammonia emissions from an aqueous solution Submitted to Computers and Electronics in Agriculture

    DEFF Research Database (Denmark)

    Rong, Li; Elhadidi, B; Khalifa, H E

    2011-01-01

    In order to model and predict ammonia emissions from animal houses, it is important to determine the concentration on the emission surface correctly. In the current literature, Henry’s law is usually used to model the mass transfer through the gas–liquid surface (e.g. manure or aqueous solution)....

  18. Understanding RNA flexibility using explicit solvent simulations: The ribosomal and group I intron reverse kink-turn motifs

    Czech Academy of Sciences Publication Activity Database

    Sklenovský, P.; Florová, P.; Banáš, P.; Réblová, Kamila; Lankaš, Filip; Otyepka, M.; Šponer, Jiří

    2011-01-01

    Roč. 7, č. 9 (2011), s. 2963-2980 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GD203/09/H046; GA AV ČR(CZ) IAA400040802; GA MŠk(CZ) LC512; GA AV ČR(CZ) KJB400040901; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA MŠk(CZ) LC06030 Grant - others:GA ČR(CZ) GPP301/11/ P558 Program:GP Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : reverse kink-turn * simulation * flexibility Subject RIV: BO - Biophysics Impact factor: 5.215, year: 2011

  19. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations.

    Science.gov (United States)

    Kumar, Sonu; Frank, Martin; Schwartz-Albiez, Reinhard

    2013-01-01

    Human Galectin-8 (Gal-8) is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD) joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD) simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose) and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB) as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose) are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76). Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.

  20. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sonu Kumar

    Full Text Available Human Galectin-8 (Gal-8 is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76. Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.

  1. Corrosion behavior of 316 L stainless steel simulated by studying the influence of the species produced in the radiolysis in tritiated aqueous solutions

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-10-01

    The corrosion of 316 L stainless steel in tritiated aqueous solutions was simulated by studying the influence of species produced or present in the radiolysis in these solutions. The species studied were nitrates, fluorides, nitrites, hydrogen peroxide and components of the steel, as well as the pH. The method used was voltammetry. The corroded or passivated surfaces were examined by scanning electron microscopy and the corrosion rates were determined by measuring the electrochemical impedance. The depletion of the component elements of the stainless steel at the surface was observed by X-ray fluorescence. From our results we propose methods to limit the corrosion in an industrial tritiated water installation by controlling the pH, the oxidation-reduction potential of the water and the voltage of the installation [fr

  2. A nonequilibrium simulation method for calculating tracer diffusion coefficients of small solutes in n-alkane liquids and polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Briels, Willem J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    The tracer diffusion coefficients of methane in n-alkane liquids of increasing chain length were calculated by measuring the friction from short time nonequilibrium molecular dynamics simulations. The frictional constant was calculated from the exponentially decaying distance between two methane

  3. Osmotic Pressure of Aqueous Electrolyte Solutions via Molecular Simulations of Chemical Potentials: Application to NaCl.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Moučka, F.; Nezbeda, Ivo

    2016-01-01

    Roč. 407, Sl (2016), s. 76-83 ISSN 0378-3812 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : osmotic pressure * chemical potential * molecular simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.473, year: 2016

  4. High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?

    Energy Technology Data Exchange (ETDEWEB)

    Jost, A. [Universite Pierre et Marie Curie, Paris (France); Lunt, D.; Valdes, P.J. [School of Geographical Sciences, University of Bristol (United Kingdom); Kageyama, M.; Ramstein, G. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS, Gif-sur-Yvette (France); Abe-Ouchi, A. [CCSR, University of Tokyo (Japan); Peyron, O. [Laboratoire de Chrono-Ecologie, Universite de Franche-Comte, Besancon (France)

    2005-05-01

    The analyses of low-resolution models simulations of the last glacial maximum (LGM, 21 kyr BP) climate have revealed a large discrepancy between all the models and pollen-based palaeoclimatic reconstructions. In general, the models are too warm relative to the observations, especially in winter, where the difference is of the order of 10 C over western Europe. One of the causes of this discrepancy may be related to the low spatial resolution of these models. To assess the impact of using high-resolution models on simulated climate sensitivity, we use three approaches to obtain high-resolution climate simulations over Europe: first an atmospheric general circulation model (AGCM) with a stretched grid over Europe, second a homogeneous T106 AGCM (high resolution everywhere on the globe) and last a limited area model (LAM) nested in a low-resolution AGCM. With all three methods, we have performed simulations of the European climate for present and LGM conditions, according to the experimental design recommended by the Palaeoclimate Modeling Intercomparison Project (PMIP). Model results have been compared with updated pollen-based palaeoclimatic indicators for temperature and precipitation that were initially developed in PMIP. For each model, a low-resolution global run was also performed. As expected, the low-resolution simulations underestimate the large cooling indicated by pollen data, especially in winter, despite revised slightly warmer reconstructions of the temperatures of the coldest month, and show results in the range of those obtained in PMIP with similar models. The two high-resolution AGCMs do not improve the temperature field and cannot account for the discrepancy between model results and data, especially in winter. However, they are able to reproduce trends in precipitation more closely than their low-resolution counterparts do, but the simulated climates are still not as arid as depicted by the data. Conversely, the LAM temperature results compare

  5. NMR characterization of simulated Hanford low-activity waste glasses and its use in understanding waste form chemical durability

    International Nuclear Information System (INIS)

    Darab, J.G.; Linehan, J.C.; McGrail, B.P.

    1999-01-01

    Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy has been used to characterize the structural and chemical environments of B, Al, and Si in model Hanford low-activity waste glasses. The average 29 Si NMR peak position was found to systematically change with changing glass composition and structure. From an understanding of the structural roles of Al and B obtained from MAS-NMR experiments, the authors first developed a model that reliably predicts the distribution of structural units and the average 29 Si chemical shift value, δ, based purely on glass composition. A product consistency test (PCT) was used to determine the normalized elemental release (NL) from the prepared glasses. Comparison of the NMR and PCT data obtained from sodium boro-aluminosilicate glasses indicates that a rudimentary exponential relationship exists between the 29 Si chemical shift value, and the boron NL value

  6. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    Science.gov (United States)

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-02-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.

  7. Extraction of Am, Pu and U by dicyclohexano-18-crown-6/1-octanol from HNO3 solution and simulated HLLW

    International Nuclear Information System (INIS)

    Wang Xinghai; Wang Jianchen; Liu Xiuqin; Song Chongli

    1999-01-01

    The extraction of americium, plutonium and uranium by dicyclohexano-18-crown-6 (DCH18C6)/1-octanol from HNO 3 solution and simulated HLLW are studied. The influences of acidity and dilution factor of simulated HLLW are studied. At low HNO 3 concentration and dilution factor above 2, 0.1 mol/L DCH18C6/1-octanol extracts very little americium, plutonium and uranium. the distribution ratios of Am, Pu and U increase with the increase of HNO 3 concentration in aqueous phase, and decrease with increasing of dilution factor of HLLW. The distribution ratio of extraction of Pu(IV) increases with the increase of extractant concentration

  8. Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM

    Science.gov (United States)

    Pandey, Rishi Kumar; Mishra, Hradyesh Kumar

    2017-11-01

    In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.

  9. Evaluation of the matrix exponential for use in ground-water-flow and solute-transport simulations; theoretical framework

    Science.gov (United States)

    Umari, A.M.; Gorelick, S.M.

    1986-01-01

    It is possible to obtain analytic solutions to the groundwater flow and solute transport equations if space variables are discretized but time is left continuous. From these solutions, hydraulic head and concentration fields for any future time can be obtained without ' marching ' through intermediate time steps. This analytical approach involves matrix exponentiation and is referred to as the Matrix Exponential Time Advancement (META) method. Two algorithms are presented for the META method, one for symmetric and the other for non-symmetric exponent matrices. A numerical accuracy indicator, referred to as the matrix condition number, was defined and used to determine the maximum number of significant figures that may be lost in the META method computations. The relative computational and storage requirements of the META method with respect to the time marching method increase with the number of nodes in the discretized problem. The potential greater accuracy of the META method and the associated greater reliability through use of the matrix condition number have to be weighed against this increased relative computational and storage requirements of this approach as the number of nodes becomes large. For a particular number of nodes, the META method may be computationally more efficient than the time-marching method, depending on the size of time steps used in the latter. A numerical example illustrates application of the META method to a sample ground-water-flow problem. (Author 's abstract)

  10. Understanding the Effect of Gas Dynamics in Plasma Gun Performance for Simulating Fusion Wall Response to Disruption Events

    Science.gov (United States)

    Riedel, Will; Underwood, Thomas; Righetti, Fabio; Cappelli, Mark

    2017-10-01

    In this work, the suitability of a pulsed coaxial plasma accelerator to simulate the interaction of edge-localized modes with plasma first wall materials is investigated. Experimental measurements derived from a suite of diagnostics are presented that focus on both the properties of the plasma flow and the manner in which such jets couple with material interfaces. Specific emphasis is placed on quantifying the variation in these properties using tungsten tokens exposed to the plasma plume as the gun volume is progressively filled with more neutral gas. These results are mapped to the operational dynamics of the gun via a time-resolved Schlieren cinematic visualization of the density gradient within the flow. Resulting videos indicate the existence of two distinct modes with vastly different characteristic timescales, spatial evolution, and plasma properties. Time resolved quantification of the associated plasma heat flux for both modes, including a range spanning 150 MW m-2 - 10 GW m-2, is presented using both a fast thermocouple gauge and an IR camera. Both diagnostics in conjunction with a heat transfer model provide an accurate description of the energy transfer dynamics and operational characteristics of plasma guns. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program.

