WorldWideScience

Sample records for understanding seismic hazards

  1. Probing The Structure North China To Better Understand Its Evolution, Natural Resources, And Seismic Hazards (Invited)

    Science.gov (United States)

    Keller, G. R.; Gao, R.; Qu, G.; Li, Q.; Liu, M.

    2010-12-01

    also recorded across the southern portion of this array. This profile crossed a region where the 3 main faults that pose the major hazard to the city are expressed at the surface. Some shots along this profile were also recorded by the 3-D array, and an earthquake occurred along the edge of the array during one of recording windows. Together, these data are producing an improved understanding of the structure of this area and will aid hazard assessments. These efforts are also being used a basis to conduct comparative studies to better understand seismic hazards in the central U.S. and the tectonic evolution of both regions.

  2. Updated Colombian Seismic Hazard Map

    Science.gov (United States)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  3. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  4. Time dependent seismic hazard

    Science.gov (United States)

    Polidoro, B.; Iervolino, I.; Chioccarelli, E.; Giorgio, M.

    2012-04-01

    Probabilistic seismic hazard is usually computed trough a homogeneous Poisson process that even though it is a time-independent process it is widely used for its very convenient properties. However, when a single fault is of concern and/or the time scale is different from that of the long term, time-dependent processes are required. In this paper, different time-dependent models are reviewed with working examples. In fact, the Paganica fault (in central Italy) has been considered to compute both the probability of occurrence of at least one event in the lifespan of the structure, as well as the seismic hazard expressed in terms of probability of exceedance of an intensity value in a given time frame causing the collapse of the structure. Several models, well known or novel application to engineering hazard have been considered, limitation and issues in their applications are also discussed. The Brownian Passage Time (BPT) model is based on a stochastic modification of the deterministic stick-slip oscillator model for characteristic earthquakes; i.e., based on the addition of random perturbations (a Gaussian white noise) to the deterministic load path predicted by elastic rebound theory. This model assumes that the load state is at some ground level immediately after an event, increases steadly over time, reaches a failure threshold and relaxes instantaneously back to the ground level. For this model also a variable threshold has been considered to take into account the uncertainty of the threshold value. For the slip-predictable model it is assumed that the stress accumulates at a constant rate starting from some initial stress level. Stress is assumed to accumulate for a random period of time until an earthquake occurs. The size of the earthquake is governed by the stress release and it is a function of the elapsed time since the last event. In the time-predictable model stress buildup occurs at a constant rate until the accumulated stress reaches a threshold

  5. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  6. Seismic hazard maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  7. Seismic hazard studies in Egypt

    Directory of Open Access Journals (Sweden)

    Abuo El-Ela A. Mohamed

    2012-12-01

    Full Text Available The study of earthquake activity and seismic hazard assessment of Egypt is very important due to the great and rapid spreading of large investments in national projects, especially the nuclear power plant that will be held in the northern part of Egypt. Although Egypt is characterized by low seismicity, it has experienced occurring of damaging earthquake effect through its history. The seismotectonic sitting of Egypt suggests that large earthquakes are possible particularly along the Gulf of Aqaba–Dead Sea transform, the Subduction zone along the Hellenic and Cyprean Arcs, and the Northern Red Sea triple junction point. In addition some inland significant sources at Aswan, Dahshour, and Cairo-Suez District should be considered. The seismic hazard for Egypt is calculated utilizing a probabilistic approach (for a grid of 0.5° × 0.5° within a logic-tree framework. Alternative seismogenic models and ground motion scaling relationships are selected to account for the epistemic uncertainty. Seismic hazard values on rock were calculated to create contour maps for four ground motion spectral periods and for different return periods. In addition, the uniform hazard spectra for rock sites for different 25 periods, and the probabilistic hazard curves for Cairo, and Alexandria cities are graphed. The peak ground acceleration (PGA values were found close to the Gulf of Aqaba and it was about 220 gal for 475 year return period. While the lowest (PGA values were detected in the western part of the western desert and it is less than 25 gal.

  8. A study on seismicity and seismic hazard for Karnataka State

    Indian Academy of Sciences (India)

    This paper presents a detailed study on the seismic pattern of the state of Karnataka and also quantifies the seismic hazard for the entire state. In the present work, historical and instrumental seismicity data for Karnataka (within 300 km from Karnataka political boundary) were compiled and hazard analysis was done based ...

  9. A study on seismicity and seismic hazard for Karnataka State

    Indian Academy of Sciences (India)

    Karnataka (within 300 km from Karnataka political boundary) were compiled and hazard analysis was ... So to mitigate the seismic hazard, it is necessary to make some scientific earthquake studies for identi- fying the regions having high intensity of seismic risk. The state ... Hazard Analysis (PSHA) and Deterministic Seis-.

  10. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-01-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  11. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  12. Eastern US seismic hazard characterization update

    International Nuclear Information System (INIS)

    Savy, J.B.; Boissonnade, A.C.; Mensing, R.W.; Short, C.M.

    1993-06-01

    In January 1989, LLNL published the results of a multi-year project, funded by NRC, on estimating seismic hazard at nuclear plant sites east of the Rockies. The goal of this study was twofold: to develop a good central estimate (median) of the seismic hazard and to characterize the uncertainty in the estimates of this hazard. In 1989, LLNL was asked by DOE to develop site specific estimates of the seismic hazard at the Savannah River Site (SRS) in South Carolina as part of the New Production Reactor (NPR) project. For the purpose of the NPR, a complete review of the methodology and of the data acquisition process was performed. Work done under the NPR project has shown that first order improvement in the estimates of the uncertainty (i.e., lower mean hazard values) could be easily achieved by updating the modeling of the seismicity and ground motion attenuation uncertainty. To this effect, NRC sponsored LLNL to perform a reelicitation to update the seismicity and ground motion experts' inputs and to revise methods to combine seismicity and ground motion inputs in the seismic hazard analysis for nuclear power plant sites east of the Rocky Mountains. The objective of the recent study was to include the first order improvements that reflect the latest knowledge in seismicity and ground motion modeling and produce an update of all the hazard results produced in the 1989 study. In particular, it had been demonstrated that eliciting seismicity information in terms of rates of earthquakes rather than a- and b-values, and changing the elicitation format to a one-on-one interview, improved our ability to express the uncertainty of earthquake rates of occurrence at large magnitudes. Thus, NRC sponsored this update study to refine the model of uncertainty, and to re-elicitate of the experts' interpretations of the zonation and seismicity, as well as to reelicitate the ground motion models, based on current state of knowledge

  13. Probabilistic seismic hazard assessment. Gentilly 2

    International Nuclear Information System (INIS)

    1996-03-01

    Results of this probabilistic seismic hazard assessment were determined using a suite of conservative assumptions. The intent of this study was to perform a limited hazard assessment that incorporated a range of technically defensible input parameters. To best achieve this goal, input selected for the hazard assessment tended to be conservative with respect to selection of attenuation modes, and seismicity parameters. Seismic hazard estimates at Gentilly 2 were most affected by selection of the attenuation model. Alternative definitions of seismic source zones had a relatively small impact on seismic hazard. A St. Lawrence Rift model including a maximum magnitude of 7.2 m b in the zone containing the site had little effect on the hazard estimate relative to other seismic source zonation models. Mean annual probabilities of exceeding the design peak ground acceleration, and the design response spectrum for the Gentilly 2 site were computed to lie in the range of 0.001 to 0.0001. This hazard result falls well within the range determined to be acceptable for nuclear reactor sites located throughout the eastern United States. (author) 34 refs., 6 tabs., 28 figs

  14. Seismic hazard map of the western hemisphere

    Science.gov (United States)

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  15. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner

    1999-06-01

    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  16. Understanding induced seismicity

    NARCIS (Netherlands)

    Elsworth, Derek; Spiers, Christopher J.; Niemeijer, Andre R.

    2016-01-01

    Fluid injection–induced seismicity has become increasingly widespread in oil- and gas-producing areas of the United States (1–3) and western Canada. It has shelved deep geothermal energy projects in Switzerland and the United States (4), and its effects are especially acute in Oklahoma, where

  17. Probabilistic seismic hazard assessment for Central Asia

    Directory of Open Access Journals (Sweden)

    Shahid Ullah

    2015-04-01

    Full Text Available Central Asia is one of the seismically most active regions in the world. Its complex seismicity due to the collision of the Eurasian and Indian plates has resulted in some of the world’s largest intra-plate events over history. The region is dominated by reverse faulting over strike slip and normal faulting events. The GSHAP project (1999, aiming at a hazard assessment on a global scale, indicated that the region of Central Asia is characterized by peak ground accelerations for 10% probability of exceedance in 50 years as high as 9 m/s2. In this study, carried out within the framework of the EMCA project (Earthquake Model Central Asia, the area source model and different kernel approaches are used for a probabilistic seismic hazard assessment (PSHA for Central Asia. The seismic hazard is assessed considering shallow (depth < 50 km seismicity only and employs an updated (with respect to previous projects earthquake catalog for the region. The seismic hazard is calculated in terms of macroseismic intensity (MSK-64, intended to be used for the seismic risk maps of the region. The hazard maps, shown in terms of 10% probability of exceedance in 50 years, are derived by using the OpenQuake software [Pagani et al. 2014], which is an open source software tool developed by the GEM (Global Earthquake Model foundation. The maximum hazard observed in the region reaches an intensity of around 8 in southern Tien Shan for 475 years mean return period. The maximum hazard estimated for some of the cities in the region, Bishkek, Dushanbe, Tashkent and Almaty, is between 7 and 8 (7-8, 8.0, 7.0 and 8.0 macroseismic Intensity, respectively, for 475 years mean return period, using different approaches. The results of different methods for assessing the level of seismic hazard are compared and their underlying methodologies are discussed.

  18. Probabilistic Seismic Hazard Assessment for Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ju Wang

    2016-06-01

    Full Text Available The Taiwan Earthquake Model (TEM was established to assess the seismic hazard and risk for Taiwan by considering the social and economic impacts of various components from geology, seismology, and engineering. This paper gives the first version of TEM probabilistic seismic hazard analysis for Taiwan in these aspects. We named it TEM PSHA2015. The model adopts the source parameters of 38 seismogenic structures identified by TEM geologists. In addition to specific fault source-based categorization, seismic activities are categorized as shallow, subduction intraplate, and subduction interplate events. To evaluate the potential ground-shaking resulting from each seismic source, the corresponding ground-motion prediction equations for crustal and subduction earthquakes are adopted. The highest hazard probability is evaluated to be in Southwestern Taiwan and the Longitudinal Valley of Eastern Taiwan. Among the special municipalities in the highly populated Western Taiwan region, Taichung, Tainan, and New Taipei City are evaluated to have the highest hazard. Tainan has the highest seismic hazard for peak ground acceleration in the model based on TEM fault parameters. In terms of pseudo-spectral acceleration, Tainan has higher hazard over short spectral periods, whereas Taichung has higher hazard over long spectral periods. The analysis indicates the importance of earthquake-resistant designs for low-rise buildings in Tainan and high-rise buildings in Taichung.

  19. Seismic hazard in the Intermountain West

    Science.gov (United States)

    Haller, Kathleen; Moschetti, Morgan P.; Mueller, Charles; Rezaeian, Sanaz; Petersen, Mark D.; Zeng, Yuehua

    2015-01-01

    The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.

  20. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  1. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  2. Use of the t-Distribution to Construct Seismic Hazard Curves for Seismic Probabilistic Safety Assessments

    Directory of Open Access Journals (Sweden)

    Eric Yee

    2017-03-01

    Full Text Available Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

  3. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  4. Seismic hazard assessment for the Sofia area

    Directory of Open Access Journals (Sweden)

    L. Christoskov

    2001-06-01

    Full Text Available The capital of Bulgaria, Sofia, is situated in the center of the so-called Sofia area. This is the most populated industrial and cultural region of Bulgaria that faces considerable earthquake risk. We apply a version of machine code EQRISK for hazard assessment of the Sofia area according to the Cornell-McGuire approach. The probabilistic seismic hazard analysis is based on a simplified seismogenic model, which is derived from seismic zoning of Bulgaria. We show, using a Monte Carlo approach, that uncertainties in seismic input have a relatively small effect on the PSHA output, especially when compared with uncertainties associated with the attenuation relationship. Our PSHA map shows that a 10–3 annual probability of the PGA exceeds 0.3 g in much of the Sofia area

  5. Seismic hazard in the Nation's breadbasket

    Science.gov (United States)

    Boyd, Oliver; Haller, Kathleen; Luco, Nicolas; Moschetti, Morgan P.; Mueller, Charles; Petersen, Mark D.; Rezaeian, Sanaz; Rubinstein, Justin L.

    2015-01-01

    The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.

  6. Deterministic seismic hazard macrozonation of India

    Indian Academy of Sciences (India)

    The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided ...

  7. The 2013 European Seismic Hazard Model: key components and results

    OpenAIRE

    Jochen Woessner; Danciu Laurentiu; Domenico Giardini; Helen Crowley; Fabrice Cotton; G. Grünthal; Gianluca Valensise; Ronald Arvidsson; Roberto Basili; Mine Betül Demircioglu; Stefan Hiemer; Carlo Meletti; Roger W. Musson; Andrea N. Rovida; Karin Sesetyan

    2015-01-01

    The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It m...

  8. Seismic hazard assessment; Valutazione della pericolosita` sismica

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1998-12-31

    This paper presents a brief summary of the most commonly used methodologies for seismic hazard assessment. The interest is focused on the probabilistic approach, which can take into account the uncertainties of input data and provides results better comparable with those obtained from hazard analyses of other natural phenomena. Calculation methods, input data and treatment of variability are examined. Some examples of probabilistic seismic hazard maps are moreover presented. [Italiano] Questo lavoro presenta un breve sommario delle piu` comuni metodologie utilizzate per la valutazione della pericolosita` sismica di un sito. Una particolare attenzione e` rivolta all`approccio probabilistico, che permette di tener conto delle incertezze legate ai dati iniziali e fornisce risultati piu` facilmente confrontabili con quelli ottenuti da analisi di pericolosita` di altri fenomeni naturali. Vengono presi in esame i metodi di calcolo, i dati di base e il trattamento delle incertezze. Vengono inoltre presentati alcuni esempi di carte di pericolosita` sismica di tipo probabilistico.

  9. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  10. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    demonstrated and sufficient justification of hazard assessment protocols; (b) a more complete learning of the actual range of earthquake hazards to local communities and populations, and (c) a more ethically responsible control over how seismic hazard and seismic risk is implemented to protect public safety. It follows that the international project GEM is on the wrong track, if it continues to base seismic risk estimates on the standard method to assess seismic hazard. The situation is not hopeless and could be improved dramatically due to available geological, geomorphologic, seismic, and tectonic evidences and data combined with deterministic pattern recognition methodologies, specifically, when intending to PREDICT PREDICTABLE, but not the exact size, site, date, and probability of a target event. Understanding the complexity of non-linear dynamics of hierarchically organized systems of blocks-and-faults has led already to methodologies of neo-deterministic seismic hazard analysis and intermediate-term middle- to narrow-range earthquake prediction algorithms tested in real-time applications over the last decades. It proves that Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such info in advance extreme catastrophes, which are LOW PROBABILITY EVENTS THAT HAPPEN WITH CERTAINTY. Geoscientists must initiate shifting the minds of community from pessimistic disbelieve to optimistic challenging issues of neo-deterministic Hazard Predictability.

  11. Probabilistic Seismic Hazard Assessment for Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Onur, Tuna [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gok, Rengin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abdulnaby, Wathiq [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shakir, Ammar M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahdi, Hanan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Numan, Nazar M.S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Al-Shukri, Haydar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chlaib, Hussein K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ameen, Taher H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abd, Najah A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-06

    Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al., 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.

  12. Probabilistic Seismic Hazards Update for LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Menchawi, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fernandez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-30

    Fugro Consultants, Inc. (FCL) completed the Probabilistic Seismic Hazard Analysis (PSHA) performed for Building 332 at the Lawrence Livermore National Laboratory (LLNL), near Livermore, CA. The study performed for the LLNL site includes a comprehensive review of recent information relevant to the LLNL regional tectonic setting and regional seismic sources in the vicinity of the site and development of seismic wave transmission characteristics. The Seismic Source Characterization (SSC), documented in Project Report No. 2259-PR-02 (FCL, 2015b), and Ground Motion Characterization (GMC), documented in Project Report No. 2259-PR-06 (FCL, 2015a) were developed in accordance with ANS/ANSI 2.29- 2008 Level 2 PSHA guidelines. The ANS/ANSI 2.29-2008 Level 2 PSHA framework is documented in Project Report No. 2259-PR-05 (FCL, 2016a). The Hazard Input Document (HID) for input into the PSHA developed from the SSC and GMC is presented in Project Report No. 2259-PR-04 (FCL, 2016b). The site characterization used as input for development of the idealized site profiles including epistemic uncertainty and aleatory variability is presented in Project Report No. 2259-PR-03 (FCL, 2015c). The PSHA results are documented in Project Report No. 2259-PR-07 (FCL, 2016c).

  13. Seismic hazard in the eastern United States

    Science.gov (United States)

    Mueller, Charles; Boyd, Oliver; Petersen, Mark D.; Moschetti, Morgan P.; Rezaeian, Sanaz; Shumway, Allison

    2015-01-01

    The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updated catalogs and/or smoothing.

  14. Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States

    Science.gov (United States)

    Wang, Z.

    2007-01-01

    Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.

  15. Probabilistic Seismic Hazard Analysis for Georgia

    Science.gov (United States)

    Tsereteli, N. S.; Varazanashvili, O.; Sharia, T.; Arabidze, V.; Tibaldi, A.; Bonali, F. L. L.; Russo, E.; Pasquaré Mariotto, F.

    2017-12-01

    Nowadays, seismic hazard studies are developed in terms of the calculation of Peak Ground Acceleration (PGA), Spectral Acceleration (SA), Peak Ground Velocity (PGV) and other recorded parameters. In the frame of EMME project PSH were calculated for Georgia using GMPE based on selection criteria. In the frame of Project N 216758 (supported by Shota Rustaveli National Science Foundation (SRNF)) PSH maps were estimated using hybrid- empirical ground motion prediction equation developed for Georgia. Due to the paucity of seismically recorded information, in this work we focused our research on a more robust dataset related to macroseismic data,and attempted to calculate the probabilistic seismic hazard directly in terms of macroseismicintensity. For this reason, we started calculating new intensity prediction equations (IPEs)for Georgia taking into account different sets, belonging to the same new database, as well as distances from the seismic source.With respect to the seismic source, in order to improve the quality of the results, we have also hypothesized the size of faults from empirical relations, and calculated new IPEs also by considering Joyner-Boore and rupture distances in addition to epicentral and hypocentral distances. Finally, site conditions have been included as variables for IPEs calculation Regarding the database, we used a brand new revised set of macroseismic data and instrumental records for the significant earthquakes that struck Georgia between 1900 and 2002.Particularly, a large amount of research and documents related to macroseismic effects of individual earthquakes, stored in the archives of the Institute of Geophysics, were used as sources for the new macroseismic data. The latter are reported in the Medvedev-Sponheuer-Karnikmacroseismic scale (MSK64). For each earthquake the magnitude, the focal depth and the epicenter location are also reported. An online version of the database, with therelated metadata,has been produced for the 69

  16. Relevant aspects of the seismic hazard in Colima, Mexico

    OpenAIRE

    Aguilar-Meléndez, Armando; Puente, Josep de la; Rodríguez-Lozoya, Héctor E.; Córdova-Ceballos, Alejandro; García-Elías, Alejandro; González-Rocha, Sergio N.; Campos-Ríos, Amelia

    2017-01-01

    Perform probabilistic assessment of seismic hazard (PSHA) is a fundamental activity that offer valuable information to the seismic risk management of cities. In the present work some relevant aspects about a recent analysis about the seismic hazard of Colima, Mexico are mentioned.

  17. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    The Himalayan region has undergone significant development and to ensure safe and secure progress in such a seismically vulnerable region there is a need for hazard assessment. For seismic hazard assessment, it is important to assess the quality, consistency, and homogeneity of the seismicity data collected from.

  18. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    The Himalayan region has undergone significant development and to ensure safe and secure progress in such a seismically vulnerable region there is a need for hazard assessment. For seismic hazard assessment, it is important to assess the quality, consistency, and homogeneity of the seismicity data collected from ...

  19. Short-term variations in seismic hazard

    Science.gov (United States)

    Whiteside, Lowell Stanley

    1999-11-01

    Accurate forecasting of short term seismic hazard has not progressed as rapidly as forecasting of other natural hazards such as severe weather, solar storms, tsunamis and volcanic eruptions. Part of the reason for this is that until recently, little useful statistical work has been done on triggering causes of earthquakes beyond studies on the gradual accumulation of strain through plate tectonic motions. The Landers earthquake in southern California on June 28, 1992, which apparently triggered seismicity throughout one million square kilometers of the western United States, provided incentive into further studies relating to the triggering of earthquakes by external causes. In this thesis 29 possible external triggering agents are examined in relation to variations in seismicity in 67 regional and local seismicity catalogs. The 29 agents of triggering are classified into four groups: those which cause vertical strains, horizontal strains, and instantaneous and delayed agents related to the earth's space environment. For each regional catalog a set of time-dependent coefficients of triggering is calculated from the previous history of earthquakes and suspected triggering agents. This pre-history distribution function can be used to forecast the likelihood of changes in regional seismicity given the occurrence of specific triggering agents in the future. By examining daily periodicities of earthquakes in 20 local catalogs from 1934 through 1999, it is found that external triggering agents have an effect on intensity of free-earth oscillations, varying their amplitude depending on the nature of the agent. Finally, we apply the results of this study to the Mammoth Lakes region of east-central California in an earthquake forecasting experiment. Expected daily numbers of microearthquakes based on triggering have been sent in a weekly forecast during the period November 1997 to May 1999 to a group of five geophysicists. The results (7 correct forecasts of major changes

  20. The Optimizer Topology Characteristics in Seismic Hazards

    Science.gov (United States)

    Sengor, T.

    2015-12-01

    The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.

  1. Fragility and hazard aspects of the Chinshan seismic PRA

    International Nuclear Information System (INIS)

    Hardy, G.S.; Tong, W.H.; Griffin, M.J.; Han, L.C.

    1989-01-01

    This paper provides an overview of the methodology and the results of the fragility and hazard portions of the seismic probabilistic risk assessment (PRA) and the containment overpressure fragilities at the Chinshan Nuclear Power Plant in Taiwan. The Chinshan seismic PRA involves the generation and combination of the seismic hazard at the site, the fragilities of equipment and structures and the dominant accident sequences leading to core damage. The seismic fragilities and the hazard study and the containment overpressure fragilities have been completed and are presented in this paper

  2. Region-specific deterministic and probabilistic seismic hazard ...

    Indian Academy of Sciences (India)

    Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city ... A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. ... King Saud University, Riyadh, Saudi Arabia.

  3. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  4. Seismic hazard uncertainty and its effects on design decisions

    International Nuclear Information System (INIS)

    McGuire, R.K.

    1987-01-01

    The influence of uncertainty in seimic hazard on decisions for seimic design levels and seismic retrofit strategies is investigated. The issue of uncertainty in seismic hazard is of particular importance in intraplate tectonic environments, because the uncertainty in seismic hazard is typically rather large in these regions as a result of uncertainties in tectonic models, maximum magnitudes, and ground motions during earthquakes. Also, the state-of-the-art in tectonic interpretations and ground motion estimation in intraplate regions is growing rapidly, and will continue to do so. This implies that the uncertainty in seismic hazard will be reduced in the future, and the seismic hazard will also change at many sites, often by significant factors. (orig./HP)

  5. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  6. Uncertainties in evaluation of hazard and seismic risk

    Science.gov (United States)

    Marmureanu, Gheorghe; Marmureanu, Alexandru; Ortanza Cioflan, Carmen; Manea, Elena-Florinela

    2015-04-01

    Two methods are commonly used for seismic hazard assessment: probabilistic (PSHA) and deterministic(DSHA) seismic hazard analysis.Selection of a ground motion for engineering design requires a clear understanding of seismic hazard and risk among stakeholders, seismologists and engineers. What is wrong with traditional PSHA or DSHA ? PSHA common used in engineering is using four assumptions developed by Cornell in 1968:(1)-Constant-in-time average occurrence rate of earthquakes; (2)-Single point source; (3).Variability of ground motion at a site is independent;(4)-Poisson(or "memory - less") behavior of earthquake occurrences. It is a probabilistic method and "when the causality dies, its place is taken by probability, prestigious term meant to define the inability of us to predict the course of nature"(Nils Bohr). DSHA method was used for the original design of Fukushima Daichii, but Japanese authorities moved to probabilistic assessment methods and the probability of exceeding of the design basis acceleration was expected to be 10-4-10-6 . It was exceeded and it was a violation of the principles of deterministic hazard analysis (ignoring historical events)(Klügel,J,U, EGU,2014, ISSO). PSHA was developed from mathematical statistics and is not based on earthquake science(invalid physical models- point source and Poisson distribution; invalid mathematics; misinterpretation of annual probability of exceeding or return period etc.) and become a pure numerical "creation" (Wang, PAGEOPH.168(2011),11-25). An uncertainty which is a key component for seismic hazard assessment including both PSHA and DSHA is the ground motion attenuation relationship or the so-called ground motion prediction equation (GMPE) which describes a relationship between a ground motion parameter (i.e., PGA,MMI etc.), earthquake magnitude M, source to site distance R, and an uncertainty. So far, no one is taking into consideration strong nonlinear behavior of soils during of strong earthquakes. But

  7. Reassessment of probabilistic seismic hazard in the Marmara region

    Science.gov (United States)

    Kalkan, Erol; Gulkan, Polat; Yilmaz, Nazan; Çelebi, Mehmet

    2009-01-01

    In 1999, the eastern coastline of the Marmara region (Turkey) witnessed increased seismic activity on the North Anatolian fault (NAF) system with two damaging earthquakes (M 7.4 Kocaeli and M 7.2 D??zce) that occurred almost three months apart. These events have reduced stress on the western segment of the NAF where it continues under the Marmara Sea. The undersea fault segments have been recently explored using bathymetric and reflection surveys. These recent findings helped scientists to understand the seismotectonic environment of the Marmara basin, which has remained a perplexing tectonic domain. On the basis of collected new data, seismic hazard of the Marmara region is reassessed using a probabilistic approach. Two different earthquake source models: (1) the smoothed-gridded seismicity model and (2) fault model and alternate magnitude-frequency relations, Gutenberg-Richter and characteristic, were used with local and imported ground-motion-prediction equations. Regional exposure is computed and quantified on a set of hazard maps that provide peak horizontal ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 sec on uniform firm-rock site condition (760 m=sec average shear wave velocity in the upper 30 m). These acceleration levels were computed for ground motions having 2% and 10% probabilities of exceedance in 50 yr, corresponding to return periods of about 2475 and 475 yr, respectively. The maximum PGA computed (at rock site) is 1.5g along the fault segments of the NAF zone extending into the Marmara Sea. The new maps generally show 10% to 15% increase for PGA, 0.2 and 1.0 sec spectral acceleration values across much of Marmara compared to previous regional hazard maps. Hazard curves and smooth design spectra for three site conditions: rock, soil, and soft-soil are provided for the Istanbul metropolitan area as possible tools in future risk estimates.

  8. Evaluation of seismic hazard at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Toro, G.R.; McGuire, R.K.

    1991-01-01

    Seismic hazard at the Paducah Gaseous Diffusion Plant is evaluated using a formulation that considers the rupture dimensions of potential large earthquakes in the New Madrid region. The New Madrid source zone is modeled as a system of parallel faults. A characteristic-magnitude model, based on historical seismic city and paleoseismic studies, describes seismicity in the New madrid source zone. The attenuation functions reflect distance saturation caused by the rupture size of large earthquakes. Preliminary results from this seismic hazard analysis are presented and compared to results obtained using the EPRI and LLNL methodologies

  9. Applications of seismic damage hazard analysis for the qualification of existing nuclear and offshore facilities

    International Nuclear Information System (INIS)

    Bazzurro, P.; Manfredini, G.M.; Diaz Molina, I.

    1995-01-01

    The Seismic Damage Hazard Analysis (SDHA) is a methodology which couples conventional Seismic Hazard Analysis (SHA) and non-linear response analysis to seismic loadings. This is a powerful tool in the retrofit process: SDHA permits the direct computation of the probability of occurrence of damage and, eventually, collapse of existing and upgraded structural systems. The SDHA methodology is a significant step towards a better understanding and quantification of structural seismic risk. SDHA incorporates and explicitly accounts for seismic load variability, seismic damage potential variability and structural resistance uncertainty. In addition, SDHA makes available a sound strategy to perform non-linear dynamic analyses. A limited number of non-linear dynamic analyses is sufficient to obtain estimates of damage and its probability of occurrence. The basic concepts of the SDHA methodology are briefly reviewed. Illustrative examples are presented, regarding a power house structure, a tubular structure and seabed slope stability problem. (author)

  10. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2017-12-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  11. Seismic hazard assessment in the Ibero-Maghreb region

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.J.; Garcia fernandez, M. [Consejo Superior de Investigaciones Cientifcas, Barcelona (Spain). Inst. of Earth Sciences; GSAHP Ibero-Maghreb Working Group

    1999-12-01

    The paper illustrates the contribution of the Ibero-Maghreb region to the global GSHAP (Global Seismic Hazard Assessment Program) map: for the first time, a map of regional hazard source zones is presented and agreement on a common procedure for hazard computation in the region has been achieved.

  12. Probabilistic seismic hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D. [New Brunswick Power Corp., Point Lepreau Generating Station, Lepreau, New Brunswick (Canada); Lavine, A. [AMEC Foster Wheeler Environment and Infrastructure Americas, Oakland, California (United States); Egan, J. [SAGE Engineers, Oakland, California (United States)

    2015-09-15

    A Probabilistic Seismic Hazard Assessment (PSHA) has been performed for the Point Lepreau Generating Station (PLGS). The objective is to provide characterization of the earthquake ground shaking that will be used to evaluate seismic safety. The assessment is based on the current state of knowledge of the informed scientific and engineering community regarding earthquake hazards in the site region, and includes two primary components-a seismic source model and a ground motion model. This paper provides the methodology and results of the PLGS PSHA. The implications of the updated hazard information for site safety are discussed in a separate paper. (author)

  13. Seismic hazard analysis using expert opinions with uncertainties

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Chung, D.H.; Mensing, R.W.; Savy, J.B.

    1983-01-01

    An important element of a seismic risk assessment of a nuclear power plant is the description of the seismic hazard at the site. The seismic input takes two forms: (1) an earthquake time history which can be used in the structural analysis to compute the structural and component responses to the seismic event; and (2) a seismic hazard curve which describes the probability of exceedance of some seismic variables, e.g., peak ground aceleration at the site. As part of an NRC sponsored project, LLNL has developed a methodology for eliciting the opinions of experts about the seismicity of the EUS and using these opinions, along with an associated measure of uncertainty, to assess the seismic hazard at several sites in the EUS. The purpose of this paper is to describe (1) how the opinions of experts were elicited, including an elicitation of the experts uncertainty about seismicity, and (2) how the experts best estimates and statements of uncertainty were combined to assess the hazard curve along with appropriate confidence bounds at a site

  14. Innovative assesment of the seismic hazard from Vrancea sources

    International Nuclear Information System (INIS)

    Panza, Giuliano Francesco

    2002-01-01

    In the framework of a very fruitful, stimulating and still ongoing collaboration between the National Institute for Earth Physics - Bucharest, the Department of Earth Sciences - University of Trieste and The Abdus Salam International Center for Theoretical Physics - SAND Group, several innovative steps forwards have been made in the assessment of the seismic hazard generated by Vrancea seismicity. The limits of currently applied probabilistic approaches are partly overcome by the introduction of hazard scenarios based on the deterministic, realistic modeling of ground motion. The ongoing co-operation represents a fundamental contribution to the reliable assessment of seismic hazard, and has been recently enriched by the participation of Bulgarian scientists, who are facing, in the urban settlements close to the Romanian border, a seismic hazard similar to the one in Bucharest. (author)

  15. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 3. Seismic hazard analysis of Sinop province, Turkey using probabilistic and ... Earthquake Department, Prime Ministry Disaster and Emergency Management Presidency, Ankara, Turkey. Department of Geophysical Engineering, Sakarya University, ...

  16. Seismic Ground Motion Hazards with 2 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  17. Toward uniform probabilistic seismic hazard assessments for Southeast Asia

    Science.gov (United States)

    Chan, C. H.; Wang, Y.; Shi, X.; Ornthammarath, T.; Warnitchai, P.; Kosuwan, S.; Thant, M.; Nguyen, P. H.; Nguyen, L. M.; Solidum, R., Jr.; Irsyam, M.; Hidayati, S.; Sieh, K.

    2017-12-01

    Although most Southeast Asian countries have seismic hazard maps, various methodologies and quality result in appreciable mismatches at national boundaries. We aim to conduct a uniform assessment across the region by through standardized earthquake and fault databases, ground-shaking scenarios, and regional hazard maps. Our earthquake database contains earthquake parameters obtained from global and national seismic networks, harmonized by removal of duplicate events and the use of moment magnitude. Our active-fault database includes fault parameters from previous studies and from the databases implemented for national seismic hazard maps. Another crucial input for seismic hazard assessment is proper evaluation of ground-shaking attenuation. Since few ground-motion prediction equations (GMPEs) have used local observations from this region, we evaluated attenuation by comparison of instrumental observations and felt intensities for recent earthquakes with predicted ground shaking from published GMPEs. We then utilize the best-fitting GMPEs and site conditions into our seismic hazard assessments. Based on the database and proper GMPEs, we have constructed regional probabilistic seismic hazard maps. The assessment shows highest seismic hazard levels near those faults with high slip rates, including the Sagaing Fault in central Myanmar, the Sumatran Fault in Sumatra, the Palu-Koro, Matano and Lawanopo Faults in Sulawesi, and the Philippine Fault across several islands of the Philippines. In addition, our assessment demonstrates the important fact that regions with low earthquake probability may well have a higher aggregate probability of future earthquakes, since they encompass much larger areas than the areas of high probability. The significant irony then is that in areas of low to moderate probability, where building codes are usually to provide less seismic resilience, seismic risk is likely to be greater. Infrastructural damage in East Malaysia during the 2015

  18. Probabilistic seismic hazard assessment of NW and central ...

    Indian Academy of Sciences (India)

    the Assam Earthquake of 1950 (M=8.5). It is important to carry out seismic hazard analysis of the region because of its high level of natural seismicity and the presence of segments of major longitudinal tectonic boundary thrusts, namely the Main Central Trust (MCT) and the Main. Boundary Thrust (MBT) along with various ...