  11. Testing an Incentive-Sensitisation Approach to Understanding Problem Slot-Machine Gambling Using an Online Slot-Machine Simulation.

    Science.gov (United States)

    Davey, Belinda; Cummins, Robert

    2017-10-16

    This study aims to test the application of the incentive-sensitisation theory to slot-machine gambling behaviour. The theory posits that for problem gamblers (PGs), gambling strengthens the response of motivational pathways in the mid-brain to gambling cues, eliciting strong wanting, independent of liking. Non-problem gamblers (NPGs) experience weaker changes to motivational pathways so liking and wanting remain associated. Hence, it is predicted that wanting to gamble will be greater than liking for PGs but there will be no difference for NPGs; wanting will be greater for PGs than for NPGs; and, wanting but not liking will predict whether PGs continue gambling, whereas both will predict this for NPGs. During gambling on an online simulated slot-machine, 39 PGs and 87 NPGs rated 'liking' and 'wanting'. Participants played at least 3 blocks of 10-20 spins, and then had the option of playing up to 4 additional blocks; to continue playing they had to complete an effortful task, so that 'number of blocks played' acted as an additional indirect measure of wanting. Results supported hypotheses except on the indirect measure of wanting (the number of blocks played).

  12. Response curves for phosphorus plume lengths from reactive-solute-transport simulations of onland disposal of wastewater in noncarbonate sand and gravel aquifers

    Science.gov (United States)

    Colman, John A.

    2005-01-01

    Surface-water resources in Massachusetts often are affected by eutrophication, excessive plant growth, which has resulted in impaired use for a majority of the freshwater ponds and lakes and a substantial number of river-miles in the State. Because supply of phosphorus usually is limiting to plant growth in freshwater systems, control of phosphorus input to surface waters is critical to solving the impairment problem. Wastewater is a substantial source of phosphorus for surface water, and removal of phosphorus before disposal may be necessary. Wastewater disposed onland by infiltration loses phosphorus from the dissolved phase during transport through the subsurface and may be an effective disposal method; quantification of the phosphorus loss can be simulated to determine disposal feasibility. In 2003, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated a project to simulate distance of phosphorus transport in the subsurface for plausible conditions of onland wastewater disposal and subsurface properties. A coupled one-dimensional unsaturated-zone and three-dimensional saturated-zone reactive-solute-transport model (PHAST) was used to simulate lengths of phosphorus plumes. Knowledge of phosphorus plume length could facilitate estimates of setback distances for wastewater-infiltration sites from surface water that would be sufficient to protect the surface water from eutrophication caused by phosphorus transport through the subsurface and ultimate discharge to surface water. The reactive-solute-transport model PHAST was used to simulate ground-water flow, solute transport, equilibrium chemistry for dissolved and sorbed species, and kinetic regulation of organic carbon decomposition and phosphate mineral formation. The phosphorus plume length was defined for the simulations as the maximum extent of the contour for the 0.015 milligram-per-liter concentration of dissolved phosphorus downgradient from the

  13. State conditions transferability of vapor-liquid equilibria via fluctuation solution theory with correlation function integrals from molecular dynamics simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.J.; Hansen, Flemming Yssing

    2007-01-01

    –457] comprise the nearly ideal benzene/methyl acetate system, and the less ideal benzene/ethanol system at ambient temperatures. Both are at low pressures and remote from the pure component critical points. For the IFPSC system, we have used the same method even though predictions are for conditions remote from...... on isobaric–isothermal molecular dynamics (NPT-MD) simulations, using force field parameters published in the literature and fitted CHARMM force field parameters. Systems studied previously [S. Christensen, G.H. Peters, F.Y. Hansen, J.P. O’Connell, J. Abildskov, Molecular Simulation 33 (2007) 449...... those of the provided data, the pressures are elevated, and the temperatures are near the critical temperature of one of the components. We first describe the computational method and thermodynamic modeling for the entry submitted, which assumed the vapor was an ideal gas and no Poynting correction...

  14. Understanding Land System Change Through Scenario-Based Simulations: A Case Study from the Drylands in Northern China.

    Science.gov (United States)

    Liu, Zhifeng; Verburg, Peter H; Wu, Jianguo; He, Chunyang

    2017-03-01

    The drylands in northern China are expected to face dramatic land system change in the context of socioeconomic development and environmental conservation. Recent studies have addressed changes of land cover with socioeconomic development in the drylands in northern China. However, the changes in land use intensity and the potential role of environmental conservation measures have yet to be adequately examined. Given the importance of land management intensity to the ecological conditions and regional sustainability, our study projected land system change in Hohhot city in the drylands in northern China from 2013 to 2030. Here, land systems are defined as combinations of land cover and land use intensity. Using the CLUMondo model, we simulated land system change in Hohhot under three scenarios: a scenario following historical trends, a scenario with strong socioeconomic and land use planning, and a scenario focused on achieving environmental conservation targets. Our results showed that Hohhot is likely to experience agricultural intensification and urban growth under all three scenarios. The agricultural intensity and the urban growth rate were much higher under the historical trend scenario compared to those with more planning interventions. The dynamics of grasslands depend strongly on projections of livestock and other claims on land resources. In the historical trend scenario, intensively grazed grasslands increase whereas a large amount of the current area of grasslands with livestock converts to forest under the scenario with strong planning. Strong conversion from grasslands with livestock and extensive cropland to semi-natural grasslands was estimated under the conservation scenario. The findings provide an input into discussions about environmental management, planning and sustainable land system design for Hohhot.

  15. Understanding Land System Change Through Scenario-Based Simulations: A Case Study from the Drylands in Northern China

    Science.gov (United States)

    Liu, Zhifeng; Verburg, Peter H.; Wu, Jianguo; He, Chunyang

    2017-03-01

    The drylands in northern China are expected to face dramatic land system change in the context of socioeconomic development and environmental conservation. Recent studies have addressed changes of land cover with socioeconomic development in the drylands in northern China. However, the changes in land use intensity and the potential role of environmental conservation measures have yet to be adequately examined. Given the importance of land management intensity to the ecological conditions and regional sustainability, our study projected land system change in Hohhot city in the drylands in northern China from 2013 to 2030. Here, land systems are defined as combinations of land cover and land use intensity. Using the CLUMondo model, we simulated land system change in Hohhot under three scenarios: a scenario following historical trends, a scenario with strong socioeconomic and land use planning, and a scenario focused on achieving environmental conservation targets. Our results showed that Hohhot is likely to experience agricultural intensification and urban growth under all three scenarios. The agricultural intensity and the urban growth rate were much higher under the historical trend scenario compared to those with more planning interventions. The dynamics of grasslands depend strongly on projections of livestock and other claims on land resources. In the historical trend scenario, intensively grazed grasslands increase whereas a large amount of the current area of grasslands with livestock converts to forest under the scenario with strong planning. Strong conversion from grasslands with livestock and extensive cropland to semi-natural grasslands was estimated under the conservation scenario. The findings provide an input into discussions about environmental management, planning and sustainable land system design for Hohhot.

  16. Molecular Simulations of Aqueous Electrolyte Solubility: 1. The Expanded-Ensemble Osmotic Molecular Dynamics Method for the Solution Phase

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Smith, W.R.; Kolafa, J.

    2006-01-01

    Roč. 109, č. 26 (2006), s. 12956-12965 ISSN 1520-6106 R&D Projects: GA AV ČR 1ET400720507; GA AV ČR IAA4072309 Grant - others:NRCC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : simulation * molecular dynamics * electrolyte Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  17. Monte Carlo simulation of ordering in fcc-based stoichiometric A3B and AB solid solutions

    Czech Academy of Sciences Publication Activity Database

    Buršík, Jiří

    2002-01-01

    Roč. 324, 1-2 (2002), s. 16-22 ISSN 0921-5093. [International Symposium on Plasticity of Metals and Alloys /8./. Praha, 04.09.2000-07.09.2000] R&D Projects: GA ČR GA106/99/1176 Institutional research plan: CEZ:AV0Z2041904 Keywords : short range order * pairwise interaction * Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002

  18. Simulated maximum likelihood estimation of demand systems with corner solutions and panel data application to industrial energy demand

    OpenAIRE

    Raja Chakir; Alban Thomas

    2003-01-01

    This paper proposes a convenient method for evaluating energy price elasticities, when firms may switch between energy regimes. The methodology involves estimation of an energy demand system that explicitly deals with the zero expenditures problem, while allowing for unobserved heterogeneity. We apply a Simulated Maximum Likelihood technique for estimating a simultaneous equation energy demand system in the French pulp and paper sector, over the period1983-1996. Endogenous regime transitions ...

  19. Designing Solutions by a Student Centred Approach: Integration of Chemical Process Simulation with Statistical Tools to Improve Distillation Systems

    Directory of Open Access Journals (Sweden)

    Isabel M. Joao

    2017-09-01

    Full Text Available Projects thematically focused on simulation and statistical techniques for designing and optimizing chemical processes can be helpful in chemical engineering education in order to meet the needs of engineers. We argue for the relevance of the projects to improve a student centred approach and boost higher order thinking skills. This paper addresses the use of Aspen HYSYS by Portuguese chemical engineering master students to model distillation systems together with statistical experimental design techniques in order to optimize the systems highlighting the value of applying problem specific knowledge, simulation tools and sound statistical techniques. The paper summarizes the work developed by the students in order to model steady-state processes, dynamic processes and optimize the distillation systems emphasizing the benefits of the simulation tools and statistical techniques in helping the students learn how to learn. Students strengthened their domain specific knowledge and became motivated to rethink and improve chemical processes in their future chemical engineering profession. We discuss the main advantages of the methodology from the students’ and teachers perspective

  20. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  1. Linking soils and streams: Response of soil solution chemistry to simulated hurricane disturbance mirrors stream chemistry following a severe hurricane

    Science.gov (United States)

    William H. McDowell; Daniel Liptzin

    2014-01-01

    Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...

  2. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods

    Directory of Open Access Journals (Sweden)

    Yves Raymond

    2014-01-01

    Full Text Available The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO, chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS or duodenum secretions (DS at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm as compared to the larger (2.5 mm ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides used in the development of functional foods.

  3. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution.

    Science.gov (United States)

    Kumar, Shashi; Zafar, Mohd; Prajapati, Jitendra K; Kumar, Surendra; Kannepalli, Sivaram

    2011-01-15

    The modelling study on simultaneous adsorption of phenol and resorcinol onto granular activated carbon (GAC) in multicomponent solution was carried out at 303K by conducting batch experiments at initial concentration range of 100-1000 mg/l. Three equilibrium isotherm models for multicomponent adsorption studies were considered. In order to determine the parameters of multicomponent adsorption isotherms, individual adsorption studies of phenol and resorcinol on GAC were also carried out. The experimental data of single and multicomponent adsorption were fitted to these models. The parameters of multicomponent models were estimated using error minimization technique on MATLAB R2007a. It has been observed that for low initial concentration of adsorbate (100-200mg/l), modified Langmuir model represents the data very well with the adsorption constant (Q(0)), 216.1, 0.032 and average relative error (ARE) of 8.34, 8.31 for phenol and resorcinol respectively. Whereas, for high initial concentration of adsorbate (400-1000 mg/l), extended Freundlich model represents the data very well with adsorption constant (K(F)) of 25.41, 24.25 and ARE of 7.0, 6.46 for phenol and resorcinol respectively. The effect of pH of solution, adsorbent dose and initial concentrations of phenol and resorcinol on adsorption behaviour was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. A New Heuristic Providing an Effective Initial Solution for a Simulated Annealing approach to Energy Resource Scheduling in Smart Grids

    DEFF Research Database (Denmark)

    Sousa, Tiago M; Morais, Hugo; Castro, R.

    2014-01-01

    An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource...... to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach...

  5. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with K&z.sbnd;Ca selectivity coefficients indicating dependency on equivalent fraction and K+ concentration in the aqueous phase. The model simulations over a distance of 35 m...

  6. Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures

    Science.gov (United States)

    Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard

    2016-01-01

    In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…

  7. Understanding the Non-Gaussian Nature of Linear Reactive Solute Transport in 1D and 2D : From Particle Dynamics to the Partial Differential Equations

    NARCIS (Netherlands)

    Uffink, G.J.M.; Elfeki, A.; Dekking, M.; Bruining, J.; Kraaikamp, C.

    2011-01-01

    In the present study, we examine non-Gaussian spreading of solutes subject to advection, dispersion and kinetic sorption (adsorption/desorption). We start considering the behavior of a single particle and apply a random walk to describe advection/dispersion plus a Markov chain to describe kinetic

  8. Investigation of the main chemical properties of water-magnesium chloride solutions. Application to the understanding of stress corrosion phenomena in 17.12 Mo stainless steel

    International Nuclear Information System (INIS)

    Hasni, Abdellatif

    1988-01-01

    This research thesis reports the investigation of the main chemical properties of concentrated aqueous solutions of MgCl 2 and of their influence of stress corrosion of 17Cr-12Ni-2Mo stainless steel. It shows that the most important chemical properties are the equilibrium pH and the acidity range of MgCl 2 aqueous solutions, and that they strongly depend on solution temperature and concentration. The medium pH is governed by the increased acidity of water in presence of Mg ++ ions, while the acidity range is determined by a hydrolysis reaction of these ions which results in a precipitation of magnesium hydroxyl-chlorides. The investigation of stress corrosion behaviour of the steel in MgCl 2 solutions with varying temperature and concentration shows that this behaviour comes down to a prevailing pH effect which results from the variation of these both parameters, with a not negligible but less important effect of temperature. A study of cracking surfaces indicates that it is possible to pass from a transgranular to an intergranular mode by a variation of either media aggressiveness (pH, temperature, voltage) or strain rate. These results are explained by a concept of kinetic factor which limits stress corrosion [fr

  9. Coarse-Grain Molecular Dynamics Simulations to Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.

    Science.gov (United States)

    Ruiz-Morales, Yosadara; Romero-Martínez, Ascencion

    2018-03-13

    The first critical micelle concentration (CMC) of the ionic surfactant sodium dodecyl sulfate (SDS), in diluted aqueous solution, has been determined at room temperature from the investigation of the bulk viscosity, at several concentrations of SDS, by means of coarse grain molecular dynamics simulations. The coarse-grained model molecules at the mesoscale level are adopted. The bulk viscosity of SDS was calculated at several millimolar concentrations of SDS in water using the MARTINI force field by means of NVT shear Mesocite molecular dynamics. The definition of each bead in the MARTINI force field is established, as well as their radius, volume, and mass. The effect of the size of the simulation box on the obtained CMC has been investigated as well as the effect of the number of SDS molecules, in the simulations, on the formation of aggregates. The CMC, which was obtained from a graph of the calculated viscosities versus concentration, is in good agreement with reported experimental data, and do not depend on the size of the box used in the simulation. The formation of a spherical micelle-like aggregate is observed, where the dodecyl sulfate tails point inwards and the heads point outwards the aggregation micelle, in accordance with experimental observations. The advantage of using coarse grain molecular dynamics is the possibility of treating explicitly charged beads, applying a shear flow for viscosity calculation, as well as to process much larger spatial and temporal scales than atomistic molecular dynamics can. Furthermore, the CMC of SDS obtained with the coarse-grained model is in much better agreement with the experimental value than the value obtained with atomistic simulations.

  10. Light-induced structural changes in a short light, oxygen, voltage (LOV protein revealed by molecular dynamics simulations – implications for the understanding of LOV photoactivation.

    Directory of Open Access Journals (Sweden)

    Marco eBocola

    2015-10-01

    Full Text Available The modularity of light, oxygen, voltage (LOV blue-light photoreceptors has recently been exploited for the design of LOV-based optogenetic tools, which allow the light-dependent control of biological functions. For the understanding of LOV sensory function and hence the optimal design of LOV-based optogentic tools it is essential to gain an in depth atomic-level understanding of the underlying photoactivation and intramolecular signal-relay mechanisms. To address this question we performed molecular dynamics simulations on both the dark- and light-adapted state of PpSB1-LOV, a short dimeric bacterial LOV-photoreceptor protein, recently crystallized under constant illumination. While LOV dimers remained globally stable during the light-state simulation with regard to the Jα coiled-coil, distinct conformational changes for a glutamine in the vicinity of the FMN chromophore are observed. In contrast, multiple Jα-helix conformations are sampled in the dark-state. These changes coincide with a displacement of the Iβ and Hβ strands relative to the light-state structure and result in a correlated rotation of both LOV core domains in the dimer. These global changes are most likely initiated by the reorientation of the conserved glutamine Q116, whose side chain flips between the Aβ (dark state and Hβ strand (light state, while maintaining two potential hydrogen bonds to FMN-N5 and FMN-O4, respectively. This local Q116-FMN reorientation impacts on an inter-subunit salt-bridge (K117-E96, which is stabilized in the light state, hence accounting for the observed decreased mobility. Based on these findings we propose an alternative mechanism for dimeric LOV photoactivation and intramolecular signal-relay, assigning a distinct structural role for the conserved flipping glutamine. The proposed mechanism is discussed in light of universal applicability and its implications for the understanding of LOV-based optogenetic tools.

  11. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    International Nuclear Information System (INIS)

    Nahali, Haifa; Dhouibi, Leila

    2013-01-01

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH) 2 ), the critical value [Cl - ] / [OH - ], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na 3 PO 4 . The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH) 2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na 3 PO 4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl - ] / [OH - ] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na 3 PO 4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  12. MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution.