  19. Global Seismic Hazard Assessment Program Maps Are Misleading

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A. K.

    2010-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and people, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. The Global Seismic Hazard Assessment Program (GSHAP) project was launched in 1992 by the International Lithosphere Program (ILP) with the support of the International Council of Scientific Unions (ICSU), and endorsed as a demonstration program in the framework of the United Nations International Decade for Natural Disaster Reduction (UN/IDNDR). The GSHAP project terminated in 1999 when the probabilistic seismic hazard assessment maps and digital data got published (e.g., URL www.seismo.ethz.ch/GSHAP/). The majority of recent disastrous earthquakes, like the 12 January 2010 Port-au-Prince (Haiti), the 12 May 2008 Wenchuan (Sichuan, China), …, the 26 January 2001 Bhuj (Gujarat, India) prove that the maps resulted from GSHAP are evidently misleading. We have performed a systematic comparison of the GSHAP peak ground acceleration (PGA) values with those related to strong earthquakes in 2000-2010. Each of the 1320 shallow magnitude 6 or larger earthquakes has from 4 to 9 values of the GSHAP PGA at the distance less than 12 km from its epicenter. When transforms to intensity are applied, e.g., MMI(M) = 1.5 (M - 1) (Gutenberg, Richter, 1954) and MMI(PGA) = 1.27 Ln(PGA) - 3.74 (Shteinberg et al. 1993), the difference between the observed and GSHAP estimates MMI(M) - MMI(PGA) is above 1.6 on average while its median equals 2.5. Moreover, for 51 out of 56 magnitude 7.5 or larger events in 2000-2010, the difference is above 1, while for 30 of

  20. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  1. Seismic hazard assessment of the Hanford region, Eastern Washington State

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.; Power, M.S.; Swan, F.H. III

    1985-01-01

    A probabilistic seismic hazard assessment was made for a site within the Hanford region of eastern Washington state, which is characterized as an intraplate region having a relatively low rate of seismic activity. Probabilistic procedures, such as logic trees, were utilized to account for the uncertainties in identifying and characterizing the potential seismic sources in the region. Logic trees provide a convenient, flexible means of assessing the values and relative likelihoods of input parameters to the hazard model that may be dependent upon each other. Uncertainties accounted for in this way include the tectonic model, segmentation, capability, fault geometry, maximum earthquake magnitude, and earthquake recurrence rate. The computed hazard results are expressed as a distribution from which confidence levels are assessed. Analysis of the results show the contributions to the total hazard from various seismic sources and due to various earthquake magnitudes. In addition, the contributions of uncertainties in the various source parameters to the uncertainty in the computed hazard are assessed. For this study, the major contribution to uncertainty in the computed hazard are due to uncertainties in the applicable tectonic model and the earthquake recurrence rate. This analysis serves to illustrate some of the probabilistic tools that are available for conducting seismic hazard assessments and for analyzing the results of these studies. 5 references, 7 figures

  2. AECB workshop on seismic hazard assessment in southern Ontario

    International Nuclear Information System (INIS)

    Stepp, J.C.; Price, R.A.; Coppersmith, K.J.; Klimkiewicz, G.C.; McGuire, R.K.

    1995-10-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. The format of each session involved invited presentations of relevant data followed by open presentations by participants, a general discussion focusing on the relevance of the presented information for seismic hazard assessment in southern Ontario, then development of conclusions and recommendations. In the final session, the conclusions and recommendations were summarized and an open discussion was held to develop consensus. This report presents perspective summaries of the workshop technical sessions together with conclusions and recommendations prepared by the session chairs and the general chairman. 2 refs

  3. Reassessment of seismic hazards at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Hemphill-Haley, M.A.; Kelson, K.I.; Gardner, J.N.; House, L.S.

    1991-01-01

    A comprehensive seismic hazards evaluation program has been initiated at the Los Alamos National Laboratory (LANL) to update the current seismic design criteria. In part, this program has been motivated by recent studies which suggest that faults of the nearby Pajarito fault system may be capable of generating a large magnitude earthquake (M > 7). The specific objectives of this program are to: (1) characterize the tectonic setting of the LANL area; (2) characterize the nature, amount, and timing of late Quaternary fault displacements; (3) reevaluate the recorded seismicity in the LANL region to allow for the evaluation of seismogenic faults and the tectonic state of stress; (4) characterize the subsurface geologic conditions beneath the LANL required for the estimation of strong ground motions and site response; (5) estimate potential strong ground shaking both deterministically and probabilistically; and (6) develop the appropriate seismic design criteria. The approach and initial results of this seismic hazards program are described in this paper

  4. SEISMIC HAZARD MAP FOR THE ITALIAN TERRITORY USING MACROSEISMIC DATA

    Directory of Open Access Journals (Sweden)

    Gómez C. Augusto A.

    2006-12-01

    Full Text Available A seismic hazard map, in terms of macroseismic intensity, is proposed for the Italian continental territory and Sicily, which has a 10% probability of exceedance in 50 years. The methodology used here was first proposed by Cornell (1968, which requires information about the location and seismicity rates within each of the defined seismogenic zones, as well as an attenuation model. In particular, it is proposed an original macroseismic intensity attenuation model derived from the Italian macroseismic database DBMI04. The seismic hazard map, obtained in terms of intensity, was subsequently transformed into PGA by means of a linear relation between intensity and PGA, in order to compare it with the national seismic hazard map MPS04.

  5. Probabilistic seismic hazard maps for the North Balkan region

    Directory of Open Access Journals (Sweden)

    R. M. W. Musson

    1999-06-01

    Full Text Available A set of seismic hazard maps, expressed as horizontal peak ground acceleration, have been computed for a large area of Central and Eastern Europe covering the North Balkan area (Former Yugoslavia, Hungary, Romania. These are based on: a a compound earthquake catalogue for the region; b a seismic source model of 50 zones compiled on the basis of tectonic divisions and seismicity, and c a probabilistic methodology using stochastic (Monte Carlo modelling. It is found that the highest hazard in the region comes from intermediate focus earthquakes occurring in the Vrancea seismic zone; here the hazard exceeds 0.4 g at return periods of 475 years. Special account has been taken of the directional nature of attenuation from this source.

  6. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  7. Toward Building a New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  8. Probabilistic Seismic Hazard Assessment for Northeast India Region

    Science.gov (United States)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  9. Probabilistic Seismic Hazard Disaggregation Analysis for the South of Portugal

    Science.gov (United States)

    Rodrigues, I.; Sousa, M.; Teves-Costa, P.

    2010-12-01

    Probabilistic seismic hazard disaggregation analysis was performed and seismic scenarios were identified for Southern Mainland Portugal. This region’s seismicity is characterized by small and moderate magnitude events and by the sporadic occurrence of large earthquakes (e.g. the 1755 Lisbon earthquake). Thus, the Portuguese Civil Protection Agency (ANPC) sponsored a collaborative research project for the study of the seismic and tsunami risks in the Algarve (project ERSTA). In the framework of this project, a series of new developments were obtained, namely the revision of the seismic catalogue (IM, 2008), the delineation of new seismogenic zones affecting the Algarve region, which reflects the growing knowledge of this region's seismotectonic context, the derivation of new spectral attenuation laws (Carvalho and Campos Costa, 2008) and the revision of the probabilistic seismic hazard (Sousa et al. 2008). Seismic hazard was disaggregated considering different spaces of random variables, namely, bivariate conditional hazard distributions of X-Y (seismic source latitude and longitude) and multivariate 4D conditional hazard distributions of M-(X-Y)-ɛ (ɛ - deviation of ground motion to the median value predicted by an attenuation model). These procedures were performed for the peak ground acceleration (PGA) and for the 5% damped 1.0 and 2.5 Hz spectral acceleration levels of three return periods: 95, 475 and 975 years. The seismic scenarios controlling the hazard of a given ground motion level, were identified as the modal values of the 4D disaggregation analysis for each of the 84 parishes of the Algarve region. Those scenarios, based on a probabilistic analysis, are meant to be used in the emergency planning as a complement to the historical scenarios that severely affected this region. Seismic scenarios share a few number of geographical locations for all return periods. Moreover, seismic hazard of most Algarve’s parishes is dominated by the seismicity located

  10. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  11. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  12. Seismic hazard analysis. Application of methodology, results, and sensitivity studies

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1981-10-01

    As part of the Site Specific Spectra Project, this report seeks to identify the sources of and minimize uncertainty in estimates of seismic hazards in the Eastern United States. Findings are being used by the Nuclear Regulatory Commission to develop a synthesis among various methods that can be used in evaluating seismic hazard at the various plants in the Eastern United States. In this volume, one of a five-volume series, we discuss the application of the probabilistic approach using expert opinion. The seismic hazard is developed at nine sites in the Central and Northeastern United States, and both individual experts' and synthesis results are obtained. We also discuss and evaluate the ground motion models used to develop the seismic hazard at the various sites, analyzing extensive sensitivity studies to determine the important parameters and the significance of uncertainty in them. Comparisons are made between probabilistic and real spectra for a number of Eastern earthquakes. The uncertainty in the real spectra is examined as a function of the key earthquake source parameters. In our opinion, the single most important conclusion of this study is that the use of expert opinion to supplement the sparse data available on Eastern United States earthquakes is a viable approach for determining estimated seismic hazard in this region of the country. (author)

  13. Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites

    Science.gov (United States)

    Gribovszki, Katalin; Bokelmann, Götz; Mónus, Péter; Tóth, László; Kovács, Károly; Konecny, Pavel; Lednicka, Marketa; Spötl, Christoph; Bednárik, Martin; Brimich, Ladislav; Hegymegi, Erika; Novák, Attila

    2016-04-01

    Earthquakes hit urban centers in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard (and risk) is therefore very important. In principle, the best way to test Probabilistic Seismic Hazard Assessments (PSHA) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. Long-term information can in principle be gained from intact stalagmites in natural caves. These formations survived all earthquakes that have occurred, over thousands of years - depending on the age of the stalagmite. Their "survival" requires that the horizontal ground acceleration has never exceeded a certain critical value within that time period. Here we present such a stalagmite-based case study from the Little Carpathians of Slovakia. A specially shaped, intact and vulnerable stalagmite (IVSTM) in Plavecká priepast cave was examined in 2013. This IVSTM is suitable for estimating the upper limit of horizontal peak ground acceleration generated by pre-historic earthquakes. The approach, used in our study, yields significant new constraints on the seismic hazard, as tectonic structures close to Plavecká priepast cave did not generate strong paleoearthquakes in the last few thousand years. A particular importance of this study results from the seismic hazard of two close-by capitals: Vienna and Bratislava.

  14. Using Probabilistic Seismic Hazard Analysis in Assessing Seismic Risk for Taipei City and New Taipei City

    Science.gov (United States)

    Hsu, Ming-Kai; Wang, Yu-Ju; Cheng, Chin-Tung; Ma, Kuo-Fong; Ke, Siao-Syun

    2016-04-01

    In this study, we evaluate the seismic hazard and risk for Taipei city and new Taipei city, which are important municipalities and the most populous cities in Taiwan. The evaluation of seismic risk involves the combination of three main components: probabilistic seismic hazard model, exposure model defining the spatial distribution of elements exposed to the hazard and vulnerability functions capable of describing the distribution of percentage of loss for a set of intensity measure levels. Seismic hazard at Taipei city and New Taipei city assumed as the hazard maps are presented in terms of ground motion values expected to be exceed at a 10% probability level in 50 years (return period 475 years) and a 2% probability level in 50 years (return period 2475 years) according to the Taiwan Earthquake Model (TEM), which assesses two seismic hazard models for Taiwan. The first model adopted the source parameters of 38 seismogenic structures identified by the TEM geologists. The other model considered 33 active faults and was published by the Central Geological Survey (CGS), Taiwan, in 2010. The 500m by 500m Grid-based building data were selected for the evaluation which capable of providing detail information about the location, value and vulnerability classification of the exposed elements. The results from this study were evaluated by the Openquake engine, the open-source software for seismic risk and hazard assessment developed within the global earthquake model (GEM) initiative. Our intention is to give the first attempt on the modeling the seismic risk from hazard in an open platform for Taiwan. An analysis through disaggregation of hazard components will be also made to prioritize the risk for further policy making.

  15. Seismic hazard analysis. A methodology for the Eastern United States

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1980-08-01

    This report presents a probabilistic approach for estimating the seismic hazard in the Central and Eastern United States. The probabilistic model (Uniform Hazard Methodology) systematically incorporates the subjective opinion of several experts in the evaluation of seismic hazard. Subjective input, assumptions and associated hazard are kept separate for each expert so as to allow review and preserve diversity of opinion. The report is organized into five sections: Introduction, Methodology Comparison, Subjective Input, Uniform Hazard Methodology (UHM), and Uniform Hazard Spectrum. Section 2 Methodology Comparison, briefly describes the present approach and compares it with other available procedures. The remainder of the report focuses on the UHM. Specifically, Section 3 describes the elicitation of subjective input; Section 4 gives details of various mathematical models (earthquake source geometry, magnitude distribution, attenuation relationship) and how these models re combined to calculate seismic hazard. The lost section, Uniform Hazard Spectrum, highlights the main features of typical results. Specific results and sensitivity analyses are not presented in this report. (author)

  16. Mitigation of earthquake hazards using seismic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-Y.

    1996-06-01

    This paper describes mitigation of earthquake hazards using seismic base isolation systems. A numerical algorithm for analyzing system response of base-isolated structures with laminated elastomer bearings is briefly described. Seismic response analyses of both base- isolated and unisolated buildings under earthquakes {number_sign}42 and {number_sign}44 are performed and the results are compared to illustrate the mitigating effect of base-isolated systems.

  17. Deterministic seismic hazard macrozonation of India

    Indian Academy of Sciences (India)

    input to assess the seismic vulnerability of an area. Keywords. India; seismic ..... 22. 77. 40. 8.5. 1902. 8. 30. 71. 37. 7.7. 1905. 4. 4. 76. 33. 7.8. 1908. 10. 23. 70.5. 36.5. 7.6. 1908. 12. 12. 97. 26.5. 8.2. 1911. 7. 4. 70.5. 36.5. 7.6. 1916. 8. 28. 81. 30. 7.7. 1918. 7. 8. 91 ..... F and Abrahamson N A 2005 On the use of logic trees.

  18. A study on seismicity and seismic hazard for Karnataka State

    Indian Academy of Sciences (India)

    within 300 km from Karnataka political boundary) were compiled and hazard analysis was done based on this data. Geographically, Karnataka forms a part of peninsular India which is tectonically identified as an intraplate region of Indian plate.

  19. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  20. SRS BEDROCK PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) DESIGN BASIS JUSTIFICATION

    International Nuclear Information System (INIS)

    2005-01-01

    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  1. Keeping pace with the science: Seismic hazard analysis in the central and eastern United States

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1989-01-01

    Our evolving tectonic understanding of the causes and locations of earthquakes in the central and eastern US (CEUS) has been a challenge to probabilistic seismic hazard analyses (PSHA) methodologies. The authors summarize some of the more significant advances being made in characterizing the location, maximum earthquake size, recurrence, and ground motions associated with CEUS earthquakes

  2. Preliminary evaluation of the seismic hazard at Cernavoda NPP site

    International Nuclear Information System (INIS)

    Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    The probabilistic seismic hazard analysis (PSHA) is a methodology by which one evaluates the probability of exceeding different parameters of the ground motions (the maximum ground acceleration - PGA and the ground response spectrum - SA) as effect of the seismic action, on a given site at a future time moment. Due to the large uncertainties in the geological, geophysical, seismological input data, as well as, in the models utilised, various interpretation schemes are applied in the PSHA analyses. This interpretation schemes lead to opinion discrepancies among specialists which finally lead to disagreements in estimating the values of the seismic design for a given site. In order to re-evaluate the methodology and to improve the PSHA result stability, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) and Electric Power Research Institute (EPRI) sponsored a project for defining methodological guides of performing PSHA analyses. The project was implemented by a panel of 7 experts, the Senior Seismic Hazard Analysis Committee - SSHAC. This paper presents a preliminary evaluation of the seismic hazard for the Cernavoda NPP site by application of the methodology mentioned, by taking into account the possible sources which could affect the site (the Vrancea focus, Galati - Tulcea fault, Sabla - Dulovo fault and local earthquakes)

  3. Seismic hazard analysis of the NPP Kozloduy site

    International Nuclear Information System (INIS)

    Petrovski, D.; Stamatovska, S.; Arsovski, M.; Hadzievski, D.; Sokerova, D.; Solakov, D.; Vaptzarov, I.; Satchanski, S.

    1993-01-01

    The principal objective of this study is to define the seismic hazard for the NPP Kozloduy site. Seismic hazard is by rule defined by the probability distribution function of the peak value of the chosen ground motion parameter in a defined time interval. The overall study methodology consists of reviewing the existing geological, seismological and tectonic information to formulate this information into a mathematical model of seismic activity of the region and using this assess earthquake ground motion in terms of probability. Detailed regional and local seismological investigations have been performed. Regional investigations encompass the area within a radius of 320 km from the NPP Kozloduy site. The results of these investigations include all seismological parameters that are necessary for determination of the mathematical model of the seismicity of the region needed for the seismic hazard analysis. Regional geological and neotectonic investigations were also performed for the wider area including almost the whole territory of Bulgaria, a large part of Serbia, part of Macedonia and almost the whole south part of Romania

  4. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    Science.gov (United States)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  5. Seismic Hazard Assessment in the Aspospirgos Area, Athens - Greece

    Science.gov (United States)

    Voulgaris, N.; Drakatos, G.; Lekkas, E.; Karastathis, V.; Valadaki, A.; Plessas, S.

    2005-12-01

    The extensive damages and human life loss related to the September 7, 1999 earthquake in the Athens area (Greece) initiated an effort to re-evaluate seismic hazard in various regions around the capital. One of the target areas selected within the framework of the specially designed research project ESTIA was the industrial area of Aspropirgos, where the epicenter of the main shock was located. The multidisciplinary approach towards seismic hazard assessment included a microseismicity survey and detailed geological and tectonic studies in the area in order to delineate and define the recently activated seismic sources in the area. Initially a portable network, consisting of seventeen (17) digital seismographs was installed and operated for 2 months during the autumn of 2004. A total of five hundred forty five (545) earthquakes (Mrisk calculations. Acknowledgments We would like to thank the General Secretariat for Research and Technology of Greece for the partial support of this research, in the framework of ESTIA project.

  6. Mine aftershocks and implications for seismic hazard assessment

    CSIR Research Space (South Africa)

    Kgarume, T

    2010-11-01

    Full Text Available , with the exception of Båth’s law) as natural earthquake aftershocks do. This analysis was used to approximate the time periods when the seismic hazard due to aftershocks has decreased to background levels. These time periods can be used to draw guidelines governing...

  7. The Global Seismic Hazard Assessment Program (GSHAP - 1992/1999

    Directory of Open Access Journals (Sweden)

    D. Giardini

    1999-06-01

    Full Text Available The United Nations, recognizing natural disasters as a major threat to human life and development, designed the 1990-1999 period as the International Decade for Natural Disaster Reduction (UN/IDNDR; UN Res. 42/169/ 1987. Among the IDNDR Demonstration Projects is the Global Seismic Hazard Assessment Program (GSHAP, launched in 1992 by the International Lithosphere Program (ILP and implemented in the 1992-1999 period. In order to mitigate the risk associated to the recurrence of earthquakes, the GSHAP promoted a regionally coordinated, homogeneous approach to seismic hazard evaluation. To achieve a global dimension, the GSHAP established initially a mosaic of regions and multinational test areas, then expanded to cover whole continents and finally the globe. The GSHAP Global Map of Seismic Hazard integrates the results obtained in the regional areas and depicts Peak-Ground-Acceleration (PGA with 10% chance of exceedance in 50 years, corresponding to a return period of 475 years. All regional results and the Global Map of Seismic Hazard are published in 1999 and available on the GSHAP homepage on http://seismo.ethz.ch/GSHAP/.

  8. Seismic hazard assessment for the Caucasus test area

    Czech Academy of Sciences Publication Activity Database

    Balassanian, S.; Ashirov, T.; Chelidze, T.; Gassanov, A.; Kondorskaya, N.; Molchan, G.; Pustovitenko, B.; Trifonov, V.; Ulomov, V.; Giardini, D.; Erdik, M.; Ghafory-Ashtiany, M.; Grunthal, G.; Mayer-Rosa, D.; Schenk, Vladimír; Stucchi, M.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 1139-1151 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  9. Comprehensive seismic hazard assessment of Tripura and Mizoram ...

    Indian Academy of Sciences (India)

    An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using ...

  10. Comprehensive seismic hazard assessment of Tripura and Mizoram ...

    Indian Academy of Sciences (India)

    earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard ... hospitals, bridges, dams, nuclear power plants, schools ..... cess in time. The magnitude of completeness is the lowest magnitude above which the earthquake recording is assumed to be complete (Rydelek and. Sacks 1989).

  11. A Simple Model for Probabilistic Seismic Hazard Analysis of Induced Seismicity Associated With Deep Geothermal Systems

    Science.gov (United States)

    Schlittenhardt, Joerg; Spies, Thomas; Kopera, Juergen; Morales Aviles, Wilhelm

    2014-05-01

    In the research project MAGS (Microseismic activity of geothermal systems) funded by the German Federal Ministry of Environment (BMU) a simple model was developed to determine seismic hazard as the probability of the exceedance of ground motion of a certain size. Such estimates of the annual frequency of exceedance of prescriptive limits of e.g. seismic intensities or ground motions are needed for the planning and licensing, but likewise for the development and operation of deep geothermal systems. For the development of the proposed model well established probabilistic seismic hazard analysis (PSHA) methods for the estimation of the hazard for the case of natural seismicity were adapted to the case of induced seismicity. Important differences between induced and natural seismicity had to be considered. These include significantly smaller magnitudes, depths and source to site distances of the seismic events and, hence, different ground motion prediction equations (GMPE) that had to be incorporated to account for the seismic amplitude attenuation with distance as well as differences in the stationarity of the underlying tectonic and induced processes. Appropriate GMPE's in terms of PGV (peak ground velocity) were tested and selected from the literature. The proposed model and its application to the case of induced seismicity observed during the circulation period (operation phase of the plant) at geothermal sites in Germany will be presented. Using GMPE's for PGV has the advantage to estimate hazard in terms of velocities of ground motion, which can be linked to engineering regulations (e.g. German DIN 4150) which give prescriptive standards for the effects of vibrations on buildings and people. It is thus possible to specify the probability of exceedance of such prescriptive standard values and to decide whether they can be accepted or not. On the other hand hazard curves for induced and natural seismicity can be compared to study the impact at a site. Preliminary

  12. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  13. Deterministic seismic hazard macrozonation of India

    Indian Academy of Sciences (India)

    Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of ...

  14. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  15. Seismic Hazard Maps for the Maltese Archipelago: Preliminary Results

    Science.gov (United States)

    D'Amico, S.; Panzera, F.; Galea, P. M.

    2013-12-01

    The Maltese islands form an archipelago of three major islands lying in the Sicily channel at about 140 km south of Sicily and 300 km north of Libya. So far very few investigations have been carried out on seismicity around the Maltese islands and no maps of seismic hazard for the archipelago are available. Assessing the seismic hazard for the region is currently of prime interest for the near-future development of industrial and touristic facilities as well as for urban expansion. A culture of seismic risk awareness has never really been developed in the country, and the public perception is that the islands are relatively safe, and that any earthquake phenomena are mild and infrequent. However, the Archipelago has been struck by several moderate/large events. Although recent constructions of a certain structural and strategic importance have been built according to high engineering standards, the same probably cannot be said for all residential buildings, many higher than 3 storeys, which have mushroomed rapidly in recent years. Such buildings are mostly of unreinforced masonry, with heavy concrete floor slabs, which are known to be highly vulnerable to even moderate ground shaking. We can surely state that in this context planning and design should be based on available national hazard maps. Unfortunately, these kinds of maps are not available for the Maltese islands. In this paper we attempt to compute a first and preliminary probabilistic seismic hazard assessment of the Maltese islands in terms of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) at different periods. Seismic hazard has been computed using the Esteva-Cornell (1968) approach which is the most widely utilized probabilistic method. It is a zone-dependent approach: seismotectonic and geological data are used coupled with earthquake catalogues to identify seismogenic zones within which earthquakes occur at certain rates. Therefore the earthquake catalogues can be reduced to the

  16. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  17. Updating the USGS seismic hazard maps for Alaska

    Science.gov (United States)

    Mueller, Charles; Briggs, Richard; Wesson, Robert L.; Petersen, Mark D.

    2015-01-01

    The U.S. Geological Survey makes probabilistic seismic hazard maps and engineering design maps for building codes, emergency planning, risk management, and many other applications. The methodology considers all known earthquake sources with their associated magnitude and rate distributions. Specific faults can be modeled if slip-rate or recurrence information is available. Otherwise, areal sources are developed from earthquake catalogs or GPS data. Sources are combined with ground-motion estimates to compute the hazard. The current maps for Alaska were developed in 2007, and included modeled sources for the Alaska-Aleutian megathrust, a few crustal faults, and areal seismicity sources. The megathrust was modeled as a segmented dipping plane with segmentation largely derived from the slip patches of past earthquakes. Some megathrust deformation is aseismic, so recurrence was estimated from seismic history rather than plate rates. Crustal faults included the Fairweather-Queen Charlotte system, the Denali–Totschunda system, the Castle Mountain fault, two faults on Kodiak Island, and the Transition fault, with recurrence estimated from geologic data. Areal seismicity sources were developed for Benioff-zone earthquakes and for crustal earthquakes not associated with modeled faults. We review the current state of knowledge in Alaska from a seismic-hazard perspective, in anticipation of future updates of the maps. Updated source models will consider revised seismicity catalogs, new information on crustal faults, new GPS data, and new thinking on megathrust recurrence, segmentation, and geometry. Revised ground-motion models will provide up-to-date shaking estimates for crustal earthquakes and subduction earthquakes in Alaska.

  18. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used

  19. Seismic hazard analysis for Jayapura city, Papua

    International Nuclear Information System (INIS)

    Robiana, R.; Cipta, A.

    2015-01-01

    Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock type and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 – 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds

  20. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    International Nuclear Information System (INIS)

    Savy, J.

    1989-01-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the ''guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs

  1. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.

    1989-10-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs.

  2. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    Science.gov (United States)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    The Yellow Sea (a.k.a West Sea in Korea) is an epicontinental and semi-closed sea located between Korea and China. Recent earthquakes in the Yellow Sea including, but not limited to, the Seogyuckryulbi-do (1 April 2014, magnitude 5.1), Heuksan-do (21 April 2013, magnitude 4.9), Baekryung-do (18 May 2013, magnitude 4.9) earthquakes, and the earthquake swarm in the Boryung offshore region in 2013, remind us of the seismic hazards affecting east Asia. This series of earthquakes in the Yellow Sea raised numerous questions. Unfortunately, both governments have trouble in monitoring seismicity in the Yellow Sea because earthquakes occur beyond their seismic networks. For example, the epicenters of the magnitude 5.1 earthquake in the Seogyuckryulbi-do region in 2014 reported by the Korea Meteorological Administration and China Earthquake Administration differed by approximately 20 km. This illustrates the difficulty with seismic monitoring and locating earthquakes in the region, despite the huge effort made by both governments. Joint effort is required not only to overcome the limits posed by political boundaries and geographical location but also to study seismicity and the underground structures responsible. Although the well-established and developing seismic networks in Korea and China have provided unprecedented amount and quality of seismic data, high quality catalog is limited to the recent 10s of years, which is far from major earthquake cycle. It is also noticed the earthquake catalog from either country is biased to its own and cannot provide complete picture of seismicity in the Yellow Sea. In order to understand seismic hazard and tectonics in the Yellow Sea, a composite earthquake catalog has been developed. We gathered earthquake information during last 5,000 years from various sources. There are good reasons to believe that some listings account for same earthquake, but in different source parameters. We established criteria in order to provide consistent

  3. Seismic hazards: New trends in analysis using geologic data

    International Nuclear Information System (INIS)

    Schwartz, D.P.; Coppersmith, K.J.

    1986-01-01

    In the late 1960s and early 1970s, largely in response to expansion of nuclear power plant siting and issuance of a code of federal regullations by the Nuclear Regulatory Commission referred to as Appendix A-10CFR100, the need to characterize the earthquake potential of individual faults for seismic design took on greater importance. Appendix A established deterministic procedures for assessing the seismic hazard at nuclear power plant sites. Bonilla and Buchanan, using data from historical suface-faulting earthquakes, developed a set of statistical correlations relating earthquake magnitude to surface rupture length and to surface displacement. These relationships have been refined and updated along with the relationship between fault area and magnitude and seismic moment and moment magnitude have served as the basis for selecting maximum earthquakes in a wide variety of design situations. In the paper presented, the authors discuss new trends in seismic hazard analysis using geologic data, with special emphasis on fault-zone segmentation and recurrence models and the way in which they provide a basis for evaluating long-term earthquake potential

  4. Probabilistic Seismic Hazards Update for LLNL: PSHA Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Alfredo [Fugro Consultants, Inc., Houston, TX (United States); Altekruse, Jason [Fugro Consultants, Inc., Houston, TX (United States); Menchawi, Osman El [Fugro Consultants, Inc., Houston, TX (United States)

    2016-03-11

    This report presents the Probabilistic Seismic Hazard Analysis (PSHA) performed for Building 332 at the Lawrence Livermore National Laboratory (LLNL), near Livermore, CA by Fugro Consultants, Inc. (FCL). This report is specific to Building 332 only and not to other portions of the Laboratory. The study performed for the LLNL site includes a comprehensive review of recent information relevant to the LLNL regional tectonic setting and regional seismic sources in the vicinity of the site and development of seismic wave transmission characteristics. The Seismic Source Characterization (SSC), documented in Project Report No. 2259-PR-02 (FCL, 2015a), and Ground Motion Characterization (GMC), documented in Project Report No. 2259-PR-06 (FCL, 2015c) were developed in accordance with ANS/ANSI 2.29-2008 Level 2 PSHA guidelines. The ANS/ANSI 2.29-2008 Level 2 PSHA framework is documented in Project Report No. 2259-PR-05 (FCL, 2016a). The Hazard Input Document (HID) for input into the PSHA developed from the SSC is presented in Project Report No. 2259-PR-04 (FCL, 2016b). The site characterization used as input for development of the idealized site profiles including epistemic uncertainty and aleatory variability is presented in Project Report No. 2259-PR-03 (FCL, 2015b).

  5. Documentation for Initial Seismic Hazard Maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of

  6. Uncertainty Analysis and Expert Judgment in Seismic Hazard Analysis

    Science.gov (United States)

    Klügel, Jens-Uwe

    2011-01-01

    The large uncertainty associated with the prediction of future earthquakes is usually regarded as the main reason for increased hazard estimates which have resulted from some recent large scale probabilistic seismic hazard analysis studies (e.g. the PEGASOS study in Switzerland and the Yucca Mountain study in the USA). It is frequently overlooked that such increased hazard estimates are characteristic for a single specific method of probabilistic seismic hazard analysis (PSHA): the traditional (Cornell-McGuire) PSHA method which has found its highest level of sophistication in the SSHAC probability method. Based on a review of the SSHAC probability model and its application in the PEGASOS project, it is shown that the surprising results of recent PSHA studies can be explained to a large extent by the uncertainty model used in traditional PSHA, which deviates from the state of the art in mathematics and risk analysis. This uncertainty model, the Ang-Tang uncertainty model, mixes concepts of decision theory with probabilistic hazard assessment methods leading to an overestimation of uncertainty in comparison to empirical evidence. Although expert knowledge can be a valuable source of scientific information, its incorporation into the SSHAC probability method does not resolve the issue of inflating uncertainties in PSHA results. Other, more data driven, PSHA approaches in use in some European countries are less vulnerable to this effect. The most valuable alternative to traditional PSHA is the direct probabilistic scenario-based approach, which is closely linked with emerging neo-deterministic methods based on waveform modelling.