    Science.gov (United States)

    Li, Hui-Zhe; Zhao, Xu; Xu, Jian

    2015-11-01

    Using revised simulated body fluid (r-SBF), the electrochemical corrosion behavior of an Nb-60Ta-2Zr alloy for MRI compatible vascular stents was characterized in vitro. As indicated by XPS analysis, the surface passive oxide film of approximately 1.3nm thickness was identified as a mixture of Nb2O5, Ta2O5 and ZrO2 after immersion in the r-SBF. The Nb-60Ta-2Zr alloy manifests a low corrosion rate and high polarization resistance similar to pure Nb and Ta, as shown by the potentiodynamic polarization curves and EIS. Unlike 316L stainless steel and the L605 Co-Cr alloy, no localized corrosion has been detected. Semiconducting property of passive film on the Nb-60Ta-2Zr alloy was identified as the n-type, with growth mechanism of high-field controlled growth. The excellent corrosion resistance in simulated human blood enviroment renders the Nb-60Ta-2Zr alloy promising as stent candidate material. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fluorescent Sensing of a Nerve Agent Simulant with Dual Emission over Wide pH Range in Aqueous Solution.

    Science.gov (United States)

    Kim, Youngsam; Jang, Yoon Jeong; Mulay, Sandip V; Nguyen, Thuy-Tien T; Churchill, David G

    2017-06-07

    A new 1,8-naphthalimide-based fluorescent probe for the detection of diethyl cyanophosphonate, a very common nerve agent simulant, is designed, synthesized, and characterized fully. The probe shows around 50-fold enhancement of fluorescence intensity over other nerve agent simulants. Importantly, the probe is able to work under aqueous conditions in a wide pH range. Two reactive groups, the oxime and the phenol, allow a dual emission with different kinetic reactions. The reaction of diethyl cyanophosphonate with the oxime group occurs in advance; the resulting time response of the fluorescence enhancement is observed within approximately 30 s. After the oxime reaction, then phenol also undergoes a substitution reaction with diethyl cyanophosphonate, resulting in a blue emission. The real application of this new probe is demonstrated through the use of silica plate assays for the detection of diethyl cyanophosphonate in both gas and liquid phases through dual emission channels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. User's guide to PROTOCOL, a numerical simulator for the dissolution reactions of inorganic solids in aqueous solutions

    International Nuclear Information System (INIS)

    Pickrell, G.; Jackson, D.D.

    1984-10-01

    This report provides a user's manual for PROTOCOL, a comprehensive coupled kinetic/equilibrium computer program for analyzing the dissolution reactions of solids with aqueous solutions, specifically applied to the potential corrosion of vitrified nuclear waste by groundwater. The capabilities and available options are summarized as well as instructions for setting up and running problems. Also described in this report and included in the PROTOCOL software package are MASTER, a master file of species thermodynamic data, MANEQL, a preprocessor program and POSTP, a postprocessor. POSTP provides offline plotting using the CRAY-1 DISSPLA 9.0 graphics library. PROTOCOL is operational on the CDC-7600 and CRAY-1 computers at the Lawrence Livermore National Laboratory. 7 references, 10 figures, 2 tables

  15. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    Science.gov (United States)

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk

    2017-02-01

    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  16. Effects of β-, γ-radiolysis on cesium iodide solutions in contact with simulated silver metal aerosol

    International Nuclear Information System (INIS)

    Furrer, M.; Gloor, T.

    1986-01-01

    While silver-free, air saturated cesium iodide solutions (1 mMole CsI/l, pH 7) are rather stable even in a strong radiation field (Co-60; 0.5 Mrad/h; 30 0 C), the addition of silver metal as 2 μ-particles produces significant changes. Even without irradiation and in total darkness, more than half of the cesium iodide is converted to silver iodide within 10 hours at room temperature. The described β-, γ-field accelerates silver iodide formation by a factor of roughly three. In all these experiments, a steady state fraction of elemental iodine of typically 0.4% with 0.1% as an absolute minimum is encountered. This steady state concentration of a volatile iodine species so far lacks a theoretical explanation. (author)

  17. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO3-based solid solutions

    International Nuclear Information System (INIS)

    Padurariu, Leontin; Enachescu, Cristian; Mitoseriu, Liliana

    2011-01-01

    The properties induced by the M 4+ addition (M = Zr, Sn, Hf) in BaM x Ti 1-x O 3 solid solutions have been described on the basis of a 2D Ising-like network and Monte Carlo calculations, in which BaMO 3 randomly distributed unit cells were considered as being non-ferroelectric. The polarization versus temperature dependences when increasing the M 4+ concentration (x) showed a continuous reduction of the remanent polarization and of the critical temperature corresponding to the ferroelectric-paraelectric transition and a modification from a first-order to a second-order phase transition with a broad temperature range for which the transition takes place, as commonly reported for relaxors. The model also describes the system's tendency to reduce the polar clusters' average size while increasing their stability in time at higher temperatures above the Curie range, when a ferroelectric-relaxor crossover is induced by increasing the substitution (x). The equilibrium micropolar states during the polarization reversal process while describing the P(E) loops were comparatively monitored for the ferroelectric (x = 0) and relaxor (x = 0.3) states. Polarization reversal in relaxor compositions proceeds by the growth of several nucleated domains (the 'labyrinthine domain pattern') instead of the large scale domain formation typical for the ferroelectric state. The spatial and temporal evolution of the polar clusters in BaM x Ti 1-x O 3 solid solutions at various x has also been described by the correlation length and correlation time. As expected for the ferroelectric-relaxor crossover characterized by a progressive increasing degree of disorder, local fluctuations cause a reducing correlation time when the substitution degree increases, at a given temperature. The correlation time around the Curie temperature increases, reflecting the increasing stability in time of some polar nanoregions in relaxors in comparison with ferroelectrics, which was experimentally proved in

  18. Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent

    Energy Technology Data Exchange (ETDEWEB)

    Djouider, Fathi; Aljohani, Mohammed S. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.

    2017-08-01

    Cr(VI) compounds are major water contaminants in most industrial effluents, due to their carcinogenicity, while Cr(III) is an important element for human metabolism. In a previous work, we showed that Cr(VI) was radiolytically reduced to Cr(III) by the CO{sub 2}{sup -.} radical at pH 3 N{sub 2}O-saturated solution in the presence of formate. Here in the present work, this removal was investigated by steady state irradiation and pulse radiolysis in aerated solution at neutral pH, which is close to natural conditions in most wastewaters, where the reducing agent is the superoxide radical anion O{sub 2}{sup -.} The degradation of Cr(VI) increased linearly with the absorbed dose and was significantly enhanced by the added formate but not by the radiolitically produced hydrogen peroxide at this pH. The rate constant for this reduction was found to be 1.28 x 10{sup 8} M{sup -1} s{sup -1} and the absorption spectrum of Cr(V) transient species was obtained. A partial recovery of Cr(VI) is observed over a period of ca. 5 ms following a second order kinetics with a rate constant 8.0 x 10{sup 6} M{sup -1} s{sup -1}. These outcomes suggest that gamma-irradiation of Cr(VI)-contaminated wastewaters and industrial effluents in presence of formate can be simple, effective and economical means for the remediation of this major contaminant.

  19. Towards building a robust computational framework to simulate multi-physics problems - a solution technique for three-phase (gas-liquid-solid) interactions

    Science.gov (United States)

    Zhang, Lucy

    In this talk, we show a robust numerical framework to model and simulate gas-liquid-solid three-phase flows. The overall algorithm adopts a non-boundary-fitted approach that avoids frequent mesh-updating procedures by defining independent meshes and explicit interfacial points to represent each phase. In this framework, we couple the immersed finite element method (IFEM) and the connectivity-free front tracking (CFFT) method that model fluid-solid and gas-liquid interactions, respectively, for the three-phase models. The CFFT is used here to simulate gas-liquid multi-fluid flows that uses explicit interfacial points to represent the gas-liquid interface and for its easy handling of interface topology changes. Instead of defining different levels simultaneously as used in level sets, an indicator function naturally couples the two methods together to represent and track each of the three phases. Several 2-D and 3-D testing cases are performed to demonstrate the robustness and capability of the coupled numerical framework in dealing with complex three-phase problems, in particular free surfaces interacting with deformable solids. The solution technique offers accuracy and stability, which provides a means to simulate various engineering applications. The author would like to acknowledge the supports from NIH/DHHS R01-2R01DC005642-10A1 and the National Natural Science Foundation of China (NSFC) 11550110185.

  20. Reaction of H atoms with chelators in highly basic solution: H2 production in high level liquid waste simulants

    International Nuclear Information System (INIS)

    Barnabas, F.; Cerny, E.; Jonah, C.D.; Meisel, D.; Sauer, M.C. Jr.

    1995-01-01

    The rate constants for hydrogen abstraction by H from ethylene-diamine tetracetic acid (EDTA), N-(2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), glycolic acid and citric acid were measured at pH 13. The predominant product of these reactions is H 2 . The rate constants obtained are more than an order of magnitude larger than the literature rates that had been measured at pH 1. These measurements are of significance for understanding the radiolytic production of H 2 in nuclear waste storage tanks. (Author)

  1. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  2. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions.

    Science.gov (United States)

    Li, Y J; Wang, Y G; An, B; Xu, H; Liu, Y; Zhang, L C; Ma, H Y; Wang, W M

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.

  3. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  4. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Directory of Open Access Journals (Sweden)

    Goyal M.

    2017-12-01

    Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  5. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Science.gov (United States)

    Goyal, M.; Goyal, R.; Bhargava, R.

    2017-12-01

    In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  6. Extravasation injury of balanced electrolyte solution simulates the clinical condition of necrotizing fasciitis: A case report

    Directory of Open Access Journals (Sweden)

    Carmine D'Acunto

    2015-10-01

    Full Text Available Extravasation injury (EI is an iatrogenic condition that occurs preferentially in neonatal and pediatric patients when the injection of fluid substances by intravenous access is required and it accidentally leaks into the adjacent tissues or in spaces outside of vascular compartment. Different types and amount of substances once undergoing extravasation can affect the EI differently [1]. In some instances immediate measures such as saline washout, local antidotes, enzymatic debridement and surgical interventions can be required in order to prevent the occurrence of a growing injury avoiding the progression of the EI to a medical emergency [6]. Here we report an unusual case of a preterm 2-month-old male patient in which the extravasation of balanced electrolyte solution on the upper right arm resulted in the development of full-thickness skin necrosis appearing as the clinical condition of necrotizing fasciitis. The management of necrotic tissue was performed using escharectomy as well as autograft skin under conditions of general anesthesia.

  7. Simulation of population response to ionizing radiation in an ecosystem with a limiting resource--Model and analytical solutions.

    Science.gov (United States)

    Sazykina, Tatiana G; Kryshev, Alexander I

    2016-01-01

    A dynamic mathematical model is formulated, predicting the development of radiation effects in a generic animal population, inhabiting an elemental ecosystem 'population-limiting resource'. Differential equations of the model describe the dynamic responses to radiation damage of the following population characteristics: gross biomass; intrinsic fractions of healthy and reversibly damaged tissues in biomass; intrinsic concentrations of the self-repairing pool and the growth factor; and amount of the limiting resource available in the environment. Analytical formulae are found for the steady states of model variables as non-linear functions of the dose rate of chronic radiation exposure. Analytical solutions make it possible to predict the expected severity of radiation effects in a model ecosystem, including such endpoints as morbidity, mortality, life shortening, biosynthesis, and population biomass. Model parameters are selected from species data on lifespan, physiological growth and mortality rates, and individual radiosensitivity. Thresholds for population extinction can be analytically calculated for different animal species, examples are provided for generic mice and wolf populations. The ecosystem model demonstrates a compensatory effect of the environment on the development of radiation effects in wildlife. The model can be employed to construct a preliminary scale 'radiation exposure-population effects' for different animal species; species can be identified, which are vulnerable at a population level to chronic radiation exposure. Copyright © 2015. Published by Elsevier Ltd.

  8. Using Solution Strategies to Examine and Promote High-School Students' Understanding of Exponential Functions: One Teacher's Attempt

    Science.gov (United States)

    Brendefur, Jonathan

    2014-01-01

    Much research has been conducted on how elementary students develop mathematical understanding and subsequently how teachers might use this information. This article builds on this type of work by investigating how one high-school algebra teacher designs and conducts a lesson on exponential functions. Through a lesson study format she studies with…

  9. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution

    Science.gov (United States)

    Du, Cui-wei; Zhao, Tian-liang; Liu, Zhi-yong; Li, Xiao-gang; Zhang, Da-wei

    2016-02-01

    The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments, followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses. The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment. Pits nucleate after approximately 10 h of immersion. Along with the nucleation and growth of the pits, the charge-transfer resistance and open-circuit potential first increase sharply, then decrease slowly, and eventually reach a steady state. The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h. The evolution of the electrochemical process is confirmed by the analysis of the product film. The product film exhibits a porous and loose structure and could not protect the substrate well. The product film is primarily composed of ferrous carbonate and ferrous hydroxide (Fe(OH)2). The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.

  10. Simulation of population response to ionizing radiation in an ecosystem with a limiting resource – Model and analytical solutions

    International Nuclear Information System (INIS)

    Sazykina, Tatiana G.; Kryshev, Alexander I.

    2016-01-01

    A dynamic mathematical model is formulated, predicting the development of radiation effects in a generic animal population, inhabiting an elemental ecosystem ‘population-limiting resource’. Differential equations of the model describe the dynamic responses to radiation damage of the following population characteristics: gross biomass; intrinsic fractions of healthy and reversibly damaged tissues in biomass; intrinsic concentrations of the self-repairing pool and the growth factor; and amount of the limiting resource available in the environment. Analytical formulae are found for the steady states of model variables as non-linear functions of the dose rate of chronic radiation exposure. Analytical solutions make it possible to predict the expected severity of radiation effects in a model ecosystem, including such endpoints as morbidity, mortality, life shortening, biosynthesis, and population biomass. Model parameters are selected from species data on lifespan, physiological growth and mortality rates, and individual radiosensitivity. Thresholds for population extinction can be analytically calculated for different animal species, examples are provided for generic mice and wolf populations. The ecosystem model demonstrates a compensatory effect of the environment on the development of radiation effects in wildlife. The model can be employed to construct a preliminary scale ‘radiation exposure-population effects’ for different animal species; species can be identified, which are vulnerable at a population level to chronic radiation exposure. - Highlights: • Mathematical model is formulated predicting radiation effects in elemental ecosystem. • Analytical formulae are found for steady states of variables as functions of exposure. • Severity of radiation effects are calculated, including population extinction. • Model parameterization is made for generic mice and wolf populations.

  11. A First Step toward the Understanding of Implicit Learning of Hazard Anticipation in Inexperienced Road Users Through a Moped-Riding Simulator

    Directory of Open Access Journals (Sweden)

    Mariaelena Tagliabue

    2017-05-01

    Full Text Available Hazard perception is considered one of the most important abilities in road safety. Several efforts have been devoted to investigating how it improves with experience and can be trained. Recently, research has focused on the implicit aspects of hazard detection, reaction, and anticipation. In the present study, we attempted to understand how the ability to anticipate hazards develops during training with a moped-riding simulator: the Honda Riding Trainer (HRT. Several studies have already validated the HRT as a tool to enhance adolescents’ hazard perception and riding abilities. In the present study, as an index of hazard anticipation, we used skin conductance response (SCR, which has been demonstrated to be linked to affective/implicit appraisal of risk. We administered to a group of inexperienced road users five road courses two times a week apart. In each course, participants had to deal with eight hazard scenes (except one course that included only seven hazard scenes. Participants had to ride along the HRT courses, facing the potentially hazardous situations, following traffic rules, and trying to avoid accidents. During the task, we measured SCR and monitored driving performance. The main results show that learning to ride the simulator leads to both a reduction in the number of accidents and anticipation of the somatic response related to hazard detection, as proven by the reduction of SCR onset recorded in the second session. The finding that the SCR signaling the impending hazard appears earlier when the already encountered hazard situations are faced anew suggests that training with the simulator acts on the somatic activation associated with the experience of risky situations, improving its effectiveness in detecting hazards in advance so as to avoid accidents. This represents the starting point for future investigations into the process of generalization of learning acquired in new virtual situations and in real-road situations.

  12. Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution

    Directory of Open Access Journals (Sweden)

    E. Bona

    2007-09-01

    Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.

  13. Interfacial effect of extremely low frequency electromagnetic fields (EM-ELF) on the vaporization step of carbon dioxide from aqueous solutions of body simulated fluid (SBF).

    Science.gov (United States)

    Beruto, D T; Botter, R; Perfumo, F; Scaglione, S

    2003-05-01

    Spontaneous processes in an aqueous solution of body simulated fluid (SBF) were monitored in closed vessel for a period of 1 month at 310 K, at atm pressure, and initial pH of 7.2, both with and without exposure to a square pulsed extremely low frequency electromagnetic fields (EM-ELF) of 250 microT, repeated at 75 Hz. The most important findings are that the SBF surface tension (gamma), evaluated under the EM-ELF field, is lower than the corresponding value measured without EM-ELF at any time. Furthermore, the pH of the exposed SBF is always more basic than that of the unexposed solution. As a consequence, when the EM-ELF is applied, calcium phosphate salts do not precipitate from the SBF solution for a period as long as 30 days. Behind all these experimental evidences there is only one mechanism: the vaporisation from the SBF-air interface of the CO(2)(aq) dissolved into the aqueous electrolyte solution. Thermodynamic analysis of these results establish that, at any given time, the difference, Delta, between the measured surface tensions with and without EM-ELF applied, gives the work of the electromagnetic forces to change the extent at which the CO(2)(aq) adsorbs at the liquid-air interface. It has been demonstrated that the work supply per second and per unit of area by the electromagnetic forces, 3.73 x 10(-10) mJ/s cm(2), is very near to the experimental slope in the plot Delta vs. t 1.7 x 10(-10) mJ/s cm(2). This leads to the conclusion that the EM-ELF fields have an interfacial effect on the concentration value of the CO(2) (aq) at the SBF-air interface. Because of that, the EM-ELF field is enhancing the CO(2) vaporisation rate; thus any other steps, which are a consequence of this mechanism, are changing. These results allow explanation of previous experiments concerning the precipitation of calcium carbonate from flowing hydrogen carbonate aqueous solution in the temperature range 353-373 K at a pressure of 0.1 MPa under the effect of static magnetic

  14. Applied simulations and integrated modelling for the understanding of toxic and harmful algal blooms (ASIMUTH): Integrated HAB forecast systems for Europe's Atlantic Arc.