  7. Awareness and understanding of earthquake hazards at school

    Science.gov (United States)

    Saraò, Angela; Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi

    2014-05-01

    Schools have a fundamental role in broadening the understanding of natural hazard and risks and in building the awareness in the community. Recent earthquakes in Italy and worldwide, have clearly demonstrated that the poor perception of seismic hazards diminishes the effectiveness of mitigation countermeasures. Since years the Seismology's department of OGS is involved in education projects and public activities to raise awareness about earthquakes. Working together with teachers we aim at developing age-appropriate curricula to improve the student's knowledge about earthquakes, seismic safety, and seismic risk reduction. Some examples of education activities we performed during the last years are here presented. We show our experience with the primary and intermediate schools where, through hands-on activities, we explain the earthquake phenomenon and its effects to kids, but we illustrate also some teaching interventions for high school students. During the past years we lectured classes, we led laboratory and field activities, and we organized summer stages for selected students. In the current year we are leading a project aimed at training high school students on seismic safety through a multidisciplinary approach that involves seismologists, engineers and experts of safety procedures. To combine the objective of dissemination of earthquake culture, also through the knowledge of the past seismicity, with that of a safety culture, we use innovative educational techniques and multimedia resources. Students and teachers, under the guidance of an expert seismologist, organize a combination of hands-on activities for understanding earthquakes in the lab through cheap tools and instrumentations At selected schools we provided the low cost seismometers of the QuakeCatcher network (http://qcn.stanford.edu) for recording earthquakes, and we trained teachers to use such instruments in the lab and to analyze recorded data. Within the same project we are going to train

  8. Mitigation of earthquake hazards using seismic base isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1994-06-01

    This paper deals with mitigation of earthquake hazards using seismic base-isolation systems. A numerical algorithm is described for system response analysis of isolated structures with laminated elastomer bearings. The focus of this paper is on the adaptation of a nonlinear constitutive equation for the isolation bearing, and the treatment of foundation embedment for the soil-structure-interaction analysis. Sample problems are presented to illustrate the mitigating effect of using base-isolation systems.

  9. Time-Independent Annual Seismic Rates, Based on Faults and Smoothed Seismicity, Computed for Seismic Hazard Assessment in Italy

    Science.gov (United States)

    Murru, M.; Falcone, G.; Taroni, M.; Console, R.

    2017-12-01

    In 2015 the Italian Department of Civil Protection, started a project for upgrading the official Italian seismic hazard map (MPS04) inviting the Italian scientific community to participate in a joint effort for its realization. We participated providing spatially variable time-independent (Poisson) long-term annual occurrence rates of seismic events on the entire Italian territory, considering cells of 0.1°x0.1° from M4.5 up to M8.1 for magnitude bin of 0.1 units. Our final model was composed by two different models, merged in one ensemble model, each one with the same weight: the first one was realized by a smoothed seismicity approach, the second one using the seismogenic faults. The spatial smoothed seismicity was obtained using the smoothing method introduced by Frankel (1995) applied to the historical and instrumental seismicity. In this approach we adopted a tapered Gutenberg-Richter relation with a b-value fixed to 1 and a corner magnitude estimated with the bigger events in the catalogs. For each seismogenic fault provided by the Database of the Individual Seismogenic Sources (DISS), we computed the annual rate (for each cells of 0.1°x0.1°) for magnitude bin of 0.1 units, assuming that the seismic moments of the earthquakes generated by each fault are distributed according to the same tapered Gutenberg-Richter relation of the smoothed seismicity model. The annual rate for the final model was determined in the following way: if the cell falls within one of the seismic sources, we merge the respective value of rate determined by the seismic moments of the earthquakes generated by each fault and the value of the smoothed seismicity model with the same weight; if instead the cells fall outside of any seismic source we considered the rate obtained from the spatial smoothed seismicity. Here we present the final results of our study to be used for the new Italian seismic hazard map.

  10. Errors in Seismic Hazard Assessment are Creating Huge Human Losses

    Science.gov (United States)

    Bela, J.

    2015-12-01

    The current practice of representing earthquake hazards to the public based upon their perceived likelihood or probability of occurrence is proven now by the global record of actual earthquakes to be not only erroneous and unreliable, but also too deadly! Earthquake occurrence is sporadic and therefore assumptions of earthquake frequency and return-period are both not only misleading, but also categorically false. More than 700,000 people have now lost their lives (2000-2011), wherein 11 of the World's Deadliest Earthquakes have occurred in locations where probability-based seismic hazard assessments had predicted only low seismic low hazard. Unless seismic hazard assessment and the setting of minimum earthquake design safety standards for buildings and bridges are based on a more realistic deterministic recognition of "what can happen" rather than on what mathematical models suggest is "most likely to happen" such future huge human losses can only be expected to continue! The actual earthquake events that did occur were at or near the maximum potential-size event that either already had occurred in the past; or were geologically known to be possible. Haiti's M7 earthquake, 2010 (with > 222,000 fatalities) meant the dead could not even be buried with dignity. Japan's catastrophic Tohoku earthquake, 2011; a M9 Megathrust earthquake, unleashed a tsunami that not only obliterated coastal communities along the northern Japanese coast, but also claimed > 20,000 lives. This tsunami flooded nuclear reactors at Fukushima, causing 4 explosions and 3 reactors to melt down. But while this history of huge human losses due to erroneous and misleading seismic hazard estimates, despite its wrenching pain, cannot be unlived; if faced with courage and a more realistic deterministic estimate of "what is possible", it need not be lived again. An objective testing of the results of global probability based seismic hazard maps against real occurrences has never been done by the

  11. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  12. Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)

    Science.gov (United States)

    Ismail-Zadeh, A.

    2013-12-01

    Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.

  13. Scoring and Testing Procedures Devoted to Probabilistic Seismic Hazard Assessment

    Science.gov (United States)

    Albarello, Dario; D'Amico, Vera

    2015-03-01

    This review addresses long-term (tens of years) seismic ground-motion forecasting (seismic hazard assessment) in the presence of alternative computational models (the so-called epistemic uncertainty affecting hazard estimates). We review the different approaches that have been proposed to manage epistemic uncertainty in the context of probabilistic seismic hazard assessment (PSHA). Ex- ante procedures (based on the combination of expert judgments about inherent characteristics of the PSHA model) and ex- post approaches (based on empirical comparison of model outcomes and observations) should not be considered as mutually exclusive alternatives but can be combined in a coherent Bayesian view. Therefore, we propose a procedure that allows a better exploitation of available PSHA models to obtain comprehensive estimates, which account for both epistemic and aleatory uncertainty. We also discuss the respective roles of empirical ex-post scoring and testing of alternative models concurring in the development of comprehensive hazard maps. In order to show how the proposed procedure may work, we also present a tentative application to the Italian area. In particular, four PSHA models are evaluated ex-post against macroseismic effects actually observed in a large set of Italian municipalities during the time span 1957-2006. This analysis shows that, when the whole Italian area is considered, all the models provide estimates that do not agree with the observations. However, two of them provide results that are compatible with observations, when a subregion of Italy (Apulia Region) is considered. By focusing on this area, we computed a comprehensive hazard curve for a single locality in order to show the feasibility of the proposed procedure.

  14. Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul

    Directory of Open Access Journals (Sweden)

    Z. Gülerce

    2017-12-01

    Full Text Available This contribution provides an updated planar seismic source characterization (SSC model to be used in the probabilistic seismic hazard assessment (PSHA for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

  15. Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul

    Science.gov (United States)

    Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin

    2017-12-01

    This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

  16. Seismic hazard assessment for Guam and the Northern Mariana Islands

    Science.gov (United States)

    Mueller, Charles S.; Haller, Kathleen M.; Luco, Nicholas; Petersen, Mark D.; Frankel, Arthur D.

    2012-01-01

    We present the results of a new probabilistic seismic hazard assessment for Guam and the Northern Mariana Islands. The Mariana island arc has formed in response to northwestward subduction of the Pacific plate beneath the Philippine Sea plate, and this process controls seismic activity in the region. Historical seismicity, the Mariana megathrust, and two crustal faults on Guam were modeled as seismic sources, and ground motions were estimated by using published relations for a firm-rock site condition. Maps of peak ground acceleration, 0.2-second spectral acceleration for 5 percent critical damping, and 1.0-second spectral acceleration for 5 percent critical damping were computed for exceedance probabilities of 2 percent and 10 percent in 50 years. For 2 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.94 gravitational acceleration at Guam and 0.57 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 2.86 gravitational acceleration at Guam and 1.75 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.61 gravitational acceleration at Guam and 0.37 gravitational acceleration at Saipan. For 10 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.49 gravitational acceleration at Guam and 0.29 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 1.43 gravitational acceleration at Guam and 0.83 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.30 gravitational acceleration at Guam and 0.18 gravitational acceleration at Saipan. The dominant hazard source at the islands is upper Benioff-zone seismicity (depth 40–160 kilometers). The large probabilistic ground motions reflect the strong concentrations of this activity below the arc, especially near Guam.

  17. Seismic Hazard characterization study using an earthquake source with Probabilistic Seismic Hazard Analysis (PSHA) method in the Northern of Sumatra

    International Nuclear Information System (INIS)

    Yahya, A.; Palupi, M. I. R.; Suharsono

    2016-01-01

    Sumatra region is one of the earthquake-prone areas in Indonesia because it is lie on an active tectonic zone. In 2004 there is earthquake with a moment magnitude of 9.2 located on the coast with the distance 160 km in the west of Nanggroe Aceh Darussalam and triggering a tsunami. These events take a lot of casualties and material losses, especially in the Province of Nanggroe Aceh Darussalam and North Sumatra. To minimize the impact of the earthquake disaster, a fundamental assessment of the earthquake hazard in the region is needed. Stages of research include the study of literature, collection and processing of seismic data, seismic source characterization and analysis of earthquake hazard by probabilistic methods (PSHA) used earthquake catalog from 1907 through 2014. The earthquake hazard represented by the value of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) in the period of 0.2 and 1 second on bedrock that is presented in the form of a map with a return period of 2475 years and the earthquake hazard curves for the city of Medan and Banda Aceh. (paper)

  18. Application of a time probabilistic approach to seismic landslide hazard estimates in Iran

    Science.gov (United States)

    Rajabi, A. M.; Del Gaudio, V.; Capolongo, D.; Khamehchiyan, M.; Mahdavifar, M. R.

    2009-04-01

    Iran is a country located in a tectonic active belt and is prone to earthquake and related phenomena. In the recent years, several earthquakes caused many fatalities and damages to facilities, e.g. the Manjil (1990), Avaj (2002), Bam (2003) and Firuzabad-e-Kojur (2004) earthquakes. These earthquakes generated many landslides. For instance, catastrophic landslides triggered by the Manjil Earthquake (Ms = 7.7) in 1990 buried the village of Fatalak, killed more than 130 peoples and cut many important road and other lifelines, resulting in major economic disruption. In general, earthquakes in Iran have been concentrated in two major zones with different seismicity characteristics: one is the region of Alborz and Central Iran and the other is the Zagros Orogenic Belt. Understanding where seismically induced landslides are most likely to occur is crucial in reducing property damage and loss of life in future earthquakes. For this purpose a time probabilistic approach for earthquake-induced landslide hazard at regional scale, proposed by Del Gaudio et al. (2003), has been applied to the whole Iranian territory to provide the basis of hazard estimates. This method consists in evaluating the recurrence of seismically induced slope failure conditions inferred from the Newmark's model. First, by adopting Arias Intensity to quantify seismic shaking and using different Arias attenuation relations for Alborz - Central Iran and Zagros regions, well-established methods of seismic hazard assessment, based on the Cornell (1968) method, were employed to obtain the occurrence probabilities for different levels of seismic shaking in a time interval of interest (50 year). Then, following Jibson (1998), empirical formulae specifically developed for Alborz - Central Iran and Zagros, were used to represent, according to the Newmark's model, the relation linking Newmark's displacement Dn to Arias intensity Ia and to slope critical acceleration ac. These formulae were employed to evaluate

  19. CPT site characterization for seismic hazards in the New Madrid seismic zone

    Science.gov (United States)

    Liao, T.; Mayne, P.W.; Tuttle, M.P.; Schweig, E.S.; Van Arsdale, R.B.

    2002-01-01

    A series of cone penetration tests (CPTs) were conducted in the vicinity of the New Madrid seismic zone in central USA for quantifying seismic hazards, obtaining geotechnical soil properties, and conducting studies at liquefaction sites related to the 1811-1812 and prehistoric New Madrid earthquakes. The seismic piezocone provides four independent measurements for delineating the stratigraphy, liquefaction potential, and site amplification parameters. At the same location, two independent assessments of soil liquefaction susceptibility can be made using both the normalized tip resistance (qc1N) and shear wave velocity (Vs1). In lieu of traditional deterministic approaches, the CPT data can be processed using probability curves to assess the level and likelihood of future liquefaction occurrence. ?? 2002 Elsevier Science Ltd. All rights reserved.

  20. Analysis of the seismic hazard to an underground waste repository

    International Nuclear Information System (INIS)

    Wight, L.H.

    1979-01-01

    Conclusions are: The consequence associated with intense vibratory shaking of a well-designed repository is essentially negligible. The specification of an appropriate seismic vibratory design criteria could best be accomplished with a Bayesian seismic hazard assessment, using geologic slip rates as input. The consequence associated with fault displacement is very site specific and dependent on the host geologic media and its permeability changes in response to fault displacement. The probability of faulting through a repository in its million year design life is rather high, principally because of a high probability of primary or secondary faulting on undetected faults. The faulting probability can be minimized by deploying sophisticated site certification programs. High resolution microseismic surveillance seems to be most appropriate. The author's judgement is that the repository simulation program can neglect consequences associated with shaking of the repository, but that the probability of significant fault displacement through the repository during its design life should be conservatively taken as one

  1. Seismic hazard evaluation for major cities in Madagascar

    International Nuclear Information System (INIS)

    Razafindrakoto, Hoby N.T.; Rambolamanana, Gerard; Panza, Giuliano F.

    2009-09-01

    The seismic hazard in some areas in Madagascar has been assessed at regional scale in terms of peak ground motion values (displacement, velocity, acceleration) and their periods, following the Neodeterministic approach, based on the computation of realistic synthetic seismograms. The main data input integrates all available tectonic, seismicity and structural model information. The largest peak values are 1.6cm/s for the velocity, 0.03g for the acceleration and more than 0.5cm for the displacement. These values are consistent within a range of macroseismic intensity from VI to VII MCS, and indicate that relatively simple prevention measures and retrofitting actions may guarantee a high safety level and a well sustainable development. (author)

  2. A deterministic seismic hazard map of India and adjacent areas

    International Nuclear Information System (INIS)

    Parvez, Imtiyaz A.; Vaccari, Franco; Panza, Giuliano

    2001-09-01

    A seismic hazard map of the territory of India and adjacent areas has been prepared using a deterministic approach based on the computation of synthetic seismograms complete of all main phases. The input data set consists of structural models, seismogenic zones, focal mechanisms and earthquake catalogue. The synthetic seismograms have been generated by the modal summation technique. The seismic hazard, expressed in terms of maximum displacement (DMAX), maximum velocity (VMAX), and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid of 0.2 deg. x 0.2 deg. over the studied territory. The estimated values of the peak ground acceleration are compared with the observed data available for the Himalayan region and found in good agreement. Many parts of the Himalayan region have the DGA values exceeding 0.6 g. The epicentral areas of the great Assam earthquakes of 1897 and 1950 represent the maximum hazard with DGA values reaching 1.2-1.3 g. (author)

  3. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    Science.gov (United States)

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  4. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  5. Digging Our Own Holes: Institutional Perspectives on Seismic Hazards

    Science.gov (United States)

    Stein, S.; Tomasello, J.

    2005-12-01

    It has been observed that there are no true students of the earth; instead, we each dig our own holes and sit in them. A similar situation arises in attempts to assess the hazards of earthquakes and other natural disasters and to develop strategies to mitigate them. Ideally, we would like to look at the interests of society as a whole and develop strategies that best balance hazard mitigation with alternative uses of resources. Doing so, however, is difficult for several reasons. First, estimating seismic hazards requires assumptions about the size, recurrence, and shaking from future earthquakes, none of which are well known. Second, we have to chose a definition of seismic hazard, which is even more arbitrary and at least as significant about future earthquakes. Third, mitigating the risks involves economic and policy issues as well as the scientific one of estimating the hazard itself and the engineering one of designing safe structures. As a result, different public and private organizations with different institutional perspectives naturally adopt different approaches. Most organizations have a single focus. For example, those focusing on economic development tend to discount hazards, whereas emergency management groups tend to accentuate them. Organizations with quasi-regulatory duties (BSSC, FEMA, USGS) focus on reducing losses in future earthquakes without considering the cost of mitigation measures or how this use of resources should be balanced with alternative uses of resources that could mitigate other losses. Some organizations, however, must confront these tradeoffs directly because they allocate resources internally. Hence hospitals implicitly trade off more earthquake resistant construction with treating uninsured patients, highway departments balance stronger bridges with other safety improvements, and schools balance safer buildings with after school programs. These choices are complicated by the fact that such infrastructure typically has longer

  6. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  7. Seismic Hazard Legislation in California: Challenges and Changes

    Science.gov (United States)

    Testa, S. M.

    2015-12-01

    Seismic hazards in California are legislatively controlled by three specific Acts: the Field Act of 1933; the Alquist-Priolo Earthquake Fault Zoning Act (AP) of 1975; and the Seismic Hazards Mapping Act (SHMA) of 1980. The Field Act recognized the need for earthquake resistant construction for California schools and banned unreinforced masonry buildings, and imposed structural design under seismic conditions. The AP requires the California Geological Survey (CGS) to delineate "active fault zones" for general planning and mitigation by various state and local agencies. Under the AP, surface and near-surface faults are presumed active (about 11,000 years before present) unless proven otherwise; and can only be mitigated by avoidance (setback zones). The SHMA requires that earthquake-induced landslides, liquefaction zones, high ground accelerations, tsunamis and seiches similarly be demarcated on CGS-issued maps. Experience over the past ~45 years and related technological advances now show that more than ~95 percent of seismically induced damage and loss of life stems from high ground accelerations, from related ground deformation and from catastrophic structural failure, often far beyond State-mapped AP zones. The SHMA therefore enables the engineering community to mitigate natural hazards from a holistic standpoint that considers protection of public health, safety and welfare. In conformance with the SHMA, structural design and related planning and building codes focus on acceptable risk for natural hazards with a typical recurrence of ~100 yrs to a few thousand years. This contrasts with the current AP "total avoidance" for surface-fault rupture that may have occurred within the last 11,000 years. Accordingly, avoidance may be reasonable for well expressed surface faults in high-density urban areas or where relative fault activity is uncertain. However, in the interest of overall public, health and safety, and for consistency with the SHMA and current

  8. Probabilistic seismic hazard in terms of intensities for Bulgaria and Romania – updated hazard maps

    Directory of Open Access Journals (Sweden)

    G. Leydecker

    2008-12-01

    Full Text Available Since 2007 Bulgaria and Romania are members of the European Union. All member states have to introduce the European earthquake building code EUROCODE 8 (EC 8 in the coming years. Therefore, new seismic hazard maps have to be calculated according to the recommendations in EC 8. Here the authors present a novel approach to compute such hazard maps. We prefer to use the macroseismic intensity as hazard parameter because of two reasons:

    - The irregular azimuthal attenuation pattern of the Vrancea intermediate depth earthquakes can be advantageously taken into account by using detailed macroseismic maps.

    - The intensity is directly related to the degree of damage and is the original information in the historical earthquake catalogues.

    The main base of our probabilistic analysis is the earthquake catalogue for SE-Europe (Shebalin et al., 1998 in combination with national and regional catalogues. Fore- and aftershocks were removed. Seismic source zones inside an area of about 200 km around Romania and Bulgaria were defined based on seismicity, neotectonics and geological development. For each seismic source the intensity-frequency relation was calculated and a maximum possible earthquake as well as a seismogenic depth was estimated. An appropriate attenuation law was assumed. To cope with the irregular isoseismals of the Vrancea intermediate depth earthquakes, a factor Ω was included in the macroseismic attenuation law.

    Using detailed macroseismic maps of three strong intermediate depth earthquakes, Ω was calculated for each observation. Strong local variations of Ω are avoided by averaging within grid cells of 0.5 degree in longitude and 0.25 degree in latitude.

    The contributions of all seismic sources, the crustal normal depth source zones and the Vrancea intermediate depth zone, were summed up and the annual probability of exceedance was calculated. The contribution of the Vrancea intermediate depth

  9. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  10. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  11. Seismic rupture study using near-source data: application to seismic hazard assessment

    International Nuclear Information System (INIS)

    Hernandez, Bruno

    2000-01-01

    This work presents seismic source studies using near-field data. In accordance with the quality and the quantity of available data we developed and applied various methods to characterize the seismic source. Macro-seismic data are used to verify if simple and robust methods used on recent instrumental earthquakes may provide a good tool to calibrate historical events in France. These data are often used to characterize earthquakes to be taken into account for seismic hazard assessment in moderate seismicity regions. Geodetic data (SAR, GPS) are used to estimate the slip distribution on the fault during the 1992, Landers, California earthquake. These data are also used to precise the location and the geometry of the main events of the 1997, Colfiorito, central Italy, earthquake sequence. Finally, the strong motions contain the most complete information about rupture process. These data are used to discriminate between two possible fault planes of the 1999, north India, Chamoli earthquake. The strong motions recorded close to the 1999, Mexico, Oaxaca earthquake are used to constrain the rupture history. Strong motions a.re also used in combination with geodetic data to access the rupture history of the Landers earthquake and the main events of the Colfiorito seismic sequence. For the Landers earthquake, the data quality and complementarity offered the possibility to describe the rupture development with accuracy. The large heterogeneities in both slip amplitude and rupture velocity variations suggest that the rupture propagates by breaking successive asperities rather than by propagating like a pulse at constant velocity. The rupture front slows as it encounters barriers and accelerates within main asperities. (author)

  12. Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository

    International Nuclear Information System (INIS)

    McConnell, K.I.; Blackford, M.E.; Ibrahim, A.K.

    1992-07-01

    The purpose of this Staff Technical Position (STP) is to provide guidance to the US Department of Energy (DOE) on acceptable geologic repository investigations that can be used to identify fault displacement hazards and seismic hazards. ne staff considers that the approach this STP takes to investigations of fault displacement and seismic phenomena is appropriate for the collection of sufficient data for input to analyses of fault displacement hazards and seismic hazards, both for the preclosure and postclosure performance periods. However, detailed analyses of fault displacement and seismic data, such as those required for comprehensive assessments of repository performance, may identify the need for additional investigations. Section 2.0 of this STP describes the 10 CFR Part 60 requirements that form the basis for investigations to describe fault displacement hazards and seismic hazards at a geologic repository. Technical position statements and corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical position topics in this STP are categorized thusly: (1) investigation considerations, (2) investigations for fault-displacement hazards, and (3) investigations for seismic hazards

  13. State of art of seismic design and seismic hazard analysis for oil and gas pipeline system

    Science.gov (United States)

    Liu, Aiwen; Chen, Kun; Wu, Jian

    2010-06-01

    The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design. Based on the importance of pipeline and consequence of its failure, oil and gas pipeline can be classified into three pipe classes, with exceeding probabilities over 50 years of 2%, 5% and 10%, respectively. Performance-based design requires more information about ground motion, which should be obtained by evaluating seismic safety for pipeline engineering site. Different from a city’s water pipeline network, the long-distance oil and gas pipeline system is a spatially linearly distributed system. For the uniform confidence of seismic safety, a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk. Considering the uncertainty of earthquake magnitude, the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis (DSHA). A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia. The estimation of fault displacement for a refined oil pipeline in Wenchuan M S8.0 earthquake is introduced as an example in this paper.

  14. Lawrence Livermore National Laboratory Probabilistic Seismic Hazard Codes Validation

    International Nuclear Information System (INIS)

    Savy, J B

    2003-01-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time-period. LLNL has been developing the methodology and codes in support of the Nuclear Regulatory Commission (NRC) needs for reviews of site licensing of nuclear power plants, since 1978. A number of existing computer codes have been validated and still can lead to ranges of hazard estimates in some cases. Until now, the seismic hazard community had not agreed on any specific method for evaluation of these codes. The Earthquake Engineering Research Institute (EERI) and the Pacific Engineering Earthquake Research (PEER) center organized an exercise in testing of existing codes with the aim of developing a series of standard tests that future developers could use to evaluate and calibrate their own codes. Seven code developers participated in the exercise, on a voluntary basis. Lawrence Livermore National laboratory participated with some support from the NRC. The final product of the study will include a series of criteria for judging of the validity of the results provided by a computer code. This EERI/PEER project was first planned to be completed by June of 2003. As the group neared completion of the tests, the managing team decided that new tests were necessary. As a result, the present report documents only the work performed to this point. It demonstrates that the computer codes developed by LLNL perform all calculations correctly and as intended. Differences exist between the results of the codes tested, that are attributed to a series of assumptions, on the parameters and models, that the developers had to make. The managing team is planning a new series of tests to help in reaching a consensus on these assumptions

  15. CRISIS2012: An Updated Tool to Compute Seismic Hazard

    Science.gov (United States)

    Ordaz, M.; Martinelli, F.; Meletti, C.; D'Amico, V.

    2013-05-01

    CRISIS is a computer tool for probabilistic seismic hazard analysis (PSHA), whose development started in the late 1980's at the Instituto de Ingeniería, UNAM, Mexico. It started circulating outside the Mexican borders at the beginning of the 1990's, when it was first distributed as part of SEISAN tools. Throughout the years, CRISIS has been used for seismic hazard studies in several countries in Latin America (Mexico, Guatemala, Belize, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Ecuador, Peru, Argentina and Chile), and in many other countries of the World. CRISIS has always circulated free of charge for non-commercial applications. It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves. CRISIS has evolved from a rather simple FORTRAN code to a relatively complex program with a friendly graphical interface, able to handle a variety of modeling possibilities for source geometries, seismicity descriptions and ground motion prediction models (GMPM). We will describe some of the improvements made for the newest version of the code: CRISIS 2012.These improvements, some of which were made in the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department), include: A wider variety of source geometries A wider variety of seismicity models, including the ability to handle non-Poissonian occurrence models and Poissonian smoothed-seismicity descriptions. Enhanced capabilities for using different kinds of GMPM: attenuation tables, built-in models and generalized attenuation models. In the case of built-in models, there is, by default, a set ready to use in CRISIS, but additional custom GMPMs

  16. The 2014 United States National Seismic Hazard Model

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Mueller, Charles; Haller, Kathleen; Frankel, Arthur; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen; Boyd, Oliver; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nicolas; Wheeler, Russell; Williams, Robert; Olsen, Anna H.

    2015-01-01

    New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.

  17. Deformation patterns and seismic hazard along the eastern Sunda margin

    Science.gov (United States)

    Kopp, Heidrun; Djajadihardja, Yusuf; Flueh, Ernst R.; Hindle, David; Klaeschen, Dirk; Mueller, Christian; Planert, Lars; Reichert, Christian; Shulgin, Alexey; Wittwer, Andreas

    2010-05-01

    The eastern Sunda margin offshore Java, Bali, Lombok and Sumba is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our contribution evaluates the differences in architecture and evolution along the Java forearc from a marine perspective to better understand the variation in tectonic styles and segmentation of the convergent margin, including its seismic risk potential.

  18. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    Science.gov (United States)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  19. Seismic and tsunami hazard in Puerto Rico and the Virgin Islands

    Science.gov (United States)

    Dillon, William P.; Frankel, Arthur D.; Mueller, Charles S.; Rodriguez, Rafael W.; ten Brink, Uri S.

    1999-01-01

    first day of the workshop, participants from universities, federal institutions, and consulting firms in Puerto Rico, the Virgin Islands, the continental U.S., Dominican Republic, and Europe reviewed the present state of knowledge including a review and discussion of present plate models, recent GPS and seismic reflection data, seismicity, paleoseismology, and tsunamis. The state of earthquake/tsunami studies in Puerto Rico was presented by several faculty members from the University of Puerto Rico at Mayaguez. A preliminary seismic hazard map was presented by the USGS and previous hazard maps and economic loss assessments were considered. During the second day, the participants divided into working groups and prepared specific recommendations for future activities in the region along the six following topics below. Highlights of these recommended activities are:Marine geology and geophysics – Acquire deep-penetration seismic reflection and refraction data, deploy temporary ocean bottom seismometer arrays to record earthquakes, collect high-resolution multibeam bathymetry and side scan sonar data of the region, and in particular, the near shore region, and conduct focussed high-resolution seismic studies around faults. Determine slip rates of specific offshore faults. Assemble a GIS database for available marine geological and geophysical data.Paleoseismology and active faults - Field reconnaissance aimed at identifying Quaternary faults and determining their paleoseismic chronology and slip rates, as well as identifying and dating paleoliquefaction features from large earthquakes. Quaternary mapping of marine terraces, fluvial terraces and basins, beach ridges, etc., to establish framework for understanding neotectonic deformation of the island. Interpretation of aerial photography to identify possible Quaternary faults.Earthquake seismology – Determine an empirical seismic attenuation function using observations from local seismic networks and recently

  20. A national seismographic network for assessing seismic hazards

    International Nuclear Information System (INIS)

    Masse, R.P.; Murphy, A.J.

    1989-01-01

    To access the seismic hazard of a region and to establish the design and construction criteria for critical facilities such as nuclear power plants, detailed information is required on the frequency of occurrence, geographical distribution, magnitude, and energy spectra of earthquakes. Also important is information on the frequency-dependent attenuation of seismic waves. This information can all be obtained from data recorded by networks of seismograph stations. A new seismograph network for the US which takes advantage of advances in technology is currently under development. This network is the US National Seismograph Network (USNSN). The USNSN is a cooperative effort between the National Earthquake Information Center (NEIC) of the US Geological survey and the Nuclear Regulatory Commission. The USNSN will be installed and operated by the NEIC. The network will consist of approximately 150 seismograph stations distributed across the lower 48 states and across Alaska, Hawaii, Puerto Rico, and the Virgin Islands. The design goal for the network is the on-scale recording by at least five well-distributed stations of any event of magnitude 2.5 or larger in the continental US, Hawaii, and Puerto Rico, and of any event of magnitude 3.5 or larger in Alaska. The rapid access to all USNSN data will be provided by the NEIC. This will be accomplished both via a dial-up capability to the event waveform data base and by satellite transmission in a broadcast mode. All earthquake data will also be distributed on compact disk with read only memory (CD-ROM) to all institutions having an interest in the seismic data

  1. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  2. Real-time Microseismic Processing for Induced Seismicity Hazard Detection

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, Eric M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-31

    Induced seismicity is inherently associated with underground fluid injections. If fluids are injected in proximity to a pre-existing fault or fracture system, the resulting elevated pressures can trigger dynamic earthquake slip, which could both damage surface structures and create new migration pathways. The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  3. Probabilistic seismic hazard maps from seismicity patterns analysis: the Iberian Peninsula case

    Directory of Open Access Journals (Sweden)

    A. Jiménez

    2004-01-01

    Full Text Available Earthquake prediction is a main topic in Seismology. Here, the goal is to know the correlation between the seismicity at a certain place at a given time with the seismicity at the same place, but at a following interval of time. There are no ways for exact predictions, but one can wonder about the causality relations between the seismic characteristics at a given time interval and another in a region. In this paper, a new approach to this kind of studies is presented. Tools which include cellular automata theory and Shannon's entropy are used. First, the catalogue is divided into time intervals, and the region into cells. The activity or inactivity of each cell at a certain time is described using an energy criterion; thus a pattern which evolves over time is given. The aim is to find the rules of the stochastic cellular automaton which best fits the evolution of the pattern. The neighborhood utilized is the cross template (CT. A grid search is made to choose the best model, being the mutual information between the different times the function to be maximized. This function depends on the size of the cells β on and the interval of time τ which is considered for studying the activity of a cell. With these β and τ, a set of probabilities which characterizes the evolution rules is calculated, giving a probabilistic approach to the spatiotemporal evolution of the region. The sample catalogue for the Iberian Peninsula covers since 1970 till 2001. The results point out that the seismic activity must be deduced not only from the past activity at the same region but also from its surrounding activity. The time and spatial highest interaction for the catalogue used are of around 3.3 years and 290x165 km2, respectively; if a cell is inactive, it will continue inactive with a high probability; an active cell has around the 60% probability of continuing active in the future. The Probabilistic Seismic Hazard Map obtained marks the main seismic active

  4. The 1909 Taipei earthquake: implication for seismic hazard in Taipei

    Science.gov (United States)

    Kanamori, Hiroo; Lee, William H.K.; Ma, Kuo-Fong

    2012-01-01

    The 1909 April 14 Taiwan earthquake caused significant damage in Taipei. Most of the information on this earthquake available until now is from the written reports on its macro-seismic effects and from seismic station bulletins. In view of the importance of this event for assessing the shaking hazard in the present-day Taipei, we collected historical seismograms and station bulletins of this event and investigated them in conjunction with other seismological data. We compared the observed seismograms with those from recent earthquakes in similar tectonic environments to characterize the 1909 earthquake. Despite the inevitably large uncertainties associated with old data, we conclude that the 1909 Taipei earthquake is a relatively deep (50–100 km) intraplate earthquake that occurred within the subducting Philippine Sea Plate beneath Taipei with an estimated M_W of 7 ± 0.3. Some intraplate events elsewhere in the world are enriched in high-frequency energy and the resulting ground motions can be very strong. Thus, despite its relatively large depth and a moderately large magnitude, it would be prudent to review the safety of the existing structures in Taipei against large intraplate earthquakes like the 1909 Taipei earthquake.