    Science.gov (United States)

    Maguire, Julie; Cusack, Caroline; Ruiz-Villarreal, Manuel; Silke, Joe; McElligott, Deirdre; Davidson, Keith

    2016-03-01

    Reasons for the emergent interest in HABs are abundant, including concerns associated with human health, adverse effects on biological resources, economic losses attributed to recreation, tourism and seafood related industries, and the cost of maintaining public advisory services and monitoring programs for shellfish toxins and water quality. The impact of HABs can potentially be mitigated by early warning of their development. In this regard the project ASIMUTH (Applied Simulations and Integrated Modelling for the Understanding of Toxic and Harmful algal blooms) was borne in order to develop short term HAB alert systems for Atlantic Europe. This was achieved using information on the most current marine conditions (weather, water characteristics, toxicity, harmful algal presence etc.) combined with high resolution local numerical predictions. This integrated, multidisciplinary, trans-boundary approach to the study of HABs developed during ASIMUTH led to a better understanding of the physical, chemical and ecological factors controlling these blooms, as well as their impact on human activities. The outcome was an appropriate alert system for an effective management of areas that are usually associated with HAB events and where these episodes may have a more significant negative impact on human activities. Specifically for the aquaculture industry, the information provided enabled farmers to adapt their working practices in time to prevent mortalities in finfish farms and/or manage their shellfish harvest more effectively. This paper summarises the modelling and alert developments generated by the ASIMUTH project. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. An agent-based simulation of persistent inequalities in health behavior: Understanding the interdependent roles of segregation, clustering, and social influence.

    Science.gov (United States)

    Langellier, Brent A

    2016-12-01

    Health inequalities are conspicuously persistent through time and often durable even in spite of interventions. In this study, I use agent-based simulation models (ABMs) to understand how the complex interrelationships between residential segregation, social network formation, group-level preferences, and social influence may contribute to this persistence. I use a more-stylized ABM, Bubblegum Village (BV), to understand how initial inequalities in bubblegum-chewing behaviors either endure, increase, or decrease over time given group-level differences in preferences, neighborhood-level barriers or facilitators of bubblegum chewing (e.g., access to bubblegum shops), and agents' preferences for segregation, homophily, and clustering (i.e., the 'tightness' of social networks). I further use BV to understand whether segregation and social network characteristics impact whether the effects of a bubblegum-reduction intervention that is very effective in the short term are durable over time, as well as to identify intervention strategies to reduce attenuation of the intervention effects. In addition to BV, I also present results from an ABM based on the distribution and social characteristics of the population in Philadelphia, PA. This model explores similar questions to BV, but examines racial/ethnic inequalities in soda consumption based on agents' social characteristics and baseline soda consumption probabilities informed by the 2007-2010 National Health and Nutrition Examination Survey. Collectively, the models suggest that residential segregation is a fundamental process for the production and persistence of health inequalities. The other major conclusion of the study is that, for behaviors that are subject to social influence and that cluster within social groups, interventions that are randomly-targeted to individuals with 'bad' behaviors will likely experience a large degree of recidivism to pre-intervention behaviors. In contrast, interventions that target

  16. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent.

    Science.gov (United States)

    Garole, Dipak J; Choudhary, Bharat C; Paul, Debajyoti; Borse, Amulrao U

    2018-04-01

    In this study, Lagerstroemia speciosa biomass modified by polyethylenimine (PEI-LS) was developed as a potential biosorbent for sorption and recovery of platinum(II) from platinum bearing waste solutions. Batch experiments were conducted to study the effect of various parameters on the sorption and recovery of platinum(II) using PEI-LS. The equilibrium time for platinum(II) sorption process was found to be 6 h. Both the sorption kinetics and sorption isotherm data fits pseudo second-order kinetic model and Langmuir isotherm, respectively. The maximum sorption capacity of platinum(II) onto PEI-LS at pH 2 for the studied temperature range (25-45 °C) is in the range of 122-154 mg/g. Evaluation of thermodynamic parameters suggests that the platinum(II) sorption is spontaneous and endothermic in nature. The regeneration of PEI-LS can be achieved using acidic thiourea as an eluent for recovery of platinum from the biosorbent. Fourier transform infrared (FT-IR) analysis suggests many functional groups were involved in platinum(II) sorption onto PEI-LS. Both the scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) analysis suggest a successful modification of raw biomass with PEI. The XPS analysis further concludes that platinum(II) sorption is governed by ion-exchange and co-ordination reaction. Finally, the PEI-LS was shown to recover ≥ 90% of platinum from two simulated solutions: the acid-leached spent catalyst solution and refinery wastewater. The biosorbent developed in this study is a low-cost and eco-friendly media that can be effectively used for platinum recovery from industrial wastewater.

  17. Importance of Interfacial Interactions to Access Shear Elasticity of Liquids and Understand Flow Induced Birefringence from Liquid Crystals to Worm-Like Micellar Solutions

    Directory of Open Access Journals (Sweden)

    Noirez Laurence

    2017-03-01

    Full Text Available This work points out the importance of the substrate boundary conditions to lower the dissipation in the dynamic measurement and access the closest dynamic characteristics of liquids, in particular to access the low frequency shear elasticity. The liquid/surface interface is a source of dissipation that enters and impacts the measurement. Examples of steady-state shear flows or flow birefringence are presented to highlight the non-universality of the behavior with respect to the nature of the substrate or the sheared thickness. Additionally the present development completes and extends the identification of low frequency shear elasticity made at sub-millimeter gaps in various one-component liquids to salt-free aqueous solutions (CTAB-water (Hexadecyl-TrimethylAmmonium Bromide.

  18. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data.

    Science.gov (United States)

    Harsányi, I; Pusztai, L

    2012-11-28

    We report on a comparison of three interaction potential models of water (SPC/E, TIP4P-2005, and SWM4-DP) for describing the structure of concentrated aqueous lithium chloride solutions. Classical molecular dynamics simulations have been carried out and total scattering structure factors, calculated from the particle configurations, were compared with experimental diffraction data. Later, reverse Monte Carlo structural modelling was applied for refining molecular dynamics results, so that particle configurations consistent with neutron and X-ray diffraction data could be prepared that, at the same time, were as close as possible to the final stage of the molecular dynamics simulations. Partial radial distribution functions, first neighbors, and angular correlations were analysed further from the best fitting particle configurations. It was found that none of the water potential models describe the structure perfectly; overall, the SWM4-DP model seems to be the most promising. At the highest concentrations the SPC/E model appears to provide the best approximation of the water structure, whereas the TIP4P-2005 model proved to be the most successful for estimating the lithium-oxygen partial radial distribution function at each concentration.

  19. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    Science.gov (United States)

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength.

  20. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-D-maltoside using small-angle neutron scattering and molecular dynamics simulation.

    Science.gov (United States)

    Le, Rosemary K; Harris, Bradley J; Iwuchukwu, Ifeyinwa J; Bruce, Barry D; Cheng, Xiaolin; Qian, Shuo; Heller, William T; O'Neill, Hugh; Frymier, Paul D

    2014-05-15

    Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-β-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein-detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI-DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANS data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI-DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Thermodynamic mixing properties of the UO{sub 2}–HfO{sub 2} solid solution: Density functional theory and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ke, E-mail: keyuan@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Becker, Udo [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-03-15

    HfO{sub 2} is a neutron absorber and has been mechanically mixed with UO{sub 2} in nuclear fuel in order to control the core power distribution. During nuclear fission, the temperature at the center of the fuel pellet can reach above 1300 K, where hafnium may substitute uranium and form the binary solid solution of UO{sub 2}–HfO{sub 2}. UO{sub 2} adopts the cubic fluorite structure, but HfO{sub 2} can occur in monoclinic, tetragonal, and cubic structures. The distribution of Hf and U ions in the UO{sub 2}–HfO{sub 2} binary and its atomic structure influence the thermal conductivity and melting point of the fuel. However, experimental data on the UO{sub 2}–HfO{sub 2} binary are limited. Therefore, the enthalpies of mixing of the UO{sub 2}–HfO{sub 2} binary with three different structures were calculated in this study using density functional theory and subsequent Monte Carlo simulations. The free energy of mixing was obtained from thermodynamic integration of the enthalpy of mixing over temperature. From the ΔG of mixing, a phase diagram of the binary was obtained. The calculated UO{sub 2}–HfO{sub 2} binary forms extensive solid solution across the entire compositional range, but there are a variety of possible exsolution phenomena associated with the different HfO{sub 2} polymorphs. As the structure of the HfO{sub 2} end member adopts lower symmetry and becomes less similar to cubic UO{sub 2}, the miscibility gap of the phase diagram expands, accompanied by an increase in cell volume by 7–10% as the structure transforms from cubic to monoclinic. Close to the UO{sub 2} end member, which is relevant to the nuclear fuel, the isometric uranium-rich solid solutions exsolve as the fuel cools, and there is a tendency to form the monoclinic hafnium-rich phase in the matrix of the isometric, uranium-rich solid solution phase.