  5. Geoethical and socio-political aspects of seismic and tsunami hazard assessment, quantification and mapping

    Science.gov (United States)

    Tinti, Stefano; Armigliato, Alberto

    2016-04-01

    Seismic hazard and, more recently, tsunami hazard assessments have been undertaken in several countries of the world and globally for the whole Earth planet with the aim of providing a scientifically sound basis to the engineers, technicians, urban and industrial planners, politicians, civil protection operators and in general to the authorities for devising rational risk mitigation strategies and corresponding adequate policies. The main point of this presentation is that the chief-value of all seismic and tsunami hazard studies (including theory, concept, quantification and mapping) resides in the social and political values of the provided products, which is a standpoint entailing a number of relevant geoethical implications. The most relevant implication regards geoscientists who are the subjects mainly involved in carrying out hazard evaluations. Viewed from the classical perspective, the main ethical obligations of geoscientists are restricted to performing hazard estimations in the best possible way from a scientific point of view, which means selecting the "best" available data, adopting sound theoretical models, making use of rigorous methods… What is outlined here, is that this is an insufficient minimalistic position, since it overlooks the basic socio-political and therefore practical value of the hazard-analysis final products. In other words, if one views hazard assessment as a production process leading from data and theories (raw data and production means) to hazard maps (products), the criterion to judge whether it is good or bad needs also to include the usability factor. Seismic and tsunami hazard reports and maps are products that should be usable, which means that they should meet user needs and requirements, and therefore they should be evaluated according to how much they are clearly understandable to, and appropriate for, making-decision users. In the traditional view of a science serving the society, one could represent the interaction

  6. How well can we test probabilistic seismic hazard maps?

    Science.gov (United States)

    Vanneste, Kris; Stein, Seth; Camelbeeck, Thierry; Vleminckx, Bart

    2017-04-01

    Recent large earthquakes that gave rise to shaking much stronger than shown in probabilistic seismic hazard (PSH) maps have stimulated discussion about how well these maps forecast future shaking. These discussions have brought home the fact that although the maps are designed to achieve certain goals, we know little about how well they actually perform. As for any other forecast, this question involves verification and validation. Verification involves assessing how well the algorithm used to produce hazard maps implements the conceptual PSH model ("have we built the model right?"). Validation asks how well the model forecasts the shaking that actually occurs ("have we built the right model?"). We explore the verification issue by simulating shaking histories for an area with assumed uniform distribution of earthquakes, Gutenberg-Richter magnitude-frequency relation, Poisson temporal occurrence model, and ground-motion prediction equation (GMPE). We compare the maximum simulated shaking at many sites over time with that predicted by a hazard map generated for the same set of parameters. The Poisson model predicts that the fraction of sites at which shaking will exceed that of the hazard map is p = 1 - exp(-t/T), where t is the duration of observations and T is the map's return period. Exceedance is typically associated with infrequent large earthquakes, as observed in real cases. The ensemble of simulated earthquake histories yields distributions of fractional exceedance with mean equal to the predicted value. Hence, the PSH algorithm appears to be internally consistent and can be regarded as verified for this set of simulations. However, simulated fractional exceedances show a large scatter about the mean value that decreases with increasing t/T, increasing observation time and increasing Gutenberg-Richter a-value (combining intrinsic activity rate and surface area), but is independent of GMPE uncertainty. This scatter is due to the variability of earthquake

  7. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  8. PSHAe (Probabilistic Seismic Hazard enhanced): the case of Istanbul.

    Science.gov (United States)

    Stupazzini, Marco; Allmann, Alexander; Infantino, Maria; Kaeser, Martin; Mazzieri, Ilario; Paolucci, Roberto; Smerzini, Chiara

    2016-04-01

    The Probabilistic Seismic Hazard Analysis (PSHA) only relying on GMPEs tends to be insufficiently constrained at short distances and data only partially account for the rupture process, seismic wave propagation and three-dimensional (3D) complex configurations. Given a large and representative set of numerical results from 3D scenarios, analysing the resulting database from a statistical point of view and implementing the results as a generalized attenuation function (GAF) into the classical PSHA might be an appealing way to deal with this problem (Villani et al., 2014). Nonetheless, the limited amount of computational resources or time available tend to pose substantial constrains in a broad application of the previous method and, furthermore, the method is only partially suitable for taking into account the spatial correlation of ground motion as modelled by each forward physics-based simulation (PBS). Given that, we envision a streamlined and alternative implementation of the previous approach, aiming at selecting a limited number of scenarios wisely chosen and associating them a probability of occurrence. The experience gathered in the past year regarding 3D modelling of seismic wave propagation in complex alluvial basin (Pilz et al., 2011, Guidotti et al., 2011, Smerzini and Villani, 2012) allowed us to enhance the choice of simulated scenarios in order to explore the variability of ground motion, preserving the full spatial correlation necessary for risk modelling, on one hand and on the other the simulated losses for a given location and a given building stock. 3D numerical modelling of scenarios occurring the North Anatolian Fault in the proximity of Istanbul are carried out through the spectral element code SPEED (http://speed.mox.polimi.it). The results are introduced in a PSHA, exploiting the capabilities of the proposed methodology against a traditional approach based on GMPE. References Guidotti R, M Stupazzini, C Smerzini, R Paolucci, P Ramieri

  9. Assessment of seismic hazards along the northern Gulf of Aqaba

    Science.gov (United States)

    Abueladas, Abdel-Rahman Aqel

    Aqaba and Elat are very important port and recreation cities for the Hashemite Kingdom of Jordan and Israel, respectively. The two cities are the most susceptible to damage from a destructive future earthquake because they are located over the tectonically active Dead Sea transform fault (DST) that is the source of most of the major historical earthquakes in the region. The largest twentieth century earthquake on the DST, the magnitude Mw 7.2 Nuweiba earthquake of November 22, 1995, caused damage to structures in both cities. The integration of geological, geophysical, and earthquake engineering studies will help to assess the seismic hazards by determining the location and slip potential of active faults and by mapping areas of high liquefaction susceptibility. Ground Penetrating Radar (GPR) as a high resolution shallow geophysical tool was used to map the shallow active faults in Aqaba, Taba Sabkha area, and Elat. The GPR data revealed the onshore continuation of the Evrona, West Aqaba, Aqaba fault zones, and several transverse faults. The integration of offshore and onshore data confirm the extension of these faults along both sides of the Gulf of Aqaba. A 3D model of GPR data at one site in Aqaba indicates that the NW-trending transverse faults right laterally offset older than NE-trending faults. The most hazardous fault is the Evrona fault which extends north to the Tabs Sabkha. A geographic information system (GIS) database of the seismic hazard was created in order to facilitate the analyzing, manipulation, and updating of the input parameters. Liquefaction potential maps were created for the region based on analysis of borehole data. The liquefaction map shows high and moderate liquefaction susceptibility zones along the northern coast of the Gulf of Aqaba. In Aqaba several hotels are located within a high and moderate liquefaction zones. The Yacht Club, Aqaba, Ayla archaeological site, and a part of commercial area are also situated in a risk area. A part

  10. Studying geodesy and earthquake hazard in and around the New Madrid Seismic Zone

    Science.gov (United States)

    Boyd, Oliver Salz; Magistrale, Harold

    2011-01-01

    Workshop on New Madrid Geodesy and the Challenges of Understanding Intraplate Earthquakes; Norwood, Massachusetts, 4 March 2011 Twenty-six researchers gathered for a workshop sponsored by the U.S. Geological Survey (USGS) and FM Global to discuss geodesy in and around the New Madrid seismic zone (NMSZ) and its relation to earthquake hazards. The group addressed the challenge of reconciling current geodetic measurements, which show low present-day surface strain rates, with paleoseismic evidence of recent, relatively frequent, major earthquakes in the region. The workshop presentations and conclusions will be available in a forthcoming USGS open-file report (http://pubs.usgs.gov).

  11. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  12. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  13. The earthquake of January 13, 1915 and the seismic hazard of the area

    International Nuclear Information System (INIS)

    Scarascia Mugnozza, Gabriele; Hailemikael, Salomon; Martini, Guido

    2015-01-01

    The January 13, 1915, magnitude 7.0 Marsica Earthquake devastated the Fucino basin and surroundings, causing about 30,000 casualties and entirely destroying several towns, among which the major municipality of the area, the town of Avezzano. In this paper, we briefly review the main characteristics of the earthquake and its effects on the environment. Furthermore, based on the Italian building code and ongoing seismic microzonation investigations, we describe the seismic hazard of the area struck by the earthquake in terms of both probabilistic seismic hazard assessment and contribution of site effects on the seismic hazard estimate. All the studies confirm the very high level of seismic hazard of the Fucino territory [it

  14. Seismic Hazard Assessment for the Tianshui Urban Area, Gansu Province, China

    Directory of Open Access Journals (Sweden)

    Zhenming Wang

    2012-01-01

    Full Text Available A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity, and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX for seismic design of critical facility in Tianshui.

  15. Time-dependent probabilistic seismic hazard assessment and its application to Hualien City, Taiwan

    Directory of Open Access Journals (Sweden)

    C.-H. Chan

    2013-05-01

    Full Text Available Here, we propose a time-dependent probabilistic seismic hazard assessment and apply it to Hualien City, Taiwan. A declustering catalog from 1940 to 2005 was used to build up a long-term seismicity rate model using a smoothing Kernel function. We also evaluated short-term seismicity rate perturbations according to the rate-and-state friction model, and the Coulomb stress changes imparted by earthquakes from 2006 to 2010. We assessed both long-term and short-term probabilistic seismic hazards by considering ground motion prediction equations for crustal and subduction earthquakes. The long-term seismic hazard in Hualien City gave a PGA (peak ground acceleration of 0.46 g for the 2.1‰ annual exceedance probability. The result is similar to the levels determined in previous studies. Seismic hazards were significantly elevated following the 2007 ML =5.8 earthquake that occurred approximately 10 km from Hualien City. This work presents an assessment of a suitable mechanism for time-dependent probabilistic seismic hazard determinations using an updated earthquake catalog. Using minor model assumptions, our approach provides a suitable basis for rapid re-evaluations and will benefit decision-makers and public officials regarding seismic hazard mitigation.

  16. Seismic hazard assessment of the cultural heritage sites: A case study in Cappadocia (Turkey)

    Science.gov (United States)

    Seyrek, Evren; Orhan, Ahmet; Dinçer, İsmail

    2014-05-01

    Turkey is one of the most seismically active regions in the world. Major earthquakes with the potential of threatening life and property occur frequently here. In the last decade, over 50,000 residents lost their lives, commonly as a result of building failures in seismic events. The Cappadocia region is one of the most important touristic sites in Turkey. At the same time, the region has been included to the Word Heritage List by UNESCO at 1985 due to its natural, historical and cultural values. The region is undesirably affected by several environmental conditions, which are subjected in many previous studies. But, there are limited studies about the seismic evaluation of the region. Some of the important historical and cultural heritage sites are: Goreme Open Air Museum, Uchisar Castle, Ortahisar Castle, Derinkuyu Underground City and Ihlara Valley. According to seismic hazard zonation map published by the Ministry of Reconstruction and Settlement these heritage sites fall in Zone III, Zone IV and Zone V. This map show peak ground acceleration or 10 percent probability of exceedance in 50 years for bedrock. In this connection, seismic hazard assessment of these heritage sites has to be evaluated. In this study, seismic hazard calculations are performed both deterministic and probabilistic approaches with local site conditions. A catalog of historical and instrumental earthquakes is prepared and used in this study. The seismic sources have been identified for seismic hazard assessment based on geological, seismological and geophysical information. Peak Ground Acceleration (PGA) at bed rock level is calculated for different seismic sources using available attenuation relationship formula applicable to Turkey. The result of the present study reveals that the seismic hazard at these sites is closely matching with the Seismic Zonation map published by the Ministry of Reconstruction and Settlement. Keywords: Seismic Hazard Assessment, Probabilistic Approach

  17. Towards the Seismic Hazard Reassessment of Paks NPP (Hungary) Site: Seismicity and Sensitivity Studies

    Science.gov (United States)

    Toth, Laszlo; Monus, Peter; Gyori, Erzsebet; Grenerczy, Gyula; Janos Katona, Tamas; Kiszely, Marta

    2015-04-01

    In context of extension of Paks Nuclear Power Plant by new units, a comprehensive site seismic hazard evaluation program has been developed that is already approved by the Hungarian Authorities. This includes a 3D seismic survey, drilling of several deep boreholes, extensive geological mapping, and geophysical investigations at the site and its vicinity, as well as on near regional, and regional scale. Furthermore, all relevant techniques of modern space geodesy (GPS, PSInSAR) will be also utilized to construct a new seismotectonic model. The implementation of the project is still in progress. In the presentation, some important elements of the new seismic hazard assessment are highlighted, and some results obtained in the preliminary phase of the program are presented and discussed. The first and most important component of the program is the compilation of the seismological database that is developed on different time scale zooming on different event recurrence rates such as paleo-earthquakes (10-1/a). In 1995, Paks NPP installed and started to operate a sensitive microseismic monitoring network capable for locating earthquakes as small as magnitude 2.0 within about 100 km of the NPP site. During the two decades of operation, the microseismic monitoring network located some 2,000 earthquakes within the region of latitude 45.5 - 49 N and longitude 16 - 23 E. Out of the total number of events, 130 earthquakes were reported as 'felt events'. The largest earthquake was an event of ML 4.8, causing significant damage in the epicenter area. The results of microseismic monitoring provide valuable data for seismotectonic modelling and results in more accurate earthquake recurrence equations. The first modern PSHA of Paks NPP site was carried out in 1995. Complex site characterization project was implemented and hazard curves had been evaluated for 10-3 - 10-5 annual frequency. As a follow-up, PSHA results have been reviewed and updated in the frame of periodic safety

  18. Review of induced seismic hazard for Hot Dry Rock Project, Rosemanowes, Cornwall

    International Nuclear Information System (INIS)

    Skipp, B.O.; Woo, G.; Eldred, P.J.L.

    1991-01-01

    Geothermal energy installations perturb the earth's crust and so may provoke earthquakes. The 21st Dry Rock (HDR) Geothermal Project at Rosemanowes Quarry in Cornwall has given rise to low level unfelt acoustic emission and possibly small, felt earthquakes. This review of induced seismic hazard study examines the effects that the HDR Project could have on seismic events. Events which are modified by the project, in magnitude and time of occurrence, as well as those which might not have occurred at all were studied. From an examination of the literature and relevant seismicity models, a broad estimate of induced seismic hazard was established. (U.K)

  19. A new probabilistic seismic hazard assessment for greater Tokyo

    Science.gov (United States)

    Stein, R.S.; Toda, S.; Parsons, T.; Grunewald, E.; Blong, R.; Sparks, S.; Shah, H.; Kennedy, J.

    2006-01-01

    Tokyo and its outlying cities are home to one-quarter of Japan's 127 million people. Highly destructive earthquakes struck the capital in 1703, 1855 and 1923, the last of which took 105 000 lives. Fuelled by greater Tokyo's rich seismological record, but challenged by its magnificent complexity, our joint Japanese-US group carried out a new study of the capital's earthquake hazards. We used the prehistoric record of great earthquakes preserved by uplifted marine terraces and tsunami deposits (17 M???8 shocks in the past 7000 years), a newly digitized dataset of historical shaking (10 000 observations in the past 400 years), the dense modern seismic network (300 000 earthquakes in the past 30 years), and Japan's GeoNet array (150 GPS vectors in the past 10 years) to reinterpret the tectonic structure, identify active faults and their slip rates and estimate their earthquake frequency. We propose that a dislodged fragment of the Pacific plate is jammed between the Pacific, Philippine Sea and Eurasian plates beneath the Kanto plain on which Tokyo sits. We suggest that the Kanto fragment controls much of Tokyo's seismic behaviour for large earthquakes, including the damaging 1855 M???7.3 Ansei-Edo shock. On the basis of the frequency of earthquakes beneath greater Tokyo, events with magnitude and location similar to the M??? 7.3 Ansei-Edo event have a ca 20% likelihood in an average 30 year period. In contrast, our renewal (time-dependent) probability for the great M??? 7.9 plate boundary shocks such as struck in 1923 and 1703 is 0.5% for the next 30 years, with a time-averaged 30 year probability of ca 10%. The resulting net likelihood for severe shaking (ca 0.9g peak ground acceleration (PGA)) in Tokyo, Kawasaki and Yokohama for the next 30 years is ca 30%. The long historical record in Kanto also affords a rare opportunity to calculate the probability of shaking in an alternative manner exclusively from intensity observations. This approach permits robust estimates

  20. Approach to seismic hazard analysis for dam safety in the Sierra Nevada and Modoc Plateau of California

    International Nuclear Information System (INIS)

    Savage, W.U.; McLaren, M.K.; Edwards, W.D.; Page, W.D.

    1991-01-01

    Pacific Gas and Electric Company's hydroelectric generating system involves about 150 dams located in the Sierra Nevada and Modoc Plateau region of central and northern California. The utility's strategy for earthquake hazard assessment is described. The approach includes the following strategies: integrating regional tectonics, seismic geology, historical seismicity, microseismicity, and crustal structure to form a comprehensive regional understanding of the neotectonic setting; performing local studies to acquire data as needed to reduce uncertainties in geologic and seismic parameters of fault characteristics near specific dam sites; applying and extending recently developed geologic, seismologic, and earthquake engineering technologies to the current regional and site-specific information to evaluate fault characteristics, to estimate maximum earthquakes, and to characterize ground motion; and encouraging multiple independent reviews of earthquake hazard studies by conducting peer reviews, making field sites available to regulating agencies, and publishing results, methods and data in open literature. 46 refs., 8 tabs

  1. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  2. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    OpenAIRE

    Rey , Julien; Beauval , Céline; Douglas , John

    2018-01-01

    International audience; Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years’ worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very sho...

  3. Seismic design criteria and their application to major hazard plant within the United Kingdom

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.

    1982-12-01

    The nature of seismic motions and the implications are briefly described and the development of seismic design criteria for nuclear power plants in various countries is described including possible future developments. The seismicity of the United Kingdom is briefly reviewed leading to the present position on seismic design criteria for nuclear power plants within the United Kingdom. Damage from past destructive earthquakes is reviewed and the existing codes of practice and standards are described. Finally the effect of earthquakes on major hazard plant is discussed in general terms including the seismic analysis of a typical plant item. (author)

  4. Seismic hazard maps of Mexico, the Caribbean, and Central and South America

    Science.gov (United States)

    Tanner, J.G.; Shedlock, K.M.

    2004-01-01

    The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures due to an insufficient knowledge of existing seismic hazard and/or economic constraints. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. We have produced a suite of seismic hazard estimates for Mexico, the Caribbean, and Central and South America. One of the preliminary maps in this suite served as the basis for the Caribbean and Central and South America portion of the Global Seismic Hazard Map (GSHM) published in 1999, which depicted peak ground acceleration (pga) with a 10% chance of exceedance in 50 years for rock sites. Herein we present maps depicting pga and 0.2 and 1.0 s spectral accelerations (SA) with 50%, 10%, and 2% chances of exceedance in 50 years for rock sites. The seismicity catalog used in the generation of these maps adds 3 more years of data to those used to calculate the GSH Map. Different attenuation functions (consistent with those used to calculate the U.S. and Canadian maps) were used as well. These nine maps are designed to assist in global risk mitigation by providing a general seismic hazard framework and serving as a resource for any national or regional agency to help focus further detailed studies required for regional/local needs. The largest seismic hazard values in Mexico, the Caribbean, and Central and South America generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes. High hazard values occur in areas where shallow-to-intermediate seismicity occurs frequently. ?? 2004 Elsevier B.V. All rights reserved.

  5. SHEAT: a computer code for probabilistic seismic hazard analysis, user's manual

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Kondo, Masaaki; Abe, Kiyoharu; Tanaka, Toshiaki; Takani, Michio.

    1994-08-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. Seismic hazard is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site. With the SHEAT code, seismic hazard is calculated by the following two steps: (1) Modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquakes) is modelled based on the historical earthquake records, active fault data and expert judgement. (2) Calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT code. It includes: (1) Outlines of the code, which include overall concept, logical process, code structure, data file used and special characteristics of the code, (2) Functions of subprograms and analytical models in them, (3) Guidance of input and output data, and (4) Sample run results. The code has widely been used at JAERI to analyze seismic hazard at various nuclear power plant sites in japan. (author)

  6. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  7. Probabilistic seismic hazard map for Bulgaria as a basis for a new building code

    Directory of Open Access Journals (Sweden)

    S. D. Simeonova

    2006-01-01

    Full Text Available A seismic hazard map proposed as part of a new building code for Bulgaria is presented here on basis of the recommendations in EUROCODE 8. Seismic source zones within an area of about 200 km around Bulgaria were constructed considering seismicity, neotectonic and geological development. The most time consuming work was to establish a homogeneous earthquake catalogue out of different catalogues. The probabilistic seismic hazard assessment in terms of intensities is performed following Cornell (1968 with the program EQRISK (see McGuire, 1976, modified by us for use of intensities. To cope with the irregular isoseismals of the Vrancea intermediate depth earthquakes a special attenuation factor is introduced (Ardeleanu et al., 2005, using detailed macroseismic maps of three major earthquakes. The final seismic hazard is the combination of both contributions, of zones with crustal earthquakes and of the Vrancea intermediate depth earthquakes zone. Calculations are done for recurrence periods of 95, 475 and 10 000 years.

  8. Recent achievements of the neo-deterministic seismic hazard assessment in the CEI region

    International Nuclear Information System (INIS)

    Panza, G.F.; Vaccari, F.; Kouteva, M.

    2008-03-01

    A review of the recent achievements of the innovative neo-deterministic approach for seismic hazard assessment through realistic earthquake scenarios has been performed. The procedure provides strong ground motion parameters for the purpose of earthquake engineering, based on the deterministic seismic wave propagation modelling at different scales - regional, national and metropolitan. The main advantage of this neo-deterministic procedure is the simultaneous treatment of the contribution of the earthquake source and seismic wave propagation media to the strong motion at the target site/region, as required by basic physical principles. The neo-deterministic seismic microzonation procedure has been successfully applied to numerous metropolitan areas all over the world in the framework of several international projects. In this study some examples focused on CEI region concerning both regional seismic hazard assessment and seismic microzonation of the selected metropolitan areas are shown. (author)

  9. Technological hazards in the understanding of society

    International Nuclear Information System (INIS)

    Diepold, W.

    1977-01-01

    This is a discussion of how employees of industry, an important part of society, and how the consumers and hence the whole volume of society express their attitude with respect to technological hazards in their practical activities and how the conclusions can be drawn from this that the population is thoroughly familiar in dealing with potential hazards. (orig.) [de

  10. An innovative view to the seismic hazard from strong Vrancea intermediate-depth earthquakes: the case studies of Bucharest (Romania) and Russe (Bulgaria)

    International Nuclear Information System (INIS)

    Panza, G.F.; Cioflan, C.; Marmureanu, G.; Kouteva, M.; Paskaleva, I.; Romanelli, F.

    2003-04-01

    An advanced procedure for ground motion modelling, capable of synthesizing the seismic ground motion from basic understanding of fault mechanism and seismic wave propagation, is applied to compute seismic signals at Bucharest (Romania) and Russe, NE Bulgaria, due to the seismic hazard from intermediate-depth Vrancea earthquakes. The theoretically obtained signals are successfully compared with the available observations. For both case studies site response estimates along selected geological cross sections are provided for three recent, strong and intermediate-depth, Vrancea earthquakes: August 30, 1986 and May 30 and 31, 1990. The applied ground motion modelling technique has proved that it is possible to investigate the local effects, taking into account both the seismic source and the propagation path effects. The computation of realistic seismic input, utilising the huge amount of geological, geophysical and geotechnical data, already available, goes well beyond the conventional deterministic approach and gives an economically valid scientific tool for seismic microzonation. (author)

  11. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    Science.gov (United States)

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and

  12. Seismicity and Seismic Hazard along the Western part of the Eurasia-Nubia plate boundary

    Science.gov (United States)

    Bezzeghoud, Mourad; Fontiela, João; Ferrão, Celia; Borges, José Fernando; Caldeira, Bento; Dib, Assia; Ousadou, Farida

    2016-04-01

    The seismic phenomenon is the most damaging natural hazard known in the Mediterranean area. The western part of the Eurasia-Nubia plate boundary extends from the Azores to the Mediterranean region. The oceanic part of the plate boundary is well delimited from the Azores Islands, along the Azores-Gibraltar fault to approximately 12°W (west of the Strait of Gibraltar). From 12°W to 3.5°E, including the Iberia-Nubia region and extending to the western part of Algeria, the boundary is more diffuse and forms a wider area of deformation. The boundary between the Iberia and Nubia plates is the most complex part of the margin. This region corresponds to the transition from an oceanic boundary to a continental boundary, where Iberia and Nubia collide. Although most earthquakes along this plate boundary are shallow and generally have magnitudes less than 5.5, there have been several high-magnitude events. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss and considerable economic damage to the region. From 1920 to present, three earthquakes with magnitudes of about 8.0 (Mw 8.2, 25 November 1941; Ms 8.0, 25 February 1969; and Mw 7.9, 26 May 1975) occurred in the oceanic region, and four earthquakes with magnitudes of about 7.0 (Mw 7.1, 8 May 1939, Santa Maria Island and Mw 7.1, January 1980, Terceira and Graciosa Islands, both in the Azores; Ms 7.1, 20 May 1931, Azores-Gibraltar fracture zone; and Mw 7.3, 10 October 1980, El Asnam, Algeria) occurred along the western part of the Eurasia-Nubia plate boundary. In general, large earthquakes (M ≥7) occur within the oceanic region, with the exception of the El Asnam (Algeria) earthquakes. Some of these events caused extensive damage. The 1755 Lisbon earthquake (˜Mw 9) on the Portugal Atlantic margin, about 200 km W-SW of Cape St. Vincent, was followed by a tsunami and fires that caused the near-total destruction of Lisbon and adjacent areas. Estimates of the death toll in Lisbon alone (~70

  13. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    Science.gov (United States)

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  14. Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations

    Directory of Open Access Journals (Sweden)

    N.V. Silacheva

    2018-03-01

    Full Text Available As for many post-soviet countries, Kazakhstan's building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA (probabilistic hazard assessment procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ (General Seismic Zoning maps of the Kazakhstan territory and the SMZ (Probabilistic Seismic Microzoning maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity, but also engineering parameters (peak ground acceleration PGA. The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article. Keywords: Probabilistic seismic hazard assessment, Seismic zoning map, Peak ground acceleration, Seismic sources, Seismotectonic setting, Seismic regime, Ground motion prediction equations

  15. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations

    International Nuclear Information System (INIS)

    2015-06-01

    IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations, published in 2010, covers all aspects of site evaluation relating to seismic hazards and recommends the use of prehistoric, historical and instrumental earthquake data in seismic hazard assessments. Prehistoric data on earthquakes cover a much longer period than do historical and instrumental data. However, gathering such data is generally difficult in most regions of the world, owing to an absence of human records. Prehistoric data on earthquakes can be obtained through the use of palaeoseismic techniques. This publication describes the current status and practices of palaeoseismology, in order to support Member States in meeting the recommendations of SSG-9 and in establishing the necessary earthquake related database for seismic hazard assessment and reassessment. At a donors’ meeting of the International Seismic Safety Centre Extrabudgetary Project in January 2011, it was suggested to develop detailed guidelines on seismic hazards. Soon after the meeting, the disastrous Great East Japan Earthquake and Tsunami of 11 March 2011 and the consequent accident at the Fukushima Daiichi nuclear power plant occurred. The importance of palaeoseismology for seismic hazard assessment in site evaluation was highlighted by the lessons learned from the Fukushima Daiichi nuclear power plant accident. However, no methodology for performing investigations using palaeoseismic techniques has so far been available in an IAEA publication. The detailed guidelines and practical tools provided here will be of value to nuclear power plant operating organizations, regulatory bodies, vendors, technical support organizations and researchers in the area of seismic hazard assessment in site evaluation for nuclear installations, and the information will be of importance in support of hazard assessments in the future

  16. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  17. Some preliminary results of a worldwide seismicity estimation: a case study of seismic hazard evaluation in South America

    Directory of Open Access Journals (Sweden)

    C. V. Christova

    2000-06-01

    Full Text Available Global data have been widely used for seismicity and seismic hazard assessment by seismologists. In the present study we evaluate worldwide seismicity in terms of maps of maximum observed magnitude (Mmax, seismic moment (M 0 and seismic moment rate (M 0S. The data set used consists of a complete and homogeneous global catalogue of shallow (h £ 60 km earthquakes of magnitude MS ³ 5.5 for the time period 1894-1992. In order to construct maps of seismicity and seismic hazard the parameters a and b derived from the magnitude-frequency relationship were estimated by both: a the least squares, and b the maximum likelihood, methods. The values of a and b were determined considering circles centered at each grid point 1° (of a mesh 1° ´1° and of varying radius, which starts from 30 km and moves with a step of 10 km. Only a and b values which fulfill some predefined conditions were considered in the further procedure for evaluating the seismic hazard maps. The obtained worldwide M max distribution in general delineates the contours of the plate boundaries. The highest values of M max observed are along the circum-Pacific belt and in the Himalayan area. The subduction plate boundaries are characterized by the largest amount of M 0 , while areas of continental collision are next. The highest values of seismic moment rate (per 1 year and per equal area of 10 000 km 2 are found in the Southern Himalayas. The western coasts of U.S.A., Northwestern Canada and Alaska, the Indian Ocean and the eastern rift of Africa are characterized by high values of M 0 , while most of the Pacific subduction zones have lower values of seismic moment rate. Finally we analyzed the seismic hazard in South America comparing the predicted by the NUVEL1 model convergence slip rate between Nazca and South America plates with the average slip rate due to earthquakes. This consideration allows for distinguishing between zones of high and low coupling along the studied convergence

  18. Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites from Vacska cave, Pilis Mountains of Hungary

    Science.gov (United States)

    Gribovszki, Katalin; Bokelmann, Götz; Kovács, Károly; Mónus, Péter; Konecny, Pavel; Lednicka, Marketa; Novák, Attila

    2017-04-01

    Damaging earthquakes in central Europe are infrequent, but do occur. This raises the important issue for society of how to react to this hazard: potential damages are enormous, and infrastructure costs for addressing these hazards are huge as well. Obtaining an unbiased expert knowledge of the seismic hazard (and risk) is therefore very important. Seismic activity in the Pannonian Basin is moderate. In territories with low or moderate seismic activity the recurrence time of large earthquakes can be as long as 10,000 years. Therefore, we cannot draw well-grounded inferences in the field of seismic hazard assessment exclusively from the seismic data of 1,000- to 2,000-years observational period, that we have in our earthquake catalogues. Long-term information can be gained from intact and vulnerable stalagmites (IVSTM) in natural karstic caves. These fragile formations survived all earthquakes that have occurred, over thousands of years - depending on the age of them. Their "survival" requires that the horizontal ground acceleration has never exceeded a certain critical value within that time period. Here we present such a stalagmite-based case study from the Pilis Mountains of Hungary. Evidence of historic events and of differential uplifting (incision of Danube at the River Bend and in Buda and Gerecse Hills) exists in the vicinity of investigated cave site. These observations imply that a better understanding of possible co-seismic ground motions in the nearby densely populated areas of Budapest is needed. A specially shaped (high, slim and more or less cylindrical form), intact and vulnerable stalagmites in the Vacska cave, Pilis Mountains were examined. The method of our investigation includes in-situ examination of the IVSTM and mechanical laboratory measurements of broken stalagmite samples. The used approach can yield significant new constraints on the seismic hazard of the investigated area, since tectonic structures close to Vacska cave could not have

  19. Scenario for a Short-Term Probabilistic Seismic Hazard Assessment (PSHA in Chiayi, Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Han Chan

    2013-01-01

    Full Text Available Using seismic activity and the Meishan earthquake sequence that occurred from 1904 to 1906, a scenario for short-term probabilistic seismic hazards in the Chiayi region of Taiwan is assessed. The long-term earthquake occurrence rate in Taiwan was evaluated using a smoothing kernel. The highest seismicity rate was calculated around the Chiayi region. To consider earthquake interactions, the rate-and-state friction model was introduced to estimate the seismicity rate evolution due to the Coulomb stress change. As imparted by the 1904 Touliu earthquake, stress changes near the 1906 Meishan and Yangshuigang epicenters was higher than the magnitude of tidal triggering. With regard to the impact of the Meishan earthquake, the region close to the Yangshuigang earthquake epicenter had a +0.75 bar stress increase. The results indicated significant interaction between the three damage events. Considering the path and site effect using ground motion prediction equations, a probabilistic seismic hazard in the form of a hazard evolution and a hazard map was assessed. A significant elevation in hazards following the three earthquakes in the sequence was determined. The results illustrate a possible scenario for seismic hazards in the Chiayi region which may take place repeatly in the future. Such scenario provides essential information on earthquake preparation, devastation estimations, emergency sheltering, utility restoration, and structure reconstruction.

  20. Seismogenic structures of the central Apennines and its implication for seismic hazard

    Science.gov (United States)

    Zheng, Y.; Riaz, M. S.; Shan, B.

    2017-12-01

    The central Apennines belt is formed during the Miocene-to-Pliocene epoch under the environment where the Adriatic Plate collides with and plunges beneath the Eurasian Plate, eventually formed a fold and thrust belt. This active fold and thrust belt has experienced relatively frequent moderate-magnitude earthquakesover, as well as strong destructive earthquakes such as the 1997 Umbira-Marche sequence, the 2009 Mw 6.3 L'Aquila earthquake sequence, and three strong earthquakes occurred in 2016. Such high seismicity makes it one of the most active tectonic zones in the world. Moreover, most of these earthquakes are normal fault events with shallow depths, and most earthquakes occurred in the central Apennines are of lower seismic energy to moment ratio. What seismogenic structure causes such kind of seismic features? and how about the potential seismic hazard in the study region? In order to make in-depth understanding about the seismogenic structures in this reion, we collected seismic data from the INGV, Italy, to model the crustal structure, and to relocate the earthquakes. To improve the spatial resolution of the tomographic images, we collected travel times from 27627 earthquakes with M>1.7 recorded at 387 seismic stations. Double Difference Tomography (hereafter as DDT) is applied to build velocity structures and earthquake locations. Checkerboard test confirms that the spatial resolution between the depths range from 5 20km is better than 10km. The travel time residual is significantly decreased from 1208 ms to 70 ms after the inversion. Horizontal Vp images show that mostly earthquakes occurred in high anomalies zones, especially between 5 10km, whereas at the deeper depths, some of the earthquakes occurred in the low Vp anomalies. For Vs images, shallow earthquakes mainly occurred in low anomalies zone, at depths range of 10 15km, earthquakes are mainly concentrated in normal velocity or relatively lower anomalies zones. Moreover, mostly earthquakes occurred

  1. Probabilistic seismic hazard assessment of the historical peninsula of Istanbul

    Directory of Open Access Journals (Sweden)

    G. Ç. Ince

    2012-11-01

    Full Text Available In order to design buildings that are resistant to earthquakes, first it is necessary to determine the parameters of ground motion. In this study, the earthquake seismic hazard analysis of the Old City Districts of Istanbul (Fatih and Eminonu was probabilistically defined. For the analysis, the study zone was divided into 307 cells of 250 × 250 m using geographical information systems, and these cells were used in the mapping of all the data obtained. Then, for a building lifetime of 50 yr, the acceleration parameters of earthquake ground motions, peak ground acceleration, peak ground velocity, and spectral acceleration values of 0.2 s and 1 s were obtained at the bedrock level according to 10% and 40% exceedances. Additionally, in order to produce the artificial acceleration-time records of the ground movement in accordance with the NEHRP acceleration spectrum, the TARSCHTS computer simulation program was utilized. The results of the analysis showed that for the 10% probability of exceedance, the peak bedrock acceleration values ranged from 0.30 g to 0.40 g, and for the 40% exceedance probability the acceleration values ranged from 0.22 g to 0.17 g. The Ss 10% exceedance probability, calculated according to the spectral acceleration parameter, ranged from 0.67 g to 0.85 g and the spectral acceleration parameter S1 varied between 0.22 g–0.28 g. The Ss 40% exceedance probability, calculated according to the spectral acceleration parameter, ranged from 0.46 g to 0.38 g and the spectral acceleration parameter S1 varied from 0.12 g to 0.14 g.

  2. Assessment of the 1988 Saguenay earthquake: Implications on attenuation functions for seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Toro, G.R.; McGuire, R.K. (Risk Engineering, Inc., Golden, CO (United States))

    1991-09-01

    This study investigates the earthquake records from the 1988 Saguenay earthquake and examines the implications of these records with respect to ground-motion models used in seismic-hazard studies in eastern North America (ENA), specifically, to what extent the ground motions from this earthquake support or reject the various attenuation functions used in the EPRI and LLNL seismic-hazard calculations. Section 2 provides a brief description of the EPRI and LLNL attenuation functions for peak acceleration and for spectral velocities. Section 2 compares these attenuation functions the ground motions from the Saguenay earthquake and from other relevant earthquakes. Section 4 reviews available seismological studies about the Saguenay earthquake, in order to understand its seismological characteristics and why some observations may differ from predictions. Section 5 examines the assumptions and methodology used in the development of the attenuation functions selected by LLNL ground-motion expert 5. Finally, Section 6 draws conclusions about the validity of the various sets of attenuation functions, in light of the Saguenay data and of other evidence presented here. 50 refs., 37 figs., 7 tabs.

  3. Seismic hazard map of North and Central America and the Caribbean

    Directory of Open Access Journals (Sweden)

    K. M. Shedlock

    1999-06-01

    Full Text Available Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of North and Central America and the Caribbean is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful regional seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of North and Central America and the Caribbean depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings. The highest seismic hazard values in the region generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes.

  4. Seismicity and seismic hazard parameters evaluation in the island of Crete and the surrounding area inferred from mixed data files

    Science.gov (United States)

    Manakou, Maria V.; Tsapanos, Theodoros M.

    2000-05-01

    A study of the spatial distribution of seismicity and seismic hazard is undertaken for Crete and the surrounding area (CISA). For the estimation of seismicity parameters, CISA is divided in rectangular subregions. By applying the centroid of strain energy technique, we obtain seismicity parameter maps closely related to the tectonics of the area. The b-value from the magnitude-frequency distribution is calculated by a maximum likelihood technique ( Page, 1968. Bull. Seism. Soc. Am. 58, 1131-1168), as well as by Gumbel's first asymptotic distribution of extreme values technique. The b-value shows consistent spatial variation along CISA for both techniques. Low b-values are dominant in the western part of CISA, while higher b-values are present to the east side, forming a pattern like a 'sleeping letter S'. This pattern may be attributed to the variation of the regional velocity of deformation. Finally, we performed seismic hazard analysis for shallow and intermediate events. From mixed (historical and instrumental) data files, we estimated the regional maximum magnitude M̂max, as well as the other parameters like the activity rate of seismic events λ̂ and the well-known b̂ parameter ( Kijko and Sellevoll, 1989. Bull. Seismol. Soc. Am. 79, 645-654).

  5. Induced and Natural Seismicity: Earthquake Hazards and Risks in Ohio:

    Science.gov (United States)

    Besana-Ostman, G. M.; Worstall, R.; Tomastik, T.; Simmers, R.

    2013-12-01

    To adapt with increasing need to regulate all operations related to both the Utica and Marcellus shale play within the state, ODNR had recently strengthen its regulatory capability through implementation of stricter permit requirements, additional human resources and improved infrastructure. These ODNR's efforts on seismic risk reduction related to induced seismicity led to stricter regulations and many infrastructure changes related particularly to Class II wells. Permit requirement changes and more seismic monitoring stations were implemented together with additional injection data reporting from selected Class II well operators. Considering the possible risks related to seismic events in a region with relatively low seismicity, correlation between limited seismic data and injection volume information were undertaken. Interestingly, initial results showed some indications of both plugging and fracturing episodes. The real-time data transmission from seismic stations and availability of injection volume data enabled ODNR to interact with operators and manage wells dynamically. Furthermore, initial geomorphic and structural analyses indicated possible active faults in the northern and western portion of the state oriented NE-SW. The newly-mapped structures imply possible relatively bigger earthquakes in the region and consequently higher seismic risks. With the above-mentioned recent changes, ODNR have made critical improvement of its principal regulatory role in the state for oil and gas operations but also an important contribution to the state's seismic risk reduction endeavors. Close collaboration with other government agencies and the public, and working together with the well operators enhanced ODNR's capability to build a safety culture and achieve further public and industry participation towards a safer environment. Keywords: Induced seismicity, injection wells, seismic risks

  6. Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites for the surroundings of Katerloch cave, Austria

    Science.gov (United States)

    Gribovszki, Katalin; Bokelmann, Götz; Mónus, Péter; Kovács, Károly; Kalmár, János

    2016-04-01

    . This study is particular important for understanding the seismic hazard associated with the town of Graz. The acceleration level determined by our study for the territory of Katerloch cave is much lower than the PGA value interval (from 0.075 g to 0.1 g, in case of arithmetic mean, 85% fragile, rock type) determined by probabilistic seismic hazard calculation (SHARE Model, e.g., Giardini et al., 2013,) for a 475 years recurrence time (in 50 years with 10% probability of exceedance).

  7. Region-specific deterministic and probabilistic seismic hazard ...

    Indian Academy of Sciences (India)

    A, Singh S K, Pérez-Campos X, Suresh G, Koketsu K,. Masuda T, Domen K and Ito T 2016 CIGN, A strong- motion seismic network in Central Indo-Gangetic Plains, foothills of Himalayas: First results; Seismol. Res. Lett. 87(1) 37–46. Cornell C A 1968 Engineering seismic risk analysis; Bull. Seismol. Soc. Am. 58 1583–1606.

  8. Region-specific deterministic and probabilistic seismic hazard ...

    Indian Academy of Sciences (India)

    ... with increasing seismicity, demands seismic microzonation of cities near the Himalayan belt and the Indo-Gangetic Basin (IGB). Therefore, determination of peak ground acceleration (PGA) and response spectra are important for designing buildings, infrastructure projects as well as disaster planning and management.

  9. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods

  10. An innovative assessment of the seismic hazard from Vrancea intermediate-depth earthquakes: Case studies in Romania and Bulgaria

    International Nuclear Information System (INIS)

    Panza, G.F.; Cioflan, C.; Marmureanu, G.; Kouteva, M.; Paskaleva, I.; Romanelli, F.

    2002-02-01

    An advanced procedure for ground motion, capable of synthesizing the seismic ground motion from basic understanding of fault mechanism and seismic wave propagation, is applied to the case studies of Bucharest (Romania) and Russe, NE Bulgaria, exposed to the seismic hazard from Vrancea events. Synthetic seismic signals along representative geological cross sections in Bucharest and Russe and been computed and the energetic input spectra have been derived both from the synthetic signals and the few existing records. The theoretical signals are successfully compared with the available observations. The site response has been calculated for three recent, strong and intermediate-depth, Vrancea earthquakes: August 30, 1986 and May 30 and 31, 1990. The used approach differs significantly from today's engineering practice that relays upon rock-site hazard maps and applies the site correction at a later stage. The obtained results show that it is very useful to estimate the site effect via waveform modelling, considering simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. (author)

  11. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  12. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    International Nuclear Information System (INIS)

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat

    2015-01-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface

  13. Sensitivity of seismic hazard to various parameters and correlations for peak ground acceleration

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Kushwaha, H.S.

    1998-10-01

    The design basis ground motion of a site is generally specified in terms of the peak ground acceleration (PGA), ground motion response spectrum and time history. The probability of exceedence of the design level PGA is one of the factors to quantify the seismic risk at the given site. The present paper extends the work of Cornell to consider an aerial source model and a more general form of the correlation for PGA to evaluate the seismic hazard. It is further recognised that the predicted seismic hazard can vary with various parameters involved. Numerical results have been presented to show this variability. These results will help to determine the seismic hazard at a given site and the associated uncertainties. (author)

  14. The 2014 update to the National Seismic Hazard Model in California

    Science.gov (United States)

    Powers, Peter; Field, Edward H.

    2015-01-01

    The 2014 update to the U. S. Geological Survey National Seismic Hazard Model in California introduces a new earthquake rate model and new ground motion models (GMMs) that give rise to numerous changes to seismic hazard throughout the state. The updated earthquake rate model is the third version of the Uniform California Earthquake Rupture Forecast (UCERF3), wherein the rates of all ruptures are determined via a self-consistent inverse methodology. This approach accommodates multifault ruptures and reduces the overprediction of moderate earthquake rates exhibited by the previous model (UCERF2). UCERF3 introduces new faults, changes to slip or moment rates on existing faults, and adaptively smoothed gridded seismicity source models, all of which contribute to significant changes in hazard. New GMMs increase ground motion near large strike-slip faults and reduce hazard over dip-slip faults. The addition of very large strike-slip ruptures and decreased reverse fault rupture rates in UCERF3 further enhances these effects.

  15. Keeping pace with the science: Seismic hazard analysis in the western United States

    International Nuclear Information System (INIS)

    Youngs, R.R.; Coppersmith, K.J.

    1989-01-01

    Recent years have witnessed rapid advances in the understanding of the earthquake generation process in the western US, with particular emphasis on geologic studies of fault behavior and seismologic studies of the rupture process. The authors discuss how probabilistic seismic hazard analysis (PSHA) methodologies have been refined to keep pace with scientific understanding. Identified active faults are modeled as three-dimensional surfaces with the rupture shape and distribution of nucleation points estimated from physical constraints and seismicity. Active blind thrust ramps at depth and sources associated with subduction zones such as the Cascadia zone off Oregon and Washington can also be modeled. Maximum magnitudes are typically estimated from evaluations of possible rupture dimensions and empirical relations between these dimensions and earthquake magnitude. A rapidly evolving technique for estimating the length of future ruptures on a fault is termed segmentation, and incorporates behavior and geometric fault characteristics. To extend the short historical record, fault slip rate is now commonly used to constrain earthquake recurrence. Paleoseismic studies of fault behavior have led to the characteristic earthquake recurrence model specifying the relative frequency of earthquakes of various sizes. Recent studies have indicated the importance of faulting style and crustal structure on earthquake ground motions. For site-specific applications, empirical estimation techniques are being supplemented with numerical modeling approaches

  16. Seismic hazard assessment of Oregon highway truck routes.

    Science.gov (United States)

    2012-06-01

    This research project developed a seismic risk assessment model along the major truck routes in Oregon. The study had adopted federally : developed software tools called Risk for Earthquake Damage to Roadway Systems (REDARS2) and HAZUS-MH. The model ...

  17. Seismic hazard assessment of the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Yao Yunsheng

    2013-05-01

    Full Text Available Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismicity before impoundment and that the epicenters were concentrated in the east and west sides of the Zigui Basin, most of which were natural tectonic earthquakes. After impoundment, the seismic activity shifted to the segment between Badong and Zigui along the Yangtze River, mainly within 5 km of the reservoir bank. The seismogenesis was categorized into four types; Karst collapse earthquakes, earthquakes caused by Karst gas explosion, mining tunnel collapse earthquakes, and rock (terrane slip earthquakes, all of which are related to the lithology, structure, and tectonics of near-surface geological bodies of the area. Compared with the seismicity before impoundment, the seismic frequency increase was remarkable, with most of the magnitudes below Ms2. 0. Therefore, the intensity of the earthquakes remained at a low level. On November 22, 2008, a magnitude 4. 1 earthquake, the largest earthquake recorded since impoundment, occurred in Quyuan Town, Zigui County. The intensity and PGA of reservoir-induced earthquakes are higher than those of tectonic earthquakes with equal magnitude, but the peak intensity of reservoir-induced earthquakes is not likely to go beyond that of the estimated range from earlier studies.

  18. Seismogenic zonation and seismic hazard estimates in a Southern Italy area (Northern Apulia characterised by moderate seismicity rates

    Directory of Open Access Journals (Sweden)

    V. Del Gaudio

    2009-02-01

    Full Text Available The northernmost part of Apulia, in Southern Italy, is an emerged portion of the Adriatic plate, which in past centuries was hit by at least three disastrous earthquakes and at present is occasionally affected by seismic events of moderate energy. In the latest seismic hazard assessment carried out in Italy at national scale, the adopted seismogenic zonation (named ZS9 has defined for this area a single zone including parts of different structural units (chain, foredeep, foreland. However significant seismic behaviour differences were revealed among them by our recent studies and, therefore, we re-evaluated local seismic hazard by adopting a zonation, named ZNA, modifying the ZS9 to separate areas of Northern Apulia belonging to different structural domains. To overcome the problem of the limited datasets of historical events available for small zones having a relatively low rate of earthquake recurrence, an approach was adopted that integrates historical and instrumental event data. The latter were declustered with a procedure specifically devised to process datasets of low to moderate magnitude shocks. Seismicity rates were then calculated following alternative procedural choices, according to a "logic tree" approach, to explore the influence of epistemic uncertainties on the final results and to evaluate, among these, the importance of the uncertainty in seismogenic zonation. The comparison between the results obtained using zonations ZNA and ZS9 confirms the well known "spreading effect" that the use of larger seismogenic zones has on hazard estimates. This effect can locally determine underestimates or overestimates by amounts that make necessary a careful reconsideration of seismic classification and building code application.

  19. Earthquake Rate Models for Evolving Induced Seismicity Hazard in the Central and Eastern US

    Science.gov (United States)

    Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.

    2015-12-01

    Injection-induced earthquake rates can vary rapidly in space and time, which presents significant challenges to traditional probabilistic seismic hazard assessment methodologies that are based on a time-independent model of mainshock occurrence. To help society cope with rapidly evolving seismicity, the USGS is developing one-year hazard models for areas of induced seismicity in the central and eastern US to forecast the shaking due to all earthquakes, including aftershocks which are generally omitted from hazards assessments (Petersen et al., 2015). However, the spatial and temporal variability of the earthquake rates make them difficult to forecast even on time-scales as short as one year. An initial approach is to use the previous year's seismicity rate to forecast the next year's seismicity rate. However, in places such as northern Oklahoma the rates vary so rapidly over time that a simple linear extrapolation does not accurately forecast the future, even when the variability in the rates is modeled with simulations based on an Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to account for earthquake clustering. Instead of relying on a fixed time period for rate estimation, we explore another way to determine when the earthquake rate should be updated. This approach could also objectively identify new areas where the induced seismicity hazard model should be applied. We will estimate the background seismicity rate by optimizing a single set of ETAS aftershock triggering parameters across the most active induced seismicity zones -- Oklahoma, Guy-Greenbrier, the Raton Basin, and the Azle-Dallas-Fort Worth area -- with individual background rate parameters in each zone. The full seismicity rate, with uncertainties, can then be estimated using ETAS simulations and changes in rate can be detected by applying change point analysis in ETAS transformed time with methods already developed for Poisson processes.

  20. Probabilistic seismic hazard at the archaeological site of Gol Gumbaz in Vijayapura, south India

    Science.gov (United States)

    Patil, Shivakumar G.; Menon, Arun; Dodagoudar, G. R.

    2018-03-01

    Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, {M}w = 6.4 (1993). Disaggregation of PSHA results for the PGA and spectral acceleration ({S}a) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.

  1. Fault specific GIS based seismic hazard maps for the Attica region, Greece

    Science.gov (United States)

    Deligiannakis, G.; Papanikolaou, I. D.; Roberts, G.

    2018-04-01

    Traditional seismic hazard assessment methods are based on the historical seismic records for the calculation of an annual probability of exceedance for a particular ground motion level. A new fault-specific seismic hazard assessment method is presented, in order to address problems related to the incompleteness and the inhomogeneity of the historical records and to obtain higher spatial resolution of hazard. This method is applied to the region of Attica, which is the most densely populated area in Greece, as nearly half of the country's population lives in Athens and its surrounding suburbs, in the Greater Athens area. The methodology is based on a database of 24 active faults that could cause damage to Attica in case of seismic rupture. This database provides information about the faults slip rates, lengths and expected magnitudes. The final output of the method is four fault-specific seismic hazard maps, showing the recurrence of expected intensities for each locality. These maps offer a high spatial resolution, as they consider the surface geology. Despite the fact that almost half of the Attica region lies on the lowest seismic risk zone according to the official seismic hazard zonation of Greece, different localities have repeatedly experienced strong ground motions during the last 15 kyrs. Moreover, the maximum recurrence for each intensity occurs in different localities across Attica. Highest recurrence for intensity VII (151-156 times over 15 kyrs, or up to a 96 year return period) is observed in the central part of the Athens basin. The maximum intensity VIII recurrence (115 times over 15 kyrs, or up to a 130 year return period) is observed in the western part of Attica, while the maximum intensity IX (73-77/15 kyrs, or a 195 year return period) and X (25-29/15 kyrs, or a 517 year return period) recurrences are observed near the South Alkyonides fault system, which dominates the strong ground motions hazard in the western part of the Attica mainland.

  2. A procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Hirose, Jiro; Muramatsu, Ken

    2002-03-01

    This report presents a study on the procedures for the determination of scenario earthquakes for seismic design of nuclear power plants (NPPs) based on probabilistic seismic hazard analysis (PSHA). In the recent years, the use of PSHA, which is a part of seismic probabilistic safety assessment (PSA), to determine the design basis earthquake motions for NPPs has been proposed. The identified earthquakes are called probability-based scenario earthquakes (PBSEs). The concept of PBSEs originates both from the study of US NRC and from Ishikawa and Kameda. The assessment of PBSEs is composed of seismic hazard analysis and identification of dominant earthquakes. The objectives of this study are to formulate the concept of PBSEs and to examine the procedures for determining the PBSEs for a domestic NPP site. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to identify PBSEs for a model site using the Ishikawa's concept and the examination of uncertainties involved in analytical conditions. The results obtained from the examination of PBSEs using Ishikawa's concept are as follows. (a) Since PBSEs are expressed by hazard-consistent magnitude and distance in terms of a prescribed reference probability, it is easy to obtain a concrete image of earthquakes that determine the ground response spectrum to be considered in the design of NPPs. (b) Source contribution factors provide the information on the importance of the earthquake source regions and/or active faults, and allows the selection of a couple of PBSEs based on their importance to the site. (c) Since analytical conditions involve uncertainty, sensitivity analyses on uncertainties that would affect seismic hazard curves and identification of PBSEs were performed on various aspects and provided useful insights for assessment of PBSEs. A result from this sensitivity analysis was that, although the difference in selection of attenuation equations led to a

  3. Reduction of uncertainties in probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    An integrated research for the reduction of conservatism and uncertainties in PSHA in Korea was performed. The research consisted of five technical task areas as follows; Task 1: Earthquake Catalog Development for PSHA. Task 2: Evaluation of Seismicity and Tectonics of the Korea Region. Task 3: Development of a Ground Motion Relationships. Task 4: Improvement of PSHA Modelling Methodology. Task 5: Development of Seismic Source Interpretations for the region of Korea for Inputs to PSHA. A series of tests on an ancient wooden house and an analysis on medium size earthquake in Korea were performed intensively. Signification improvement, especially in the estimation of historical earthquake, ground motion attenuation, and seismic source interpretations, were made through this study. 314 refs., 180 figs., 54 tabs. (Author)

  4. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    Science.gov (United States)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  5. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  6. A first-order seismotectonic regionalization of Mexico for seismic hazard and risk estimation

    Science.gov (United States)

    Zúñiga, F. Ramón; Suárez, Gerardo; Figueroa-Soto, Ángel; Mendoza, Avith

    2017-11-01

    The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.

  7. Evaluation of the seismic hazard parameters for selected regions of the world: the maximum regional magnitude

    Directory of Open Access Journals (Sweden)

    T. M. Tsapanos

    2001-06-01

    Full Text Available Parameters of seismic hazard are estimated by the application of the maximum likelihood method. The technique is based on a procedure which utilizes data of different quality, e.g., the ones where the uncertainty in the assessment of the magnitudes is great and those where the magnitudes are computed with great precision. In other words, the data were extracted from both historical (incomplete and recorded (complete files. The historical part of the catalogue contains only the strongest events, whereas the complete part can be divided into several subcatalogues each one assumed to be complete above a specified threshold magnitude. Uncertainty in the determination of magnitudes has also been taken into account. The method allow us to estimate the seismic hazard parameters which are the maximum regional magnitude, Mmax , the activity rate, lˆ, of the seismic events and the well known b-value, the slope of the magnitude-frequency relationship. The parameter b, which is interrelated to b (b = bloge, is also obtained. All these parameters are of physical significance. The mean Return Periods, RP, of earthquakes with a certain lower magnitude M ³ m are also determined. The method is applied in some regions of the circum-Pacific belt, which includes various tectonic features, and where catastrophic earthquakes are known from the historical era. The seismic hazard level is also calculated as a function of the form q(Mmax , RP7.5 and a relative hazard scale (defined as an index K is defined for each seismic region. According to this, the investigated regions are classified into five groups of very low, low, intermediate, high and very high seismic hazard levels. This classification is useful for both theoretical and practical reasons and provides a picture of quantitative seismicity.

  8. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    Energy Technology Data Exchange (ETDEWEB)

    Erkoç, Ebru Aktepe, E-mail: ebru.aktepe@deu.edu.tr [The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir-Turkey (Turkey); Uluğ, Atilla, E-mail: atilla.ulug@deu.edu.tr [Institute of Marine Science and Technology, Dokuz Eylül University, İzmir-Turkey (Turkey)

    2016-04-18

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the control of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.

  9. AECB workshop on seismic hazard assessment in Southern Ontario. Program, list of participants and abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: (1) The importance of geological and geophysical observations for the determination of seismic sources, (2) Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information, (3) Methods and data which should be used for characterizing the seismicity parameters of seismic sources, and (4) Methods for assessment of vibratory ground motion hazard. This document presents a copy of the workshop program, the list of participants and extended abstracts received from speakers. It was distributed to the participants prior to the workshop. The abstracts were intended to provide advance information and to afford some basis for meaningful discussion and exchange of information

  10. Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b)

    International Nuclear Information System (INIS)

    Burkhard, M.; Gruenthal, G.

    2009-01-01

    A comprehensive study of the seismic hazard related to the four NNP sites in NW Switzerland was performed within the project PEGASOS. To account for the epistemic uncertainties involved in the process of the characterization of seismic source zones in the frame of probabilistic seismic hazard assessments, four different expert teams have developed and defended their models in the frame of an intensive elicitation process. Here, the results of one out of four expert groups are presented. The model of this team is based first of all on considerations regarding the large scale tectonics in the context of the Alpine collision, and neotectonic constraints for defining seismic source zones. This leads to a large scale subdivision based on the structural 'architectural' considerations with little input from the present seismicity. Each of the eight large zones was characterized by the style of present-day faulting, fault orientation, and hypo central depth distribution. A further subdivision of the larger zones is performed based on information provided by the seismicity patterns. 58 small source zones have been defined in this way, each of them characterized by the available tectonic constrains, as well as the pros and cons of different existing geologic views connected to them. Of special concern in this respect were the discussion regarding thin skinned vs. thick skinned tectonics, the tectonic origin of the 1356 Basel earthquake, the role of the Permo-Carboniferous graben structures, and finally the seismogenic orientation of faults with respect to the recent crustal stress field. The uncertainties connected to the delimitations of the small source zones have been handled in form of their regrouping, formalized by the logic tree technique. The maximum magnitudes were estimated as discretized probability distribution functions. After de-clustering the used ECOS earthquake catalogue and an analysis of data completeness as a function of time the parameters of the

  11. Current issues and related activities in seismic hazard analysis in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Lee, Jong-Rim; Chang, Chun-Joong

    1997-03-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  12. Current issues and related activities in seismic hazard analysis in Korea

    International Nuclear Information System (INIS)

    Seo, Jeong-Moon; Lee, Jong-Rim; Chang, Chun-Joong.

    1997-01-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  13. Proposed seismic hazard maps of Sumatra and Java islands and ...

    Indian Academy of Sciences (India)

    study is performed in order to obtain ground motion parameters such as acceleration, amplifica- tion factor and response spectra at the surface of ... exceedance (PE) in design time period of 50 years or corresponding to return period of ..... as input for seismic design, land use management, and estimation of the potential for ...

  14. Spatial-temporal variability of seismic hazard in peninsular India

    Indian Academy of Sciences (India)

    useful for future regional PSHA studies, seismic microzonation studies and also for application in building codes. Most of the building codes used for earthquake resistant design generally specify Maxi- mum Considered Earthquake (MCE) and Design. Basis Earthquake (DBE) to help to estimate poten- tial design forces.

  15. Probabilistic seismic hazard assessment of Himachal Pradesh and ...

    Indian Academy of Sciences (India)

    Seismically active Himachal Pradesh and adjoining regions comprising Himalayan orogenic belt with the experience of the great Kangra earthquake of 1905, has high potential for river valley projects. There are already operating hydropower projects, some under construction and a few more coming up. In view of this it is ...

  16. Probabilistic seismic hazard assessment of Himachal Pradesh and ...

    Indian Academy of Sciences (India)

    been delineated keeping in view the high level of seismicity associated with KFS. Tectonic motion along KFS has caused the Kinnaur earthquake of. 1975. ... Some of the lineaments and faults are trend- ing almost orthogonal to the Himalayan orogenic belt. Some of the important characteristics of the delineated ...

  17. Historical cities and earthquakes: Florence during the last nine centuries and evaluations of seismic hazard

    Directory of Open Access Journals (Sweden)

    G. Ferrari

    1995-06-01

    Full Text Available The authors' aim in the following study is to contribute to the assessment of the seismic hazard of historical cities. From this preliminary analysis the general characteristics of the seismicity affecting Florence and the evaluation of its seismic hazard may be deduced. Florence is a <> city of world tourism, and its extraordinary artistic value and its ability to be utilized constitute a great economic resource. From this perspective, the authors have tackled some aspects of its urban features (demography and main building types, successive phases in the growth of the city, etc., aimed at the pooling of information as a basis for further, more specific analyses of seismic risk. The study is based on a review of 131 seismic events of potential interest for the site of Florence from the 12th century. In the case of each of these earthquakes, it was possible to verify the real seismic effects sustained, and thus to assess the seismic intensity on the site. This also enabled the limits in the application of the standard attenuation laws of to be checked. Of all the earthquakes analyzed. those which caused the greatest effects on the urban area have also been identified: namely, the earthquake of 28 September 1453. and those of 18 May and 6 June 1895, both with Io=VIII MCS. From their overall analysis the authors have further extrapolated the necessary data to statistically evaluate the probabilities of any future earthquake occurring, according to intensity classes.

  18. Growth and seismic hazard of the Montserrat anticline in the North Canterbury fold and thrust belt, South Island, New Zealand

    Science.gov (United States)

    VanderLeest, R. A.; Fisher, D. M.; Oakley, D. O. S.; Gardner, T. W.

    2017-08-01

    Fault-related fold growth is a seismic hazard in North Canterbury, New Zealand. The North Canterbury fold and thrust belt (NCFTB) is located at the southern end of the Hikurangi subduction zone, South Island, New Zealand where the Pacific plate transitions from subduction to transpression along the Alpine fault. Transpression causes shortening beneath the South Island, resulting in basement thrusts generating folds such as the Montserrat anticline. We focus on fault geometry and seismic hazard associated with this structure, exposed along the coast where Pleistocene marine terraces on the backlimb record tectonic uplift. To constrain parameters associated with evolution of this fault-related fold, we model the fold using several trishear kinematic models. A listric fault is most compatible with field and regional geophysical studies. Ages of marine terraces and inner edge elevations constrain uplift rate due to slip on the Glendhu fault to 1.1 ± 0.1 m(ka)-1. An ∼800 year recurrence interval is calculated for the Glendhu fault. Listric fault geometry lengthens the recurrence interval relative to other fault geometry models. An accurate understanding of subsurface fault geometry and kinematics is important for estimating seismic hazard in regions of fault-related folding such as the NCFTB because it affects recurrence interval estimations.

  19. A Framework for Understanding Uncertainty in Seismic Risk Assessment.

    Science.gov (United States)

    Foulser-Piggott, Roxane; Bowman, Gary; Hughes, Martin

    2017-10-11

    A better understanding of the uncertainty that exists in models used for seismic risk assessment is critical to improving risk-based decisions pertaining to earthquake safety. Current models estimating the probability of collapse of a building do not consider comprehensively the nature and impact of uncertainty. This article presents a model framework to enhance seismic risk assessment and thus gives decisionmakers a fuller understanding of the nature and limitations of the estimates. This can help ensure that risks are not over- or underestimated and the value of acquiring accurate data is appreciated fully. The methodology presented provides a novel treatment of uncertainties in input variables, their propagation through the model, and their effect on the results. The study presents ranges of possible annual collapse probabilities for different case studies on buildings in different parts of the world, exposed to different levels of seismicity, and with different vulnerabilities. A global sensitivity analysis was conducted to determine the significance of uncertain variables. Two key outcomes are (1) that the uncertainty in ground-motion conversion equations has the largest effect on the uncertainty in the calculation of annual collapse probability; and (2) the vulnerability of a building appears to have an effect on the range of annual collapse probabilities produced, i.e., the level of uncertainty in the estimate of annual collapse probability, with less vulnerable buildings having a smaller uncertainty. © 2017 Society for Risk Analysis.

  20. Probabilistic Seismic Hazard Assessment for Himalayan-Tibetan Region from Historical and Instrumental Earthquake Catalogs

    Science.gov (United States)

    Rahman, M. Moklesur; Bai, Ling; Khan, Nangyal Ghani; Li, Guohui

    2018-02-01

    The Himalayan-Tibetan region has a long history of devastating earthquakes with wide-spread casualties and socio-economic damages. Here, we conduct the probabilistic seismic hazard analysis by incorporating the incomplete historical earthquake records along with the instrumental earthquake catalogs for the Himalayan-Tibetan region. Historical earthquake records back to more than 1000 years ago and an updated, homogenized and declustered instrumental earthquake catalog since 1906 are utilized. The essential seismicity parameters, namely, the mean seismicity rate γ, the Gutenberg-Richter b value, and the maximum expected magnitude M max are estimated using the maximum likelihood algorithm assuming the incompleteness of the catalog. To compute the hazard value, three seismogenic source models (smoothed gridded, linear, and areal sources) and two sets of ground motion prediction equations are combined by means of a logic tree on accounting the epistemic uncertainties. The peak ground acceleration (PGA) and spectral acceleration (SA) at 0.2 and 1.0 s are predicted for 2 and 10% probabilities of exceedance over 50 years assuming bedrock condition. The resulting PGA and SA maps show a significant spatio-temporal variation in the hazard values. In general, hazard value is found to be much higher than the previous studies for regions, where great earthquakes have actually occurred. The use of the historical and instrumental earthquake catalogs in combination of multiple seismogenic source models provides better seismic hazard constraints for the Himalayan-Tibetan region.

  1. Global Seismic Hazard Assessment Program (GSHAP) in continental Asia

    Science.gov (United States)

    Zhang, Peizhen; Yang, Zhi-xian; Gupta, Harsh K.; Bhatia, Satish C.; Shedlock, Kaye M.

    1999-01-01

    The regional hazard mapping for the whole Eastern Asia was coordinated by the SSB Regional Centre in Beijing, originating from the expansion of the test area initially established in the border region of China-India-Nepal-Myanmar- Bangla Dash, in coordination with the other Regional Centres (JIPE, Moscow, and AGSO, Canberra) and with the direct assistance of the USGS. All Eastern Asian countries have participated directly in this regional effort, with the addition of Japan, for which an existing national hazard map was incorporated. The regional hazard depicts the expected peak ground acceleration with 10% exceedance probability in 50 years.

  2. Application-driven ground motion prediction equation for seismic hazard assessments in non-cratonic moderate-seismicity areas

    Science.gov (United States)

    Bindi, D.; Cotton, F.; Kotha, S. R.; Bosse, C.; Stromeyer, D.; Grünthal, G.