  2. Electrochemical measurements and semi-empirical calculations for understanding adsorption of novel cationic Gemini surfactant on carbon steel in H2SO4 solution

    Science.gov (United States)

    Elkholy, Ayman Esmat; El-Taib Heakal, Fakiha

    2018-03-01

    A novel imidazolium-based cationic Gemini surfactant (GS) was synthesized, characterized and evaluated as a corrosion inhibitor for carbon steel in 0.5 M H2SO4 using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The results revealed that this Gemini surfactant can act as an effective mixed-type inhibitor (ηp ∼ 90%) for carbon steel via adsorption of its molecules on the metal surface according to Langmuir adsorption isotherm. The synthesized GS showed a good synergistic inhibitory action with Ce3+cations and Iˉ anions in 0.5 M H2SO4 medium (ηp ∼ 93% and 95%, respectively). Thermodynamic activation parameters for the dissolution process of carbon steel in blank and inhibited sulfuric acid solution were calculated and discussed. A suitable equivalent circuit was used to analyze the experimental EIS data and modeling the inhibition process. Quantum chemical calculations have revealed that the tested Gemini surfactant can interact with Fe surface through electron transfer from the metal atom to surfactant molecule.

  3. Simulation of solute transport of tetrachloroethylene in ground water of the glacial-drift aquifer at the Savage Municipal Well Superfund Site, Milford, New Hampshire, 1960-2000

    Science.gov (United States)

    Harte, Philip T.

    2004-01-01

    The Savage Municipal Well Superfund site, named after the former municipal water-supply well for the town of Milford, is underlain by a 0.5-square mile plume of volatile organic compounds (VOCs), primarily tetrachloroethylene (PCE). The plume occurs mostly within a highly transmissive sand-and-gravel unit, but also extends to an underlying till and bedrock unit. The plume logistically is divided into two areas termed Operable Unit No. 1 (OU1), which contains the primary source area, and Operable Unit No. 2 (OU2), which is the extended plume area. PCE concentrations in excess of 100,000 parts per billion (ppb) had been detected in the OU1 area in 1995, indicating a likely Dense Non-Aqueous Phase Liquid (DNAPL) source. In the fall of 1998, the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA) installed a remedial system in OU1. The OU1 remedial system includes a low-permeability barrier that encircles the highest detected concentrations of PCE, and a series of injection and extraction wells. The barrier primarily sits atop bedrock and penetrates the full thickness of the sand and gravel; and in some places, the full thickness of the underlying basal till. The sand and gravel unit and the till comprise the aquifer termed the Milford-Souhegan glacial-drift aquifer (MSGD). Two-dimensional and three-dimensional finite-difference solute-transport models of the unconsolidated sediments (MSGD aquifer) were constructed to help evaluate solute-transport processes, assess the effectiveness of remedial activities in OU1, and to help design remedial strategies in OU2. The solute-transport models simulate PCE concentrations, and model results were compared to observed concentrations of PCE. Simulations were grouped into the following three time periods: an historical calibration of the distribution of PCE from the initial input (circa 1960) of PCE into the subsurface to the 1990s, a pre-remedial calibration from 1995

  4. Parents as the start of the solution: a social marketing approach to understanding triggers and barriers to entering a childhood weight management service.

    Science.gov (United States)

    Gillespie, J; Midmore, C; Hoeflich, J; Ness, C; Ballard, P; Stewart, L

    2015-01-01

    Childhood obesity is a sensitive subject and barriers exist with respect to accessing weight management programmes. Social marketing insight gathering provides an opportunity to understand behaviours and address these challenges. This project gained insight into the views of parents/carers on triggers and barriers to entering a childhood weight management service. Participants were identified from the public using marketing recruitment. Four focus groups were conducted with parents of school aged children (n = 27) by an experienced interviewer. Twenty two mothers, three fathers and two grandmothers participated, with half describing their child as overweight. Groups discussed health behaviours; attitudes to health messages and weight issues; and motivations, benefits and barriers with respect to accessing weight management services. Discussions were taped and transcribed. Themes were identified using framework analysis of content matrix data analysis. Participants were aware of healthy lifestyle messages, although the ability to implement these was variable. Triggers to seeking help included bullying, health concerns and inability to participate in school activities. Barriers included feeling a lack of control, desire to avoid conflict and no proven case that weight was a problem. Parents wished to be given information regarding their child's weight by a trusted person. The Internet and word of mouth were identified as methods of recruitment into a weight management service, with a focus on fitness, fun and friendliness and being free-of-charge. Insight gathering can be used to establish parental/carer opinion regarding engaging in childhood weight management services. A fun, friendly programme that is free of charge appealed to parents. Local community involvement around normalising child weight issues may boost referrals into child healthy weight interventions. © 2014 The British Dietetic Association Ltd.

  5. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.

    Science.gov (United States)

    Shakir, Kamal; Elkafrawy, Ahmed Faouzy; Ghoneimy, Hussein Fouad; Elrab Beheir, Shokry Gad; Refaat, Mamdoh

    2010-03-01

    The present work deals with removal, by ion flotation, of two dyes: a basic dye (rhodamine B (RB)) and an acidic one (thoron (TH)) from dilute aqueous solutions and simulated wastewaters. These dyes are widely used for analytical and biological staining purposes. Besides, RB is commonly used in dyeing of various industrial products. Therefore, wastewaters emanating from chemical and radiochemical laboratories, and biomedical and biological research laboratories may be contaminated with RB and TH. Ion flotation of these dyes has been investigated over a wide range of pH using the anionic surfactant, sodium lauryl sulfate (NaLS) and the cationic surfactant, cetyltrimethylammonium bromide (CTAB) as collectors. Successful removals could be achieved for RB and TH with the anionic collector, NaLS, and the cationic collector, CTAB, respectively. In addition to the effects of pH and type of collector on the efficiency of removal of each dye, the effects of collector and dye concentrations, frother dosage, ionic strength, bubbling time period and presence of foreign salts were investigated and the optimal removal conditions have been established. Removals exceeding 99.5 % and 99.9% could be achieved for RB and TH, respectively. The results obtained are discussed with respect to dissociation of dye, type of collector, ionic strength and sign and magnitude of charge of added foreign ions. Kinetics of flotation were also studied. Further studies demonstrate that under optimum conditions the developed flotation processes can be applied for the treatment of dye-contaminated wastewaters simulated to those generated at dyeing industries and radiochemical laboratories. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Activity measurements of radioactive solutions by liquid scintillation counting and pressurized ionization chambers and Monte Carlo simulations of source-detector systems for metrology

    International Nuclear Information System (INIS)

    Amiot, Marie-Noelle

    2013-01-01

    The research works 'Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems' was presented for the graduation: 'Habilitation a diriger des recherches'. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination

  7. Conformational analysis of the Sda determinant-containing tetrasaccharide and two mimics in aqueous solution by using 1H NMR ROESY spectroscopy in combination with MD simulations

    International Nuclear Information System (INIS)

    Blanco, Jose L. Jimenez; Rooijen, Johannes J.M. van; Erbel, Paul J.A.; Leeflang, Bas R.; Kamerling, Johannis P.; Vliegenthart, Johannes F.G.

    2000-01-01

    The conformational behaviour of the spacer-linked synthetic Sd a tetrasaccharide β-d-GalpNAc-(1 → 4)-[α-Neu5Ac-(2 → 3)]-β-d-Galp-(1 → 4)-β-d-GlcpNAc-(1 → O) (CH 2 ) 5 NH 2 (1) and the two mimics β-d-Galp-(1 → 4)-[α-Neu5Ac-(2 → 3)]-β-d-Galp-(1 → 4)-β-d-GlcpNAc-(1 → O)(CH 2 ) 5 NH 2 (2) and β-d-GlcpNAc-(1 → 4)-[α-Neu5Ac-(2 → 3)]-β-d-Galp-(1 → 4)-β-d-GlcpNAc-(1 → O) (CH 2 ) 5 NH 2 (3) were investigated by 1 H NMR spectroscopy in combination with molecular dynamics (MD) simulations in water. Experimental 2D 1 H ROESY cross-peak intensities (ROEs) of the tetrasaccharides were compared with calculated ROEs derived from MD trajectories using the CROSREL program. Analysis of these data indicated that the oligosaccharidic skeletons of the compounds 1-3 are rather rigid, especially the β-d-Hex(NAc)-(1 → 4)-[α-Neu5Ac-(2 → 3)]-β-d-Galp fragments. The α- Neu5-Ac-(2 → 3)-β-d-Galp linkage occurred in two different energy minima in the three-dimensional structure of the compounds 1-3 in aqueous solution. Experimental data and dynamics simulations supported the finding that the higher energy rotamer (CHEAT forcefield) was abundant in compounds 1 and 3 due to the existence of a hydrogen bond between the carboxyl group of the sialic acid and the acetamido group of the terminal monosaccharide (GalNAc or GlcNAc) unit. The conformational similarity between 1 and 3 leads to the suggestion that also their activities will be alike.