    2017-09-01

    We present a ground motion prediction equation (GMPE) for probabilistic seismic hazard assessments (PSHA) in low-to-moderate seismicity areas, such as Germany. Starting from the NGA-West2 flat-file (Ancheta et al. in Earthquake Spectra 30:989-1005, 2014), we develop a model tailored to the hazard application in terms of data selection and implemented functional form. In light of such hazard application, the GMPE is derived for hypocentral distance (along with the Joyner-Boore one), selecting recordings at sites with vs30 ≥ 360 m/s, distances within 300 km, and magnitudes in the range 3 to 8 (being 7.4 the maximum magnitude for the PSHA in the target area). Moreover, the complexity of the considered functional form is reflecting the availability of information in the target area. The median predictions are compared with those from the NGA-West2 models and with one recent European model, using the Sammon's map constructed for different scenarios. Despite the simplification in the functional form, the assessed epistemic uncertainty in the GMPE median is of the order of those affecting the NGA-West2 models for the magnitude range of interest of the hazard application. On the other hand, the simplification of the functional form led to an increment of the apparent aleatory variability. In conclusion, the GMPE developed in this study is tailored to the needs for applications in low-to-moderate seismic areas and for short return periods (e.g., 475 years); its application in studies where the hazard is involving magnitudes above 7.4 and for long return periods is not advised.

  3. New assessment of the seismic hazard at the nuclear power plant sites in Switzerland (PEGASOS project)

    International Nuclear Information System (INIS)

    The Swiss Nuclear Power Plants (NPPs) are designed and built such as to resist strong earthquakes. They are amongst the buildings with the highest seismic safety in Switzerland. Nevertheless, earthquakes continue to represent a non-negligible hazard to the Swiss NPPs. Therefore, the Swiss Federal Agency for the Safety of Nuclear Installations (HSK) attaches great importance to the most comprehensive and accurate assessment of the seismic hazard. In order to assess the seismic hazard for the original design of the Swiss NPPs historic earthquake data were gathered. In the mid-1970s these data were evaluated statistically and written down in seismic hazard maps. With the introduction and development of the Probabilistic Safety Assessments (PSA) in the 1980s the requirements for the seismic hazard analysis were further specified. From then on, the uncertainty range, which is caused by the inherent scatter of the data and the analysis models, had to be included in the seismic hazard analysis. The PSAs, which were conducted by the licensees of the Swiss NPPs, confirmed that seismic events can provide a substantial contribution to the overall exposure of the plants. Noting further advances in international projects in the field of probabilistic seismic hazard analysis, the HSK concluded that the original results from seismic hazard studies did not anymore represent the current state-of-the-art. In 1999, the HSK required that the licensees determined the seismic hazard according to the updated methods and included a comprehensive evaluation of all contributions to the uncertainties in the resulting hazard. In order to meet the HSK requirement, the licensees initiated the project PEGASOS (Probabilistic Assessment of Seismic Hazard for Swiss Nuclear Power Plant Sites). The seismic hazard was evaluated considering the broad knowledge of the relevant international expert community. Leading national and international earth science experts from independent organizations could be

  4. Neo-deterministic seismic hazard scenarios for India—a preventive tool for disaster mitigation

    Science.gov (United States)

    Parvez, Imtiyaz A.; Magrin, Andrea; Vaccari, Franco; Ashish; Mir, Ramees R.; Peresan, Antonella; Panza, Giuliano Francesco

    2017-11-01

    Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489-508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93-165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489-508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.

  5. Probabilistic seismic hazard assessment of Bishkek, Kyrgyzstan, considering empirically estimated site effects

    Directory of Open Access Journals (Sweden)

    Shahid Ullah

    2015-04-01

    Full Text Available It is well known that variability in the surface geology potentially leads to the modification of earthquake-induced ground motion over short distances. Although this effect is of major importance when seismic hazard is assessed at the urban level, it is very often not appropriately accounted for. In this paper, we present a first attempt at taking into account the influence of the shallow geological structure on the seismic hazard assessment for Bishkek, Kyrgyzstan, using a proxy (Vs30 that has been estimated from in situ seismic noise array analyses, and considering response spectral ratios calculated by analyzing a series of earthquake recordings of a temporary seismic network. To highlight the spatial variability of the observed ground motion, the obtained results are compared with those estimated assuming a homogeneous Vs30 value over the whole urban area. The seismic hazard is evaluated in terms of peak ground acceleration (PGA and spectral acceleration (SA at different periods (frequencies. The presented results consider the values obtained for a 10% probability of exceedance in 50 years. The largest SA estimated considering a rock site classification of the area (0.43 g is observed for a period of 0.1 s (10 Hz, while the maximum PGA reaches 0.21 g. When site effects are included through the Vs30 proxy in the seismic hazard calculation, the largest SA, 0.67 g, is obtained for a period of 0.3 s (about 3.3 Hz. In terms of PGA, in this case the largest estimated value reaches 0.31 g in the northern part of the town. When the variability of ground motion is accounted for through response spectrum ratios, the largest SA reaches a value as high as 1.39 g at a period of 0.5 s. In general, considering site effects in the seismic hazard assessment of Bishkek leads to an increase of seismic hazard in the north of the city, which is thus identified as the most hazardous part within the study area and which is more far away from the faults.

  6. Beringia: Seismic hazard and fundamental problems of geotectonics

    Science.gov (United States)

    Gordeev, E. I.; Pinegina, T. K.; Lander, A. V.; Kozhurin, A. I.

    2015-07-01

    A brief review of the modern views concerning the geodynamics of Bering Plate is presented. The discussion covers the spatial distribution of seismicity in the Kamchatka-Aleutian-Alaskan region, the manifestations of tsunami, the active faults in the margins of the Komandor Basin known to date, the position of the collisional contact between the Kamchatka and Aleutian arcs, the probability of a catastrophic earthquake occuring on the western termination of the Aleutian arc, and the seismoand tsunamigenic potential of Bering Plate.

  7. SRS BEDROCK PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) DESIGN BASIS JUSTIFICATION (U)

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), R

    2005-12-14

    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  8. A transparent and data-driven global tectonic regionalisation model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-01-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognises that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalisation, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalisation process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalisation model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) indicate the degree to which a site belongs in a tectonic category.

  9. Seismic hazard assessment in the Catania and Siracusa urban areas (Italy) through different approaches

    Science.gov (United States)

    Panzera, Francesco; Lombardo, Giuseppe; Rigano, Rosaria

    2010-05-01

    The seismic hazard assessment (SHA) can be performed using either Deterministic or Probabilistic approaches. In present study a probabilistic analysis was carried out for the Catania and Siracusa towns using two different procedures: the 'site' (Albarello and Mucciarelli, 2002) and the 'seismotectonic' (Cornell 1968; Esteva, 1967) methodologies. The SASHA code (D'Amico and Albarello, 2007) was used to calculate seismic hazard through the 'site' approach, whereas the CRISIS2007 code (Ordaz et al., 2007) was adopted in the Esteva-Cornell procedure. According to current international conventions for PSHA (SSHAC, 1997), a logic tree approach was followed to consider and reduce the epistemic uncertainties, for both seismotectonic and site methods. The code SASHA handles the intensity data taking into account the macroseismic information of past earthquakes. CRISIS2007 code needs, as input elements, a seismic catalogue tested for completeness, a seismogenetic zonation and ground motion predicting equations. Data concerning the characterization of regional seismic sources and ground motion attenuation properties were taken from the literature. Special care was devoted to define source zone models, taking into account the most recent studies on regional seismotectonic features and, in particular, the possibility of considering the Malta escarpment as a potential source. The combined use of the above mentioned approaches allowed us to obtain useful elements to define the site seismic hazard in Catania and Siracusa. The results point out that the choice of the probabilistic model plays a fundamental role. It is indeed observed that when the site intensity data are used, the town of Catania shows hazard values higher than the ones found for Siracusa, for each considered return period. On the contrary, when the Esteva-Cornell method is used, Siracusa urban area shows higher hazard than Catania, for return periods greater than one hundred years. The higher hazard observed

  10. Utilization of real-time seismic hazard information to make facilities more resilient

    International Nuclear Information System (INIS)

    Fujinawa, Yukio

    2014-01-01

    Though the JMA early warning system (EEW) has been in operation for a long time, there are some shortcomings. Most people receive only EEWg (general public) alerts, but these do not reach those in places near the epicenter in time because issuing even the first alert requires three to five seconds. This presentation explained a hybrid seismic hazard evaluation system that uses regional EEW as well as on-site vertical and horizontal seismic observation data. A hybrid alert system using on-site instrumentation that detects initial small tremors and EEW can provide alerts much earlier than use of EEW alone. This system has been in practical use in a semiconductor factory since 2005. In addition, seismic hazard forecasts using deep borehole data and the possibility of just before prediction of earthquake occurrence by detecting electric field pulses in the subsurface were also mentioned in this presentation. (authors)

  11. Seismic hazard analysis of nuclear installations in France. Current practice and research

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadioun, B. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1997-03-01

    The methodology put into practice in France for the evaluation of seismic hazard on the sites of nuclear facilities is founded on data assembled country-wide over the past 15 years, in geology, geophysics and seismology. It is appropriate to the regional seismotectonic context (interplate), characterized notably by diffuse seismicity. Extensive use is made of information drawn from historical seismicity. The regulatory practice described in the RFS I.2.c is reexamined periodically and is subject to up-dating so as to take advantage of new earthquake data and of the results gained from research work. Acquisition of the basic data, such as the identification of active faults and the quantification of site effect, which will be needed to achieve improved preparedness versus severe earthquake hazard in the 21st century, will necessarily be the fruit of close international cooperation and collaboration, which should accordingly be actively promoted. (J.P.N.)

  12. Seismic hazard analysis of nuclear installations in France. Current practice and research

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    The methodology put into practice in France for the evaluation of seismic hazard on the sites of nuclear facilities is founded on data assembled country-wide over the past 15 years, in geology, geophysics and seismology. It is appropriate to the regional seismotectonic context (interplate), characterized notably by diffuse seismicity. Extensive use is made of information drawn from historical seismicity. The regulatory practice described in the RFS I.2.c is reexamined periodically and is subject to up-dating so as to take advantage of new earthquake data and of the results gained from research work. Acquisition of the basic data, such as the identification of active faults and the quantification of site effect, which will be needed to achieve improved preparedness versus severe earthquake hazard in the 21st century, will necessarily be the fruit of close international cooperation and collaboration, which should accordingly be actively promoted. (J.P.N.)

  13. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, F.; Wang, Z.; Liu, J.

    2011-01-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 ?? 0.1??. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ??? 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i. e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate. ?? 2010 Birkh??user / Springer Basel AG.

  14. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  15. Analysis of Seismic Hazard. Slovak National Report to IUGG, 1995-1998

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka; Kottnauer, Pavel; Guterch, B.; Labák, P.

    1999-01-01

    Roč. 29, Spec. issue (1999), s. 99-102 ISSN 1335-2806 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  16. Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3

    Czech Academy of Sciences Publication Activity Database

    Grunthal, G.; Bosse, Ch.; Camelbeeck, T.; de Crook, T.; Gariel, J. C.; Gregersen, S.; Guterch, B.; Halldorsson, P.; Labák, P.; Lindholm, C.; Lenhardt, W.; Mantyniemi, P.; Mayer-Rosa, D.; Musson, R. M. W.; Schenk, Vladimír; Schenková, Zdeňka; Slejko, D.; Verbeiren, R.; Wahlstrom, R.; Zabukovec, B.; Ziros, T.

    1999-01-01

    Roč. 42, č. 6 (1999), s. 999-1011 ISSN 0365-2556 R&D Projects: GA AV ČR Global Seismic Hazard Assessment Program (GSHAP) - project of the UN International Decade of Natural Disaster Reduction and International Litosphere Program. Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Preliminary re-evaluation of probabilistic seismic hazard assessment in Chile: from Arica to Taitao Peninsula

    Directory of Open Access Journals (Sweden)

    F. Leyton

    2009-12-01

    Full Text Available Chile is one of the most seismically active countries in the world; indeed, having witnessed very large earthquakes associated with high horizontal peak ground accelerations, the use of probabilistic hazard assessment is an important tool in any decision-making. In the present study, we review all the available information to improve the estimation of the probabilistic seismic hazard caused by two main sources: shallow interplate, thrust earthquakes and intermediate depth, intraplate earthquakes. Using previously defined seismic zones, we compute Gutenberg-Richter laws and, along with appropriate attenuation laws, revaluate the probabilistic seismic hazard assessments in Chile. We obtain expected horizontal peak ground acceleration with a 10% of probability of being exceeded in 50 years, reaching from 0.6 g up 1.0 g in the coast and between 0.4 g and 0.6 g towards the Andes Mountains, with larger values in Northern part of the country. The present study improves our knowledge of geological hazards in Chile, enabling the mitigation of important human and material losses due to large earthquakes in the future.

  18. Evaluation of Seismic Hazards at California Department of Transportation (CALTRANS)Structures

    Science.gov (United States)

    Merriam, M. K.

    2005-12-01

    The California Department of Transportation (CALTRANS) has responsibility for design, construction, and maintenance of approximately 12,000 state bridges. CALTRANS also provides oversight for similar activities for 12,200 bridges owned by local agencies throughout the state. California is subjected to a M6 or greater seismic event every few years. Recent earthquakes include the 1971 Mw6.6 San Fernando earthquake which struck north of Los Angeles and prompted engineers to begin retrofitting existing bridges and re-examine the way bridges are detailed to improve their response to earthquakes, the 1989 Mw6.9 Loma Prieta earthquake which destroyed the Cypress Freeway and damaged the San Francisco-Oakland Bay Bridge, and the 1994 Mw6.7 Northridge earthquake in the Los Angeles area which heavily damaged four major freeways. Since CALTRANS' seismic performance goal is to ensure life-safety needs are met for the traveling public during an earthquake, estimating earthquake magnitude, peak bedrock acceleration, and determining if special seismic considerationsare needed at specific bridge sites are critical. CALTRANS is currently developing a fourth generation seismic hazard map to be used for estimating these parameters. A deterministic approach has been used to develop this map. Late-Quaternary-age faults are defined as the expected seismic sources. Caltrans requires site-specific studies to determine potential for liquefaction, seismically induced landslides, and surface fault rupture. If potential for one of these seismic hazards exists, the hazard is mitigated by avoidance, removal, or accommodated through design. The action taken, while complying with the Department's "no collapse" requirement, depends upon many factors, including cost.

  19. Probabilistic seismic hazard analysis (PSHA) for Ethiopia and the neighboring region

    Science.gov (United States)

    Ayele, Atalay

    2017-10-01

    Seismic hazard calculation is carried out for the Horn of Africa region (0°-20° N and 30°-50°E) based on the probabilistic seismic hazard analysis (PSHA) method. The earthquakes catalogue data obtained from different sources were compiled, homogenized to Mw magnitude scale and declustered to remove the dependent events as required by Poisson earthquake source model. The seismotectonic map of the study area that avails from recent studies is used for area sources zonation. For assessing the seismic hazard, the study area was divided into small grids of size 0.5° × 0.5°, and the hazard parameters were calculated at the center of each of these grid cells by considering contributions from all seismic sources. Peak Ground Acceleration (PGA) corresponding to 10% and 2% probability of exceedance in 50 years were calculated for all the grid points using generic rock site with Vs = 760 m/s. Obtained values vary from 0.0 to 0.18 g and 0.0-0.35 g for 475 and 2475 return periods, respectively. The corresponding contour maps showing the spatial variation of PGA values for the two return periods are presented here. Uniform hazard response spectrum (UHRS) for 10% and 2% probability of exceedance in 50 years and hazard curves for PGA and 0.2 s spectral acceleration (Sa) all at rock site are developed for the city of Addis Ababa. The hazard map of this study corresponding to the 475 return periods has already been used to update and produce the 3rd generation building code of Ethiopia.

  20. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  1. SHEAT for PC. A computer code for probabilistic seismic hazard analysis for personal computer, user's manual

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide

    2002-03-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)

  2. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-02-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  3. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    Science.gov (United States)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further

  4. Uses of probabilistic estimates of seismic hazard and nuclear power plants in the US

    International Nuclear Information System (INIS)

    Reiter, L.

    1983-01-01

    The use of probabilistic estimates is playing an increased role in the review of seismic hazard at nuclear power plants. The NRC Geosciences Branch emphasis has been on using these estimates in a relative rather than absolute manner and to gain insight on other approaches. Examples of this use include estimates to determine design levels, to determine equivalent hazard at different sites, to help define more realistic seismotectonic provinces, and to assess implied levels of acceptable risk using deterministic methods. Increased use of probabilistic estimates is expected. Probabilistic estimates of seismic hazard have a potential for misuse, however, and their successful integration into decision making requires they not be divorced from physical insight and scientific intuition

  5. A new probabilistic seismic hazard assessment for greater Tokyo

    Science.gov (United States)

    Stein, R.; Toda, S.; Parsons, T.; Grunewald, E.

    2006-12-01

    Tokyo and its outlying cities are home to one-quarter of Japan's 127 million people. Highly destructive earthquakes struck the capital in 1703, 1855 and 1923, the last of which took 105,000 lives. Unlike California's seismic environment of shallow and largely strike-slip faults, Tokyo lies 200 km from a triple junction with two subduction zones, and 80 km from a front of active volcanoes. Further, some of the region's megathust faults are seismically coupled, some undergo episodic slip events, and others appear to be permanently aseismic. To reinterpret the tectonic structure, identify active faults and their slip rates, and estimate their earthquake frequency, we analyzed the 7,000-yr record of seventeen M~8 shocks preserved by uplifted marine terraces and tsunami deposits, and 150 GPS vectors in the past 10 years from Japan's GeoNet array. We also digitized 10,000 observations of historical shaking recorded over the past 400 years, and examined 300,000 earthquakes registered by the dense NIED/JMA network in a 3D geographic information system. In a principal departure from previous work, we propose that a 100-km-wide, 25-km-thick dislodged fragment of the Pacific plate is jammed between the Pacific, Philippine Sea and Eurasian plates beneath Tokyo, and argue that the this fragment controls much of Tokyo's seismic behavior, including the damaging 1855 M~7.1 Ansei-Edo shock. On the basis of the frequency of earthquakes beneath greater Tokyo, we estimate that events with magnitude and location similar to the Ansei-Edo event have a 20% likelihood in an average 30-yr period. In contrast, our renewal (time-dependent) probability for great M~7.9 megathrust shocks such as struck in 1923 and 1703 is just 0.5% for the next 30 years, with a time-averaged 30-yr probability of ~10%. The resulting net likelihood for severe shaking (~0.9 g peak ground acceleration) in Tokyo, Kawasaki, and Yokohama for the next 30 years is ~30%, and the annual probability is 1.3%.

  6. Assessment of faulting and seismic hazards at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.; Frazier, G.A.; Grant, T.A.

    1989-01-01

    Yucca Mountain is being evaluated for the nation's first high-level nuclear-waste repository. Local faults appear to be capable of moderate earthquakes at recurrence intervals of tens of thousands of years. The major issues identified for the preclosure phase (<100 yrs) are the location and seismic design of surface facilities for handling incoming waste. It is planned to address surface fault rupture by locating facilities where no discernible recent (<100,000 yrs) faulting has occurred and to base the ground motion design on hypothetical earthquakes, postulated on nearby faults, that represent 10,000 yrs of average cumulative displacement. The major tectonic issues identified for the postclosure phase (10,000 yrs) are volcanism (not addressed here) and potential changes to the hydrologic system resulting from a local faulting event which could trigger potential thermal, mechanical, and chemical interactions with the ground water. Extensive studies are planned for resolving these issues. 33 refs., 3 figs

  7. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original

  8. Controlled-Source Seismic Imaging of Rift Processes and Earthquake Hazards in the Salton Trough

    Science.gov (United States)

    Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2008-12-01

    The NSF MARGINS program, the NSF EarthScope program, and the U.S. Geological Survey have funded a large seismic refraction and reflection survey of the Salton Trough in southern California and northern Mexico, including the Coachella, Imperial, and Mexicali Valleys. The purpose of this presentation is to communicate plans for the seismic project and encourage synergy with piggyback and complementary studies. Fieldwork is tentatively scheduled for January 2010. The goals of the project include both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. The 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. The seismic survey will investigate the style of continental breakup, the role and mode of magmatism, the effects of rapid Colorado River sedimentation upon extension and magmatism, and the partitioning of oblique extension. The southernmost San Andreas Fault is considered at high risk of producing a large damaging earthquake, yet structure of the fault and adjacent basins are not currently well constrained. To improve hazard models, the seismic survey will image the structure of the San Andreas and Imperial Faults, structure of sedimentary basins in the Salton Trough, and three-dimensional seismic velocity of the crust and uppermost mantle.

  9. Seismic hazard assessment for oil-and-gas-bearing shelf zones: A case study of the North Caspian region

    Science.gov (United States)

    Krylov, A. A.; Ivashchenko, A. I.; Kovachev, S. A.

    2015-11-01

    Seismic hazard assessment is done for oil field areas in the North Caspian region by a method earlier successfully applied to other areas. The method involves general seismic zoning data, available regional databases on recurrence of seismic shaking, known models of ground motion attenuation in seismoactive regions, and data on geological and geophysical surveys in the studied area. The assigned level of seismic hazard of the region is refined using probabilistic analysis; additionally, disaggregation is made and accelerograms are synthesized (the latter are necessary for seismic microzoning of particular sites using the numerical nonlinear analysis of ground seismic response). The amplitude and spectral characteristics of ground motions are obtained which are necessary for seismic resistance design and construction of petroleum industry objects.

  10. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  11. Research on the spatial analysis method of seismic hazard for island

    Science.gov (United States)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-05-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.

  12. New Evaluation of Seismic Hazard in Cental America and la Hispaniola

    Science.gov (United States)

    Benito, B.; Camacho, E. I.; Rojas, W.; Climent, A.; Alvarado-Induni, G.; Marroquin, G.; Molina, E.; Talavera, E.; Belizaire, D.; Pierristal, G.; Torres, Y.; Huerfano, V.; Polanco, E.; García, R.; Zevallos, F.

    2013-05-01

    The results from seismic hazard studies carried out in two seismic scenarios, Central America Region (CA) and La Hispaniola Island, are presented here. Both cases follow the Probabilistic Seismic Hazard Assessment (PSHA) methodology and they are developed in terms of PGA, and SA (T), for T of 0.1, 0.2, 0.5, 1 and 2s. In both anaysis, hybrid zonation models are considered, integrated by seismogenic zones and faults where data of slip rate and recurrence time are available. First, we present a new evaluation of seismic hazard in CA, starting with the results of a previous study by Benito et al (2011). Some improvements are now included, such as: updated catalogue till 2011, corrections in the zonning model in particular for subduction regime taken into account the variation of the dip in Costa Rica and Panama, and modelization of some faults as independent units for the hazard estimation. The results allow us to carry out a sensitivity analysis comparing the ones obtained with and without faults. In a second part we present the results of the PSHA in La Hispaniola, carried out as part of the cooperative project SISMO-HAITI supported by UPM and developed in cooperation with ONEV. It started a few months after the 2010 event, as an answer to a required help from the Haitian government to UPM. The study was aimed at obtaining results suitable for seismic design purposes and started with the elaboration of a seismic catalogue for the Hispaniola, requiring an exhaustive revision of data reported by around 30 seismic agencies, apart from these from Puerto Rico and Dominican Republic Seismic Networks. Seismotectonic models for the region were reviewed and a new regional zonation was proposed, taking into account different geophysical data. Attenuation models for subduction and crustal zones were also reviewed and the more suitable were calibrated with data recorded inside the Caribbean plate. As a result of the PSHA, different maps were generated for the quoted parameters

  13. Crustal structure and Seismic Hazard studies in Nigeria from ambient noise and earthquakes

    Science.gov (United States)

    Kadiri, U. A.

    2016-12-01

    The crust, upper Mantle and seismic hazard studies have been carried out in Nigeria using noise and earthquake data. The data were acquired from stations in Nigeria and international Agencies. Firstly, known depths of sediments in the Lower Benue Trough (LBT) were collected from wells; Resonance frequency (Fo) and average shear-wave velocities (Vs) were then computed using Matlab. Secondly, average velocities were estimated from noise cross-correlation along seismic stations. Thirdly, the moho depths beneath Ife, Kaduna and Nsukka stations were estimated, as well as Vp/Vs ratio using 2009 earthquake with epicenter in Nigeria. Finally, Statistical and Probabilistic Seismic Hazard Assessment (PSHA) were used to compute seismic hazard parameters in Nigeria and its surroundings. The results showed that, soils on the LBT with average shear wave velocity of about 5684m/s would experience more amplification in case of an earthquake, compared to the basement complex in Nigeria. The Vs beneath the seismic stations in Nigeria were also estimated as 288m/s, 1019m/s, 940.6m/s and 255.02m/s in Ife, Nsukka, Awka, and Abakaliki respectively. The average velocity along the station paths was 4.5km/secs, and the Vp, Vs for depths 100-500km profile in parts of South West Nigeria increased from about 5.83-6.42Km/sec and 3.48-6.31km/s respectively with Vp/Vs ratio decreasing from 1.68 to 1.02. Statistical analysis revealed a trend of increasing earthquake occurrence along the Mid-Atlantic Ridge and tending to West African region. The analysis of PSHA shows the likelihood of earthquakes with different magnitudes occurring in Nigeria and other parts West Africa in future. This work is aimed at addressing critical issues regarding sites effect characterization, improved earthquake location and robust seismic hazards assessment for planning in the choice of sites for critical facilities in Nigeria. Keywords: Sediment thickness, Resonance Frequency, Average Velocity, Seismic Hazard, Nigeria

  14. Seismic hazard assessment of Sub-Saharan Africa using geodetic strain rate models

    Science.gov (United States)

    Poggi, Valerio; Pagani, Marco; Weatherill, Graeme; Garcia, Julio; Durrheim, Raymond J.; Mavonga Tuluka, Georges

    2016-04-01

    The East African Rift System (EARS) is the major active tectonic feature of the Sub-Saharan Africa (SSA) region. Although the seismicity level of such a divergent plate boundary can be described as moderate, several earthquakes have been reported in historical times causing a non-negligible level of damage, albeit mostly due to the high vulnerability of the local buildings and structures. Formulation and enforcement of national seismic codes is therefore an essential future risk mitigation strategy. Nonetheless, a reliable risk assessment cannot be done without the calibration of an updated seismic hazard model for the region. Unfortunately, the major issue in assessing seismic hazard in Sub-Saharan Africa is the lack of basic information needed to construct source and ground motion models. The historical earthquake record is largely incomplete, while instrumental catalogue is complete down to sufficient magnitude only for a relatively short time span. In addition, mapping of seimogenically active faults is still an on-going program. Recent studies have identified major seismogenic lineaments, but there is substantial lack of kinematic information for intermediate-to-small scale tectonic features, information that is essential for the proper calibration of earthquake recurrence models. To compensate this lack of information, we experiment the use of a strain rate model recently developed by Stamps et al. (2015) in the framework of a earthquake hazard and risk project along the EARS supported by USAID and jointly carried out by GEM and AfricaArray. We use the inferred geodetic strain rates to derive estimates of total scalar moment release, subsequently used to constrain earthquake recurrence relationships for both area (as distributed seismicity) and fault source models. The rates obtained indirectly from strain rates and more classically derived from the available seismic catalogues are then compared and combined into a unique mixed earthquake recurrence model

  15. Regional seismic hazard for Revithoussa, Greece: an earthquake early warning Shield and selection of alert signals

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2003-01-01

    Full Text Available The feasibility of an earthquake early warning Shield in Greece is being explored as a European demonstration project. This will be the first early warning system in Europe. The island of Revithoussa is a liquid natural gas storage facility near Athens from which a pipeline runs to a gas distribution centre in Athens. The Shield is being centred on these facilities. The purpose here is to analyze seismicity and seismic hazard in relation to the Shield centre and the remote sensor sites in the Shield network, eventually to help characterize the hazard levels, seismic signals and ground vibration levels that might be observed or create an alert situation at a station. Thus this paper mainly gives estimation of local seismic hazard in the regional working area of Revithoussa by studying extreme peak ground acceleration (PGA and magnitudes. Within the Shield region, the most important zone to be detected is WNW from the Shield centre and is at a relatively short distance (50 km or less, the Gulf of Corinth (active normal faults region. This is the critical zone for early warning of strong ground shaking. A second key region of seismicity is at an intermediate distance (100 km or more from the centre, the Hellenic seismic zone south or southeast from Peloponnisos. A third region to be detected would be the northeastern region from the centre and is at a relatively long distance (about 150 km, Lemnos Island and neighboring region. Several parameters are estimated to characterize the seismicity and hazard. These include: the 50-year PGA with 90% probability of not being exceeded (pnbe using Theodulidis & Papazachos strong motion attenuation for Greece, PGANTP; the 50-year magnitude and also at the 90% pnbe, M50 and MP50, respectively. There are also estimates of the earthquake that is most likely to be felt at a damaging intensity level, these are the most perceptible earthquakes at intensities VI, VII and VIII with magnitudes MVI, MVII and MVIII

  16. Widespread seismicity excitation following the 2011 M=9.0 Tohoku, Japan, earthquake and its implications for seismic hazard

    Science.gov (United States)

    Toda, S.; Stein, R. S.; Lin, J.

    2011-12-01

    trench slope normal faults, the Kanto fragment beneath Tokyo, the Itoigawa-Shizuoka Tectonic Line, and several other major faults were brought significantly closer to failure. Elevated seismicity in these areas is evident and sustained higher than normal during the 4.5 months after the Tohoku earthquake. Since several faults are overdue and closer to the next failure, an urgent update of the probabilistic seismic hazard map incorporating the impact of the great Tohoku earthquake is required.

  17. Seismic Hazard Assessment and Uncertainties Treatment: Discussion on the current French regulation, practices and open issues

    International Nuclear Information System (INIS)

    Berge-Thierry, Catherine

    2014-01-01

    Taking into account the seismic risk in the context of nuclear safety in France is guided by the Fundamental Safety Rule (RFS2001-01) for the assessment of seismic hazard, and by the Guide ASN/2/01 for the design rules of civil engineering structures. These two references have been updated respectively in 2001 and 2006 and validated by the Nuclear Safety Authority. The French approach is anchored on a deterministic approach. We propose to recall the principles of the methodology recommended by the RFS 2001-01, and to illustrate the advantages and limitations highlighted in recent years. Indeed, this regulatory framework is used both in the design stage and for safety reassessment of all nuclear facilities, power reactors and experimental laboratories and factories. We focus on: (i) key parameters of the approach, and their level of knowledge, (ii) key steps and principles that lead to a non-homogeneous approach between various geographic sites, depending on the seismic activity and / or knowledge, (iii) on physical phenomena (such as the geometric extension of the seismic source, the complexity of earthquake rupture on the fault plane) that are not taken into account, or for which (2D and 3D site effects, and non-linear soil behavior under strong motions), the RFS 2001-01 approach does not provide any guidance, (iv) consideration of epistemic and random uncertainties. We discuss also the probabilistic approaches widely implemented both in France as recently to establish the seismic zoning (reference for the regulation of conventional building and classified installations for the environment), used worldwide and strongly supported by the international Atomic Energy Agency references (safety guides and guidelines). The Tohoku earthquake that occurred in Japan on March 11, 2011, triggering the tsunami that itself caused the nuclear accident at Fukushima Daiichi site has resulted in the realization in France of the Complementary Safety Studies as a request of the

  18. Study of Seismic Hazards in the Center of the State of Veracruz, MÉXICO.

    Science.gov (United States)

    Torres Morales, G. F.; Leonardo Suárez, M.; Dávalos Sotelo, R.; Mora González, I.; Castillo Aguilar, S.

    2015-12-01

    Preliminary results obtained from the project "Microzonation of geological and hydrometeorological hazards for conurbations of Orizaba, Veracruz, and major sites located in the lower sub-basins: The Antigua and Jamapa" are presented. These project was supported by the Joint Funds CONACyT-Veracruz state government. It was developed a probabilistic seismic hazard assessment (henceforth PSHA) in the central area of Veracruz State, mainly in a region bounded by the watersheds of the rivers Jamapa and Antigua, whit the aim to evaluate the geological and hydrometeorological hazards in this region. The project pays most attention to extreme weather phenomena, floods and earthquakes, in order to calculate the risk induced by previous for landslides and rock falls. In addition, as part of the study, the PSHA was developed considered the site effect in the urban zones of the cities Xalapa and Orizaba; the site effects were incorporated by a standard format proposed in studies of microzonation and its application in computer systems, which allows to optimize and condense microzonation studies in a city. The results obtained from the PSHA are presented through to seismic hazard maps (hazard footprints), exceedance rate curves and uniform hazard spectrum for different spectral ordinates, between 0.01 and 5.0 seconds, associated to selected return periods: 72, 225, 475 and 2475 years.

  19. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  20. Issues in testing the new national seismic hazard model for Italy

    Science.gov (United States)

    Stein, S.; Peresan, A.; Kossobokov, V. G.; Brooks, E. M.; Spencer, B. D.

    2016-12-01

    It is important to bear in mind that we know little about how earthquake hazard maps actually describe the shaking that will actually occur in the future, and have no agreed way of assessing how well a map performed in the past, and, thus, whether one map performs better than another. Moreover, we should not forget that different maps can be useful for different end users, who may have different cost-and-benefit strategies. Thus, regardless of the specific tests we chose to use, the adopted testing approach should have several key features: We should assess map performance using all the available instrumental, paleo seismology, and historical intensity data. Instrumental data alone span a period much too short to capture the largest earthquakes - and thus strongest shaking - expected from most faults. We should investigate what causes systematic misfit, if any, between the longest record we have - historical intensity data available for the Italian territory from 217 B.C. to 2002 A.D. - and a given hazard map. We should compare how seismic hazard maps developed over time. How do the most recent maps for Italy compare to earlier ones? It is important to understand local divergences that show how the models are developing to the most recent one. The temporal succession of maps is important: we have to learn from previous errors. We should use the many different tests that have been proposed. All are worth trying, because different metrics of performance show different aspects of how a hazard map performs and can be used. We should compare other maps to the ones we are testing. Maps can be made using a wide variety of assumptions, which will lead to different predicted shaking. It is possible that maps derived by other approaches may perform better. Although Italian current codes are based on probabilistic maps, it is important from both a scientific and societal perspective to look at all options including deterministic scenario based ones. Comparing what works

  1. The revaluation of the macroseismic effects of March 4, 1977 earthquake in the frame of the new seismic hazard assessment methodologies

    International Nuclear Information System (INIS)

    Pantea, A.; Constantin, Angela; Anghel, M.

    2002-01-01

    To increase the earthquakes resistance of structure the design norms and construction require the best knowledge of seismic hazard parameters and using the new methodologies of seismic hazard assessment. One of these parameters is seismic intensity of the earthquakes occurred on the whole territory analyzed during as long as possible time interval for which data are available, especially for the strongest of them. For Romanian territory the strongest and the best known from the point of view of the macroseismic effects is the March 4, 1977 earthquake. Seismology by itself, without geophysics (solid earth physics), geology, geography, and geodesy, cannot fully, comprehensively, validly assess seismic hazards. Among those who have understood seismic hazard assessment as the result of cooperation between geosciences as a whole and seismology, one may quote Bune, 1978; Pantea et al., 2002, etc. Assessing seismic hazards is a complex undertaking, for it draws on a vast amount of knowledge in numerous sectors of geosciences, particularly solid earth physics as a branch of geophysics that also includes seismology, tectonic physics, gravimetry, geomagnetism, geochronology, etc.. It involves processing the results of complex geophysical, seismologic, tectonic, and geologic studies. To get a picture of, and understand, the laws that govern seismogenesis, one has to know what the relations are among the measured physical quantities indicating the properties of the rocks (whether gravimetric, magnetometric, electrometric, seismometric, or others), the dynamics of tectonic structures, as well as the nature and geological characteristics. Geophysics can be relied upon to determine the deep internal structure of the earth that geological methods are unable to reveal. Geophysics, and implicitly seismology, can help resolve the problem by: 1. Identifying the areas of the seismic sources and their characteristics, including focal depth, M max [Bune, 1978], and the recurrence chart

  2. Seismic hazard in Romania associated to Vrancea subcrustal source Deterministic evaluation

    CERN Document Server

    Radulian, M; Moldoveanu, C L; Panza, G F; Vaccari, F

    2002-01-01

    Our study presents an application of the deterministic approach to the particular case of Vrancea intermediate-depth earthquakes to show how efficient the numerical synthesis is in predicting realistic ground motion, and how some striking peculiarities of the observed intensity maps are properly reproduced. The deterministic approach proposed by Costa et al. (1993) is particularly useful to compute seismic hazard in Romania, where the most destructive effects are caused by the intermediate-depth earthquakes generated in the Vrancea region. Vrancea is unique among the seismic sources of the World because of its striking peculiarities: the extreme concentration of seismicity with a remarkable invariance of the foci distribution, the unusually high rate of strong shocks (an average frequency of 3 events with magnitude greater than 7 per century) inside an exceptionally narrow focal volume, the predominance of a reverse faulting mechanism with the T-axis almost vertical and the P-axis almost horizontal and the mo...

  3. Deterministic seismic hazard parameters and engineering risk implications for the Hong Kong region

    Science.gov (United States)

    Chandler, A. M.; Chan, L. S.; Lam, N. T. K.

    2001-12-01

    The paper reviews and compares recent regional studies evaluating the seismic hazard parameters required to assess the seismic risk to engineering construction in the Coastal Region of South China (CRSC) including Hong Kong (HK). The review establishes that the CRSC, and in particular the offshore seismic belt, has mean earthquake magnitude recurrence intervals (MRIs) or return periods that are 2-3 times shorter than those in the eastern United States (EUS), with which the HK region has been compared. An ensemble of realistic design-level earthquake events suitable for defining the regional seismic hazard and for undertaking engineering risk assessment is then formulated, in the form of deterministic magnitude-distance pairs associated with earthquake magnitudes having a range of MRIs, and the significance of the maximum credible earthquake (MCE) magnitude is highlighted. Next, the scenario earthquake events have been used to predict the expected levels of peak design ground motions (for bedrock) in the HK region. The approximate method proposed here indicates that peak (effective) ground accelerations may reasonably be estimated to be around 10% g for 500-year earthquake events and 15-20% g for 1000-year events. However, the predicted ground motions arising from design-level earthquake events indicate large uncertainties arising from the attenuation equations. The uncertainties arise from both epistemic (event-to-event) and aleatory (site-to-site) considerations. These uncertainties represent the greatest source of errors in defining the seismic hazard for engineering design purposes. Further research is required to define the attenuation characteristics of ground motions for the CRSC, across a range of parameters including ground displacement and velocity as well as acceleration. It is further found that the Chinese earthquake building code gives a reasonably conservative estimate of seismic demand for the region, and is quite consistent with results from both

  4. Neo-Deterministic Seismic Hazard Assessment at Watts Bar Nuclear Power Plant Site, Tennessee, USA

    Science.gov (United States)

    Brandmayr, E.; Cameron, C.; Vaccari, F.; Fasan, M.; Romanelli, F.; Magrin, A.; Vlahovic, G.

    2017-12-01

    Watts Bar Nuclear Power Plant (WBNPP) is located within the Eastern Tennessee Seismic Zone (ETSZ), the second most naturally active seismic zone in the US east of the Rocky Mountains. The largest instrumental earthquakes in the ETSZ are M 4.6, although paleoseismic evidence supports events of M≥6.5. Events are mainly strike-slip and occur on steeply dipping planes at an average depth of 13 km. In this work, we apply the neo-deterministic seismic hazard assessment to estimate the potential seismic input at the plant site, which has been recently targeted by the Nuclear Regulatory Commission for a seismic hazard reevaluation. First, we perform a parametric test on some seismic source characteristics (i.e. distance, depth, strike, dip and rake) using a one-dimensional regional bedrock model to define the most conservative scenario earthquakes. Then, for the selected scenario earthquakes, the estimate of the ground motion input at WBNPP is refined using a two-dimensional local structural model (based on the plant's operator documentation) with topography, thus looking for site amplification and different possible rupture processes at the source. WBNNP features a safe shutdown earthquake (SSE) design with PGA of 0.18 g and maximum spectral amplification (SA, 5% damped) of 0.46 g (at periods between 0.15 and 0.5 s). Our results suggest that, although for most of the considered scenarios the PGA is relatively low, SSE values can be reached and exceeded in the case of the most conservative scenario earthquakes.

  5. Seismic hazard analysis. Volume 5. Review panel, Ground Motion Panel, and feedback results

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D. L.

    1981-08-01

    The Site Specific Spectra Project (SSSP) was a multi-year study funded by the US Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern US. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern US Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. 22 figs.

  6. Modifications to risk-targeted seismic design maps for subduction and near-fault hazards

    Science.gov (United States)

    Liel, Abbie B.; Luco, Nicolas; Raghunandan, Meera; Champion, C.; Haukaas, Terje

    2015-01-01

    ASCE 7-10 introduced new seismic design maps that define risk-targeted ground motions such that buildings designed according to these maps will have 1% chance of collapse in 50 years. These maps were developed by iterative risk calculation, wherein a generic building collapse fragility curve is convolved with the U.S. Geological Survey hazard curve until target risk criteria are met. Recent research shows that this current approach may be unconservative at locations where the tectonic environment is much different than that used to develop the generic fragility curve. This study illustrates how risk-targeted ground motions at selected sites would change if generic building fragility curve and hazard assessment were modified to account for seismic risk from subduction earthquakes and near-fault pulses. The paper also explores the difficulties in implementing these changes.

  7. Time independent seismic hazard analysis of Greece deduced from Bayesian statistics

    Directory of Open Access Journals (Sweden)

    T. M. Tsapanos

    2003-01-01

    Full Text Available A Bayesian statistics approach is applied in the seismogenic sources of Greece and the surrounding area in order to assess seismic hazard, assuming that the earthquake occurrence follows the Poisson process. The Bayesian approach applied supplies the probability that a certain cut-off magnitude of Ms = 6.0 will be exceeded in time intervals of 10, 20 and 75 years. We also produced graphs which present the different seismic hazard in the seismogenic sources examined in terms of varying probability which is useful for engineering and civil protection purposes, allowing the designation of priority sources for earthquake-resistant design. It is shown that within the above time intervals the seismogenic source (4 called Igoumenitsa (in NW Greece and west Albania has the highest probability to experience an earthquake with magnitude M > 6.0. High probabilities are found also for Ochrida (source 22, Samos (source 53 and Chios (source 56.

  8. Time-dependent seismic hazard in Bobrek coal mine, Poland, assuming different magnitude distribution estimations

    Science.gov (United States)

    Leptokaropoulos, Konstantinos; Staszek, Monika; Cielesta, Szymon; Urban, Paweł; Olszewska, Dorota; Lizurek, Grzegorz

    2017-06-01

    The purpose of this study is to evaluate seismic hazard parameters in connection with the evolution of mining operations and seismic activity. The time-dependent hazard parameters to be estimated are activity rate, Gutenberg-Richter b-value, mean return period and exceedance probability of a prescribed magnitude for selected time windows related with the advance of the mining front. Four magnitude distribution estimation methods are applied and the results obtained from each one are compared with each other. Those approaches are maximum likelihood using the unbounded and upper bounded Gutenberg-Richter law and the non-parametric unbounded and non-parametric upper-bounded kernel estimation of magnitude distribution. The method is applied for seismicity occurred in the longwall mining of panel 3 in coal seam 503 in Bobrek colliery in Upper Silesia Coal Basin, Poland, during 2009-2010. Applications are performed in the recently established Web-Platform for Anthropogenic Seismicity Research, available at https://tcs.ah-epos.eu/.

  9. Seismic ground motion and hazard assessment of the Greater Accra Metropolitan Area, southeastern Ghana

    International Nuclear Information System (INIS)

    Amponsah, P.E.; Banoeng-Yakubo, B.K.; Asiedu, D.; Vaccari, F.; Panza, G.F.

    2008-08-01

    The seismic ground motion of the Greater Accra Metropolitan area has been computed and the hazard zones assessed using a deterministic hybrid approach based on the modal summation and finite difference methods. The seismic ground motion along four profiles located in the Greater Accra Metropolitan Area has been modelled using the 1939 earthquake of magnitude 6.5(M L ) as the scenario earthquake. Synthetic seismic waveforms from which parameters for engineering design such as peak ground acceleration, velocity and spectral amplifications have been produced along the geological cross sections. From the seismograms computed, the seismic hazard of the metropolis, expressed in terms of peak ground acceleration and peak ground velocity have been estimated. The peak ground acceleration estimated in the study ranges from 0.14 - 0.57 g and the peak ground velocity from 9.2 - 37.1cms -1 . The presence of low velocity sediments gave rise to high peak values and amplifications. The maximum peak ground accelerations estimated are located in areas with low velocity formations such as colluvium, continental and marine deposits. Areas in the metropolis underlain by unconsolidated sediments have been classified as the maximum damage potential zone and those underlain by highly consolidated geological materials are classified as low damage potential zone. The results of the numerical simulation have been extended to all areas in the metropolis with similar geological formation. (author)

  10. Deviant Earthquakes: Data-driven Constraints on the Variability in Earthquake Source Properties and Seismic Hazard

    OpenAIRE

    Trugman, Daniel T

    2017-01-01

    The complexity of the earthquake rupture process makes earthquakes inherently unpredictable. Seismic hazard forecasts often presume that the rate of earthquake occurrence can be adequately modeled as a space-time homogenenous or stationary Poisson process and that the relation between the dynamical source properties of small and large earthquakes obey self-similar scaling relations. While these simplified models provide useful approximations and encapsulate the first-order statistical feature...

  11. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  12. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  13. Develop and implement preconditioning techniques to control face ejection rockbursts for safer mining in seismically hazardous areas

    CSIR Research Space (South Africa)

    Toper, AZ

    1998-01-01

    Full Text Available This research report discusses the development of preconditioning techniques to control face bursts, for safer mining in seismically hazardous areas. Preconditioning involves regularly setting off carefully tailored blasts in the fractured rock...

  14. Thermal regime of the lithosphere and prediction of seismic hazard in the Caspian region

    International Nuclear Information System (INIS)

    Levin, L.E.; Solodilov, L.N.; Kondorskaya, N.V.; Gasanov, A.G; Panahi, B.M.

    2002-01-01

    Full text : Prediction of seicmicity is one of elements of ecology hazard warning. In this collective research, it is elaborated in three directions : quantitative estimate of regional faults by level of seismic activity; ascertainment of space position of earthquake risk zones, determination of high seismic potential sites for the period of the next 3-5 years. During elaboration of prediction, it takes into account that peculiar feature all over the is determined by relationship of about 90 percent of earthquake hypocenters and released energy of seismic waves with elactic-brittle ayer of the lithosphere. Concetration of earthquakes epicenters is established predominantly in zones of complex structure of elastic-brittle layer where gradient of it thickness is 20-30 km. Directions of hypocenters migration in the plastic-viscous layer reveal a space position of seismic dangerous zones. All this provides a necessity for generalization of data on location of earthquakes epicenters; determination of their magnitudes, space position of regional faults and heat flow with calculation of thermal regime being made for clarification of the lithosphere and elastic-brittle thickness variations separately. General analysis includes a calculation of released seismic wave energy and determination of peculiar features of its distribution in the entire region and also studies of hypocenters migration in the plastic-viscous layer of the litosphere in time.

  15. Fault Specific Seismic Hazard Maps as Input to Loss Reserves Calculation for Attica Buildings

    Science.gov (United States)

    Deligiannakis, Georgios; Papanikolaou, Ioannis; Zimbidis, Alexandros; Roberts, Gerald

    2014-05-01

    Greece is prone to various natural disasters, such as wildfires, floods, landslides and earthquakes, due to the special environmental and geological conditions dominating in tectonic plate boundaries. Seismic is the predominant risk, in terms of damages and casualties in the Greek territory. The historical record of earthquakes in Greece has been published from various researchers, providing useful data in seismic hazard assessment of Greece. However, the completeness of the historical record in Greece, despite being one of the longest worldwide, reaches only 500 years for M ≥ 7.3 and less than 200 years for M ≥ 6.5. Considering that active faults in the area have recurrence intervals of a few hundred to several thousands of years, it is clear that many active faults have not been activated during the completeness period covered by the historical records. New Seismic Hazard Assessment methodologies tend to follow fault specific approaches where seismic sources are geologically constrained active faults, in order to address problems related to the historical records incompleteness, obtain higher spatial resolution and calculate realistic source locality distances, since seismic sources are very accurately located. Fault specific approaches provide quantitative assessments as they measure fault slip rates from geological data, providing a more reliable estimate of seismic hazard. We used a fault specific seismic hazard assessment approach for the region of Attica. The method of seismic hazard mapping from geological fault throw-rate data combined three major factors: Empirical data which combine fault rupture lengths, earthquake magnitudes and coseismic slip relationships. The radiuses of VI, VII, VIII and IX isoseismals on the Modified Mercalli (MM) intensity scale. Attenuation - amplification functions for seismic shaking on bedrock compared to basin filling sediments. We explicitly modeled 22 active faults that could affect the region of Attica, including

  16. Underestimated seismic hazard in the south of the Issyk-Kul Lake region (northern Tian Shan

    Directory of Open Access Journals (Sweden)

    A.M. Korzhenkov

    2017-05-01

    Full Text Available The Tian Shan Mountains were formed in the result of the India–Eurasia collision, which leads to creation of contrast high-mountain relief and world known seismic activity. The seismic catastrophes, recorded instrumentally, have occurred to the north of the Issyk-Kul Lake region. There are also known significant earthquakes with magnitude being about 7 in western and eastern parts of the mentioned lake region. Only in the south of the Issyk-Kul depression the strong earthquakes recorded by the seismic network were not known. Our recent study in the south of the Issyk-Kul Lake region has revealed numerous active tectonic structures related to South Issyk-Kul Fault: faults and folds, responsible for strong earthquakes' occurrence. These were historical and paleoseismic deformations which led to changes in relief: fault scarps and significant rockslides. We have also found spectacular deformations in archeological monuments. All these deformations testify the location of epicentral areas of two strong historic (about 11th and 16th (? centuries AD and paleoearthquakes (Holocene and Late Pleistocene. Magnitude of ancient seismic events, according to parameters of the revealed fault scarps, were Ms ≥ 7 and seismic intensity I ≥ IX. All revealed seismic deformations are located to adyrs (piedmonts of the Terskey Ala-Too range bordered of the Issyk-Kul Lake depression in the south. Their formation is described by the model of a fault which rupture plane becomes shallower southward. This model is complicated by the presence of reverse thrusts. Here, we should admit the existence of a single zone of South Issyk-Kul Fault which is a long-lived feature which separates the structures with the different regime of movements during the Neotectonic time. All obtained data led us to a conclusion of significant underestimation of the seismic hazard in southern Issyk-Kul Lake region.

  17. Physics-based forecasting of earthquake hazards associated with induced seismicity in north-central Oklahoma and southern Kansas

    Science.gov (United States)

    Langenbruch, C.; Weingarten, M.; Zoback, M. D.

    2017-12-01

    Traditional earthquake hazard maps rely on the pre-condition of long-term stationarity of seismicity related to large-scale tectonic processes. Thus, application of these methods to induced seismicity is inherently problematic since injection rates (and earthquake rates) can vary markedly in space and time. We present a physics-based method to forecast seismicity rates and the probability of magnitude exceedance associated with produced water injection induced seismicity in north-central Oklahoma and southern Kansas. Our model incorporates spatial and temporal variations of wastewater injection rates, and a regional hydrologic model to predict pressure and pressure rate changes throughout the seismically active area. This model extends the work of Langenbruch and Zoback (Science Advances, 2016, 2017) and applies the Seismogenic Index model to produce physics-based forecasts of seismicity rates and maps of magnitude exceedance probabilities. Due to decreasing injection rates since mid-2015, pressure increases at depth are slowing down in most areas such that fewer pre-existing faults are expected to be pushed beyond stability. The seismic hazard in 2017 is significantly lower than in 2016. At the current level of wastewater injection the seismic hazard will continue to decrease through 2018 and beyond. In most parts of central Oklahoma the earthquake hazard is expected to approach the tectonic background level over the next five years. In some parts of northern Oklahoma further injection rate reductions might be required to approach this level within the same time period.

  18. FiSH: put fault data in a seismic hazard basket

    Science.gov (United States)

    Pace, Bruno; Visini, Francesco; Peruzza, Laura

    2016-04-01

    The practice of using fault sources in seismic hazard studies is growing in popularity, including in regions with moderate seismic activity, such as the European countries. In these areas, fault identification may be affected by similarly large uncertainties in the historical and instrumental seismic histories of more active areas that have not been inhabited for long periods of time. Certain studies have effectively applied a time-dependent perspective to combine historical and instrumental seismic data with geological and paleoseismological information, partially compensating for a lack of information. We present a package of Matlab® tools (called FiSH), in publication on Seismological Research Letters, designed to help seismic hazard modellers analyse fault data. These tools enable the derivation of expected earthquake rates given common fault data, and allow you to test the consistency between the magnitude frequency distributions assigned to a fault and some available observations. The basic assumption of FiSH is that the geometric and kinematic features of a fault are the expression of its seismogenic potential. Three tools have been designed to integrate the variable levels of information available: (a) the first tool allows users to convert fault geometry and slip rates into a global budget of the seismic moment released in a given time frame, taking uncertainties into account; (b) the second tool computes the recurrence parameters and associated uncertainties from historical and/or paleoseismological data; 
(c) the third tool outputs time-independent or time-dependent earthquake rates for different magnitude frequency distribution models. We present moreover a test case to illustrate the capabilities of FiSH, on the Paganica normal fault in Central Italy that ruptured during the L'Aquila 2009 earthquake sequence (mainshock Mw 6.3). FiSH is available at http://fish-code.com, and the source codes are open. We encourage users to handle the scripts

  19. Lessons Learned- The Use of Formal Expert Elicitation in Probablistic Seismic Hazard

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Coppersmith; R.C. Perman; R.R. Youngs

    2006-05-10

    Probabilistic seismic hazard analyses provide the opportunity, indeed the requirement, to quantify the uncertainties in important inputs to the analysis. The locations of future earthquakes, their recurrence rates and maximum size, and the ground motions that will result at a site of interest are all quantities that require careful consideration because they are uncertain. The earliest PSHA models [Cornell, 1968] provided solely for the randomness or aleatory variability in these quantities. The most sophisticated seismic hazard models today, which include quantified uncertainties, are merely more realistic representations of this basic aleatory model. All attempts to quantify uncertainties require expert judgment. Further, all uncertainty models should endeavor to consider the range of views of the larger technical community at the time the hazard analysis is conducted. In some cases, especially for large projects under regulatory review, formal structured methods for eliciting expert judgments have been employed. Experience has shown that certain key elements are required for these assessments to be successful, including: (1) experts should be trained in probability theory, uncertainty quantification, and ways to avoid common cognitive biases; (2) comprehensive and user-friendly databases should be provided to the experts; (3) experts should be required to evaluate all potentially credible hypotheses; (4) workshops and other interactions among the experts and proponents of published viewpoints should be encouraged; (5) elicitations are best conducted in individual interview sessions; (6) feedback should be provided to the experts to give them insight into the significance of alternative assessments to the hazard results; and (7) complete documentation should include the technical basis for all assessments. Case histories are given from seismic hazard analyses in Europe, western North America, and the stable continental region of the United States.

  20. Marine geophysical research helps to assess the seismic hazard at the Hispaniola Island

    Science.gov (United States)

    Carbó-Gorosabel, A.; Granja Bruña, J.; Llanes Estrada, M.; Munoz Martin, A.; Gómez Ballesteros, M.; Druet, M.; Martín-Dávila, J.; Pazos, A.; Catalan, M.; ten Brink, U. S.; Hernaiz-Huerta, P.; Olaiz, A. J.; Torres, R.; Brothers, D. S.

    2011-12-01

    Detailed swath bathymetry mapping of complete geological provinces together with high-resolution seismic profiles provide critical perspective for the detection and study of active faults and their seismic and tsunami hazard. Since 2003 the Universidad Complutense de Madrid has been leading an international research group to study the north-eastern Caribbean, from the Lesser Antilles to Jamaica. This area comprises the 200 km-wide boundary zone between the North American and the Caribbean plates, where the relative plate motion is 18-20 ±3 mm/year towards 070-075. The highly-oblique convergence between the plates in Hispaniola is accommodated by strain partitioning on seismic fault systems sub-parallel to the plate boundary: strike-slip (the Enriquillo-Plantain Garden and the Septentrional fault zones) and the compressive deformed belts (the Muertos thrust belt and the North Hispaniola thrust belt). Results from several research cruises offshore Hispaniola have identified and characterized zones of active deformation that were not observed onshore, such as the Muertos out-of-sequence thrust or the Beata Ridge crest fault zone. The Muertos out-of-sequence thrust could be related to the M≈8 event occurred the 18th of October in 1751 that shook central and south-eastern Hispaniola. In other seismic fault zones, such as the Enriquillo-Plantain Garden and the Septentrional fault zones, knowledge of their offshore continuity is limited. Future research cruises will target the offshore continuity of these strike-slip seismic fault zones in the vicinity of Southern Peninsula of Haiti, in the Jamaica Passage and in the Gonave Bay. As part of the NORCARIBE project, a research cruise will be taking place in the spring of 2012 aboard the Spanish R/V Hespérides. Multichannel, high-resolution and wide-angle seismic profiles will be acquired together with swath bathymetry, magnetic and gravity data. The scientific and social interest in studying this region has greatly

  1. Seismic hazard in Romania associated to Vrancea subcrustal source: Deterministic evaluation

    International Nuclear Information System (INIS)

    Radulian, M.; Mandrescu, N.; Vaccari, F.; Moldoveanu, C.L.; Panza, G.F.

    2002-09-01

    Our study presents an application of the deterministic approach to the particular case of Vrancea intermediate-depth earthquakes to show how efficient the numerical synthesis is in predicting realistic ground motion, and how some striking peculiarities of the observed intensity maps are properly reproduced. The deterministic approach proposed by Costa et al. (1993) is particularly useful to compute seismic hazard in Romania, where the most destructive effects are caused by the intermediate-depth earthquakes generated in the Vrancea region. Vrancea is unique among the seismic sources of the World because of its striking peculiarities: the extreme concentration of seismicity with a remarkable invariance of the foci distribution, the unusually high rate of strong shocks (an average frequency of 3 events with magnitude greater than 7 per century) inside an exceptionally narrow focal volume, the predominance of a reverse faulting mechanism with the T-axis almost vertical and the P-axis almost horizontal and the more efficient high-frequency radiation, especially in the case of large earthquakes, in comparison with shallow earthquakes of similar size. The seismic hazard is computed in terms of peak ground motion values characterizing the complete synthetic seismograms generated by the modal summation technique on a grid covering the Romanian territory. Two representative scenario earthquakes are considered in the computation, corresponding to the largest instrumentally recorded earthquakes, one located in the upper part of the slab (M w = 7.4; h = 90 km), the other located in the lower part of the slab (M w = 7.7; h = 150 km). The seismic hazard distribution, expressed in terms of Design Ground Acceleration values, is very sensitive to magnitude, focal depth and focal mechanism. For a variation of 0.3 magnitude units the hazard level generally increases by a factor of two. The increase of the focal depth leads to stronger radiation at large epicentral distance (100 - 200

  2. Further assessment of seismic hazard/risk in the Bushveld Complex platinum mines and the implication for regional and local support design.

    CSIR Research Space (South Africa)

    Brink, AVZ

    2002-03-01

    Full Text Available greater hazard will imply the potential to cause greater harm. A study of what the maximum event magnitude in an area might be is typically a seismic hazard determination. The generic equation: Risk = Hazard * Vulnerability was, in this case..., extended to (Menoni, et al, 1999): Risk = Seismic Hazard * Induced physical hazard * Systemic Vulnerability (Induced physical hazard = triggered by the ground motion; support failure; fall of ground. Systemic Vulnerability = Exposure of people; economic...

  3. Structure and seismic hazard of the Ventura Avenue anticline and Ventura fault, California

    Science.gov (United States)

    Hubbard, J.; Shaw, J. H.; Dolan, J. F.; Pratt, T. L.; McAuliffe, L. J.

    2011-12-01

    The Ventura Avenue anticline, in the western Transverse Ranges, is one of the fastest uplifting structures in southern California, rising at a rate of ~5 mm/yr (Rockwell et al., 1988). However, there is disagreement about whether this structure poses a seismic hazard, due to uncertainty about the nature of the Ventura fault, which lies along the southern margin of the fold. Two models have been proposed: either the Ventura fault extends to seismogenic depths beneath the anticline (e.g., Sarna-Wojcicki et al., 1976), or it is a shallow, bending-moment fault that does not pose a significant seismic hazard (e.g., Yeats, 1982a,b; Huftile and Yeats, 1995). Seismic data across the tip of the Ventura fault suggest that it deforms late Pleistocene and younger strata, implying that the fault system is active. Given that the fault trace extends directly through the city of Ventura, distinguishing between these two interpretations has considerable importance in regional seismic hazard assessments. We use well data, industry seismic reflection profiles, and two seismic profiles acquired by our group in August 2010, to construct a more complete 3D model of the system. Based on dipmeter logs and stratigraphic cutoffs imaged in seismic reflection profiles, we show that the north-dipping Ventura fault extends to seismogenic depth beneath the anticline. Fault offset increases with depth, implying that the Ventura fault has propagated upwards over time. Thus, we interpret the Ventura Avenue anticline to be a fault-propagation fold underlain by an active thrust ramp. A decrease in the uplift rate of the anticline at 30 ka, as measured from uplifted terraces (Rockwell et al., 1988), is consistent with a breakthrough of the Ventura fault at that time, although the fault is still blind as it is buried by a sedimentary cover. In order to assess the hazard of the fault, we examine its regional extent. The Ventura fold trend continues offshore and coincides with a set of oil fields. A 3D

  4. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    Science.gov (United States)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  5. Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1992-01-01

    This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository

  6. Time-Dependent Probabilistic Seismic Hazard Analysis Using the Simulated Records, the Case of Tehran

    Directory of Open Access Journals (Sweden)

    Babak Hajimohammadi

    2015-03-01

    Full Text Available Common attenuation equations are developed by seismic records which belong to earthquakes that have happened so far. Although there are many recorded data during last 50 years, it is not possible to consider all possible wave propagation paths, site types and fault rupture mechanisms inclassical attenuation relations. This fact becomes more serious in near field cases and a common shortcoming in most attenuation equations is their low accuracyin estimation of near field parameters.Many important cities of the world such as Tehran are located nearby some active faults. For example, the North Tehran Fault is such a closeseismic source to Tehran Metropolitanarea andcould be considered asa near field source. Therefore, it is necessary to evaluate near field effects in most of hazard analyses, risk management programs, structural designs, etc.In past, it was routine to use attenuation equations in hazard analyses. In this project for avoiding from insufficient performance of attenuation equations in near field, proposed simulation datum byZafarani, et al., (2012, were used directly in the hazard analysis without converting them into attenuation equations.Besides, time dependent hazard analysis (Non-PoissonianModel was used to taking into account the probable seismic activity of the North Tehran Fault.

  7. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    Science.gov (United States)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  8. Application of probabilistic seismic hazard models with special calculation for the waste storage sites in Egypt

    International Nuclear Information System (INIS)

    Othman, A.A.; El-Hemamy, S.T.

    2000-01-01

    Probabilistic strong motion maps of Egypt are derived by applying Gumbel models and likelihood method to 8 earthquake source zones in Egypt and adjacent regions. Peak horizontal acceleration is mapped. Seismic data are collected from Helwan Catalog (1900-1997), regional catalog of earthquakes from the International Seismological Center (ISC,1910-1993) and earthquake data reports of US Department of International Geological Survey (USCGS, 1900-1994). Iso-seismic maps are also available for some events, which occurred in Egypt. Some earthquake source zones are well defined on the basis of both tectonics and average seismicity rates, but a lack of understanding of the near field effects of the large earthquakes prohibits accurate estimates of ground motion in their vicinity. Some source zones have no large-scale crustal features or zones of weakness that can explain the seismicity and must, therefore, be defined simply as concentrations of seismic activity with no geological or geophysical controls on the boundaries. Other source zones lack information on low-magnitude seismicity that would be representative of longer periods of time. Comparisons of the new probabilistic ground motion estimates in Egypt with equivalent estimates made in 1990 have been done. The new ground motion estimates are used to produce a new peak ground acceleration map to replace the 1990 peak acceleration zoning maps in the Building code of Egypt. (author)

  9. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    Science.gov (United States)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  10. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  11. Simplified static method for determining seismic loads on equipment in moderate and high hazard facilities

    International Nuclear Information System (INIS)

    Scott, M.A.; Holmes, P.A.

    1991-01-01

    A simplified static analysis methodology is presented for qualifying equipment in moderate and high-hazard facility-use category structures, where the facility use is defined in Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Hazards, UCRL-15910. Currently there are no equivalent simplified static methods for determining seismic loads on equipment in these facility use categories without completing dynamic analysis of the facility to obtain local floor accelerations or spectra. The requirements of UCRL-15910 specify the use of open-quotes dynamicclose quotes analysis methods, consistent with Seismic Design Guidelines for Essential Buildings, Chapter 6, open-quotes Nonstructural Elements,close quotes TM5-809-10-1, be used for determining seismic loads on mechanical equipment and components. Chapter 6 assumes that the dynamic analysis of the facility has generated either floor response spectra or model floor accelerations. These in turn are utilized with the dynamic modification factor and the actual demand and capacity ratios to determine equipment loading. This complex methodology may be necessary to determine more exacting loads for hard to qualify equipment but does not provide a simple conservative loading methodology for equipment with ample structural capacity

  12. Seismic hazard analysis with PSHA method in four cities in Java

    International Nuclear Information System (INIS)

    Elistyawati, Y.; Palupi, I. R.; Suharsono

    2016-01-01

    In this study the tectonic earthquakes was observed through the peak ground acceleration through the PSHA method by dividing the area of the earthquake source. This study applied the earthquake data from 1965 - 2015 that has been analyzed the completeness of the data, location research was the entire Java with stressed in four large cities prone to earthquakes. The results were found to be a hazard map with a return period of 500 years, 2500 years return period, and the hazard curve were four major cities (Jakarta, Bandung, Yogyakarta, and the city of Banyuwangi). Results Java PGA hazard map 500 years had a peak ground acceleration within 0 g ≥ 0.5 g, while the return period of 2500 years had a value of 0 to ≥ 0.8 g. While, the PGA hazard curves on the city's most influential source of the earthquake was from sources such as fault Cimandiri backgroud, for the city of Bandung earthquake sources that influence the seismic source fault dent background form. In other side, the city of Yogyakarta earthquake hazard curve of the most influential was the source of the earthquake background of the Opak fault, and the most influential hazard curve of Banyuwangi earthquake was the source of Java and Sumba megatruts earthquake. (paper)

  13. Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using parametric-historic procedure

    Science.gov (United States)

    Bellalem, Fouzi; Talbi, Abdelhak; Djellit, Hamou; Ymmel, Hayet; Mobarki, Mourad

    2018-03-01

    The region of Blida is characterized by a relatively high seismic activity, pointed especially during the past two centuries. Indeed, it experienced a significant number of destructive earthquakes such as the earthquakes of March 2, 1825 and January 2, 1867, with intensity of X and IX, respectively. This study aims to investigate potential seismic hazard in Blida city and its surrounding regions. For this purpose, a typical seismic catalog was compiled using historical macroseismic events that occurred over a period of a few hundred years, and the recent instrumental seismicity dating back to 1900. The parametric-historic procedure introduced by Kijko and Graham (1998, 1999) was applied to assess seismic hazard in the study region. It is adapted to deal with incomplete catalogs and does not use any subjective delineation of active seismic zones. Because of the lack of recorded strong motion data, three ground prediction models have been considered, as they seem the most adapted to the seismicity of the study region. Results are presented as peak ground acceleration (PGA) seismic hazard maps, showing expected peak accelerations with 10% probability of exceedance in 50-year period. As the most significant result, hot spot regions with high PGA values are mapped. For example, a PGA of 0.44 g has been found in a small geographical area centered on Blida city.