  8. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Benjamin M. [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Zhang, Lei, E-mail: lzhang14@alaska.edu [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Li, Weiping; Ning, Chengyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Chen, Cheng-fu [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Gu, Yanhong [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China)

    2016-02-15

    Graphical abstract: - Highlights: • MAO coating is deposited on AZ31 Mg alloy by microarc oxidation. • Corrosion performance of MAO-coated AZ31 in EBSS vs. c-SBF is studied. • MAO-coated AZ31 exhibits enhanced corrosion resistance compared to bare AZ31. • Samples in EBSS show slower corrosion progression than the samples in c-SBF. • CO{sub 2} buffer and less chloride in EBSS cause corrosion rate gap in c-SBF and EBSS. - Abstract: Earle's Balance Salt Solution (EBSS) provides an alternative to the conventional simulated body fluids (c-SBF) and has been shown to better simulate the corrosion conditions in vivo. In this work, a series of tests were conducted to explore the corrosion performance of MAO-coated AZ31 samples in EBSS vs. c-SBF. Samples were produced by varying MAO process parameters and then immersed up to 21 days in both EBSS and c-SBF. The corrosion rates were evaluated by the electrochemical impedance spectroscopy and potentiodynamic scanning. Scanning electron microscope (SEM) was used to compare the progression of microcracks across the surface of the coatings. The evaluation of cross-sectional thickness showed an increase in MAO coating thickness with the process voltage. MAO samples with a thicker coating generally have higher impedance and lower current density at the initial immersion time point of 0.5 h. Samples in EBSS showed higher initial impedance and lower current density values as compared to c-SBF counterparts for all process groups. Samples in EBSS demonstrated a much slower corrosion rate than c-SBF samples because of the decreased chloride content and CO{sub 2} buffering mechanism of the EBSS.

  9. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    Science.gov (United States)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-01-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  10. Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia-silver layer in simulated physiological solution containing proteins for biomaterial applications

    Science.gov (United States)

    Mareci, D.; Trincă, L. C.; Căilean, D.; Souto, R. M.

    2016-12-01

    The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO2-Ag) coatings on three ZrTi alloys were investigated in Ringer's solution containing 10% human albumin protein at 37 °C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability and corrosion resistance of the HA-ZrO2-Ag coated ZrTi alloys. The characteristic feature that describes the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological environment. The EIS interpretation of results was thus performed using a two-layer model of the surface film. The blocking effect in the presence the human albumin protein produces an enhancement of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for biomedical devices, since electrochemical stability is directly associated to biocompatibility.

  11. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    Science.gov (United States)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  12. Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia-silver layer in simulated physiological solution containing proteins for biomaterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Trincă, L.C. [“Ion Ionescu de la Brad” University of Agricultural Science and Veterinary Medicine, Faculty of Horticulture, Science Department, 3, Mihail Sadoveanu Alley, Iaşi, 700490 (Romania); Căilean, D. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain)

    2016-12-15

    Highlights: • Hydroxyapatite-zirconia coated ZrTi alloys were characterized for biocompatibility. • Silver nanoparticles added for antimicrobial activity. • Electrochemical behaviour consistent with surface layer of duplex structure. • Porous coating forms on passivating oxide layer. • HA-ZrO{sub 2}-Ag coated Zr45Ti exhibits high potential for implant application. - Abstract: The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO{sub 2}-Ag) coatings on three ZrTi alloys were investigated in Ringer’s solution containing 10% human albumin protein at 37 °C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability and corrosion resistance of the HA-ZrO{sub 2}-Ag coated ZrTi alloys. The characteristic feature that describes the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological environment. The EIS interpretation of results was thus performed using a two-layer model of the surface film. The blocking effect in the presence the human albumin protein produces an enhancement of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for biomedical devices, since electrochemical stability is directly associated to biocompatibility.

  13. Water-base acrylic terpolymer as a corrosion inhibitor for SAE1018 in simulated sour petroleum solution in stagnant and hydrodynamic conditions

    International Nuclear Information System (INIS)

    Vakili Azghandi, M.; Davoodi, A.; Farzi, G.A.; Kosari, A.

    2012-01-01

    Highlights: ► Corrosion inhibition of a water-base copolymer, ATP, was studied. ► Efficiency more than 90% was obtained with 0.8 mmol/L ATP in 2000 rpm. ► ATP obeys Langmuir isotherm in static and hydrodynamic conditions. ► With the presence of ATP, OM images showed a decrease in surface attack. - Abstract: The effect of static and hydrodynamic conditions (0–2000 rpm) on corrosion inhibition of a water-base acrylic terpolymer (ATP), methyl methacrylate/butyl acrylate/acrylic acid, for SAE1018 steel in simulated sour petroleum corrosive solution (NACE 1D196) were investigated by AC/DC electrochemical tests. Increase in rotation speed accelerates the corrosion rate; however the corrosion inhibitor efficiency increases. This was attributed to the enhanced mass transport of inhibitor molecules to the metal surface. OM examinations also demonstrate that in presence of ATP, a decrease in corrosion attacks is observed. Thermodynamic calculations also showed that ATP obeys Langmuir adsorption isotherm and adsorbs chemically into the surface.

  14. Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Vishal Koparde

    Full Text Available Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA and graft versus host disease (GVHD pathophysiology in stem cell transplant (SCT donor-recipient pairs (DRP is not established. In order to elucidate this relationship, whole exome sequencing (WES was performed on 27 HLA matched related (MRD, & 50 unrelated donors (URD, to identify nonsynonymous single nucleotide polymorphisms (SNPs. An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01; resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0 and the tissue expression of proteins these were derived from determined (GTex. MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA with an IC50 of <500 nM, and URD, had 5,386 (p<0.01. To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone's proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.

  15. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-01-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He + ions and 7 MeV Au 5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11 B and 27 Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO 4 to BO 3 units but also a formation of AlO 5 and AlO 6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked to the changes occured in the

  16. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Science.gov (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  17. Understanding Coastal Wetland Vulnerability to Sea-Level Rise Enhanced Inundation Using Real-Time Stage Monitoring, LiDAR, and Monte Carlo Simulation in Everglades National Park

    Science.gov (United States)

    Cooper, H.; Zhang, C.

    2017-12-01

    Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps

  18. Identifying User Preferences for a Digital Educational Solution for Young Seniors With Diabetes

    NARCIS (Netherlands)

    van der Molen, Pieta; Maas, Anne H.; Chen, Wei; van Pul, Carola; Cottaar, Eduardus J. E.; van Riel, Natal A. W.; Hilbers, Peter A. J.; Haak, Harm R.

    2017-01-01

    The Eindhoven Diabetes Education Simulator project was initiated to develop an educational solution that helps diabetes patients understand and learn more about their diabetes. This article describes the identification of user preferences for the development of such solutions. Young seniors (aged

  19. Magnetic induced heating of nanoparticle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. Hunyadi [Savannah River Site (SRS), Aiken, SC (United States); Univ. of Georgia, Athens, GA (United States); Brown, M. [Savannah River Site (SRS), Aiken, SC (United States); Coopersmith, K. [Savannah River Site (SRS), Aiken, SC (United States); Fulmer, S. [Savannah River Site (SRS), Aiken, SC (United States); Sessions, H. [Savannah River Site (SRS), Aiken, SC (United States); Ali, M. [Univ. of South Carolina, Columbia, SC (United States)

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  20. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations.

    Science.gov (United States)

    Paschek, Dietmar

    2004-06-08

    We examine the SPCE [H. J. C. Berendsen et al., J. Chem. Phys. 91, 6269 (1987)] and TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys 112, 8910 (2000)] water models using a temperature series of molecular-dynamics simulations in order to study heat-capacity effects associated with the hydrophobic hydration and interaction of xenon particles. The temperature interval between 275 and 375 K along the 0.1-MPa isobar is studied. For all investigated models and state points we calculate the excess chemical potential for xenon employing the Widom particle insertion technique. The solvation enthalpy and excess heat capacity is obtained from the temperature dependence of the chemical potentials and, alternatively, directly by Ewald summation, as well as a reaction field based method. All three methods provide consistent results. In addition, the reaction field technique allows a separation of the solvation enthalpy into solute/solvent and solvent/solvent parts. We find that the solvent/solvent contribution to the excess heat capacity is dominating, being about one order of magnitude larger than the solute/solvent part. This observation is attributed to the enlarged heat capacity of the water molecules in the hydration shell. A detailed spatial analysis of the heat capacity of the water molecules around a pair of xenon particles at different separations reveals that even more enhanced heat capacity of the water located in the bisector plane between two adjacent xenon atoms is responsible for the maximum of the heat capacity found for the desolvation barrier distance, recently reported by Shimizu and Chan [J. Am. Chem. Soc. 123, 2083 (2001)]. The about 60% enlarged heat capacity of water in the concave part of the joint xenon-xenon hydration shell is the result of a counterplay of strengthened hydrogen bonds and an enhanced breaking of hydrogen bonds with increasing temperature. Differences between the two models with respect to the heat capacity in the xenon

  1. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  2. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  3. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2015-08-01

    Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  4. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies.

    Science.gov (United States)

    Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-08-18

    The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  5. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    Science.gov (United States)

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  6. Understanding Discrepancies between Simulated and Measured Upwelling Microwave Brightness Temperatures: A Sensitivity Study on the Impact