  14. The contribution of the Global Change Observatory Central Asia to seismic hazard and risk assessment in the Central Asian region

    Science.gov (United States)

    Parolai, S.; Bindi, D.; Haberland, C. A.; Pittore, M.; Pilz, M.; Rosenau, M.; Schurr, B.; Wieland, M.; Yuan, X.

    2012-12-01

    Central Asia has one of the world's highest levels of earthquake hazard, owing to its exceptionally high deformation rates. Moreover, vulnerability to natural disasters in general is increasing, due to rising populations and a growing dependence on complex lifelines and technology. Therefore, there is an urgent need to undertake seismic hazard and risk assessment in this region, while at the same time improving upon existing methodologies, including the consideration of temporal variability in the seismic hazard, and in structural and social vulnerability. Over the last few years, the German Research Center for Geosciences (GFZ), in collaboration with local partners, has initiated a number of scientific activities within the framework of the Global Change Observatory Central Asia (GCO-CA). The work is divided into projects with specific concerns: - The installation and maintenance of the Central-Asian Real-time Earthquake MOnitoring Network (CAREMON) and the setup of a permanent wireless mesh network for structural health monitoring in Bishkek. - The TIPAGE and TIPTIMON projects focus on the geodynamics of the Tien-Shan, Pamir and Hindu Kush region, the deepest and most active intra-continental subduction zone in the world. The work covers time scales from millions of years to short-term snapshots based on geophysical measurements of seismotectonic activity and of the physical properties of the crust and upper mantle, as well as their coupling with other surface processes (e.g., landslides). - Existing risk analysis methods assume time-independent earthquake hazard and risk, although temporal changes are likely to occur due to, for example, co- and post-seismic changes in the regional stress field. We therefore aim to develop systematic time-dependent hazard and risk analysis methods in order to undertake the temporal quantification of earthquake activity (PROGRESS). - To improve seismic hazard assessment for better loss estimation, detailed site effects studies

  15. French practice in the area of seismic hazard assessment on nuclear facility sites and related research

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1986-06-01

    The methodology put into practice in the analysis of seismic hazard on the site of a nuclear facility relies upon a deterministic approach and endeavors to account for the particularities of every site considered insofar as available data and techniques allow. The calculation of a seismic reference motion for use in the facilities' design calls upon two basic sets of data. Regional seismicity over the past millennium, from historical sources, revised while preparing the seismotectonic map of France, is fundamental to this analysis. It is completed by instrumental data from the last quarter century. A collection of strong-motion accelerograph data from seismic areas worldwide reflects a variety of source characteristics and site conditions. A critical overview of current practice in France and elsewhere highlights shortcomings and areas of particular need both in experimental data and in methodology, and namely the scarcity of near-field data, the predominance of California records, and inaccurate approaches to integrating soil effects into ground-motion calculations. 16 refs

  16. Interaction between two subducting plates under Tokyo and its possible effects on seismic hazards

    Science.gov (United States)

    Wu, Francis; Okaya, David; Sato, Hiroshi; Hirata, Naoshi

    2007-09-01

    Underneath metropolitan Tokyo the Philippine Sea plate (PHS) subducts to the north on top of the westward subducting Pacific plate (PAC). New, relatively high-resolution tomography images the PHS as a well-defined subduction zone under western Kanto Plain. As PAC shoals under eastern Kanto, the PHS lithosphere is being thrusted into an increasingly tighter space of the PAC-Eurasian mantle wedge. As a result, zones of enhanced seismicity appear under eastern Kanto at the top of PHS, internal to PHS and also at its contact with PAC. These zones are located at depths greater than the causative fault of the disastrous 1923 Great Tokyo ``megathrust'' earthquake, in the vicinity of several well-located historical, damaging (M6 and M7) earthquakes. Thus a rather unique interaction between subducting plates under Tokyo may account for additional seismic hazards in metropolitan Tokyo.

  17. Geotechnical Seismic Hazard Evaluation At Sellano (Umbria, Italy) Using The GIS Technique

    International Nuclear Information System (INIS)

    Capilleri, P.; Maugeri, M.

    2008-01-01

    A tool that has been widely-used in civil engineering in recent years is the geographic information system (GIS). Geographic Information systems (GIS) are powerful tools for organizing, analyzing, and presenting spatial data. The GIS can be used by geotechnical engineers to aid preliminary assessment through to the final geotechnical design. The aim of this work is to provide some indications for the use of the GIS technique in the field of seismic geotechnical engineering, particularly as regards the problems of seismic hazard zonation maps. The study area is the village of Sellano located in the Umbrian Apennines in central Italy, about 45 km east of Perugia and 120 km north-east of Rome The increasing importance attributed to microzonation derives from the spatial variability of ground motion due to particular local conditions. The use of GIS tools can lead to an early identification of potential barriers to project completion during the design process that may help avoid later costly redesign

  18. Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment

    Science.gov (United States)

    Hintersberger, Esther; Decker, Kurt; Lomax, Johanna; Lüthgens, Christopher

    2018-02-01

    Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax, obs / Mmax, obs = 8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20-25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02-0.05 mm a-1 derived from the

  19. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  20. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  1. The MITMOTION Project - A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Borges, José; Ouyed, Merzouk; Bezzeghoud, Mourad; Idres, Mouloud; Caldeira, Bento; Boughacha, Mohamed; Carvalho, João; Samai, Saddek; Fontiela, João; Aissa, Saoussen; Benfadda, Amar; Chimouni, Redouane; Yalaoui, Rafik; Dias, Rui

    2017-04-01

    The Mitidja Basin (MB) is located in northern Algeria and is filled by quaternary sediments with a length of about 100 km on the EW direction and approximately 20 km width. This basin is limited to the south by the Boumerdes - Larbaa - Blida active fault system and to the north by the Thenia - Sahel fault system. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of 4 mm/year. This basin is associated with important seismic events that affected northern Algeria since the historical period until the present. The available earthquake catalogues reported numerous destructive earthquakes that struke different regions, such as Algiers (1365, Io= X; 1716, Io = X). Recently, on May 2003 the Bourmedes earthquake (Mw = 6.9) affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The epicenter was located offshore and generated a maximum uplift of 0.8 m along the coast with a horizontal maximum slip of 0.24 m. Recent studies show that the Boumerdes earthquake overloaded the system of adjacent faults with a stress increase between 0.4 and 1.5 bar. This induced an increase of the seismic hazard potential of the region and recommends a more detailed study of this fault system. The high seismogenic potential of the fault system bordering the MB, the exposure to danger of the most densely populated region of Algiers and the amplification effect caused by the basin are the motivation for this project proposal that will focus on the evaluation of the seismic hazard of the region. The general purpose of the project is to improve the seismic hazard assessment on the MB producing realistic predictions of strong ground motion caused by moderate and large earthquakes. To achieve this objective, it is important to make an effort in 3 directions: 1) the development of a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data

  2. The Salton Seismic Imaging Project (SSIP): Rift Processes and Earthquake Hazards in the Salton Trough (Invited)

    Science.gov (United States)

    Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Murphy, J. M.; Sickler, R. R.; Criley, C. J.; Goldman, M.; Catchings, R. D.; Ricketts, J. W.; Gonzalez-Fernandez, A.; Driscoll, N.; Kent, G.; Harding, A. J.; Klemperer, S. L.

    2009-12-01

    The Salton Seismic Imaging Project (SSIP) and coordinated projects will acquire seismic data in and across the Salton Trough in southern California and northern Mexico, including the Coachella, Imperial, and Mexicali Valleys. These projects address both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. The new data will constrain the style of continental breakup, the role and mode of magmatism, the effects of rapid Colorado River sedimentation upon extension and magmatism, and the partitioning of oblique extension. The southernmost San Andreas Fault is considered at high risk of producing a large damaging earthquake, yet structures of the fault and adjacent basins are poorly constrained. To improve hazard models, SSIP will image the geometry of the San Andreas and Imperial Faults, structure of sedimentary basins in the Salton Trough, and three-dimensional seismic velocity of the crust and uppermost mantle. SSIP and collaborating projects have been funded by several different programs at NSF and the USGS. These projects include seven lines of land refraction and low-fold reflection data, airguns and OBS data in the Salton Sea, coordinated fieldwork for onshore-offshore and 3-D data, and a densely sampled line of broadband stations across the trough. Fieldwork is tentatively scheduled for 2010. Preliminary work in 2009 included calibration shots in the Imperial Valley that quantified strong ground motion and proved lack of harm to agricultural irrigation tile drains from explosive shots. Piggyback and complementary studies are encouraged.

  3. Corroborating a new probabilistic seismic hazard assessment for greater Tokyo from historical intensity observations

    Science.gov (United States)

    Bozkurt, S.; Stein, R.; Toda, S.

    2006-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past observations of shaking. For this we analyzed 10,000 intensity observations recorded during AD 1600-2000 in a 350 x 350 km area centered on Tokyo in a Geographic Information System. A frequency-intensity curve is found for each 5 x 5 km cell, and from this the probability of exceeding any intensity level can be estimated. The principal benefits of this approach is that it builds the fewest possible assumptions into a probabilistic seismic forecast, it includes site and source effects without imposing this behavior, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The cost is that we must abandon any attempt to make a time-dependent forecast, which could be quite different. We believe the method is suitable to many applications of probabilistic seismic hazard assessment, and to other regions. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same, and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct suggest that both assumptions are sound. The resulting 30-year probability of IJMA>=6 shaking (roughly equivalent to PGA>=0.9 g or MMI=IX-X) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba, the range reflecting spatial variability and curve-fitting alternatives. The strongest shaking is forecast along the margins of Tokyo Bay, within the river sediments extending northwest from Tokyo, and at coastal sites near the plate boundary faults. We also produce long- term exceedance maps of peak ground acceleration for building code regulations, and short-term hazard maps associated with hypothetical catastrophe bonds. Our results for greater Tokyo resemble our independent Poisson probability developed from conventional seismic hazard analysis, as well as

  4. The ESI scale, an ethical approach to the evaluation of seismic hazards

    Science.gov (United States)

    Porfido, Sabina; Nappi, Rosa; De Lucia, Maddalena; Gaudiosi, Germana; Alessio, Giuliana; Guerrieri, Luca

    2015-04-01

    The dissemination of correct information about seismic hazard is an ethical duty of scientific community worldwide. A proper assessment of a earthquake severity and impact should not ignore the evaluation of its intensity, taking into account both the effects on humans, man-made structures, as well as on the natural evironment. We illustrate the new macroseismic scale that measures the intensity taking into account the effects of earthquakes on the environment: the ESI 2007 (Environmental Seismic Intensity) scale (Michetti et al., 2007), ratified by the INQUA (International Union for Quaternary Research) during the XVII Congress in Cairns (Australia). The ESI scale integrates and completes the traditional macroseismic scales, of which it represents the evolution, allowing to assess the intensity parameter also where buildings are absent or damage-based diagnostic elements saturate. Each degree reflects the corresponding strength of an earthquake and the role of ground effects, evaluating the Intensity on the basis of the characteristics and size of primary (e.g. surface faulting and tectonic uplift/subsidence) and secondary effects (e.g. ground cracks, slope movements, liquefaction phenomena, hydrological changes, anomalous waves, tsunamis, trees shaking, dust clouds and jumping stones). This approach can be considered "ethical" because helps to define the real scenario of an earthquake, regardless of the country's socio-economic conditions and level of development. Here lies the value and the relevance of macroseismic scales even today, one hundred years after the death of Giuseppe Mercalli, who conceived the homonymous scale for the evaluation of earthquake intensity. For an appropriate mitigation strategy in seismic areas, it is fundamental to consider the role played by seismically induced effects on ground, such as active faults (size in length and displacement) and secondary effects (the total area affecting). With these perspectives two different cases

  5. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  6. Integrating Caribbean Seismic and Tsunami Hazard into Public Policy and Action

    Science.gov (United States)

    von Hillebrandt-Andrade, C.

    2012-12-01

    processes. For example, earthquake and tsunami exercises are conducted separately, without taking into consideration the compounding effects. Recognizing this deficiency, the UNESCO IOC Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) which was established in 2005, decided to include the tsunami and earthquake impacts for the upcoming March 20, 2013 regional CARIBE WAVE/LANTEX tsunami exercise. In addition to the tsunami wave heights predicted by the National Weather Service Tsunami Warning Centers in Alaska and Hawaii, the USGS PAGER and SHAKE MAP results for the M8.5 scenario earthquake in the southern Caribbean were also integrated into the manual. Additionally, in recent catastrophic planning for Puerto Rico, FEMA did request the local researchers to determine both the earthquake and tsunami impacts for the same source. In the US, despite that the lead for earthquakes and tsunamis lies within two different agencies, USGS and NOAA/NWS, it has been very beneficial that the National Tsunami Hazard Mitigation Program partnership includes both agencies. By working together, the seismic and tsunami communities can achieve an even better understanding of the hazards, but also foster more actions on behalf of government officials and the populations at risk.

  7. Seismic and tsunami hazard investigation in Valparaiso in the framework of the project "MAR VASTO"

    Science.gov (United States)

    Romanelli, F.; Razafindrakoto, H.

    2009-04-01

    In the framework of the MAR VASTO Project ("Risk Management in Valparaíso/Manejo de Riesgos en Valparaíso"), completed in 2008 and funded by BID/IDB (Banco InterAmericano de Desarrollo/ InterAmerican Development Bank), managed by ENEA (Italian Agency for New Technologies, Energy and Environment), with the participation of Italian and Chilean partners and the support of local stakeholders, the most important hazards have been investigated carried out. Valparaíso represents a distinctive case of growth, inside a remarkable landscape, of an important Pacific Ocean seaport (over the 19th and 20th centuries), up to reaching a strategic importance in shipping trade, declined after the Panama Canal opening (1914). Thus, Valparaíso tells the never-ending story of a tight interaction between society and environment, stratifying different urban and architectonic layers, sometimes struck by disasters and always in danger. Certainly, the city has been subjected to various natural hazards (seismic events, but also tsunamis, landslides, etc.) and anthropic calamities (mainly wild and human-induced fires). These features make Valparaíso a paradigmatic study case about hazard mitigation, and risk factors must be very well evaluated during the restoration phases to be planned in the future. Seismic Hazrad. The major goal is to provide a dataset of synthetic time series representative of the potential ground motion at the bedrock of Valparaiso, especially at selected sites (e.g. the three important churches located in the Valparaiso urban area: La Matriz, San Francisco, Las Hermanitas de la Providencia), for different scenarios; the characteristics of the calculated signals (e.g. amplitude, frequency content and duration of shaking) are determined by the earthquake source process and the wave propagation effects of the path between the source and the site. The synthetic signals, to be used as seismic input in a subsequent engineering analysis, have been produced at a very low

  8. Wind turbines and seismic hazard: a state-of-the-art review

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Thöns, Sebastian; Georgakis, Christos T.

    2016-01-01

    Wind energy is a rapidly growing field of renewable energy, and as such, intensive scientific and societal interest has been already attracted. Research on wind turbine structures has been mostly focused on the structural analysis, design and/or assessment of wind turbines mainly against normal...... and assessment of wind turbines. Based on numerical simulation, either deterministic or probabilistic approaches are reviewed, because they have been adopted to investigate the sensitivity of wind turbines’ structural capacity and reliability in earthquake-induced loading. The relevance of seismic hazard...

  9. An Earthquake Source Ontology for Seismic Hazard Analysis and Ground Motion Simulation

    Science.gov (United States)

    Zechar, J. D.; Jordan, T. H.; Gil, Y.; Ratnakar, V.

    2005-12-01

    Representation of the earthquake source is an important element in seismic hazard analysis and earthquake simulations. Source models span a range of conceptual complexity - from simple time-independent point sources to extended fault slip distributions. Further computational complexity arises because the seismological community has established so many source description formats and variations thereof; what this means is that conceptually equivalent source models are often expressed in different ways. Despite the resultant practical difficulties, there exists a rich semantic vocabulary for working with earthquake sources. For these reasons, we feel it is appropriate to create a semantic model of earthquake sources using an ontology, a computer science tool from the field of knowledge representation. Unlike the domain of most ontology work to date, earthquake sources can be described by a very precise mathematical framework. Another uniqueness associated with developing such an ontology is that earthquake sources are often used as computational objects. A seismologist generally wants more than to simply construct a source and have it be well-formed and properly described; additionally, the source will be used for performing calculations. Representation and manipulation of complex mathematical objects presents a challenge to the ontology development community. In order to enable simulations involving many different types of source models, we have completed preliminary development of a seismic point source ontology. The use of an ontology to represent knowledge provides machine interpretability and the ability to validate logical consistency and completeness. Our ontology, encoded using the OWL Web Ontology Language - a standard from the World Wide Web Consortium, contains the conceptual definitions and relationships necessary for source translation services. For example, specification of strike, dip, rake, and seismic moment will automatically translate into a double

  10. Evaluation & Identification of Hazards for Employees in Oil Exploration Seismic Operations with Job Safety Analysis Method

    Directory of Open Access Journals (Sweden)

    SH. Arghami

    2006-10-01

    Full Text Available Background and aims   Global -and local (Iran- accident fact sheets show that increasing development of products, changing in technology and materials & new instruments appliances  have resulted more injuries and fatalities in various industries. Job Safety Analysis (JSA is one of  the various methods to identify and evaluate the hazards.   Methods   This case study was carried out in Abadan seismic field. Data gathering and completion  of the JSA worksheets were carried out through one-to-one observations, interviews,  photography, video tape recording, historical data and checklists.   Results   Ten tasks, 55 steps, 155 hazards and 301 corrective and prevention actions were identified during this study to be eliminated.   Conclusion   Based on findings¡ an Emergency Response Plan and 10 safe operation procedures were developed. It is revealed that in outdoor environment, unsafe conditions are focused more in JSA.

  11. 2014 Update of the Pacific Northwest portion of the U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Frankel, Arthur; Chen, Rui; Petersen, Mark; Moschetti, Morgan P.; Sherrod, Brian

    2015-01-01

    Several aspects of the earthquake characterization were changed for the Pacific Northwest portion of the 2014 update of the national seismic hazard maps, reflecting recent scientific findings. New logic trees were developed for the recurrence parameters of M8-9 earthquakes on the Cascadia subduction zone (CSZ) and for the eastern edge of their rupture zones. These logic trees reflect recent findings of additional M8 CSZ earthquakes using offshore deposits of turbidity flows and onshore tsunami deposits and subsidence. These M8 earthquakes each rupture a portion of the CSZ and occur in the time periods between M9 earthquakes that have an average recurrence interval of about 500 years. The maximum magnitude was increased for deep intraslab earthquakes. An areal source zone to account for the possibility of deep earthquakes under western Oregon was expanded. The western portion of the Tacoma fault was added to the hazard maps.

  12. Seismic Hazard and Ground Motion Characterization at the Itoiz Dam (Northern Spain)

    Science.gov (United States)

    Rivas-Medina, A.; Santoyo, M. A.; Luzón, F.; Benito, B.; Gaspar-Escribano, J. M.; García-Jerez, A.

    2012-08-01

    This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty ( T = 0.1 s) and when it is filled with water to its maximum capacity ( T = 0.22 s). Additionally, seismic hazard analysis is done for two return periods: 975 years, related to the project earthquake, and 4,975 years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA ( T) of T = 0.1 and 0.22 s for the return periods of 975 and 4,975 years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling

  13. Broadband CyberShake Platform: Seismogram Synthesis for Broadband Physics-Based Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Small, P.; Milner, K.; Graves, R. W.; Jordan, T. H.; CyberShake Collaboration

    2011-12-01

    Researchers at the Southern California Earthquake Center (SCEC) have developed the CyberShake computational platform to perform probabilistic seismic hazard analysis (PSHA) in the Los Angeles region (Graves et al., 2010) using deterministic wave propagation simulations at frequencies up to 0.5 Hz. CyberShake uses seismic reciprocity to calculate synthetic seismograms for a suite of more than 600,000 rupture realizations. From this set of seismograms we compute intensity measures, which are then combined into a PSHA hazard curve for the site of interest. SCEC has also developed the SCEC Broadband Ground Motion Simulation Platform, a software system that can calculate broadband seismograms at frequencies up to 10 Hz for historical and scenario earthquakes using multiple earthquake rupture generators, multiple low- and high-frequency wave propagation simulation codes, and multiple site effects modules. Here we report how we have integrated the high-frequency computational capabilities of the SCEC Broadband Platform into CyberShake, producing the Broadband CyberShake Platform. The Broadband CyberShake Platform extends the frequency range up to 10 Hz by combining low frequency deterministic synthetic seismograms with higher frequency stochastic seismograms. We can now calculate physics-based seismograms and PSHA hazard curves for intensity measures such as PGA that are strongly dependent on higher frequency ground motions. A potential benefit of this approach, particularly at higher frequencies, is that given adequate sampling of the parameter space, the physics-based model naturally limits the upper bound of the estimated ground motion response. This often leads to a reduction in hazard at longer return periods. We are applying the computational capabilities of the SCEC Broadband CyberShake Platform at southern California sites selected to support validation of this newly developed PSHA computational technique. This includes calculation of Broadband Cyber

  14. Site-specific seismic probabilistic tsunami hazard analysis: performances and potential applications

    Science.gov (United States)

    Tonini, Roberto; Volpe, Manuela; Lorito, Stefano; Selva, Jacopo; Orefice, Simone; Graziani, Laura; Brizuela, Beatriz; Smedile, Alessandra; Romano, Fabrizio; De Martini, Paolo Marco; Maramai, Alessandra; Piatanesi, Alessio; Pantosti, Daniela

    2017-04-01

    Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) provides probabilities to exceed different thresholds of tsunami hazard intensity, at a specific site or region and in a given time span, for tsunamis caused by seismic sources. Results obtained by SPTHA (i.e., probabilistic hazard curves and inundation maps) represent a very important input to risk analyses and land use planning. However, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could lead to a biased analysis. Moreover, tsunami propagation from source to target requires the use of very expensive numerical simulations. At regional scale, the computational cost can be reduced using assumptions on the tsunami modeling (i.e., neglecting non-linear effects, using coarse topo-bathymetric meshes, empirically extrapolating maximum wave heights on the coast). On the other hand, moving to local scale, a much higher resolution is required and such assumptions drop out, since detailed inundation maps require significantly greater computational resources. In this work we apply a multi-step method to perform a site-specific SPTHA which can be summarized in the following steps: i) to perform a regional hazard assessment to account for both the aleatory and epistemic uncertainties of the seismic source, by combining the use of an event tree and an ensemble modeling technique; ii) to apply a filtering procedure which use a cluster analysis to define a significantly reduced number of representative scenarios contributing to the hazard of a specific target site; iii) to perform high resolution numerical simulations only for these representative scenarios and for a subset of near field sources placed in very shallow waters and/or whose coseismic displacements induce ground uplift or subsidence at the target. The method is applied to three target areas in the Mediterranean located around the cities of Milazzo (Italy), Thessaloniki (Greece) and

  15. Active fault characterization throughout the Caribbean and Central America for seismic hazard modeling

    Science.gov (United States)

    Styron, Richard; Pagani, Marco; Garcia, Julio

    2017-04-01

    The region encompassing Central America and the Caribbean is tectonically complex, defined by the Caribbean plate's interactions with the North American, South American and Cocos plates. Though active deformation over much of the region has received at least cursory investigation the past 50 years, the area is chronically understudied and lacks a modern, synoptic characterization. Regardless, the level of risk in the region - as dramatically demonstrated by the 2010 Haiti earthquake - remains high because of high-vulnerability buildings and dense urban areas home to over 100 million people, who are concentrated near plate boundaries and other major structures. As part of a broader program to study seismic hazard worldwide, the Global Earthquake Model Foundation is currently working to quantify seismic hazard in the region. To this end, we are compiling a database of active faults throughout the region that will be integrated into similar models as recently done in South America. Our initial compilation hosts about 180 fault traces in the region. The faults show a wide range of characteristics, reflecting the diverse styles of plate boundary and plate-margin deformation observed. Regional deformation ranges from highly localized faulting along well-defined strike-slip faults to broad zones of distributed normal or thrust faulting, and from readily-observable yet slowly-slipping structures to inferred faults with geodetically-measured slip rates >10 mm/yr but essentially no geomorphic expression. Furthermore, primary structures such as the Motagua-Polochic Fault Zone (the strike-slip plate boundary between the North American and Caribbean plates in Guatemala) display strong along-strike slip rate gradients, and many other structures are undersea for most or all of their length. A thorough assessment of seismic hazard in the region will require the integration of a range of datasets and techniques and a comprehensive characterization of epistemic uncertainties driving

  16. Probabilistic seismic hazard assessment of the Eastern and Central groups of the Azores - Portugal

    Science.gov (United States)

    Fontiela, João; Bezzeghoud, Mourad; Rosset, Philippe; Borges, José; Rodrigues, Francisco; Caldeira, Bento

    2017-04-01

    Azores islands of the Eastern and Central groups are located at the triple junction of the American, Eurasian and Nubian plates inducing a large number of low magnitude earthquakes. Since its settlement in the 15th century, 33 earthquakes with intensity ≥ VII have caused severe damage and high death toll. The most severe ones occurred in 1522 at São Miguel Island with a maximum MM intensity of X; in 1614 at Terceira Island (X) in 1757 at São Jorge Island (XI); 1852 at São Miguel Island (VIII); 1926 at Faial Island (Mb 5.3-5.9); in 1980 at Terceira Island (Mw7.1) and in 1998 at Faial Island (Mw6.2). The analysis of the Probabilistic Seismic Hazard Assessment (PSHA) were carried out using the classical Cornell-McGuire approach using seismogenic zones recently defined by Fontiela et al. (2014). We create a new earthquake catalogue merging local and global datasets with a large time span (1522 - 2016) to calculate recurrence times and maximum magnitudes. In order to reduce the epistemic uncertainties, we test several ground motion prediction equations in agreement with the geological heterogeneities typical of young volcanic islands. Probabilistic seismic hazard maps are proposed for 475 and 975 years returns periods as well as hazard curves and uniform hazard spectra for the main cities. REFERENCES: Fontiela, J. et al., 2014. Azores seismogenic zones. Comunicações Geológicas, 101(1), pp.351-354. ACKNOWLEDGMENTS: João Fontiela is supported by grant M3.1.2/F/060/2011 of Regional Science Fund of the Regional Government Azores and this study is co-funded by the European Union through the European fund of Regional Development, framed in COMPETE 2020 (Operational Competitiveness Programme and Internationalization) through the ICT project (UID/GEO/04683/2013) with the reference POCI-01-0145-FEDER-007690.

  17. New Directions in Seismic Hazard Assessment Through Focused Earth Observation in the MARmara SuperSITE - Project Achievements

    Science.gov (United States)

    Meral OZel, Nurcan; Necmioǧlu, Öcal; Ergintav, Semih; Ozel, Oǧuz; Favali, Paolo; Bigarre, Pascal; Çakır, Ziyadin; Ozeren, Sinan; Geli, Louis; Douglas, John; Aochi, Hideo; Bossu, Remy; Zülfikar, Can; Şeşetyan, Karin; Erdik, Mustafa

    2016-04-01

    The MARsite Project, which started in November 2012,funded by the EC/ FP7-ENV.2012 6.4-2 (Grant 308417) identifies the Marmara region as a 'Supersite' within European initiatives to aggregate on-shore, off-shore and space-based observations, comprehensive geophysical monitoring, improved hazard and risk assessments encompassed in an integrated set of activities. MARsite aimed to harmonize geological, geophysical, geodetic and geochemical observations to provide a better view of the post-seismic deformation of the 1999 Izmit earthquake (in addition to the post-seismic signature of previous earthquakes), loading of submarine and inland active fault segments and transient pre-earthquake signals, related to stress loading with different tectonic properties in and around Marmara Sea. This presentation provides an overview of the achievements of MARSite which aimed to coordinate research groups ranging from seismology to gas geochemistry in a comprehensive monitoring activity developed in the Marmara Region based on collection of multidisciplinary data to be shared, interpreted and merged in consistent theoretical and practical models suitable for the implementation of good practices to move the necessary information to the end users in charge of seismic risk management of the region. In addition, processes involved in earthquake generation and the physics of short-term seismic transients, 4D deformations to understand earthquake cycle processes, fluid activity monitoring and seismicity under the sea floor using existing autonomous instrumentation, early warning and development of real-time shake and loss information, real- and quasi-real-time earthquake and tsunami hazard monitoring and earthquake-induced landslide hazard topics are also covered within MARSite. In particular, achievements and progress in the design and building of a multi-parameter borehole system consisting of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, with

  18. Preliminary seismic hazard assessment, shallow seismic refraction and resistivity sounding studies for future urban planning at the Gebel Umm Baraqa area, Egypt

    Science.gov (United States)

    Khalil, Mohamed H.; Hanafy, Sherif M.; Gamal, Mohamed A.

    2008-12-01

    Gebel Umm Baraqa Fan, west Gulf of Aqaba, Sinai, is one of the most important tourism areas in Egypt. However, it is located on the active Dead Sea-Gulf of Aqaba Levant transform fault system. Geophysical studies, including fresh water aquifer delineation, shallow seismic refraction, soil characterization and preliminary seismic hazard assessment, were conducted to help in future city planning. A total of 11 vertical electrical soundings (1000-3000 m maximum AB/2) and three bore-holes were drilled in the site for the analysis of ground water, total dissolved solids (TDS) and fresh water aquifer properties. The interpretation of the one-dimensional (1D) inversion of the resistivity data delineated the fresh water aquifer and determined its hydro-geologic parameters. Eleven shallow seismic refraction profiles (125 m in length) have been collected and interpreted using the generalized reciprocal method, and the resulting depth-velocity models were verified using an advanced finite difference (FD) technique. Shallow seismic refraction effectively delineates two subsurface layers (VP ~ 450 m s-1 and VP ~ 1000 m s-1). A preliminary seismic hazard assessment in Umm Baraqa has produced an estimate of the probabilistic peak ground acceleration hazard in the study area. A recent and historical earthquake catalog for the time period 2200 BC to 2006 has been compiled for the area. New accurate seismic source zoning is considered because such details affect the degree of hazard in the city. The estimated amount of PGA reveals values ranging from 250 to 260 cm s-2 in the bedrock of the Umm Baraqa area during a 100 year interval (a suitable time window for buildings). Recommendations as to suitable types of buildings, considering the amount of shaking and the aquifer properties given in this study, are expected to be helpful for the Umm Baraqa area.

  19. Mapping sediment thickness of Islamabad city using empirical relationships: Implications for seismic hazard assessment

    Science.gov (United States)

    Khan, Sarfraz; Khan, M. Asif

    2016-04-01

    Soft sediments make an important component of the subsurface lithology, especially in areas underlain by river/stream basins. Occupying a position directly above the bedrock up to the land surface, these soft sediments can range in thickness from few centimeters to hundreds of meters. They carry a special nuisance in seismic hazards, as they serve as a source of seismic amplification that may enhance the seismic shaking of many folds. Determination of the thickness of the soft sediments is therefore crucial in seismic hazard analysis. A number of studies in recent years have demonstrated that frequency and amplitude spectrum obtained from the noise measurements during the recording of natural seismicity can be used to obtain thickness of soft sediments covering the bedrock. Nakamura (1989) presented a technique to determine such spectrum using ratio of horizontal to vertical components of the Rayleigh waves. The present study is based on an extensive set of microtremor measurements carried out in the Islamabad city, Pakistan. Fundamental frequencies were obtained from weak motion sensors and Tromino Engy Plus instruments to show that the correlation is clearly valid for a wide range of sediment thickness. A simple formula was derived for the investigated area to determine directly the thickness of sediments from the main peaks in the H/ V spectrum for seismometer and Tromino data separately. A comparison is made between sediment thicknesses derived from empirical relations developed in this study with those given in literature to demonstrate a positive correlation. The correlation of instrumental resonant frequencies with calculated resonant frequencies (theoretical) suggests that the relation derived from the noise measurements mostly depends on the velocity depth function of the shear wave. The fundamental frequency of the main peak of spectral ratio of H/ V using the both instruments correlates well with the thickness of sediments at the site obtained from the

  20. Seismic hazard assessment and pattern recognition of earthquake prone areas in the Po Plain (Italy)

    Science.gov (United States)

    Gorshkov, Alexander; Peresan, Antonella; Soloviev, Alexander; Panza, Giuliano F.

    2014-05-01

    A systematic and quantitative assessment, capable of providing first-order consistent information about the sites where large earthquakes may occur, is crucial for the knowledgeable seismic hazard evaluation. The methodology for the pattern recognition of areas prone to large earthquakes is based on the morphostructural zoning method (MSZ), which employs topographic data and present-day tectonic structures for the mapping of earthquake-controlling structures (i.e. the nodes formed around lineaments intersections) and does not require the knowledge about past seismicity. The nodes are assumed to be characterized by a uniform set of topographic, geologic, and geophysical parameters; on the basis of such parameters the pattern recognition algorithm defines a classification rule to discriminate seismogenic and non-seismogenic nodes. This methodology has been successfully applied since the early 1970s in a number of regions worldwide, including California, where it permitted the identification of areas that have been subsequently struck by strong events and that previously were not considered prone to strong earthquakes. Recent studies on the Iberian Peninsula and the Rhone Valley, have demonstrated the applicability of MSZ to flat basins, with a relatively flat topography. In this study, the analysis is applied to the Po Plain (Northern Italy), an area characterized by a flat topography, to allow for the systematic identification of the nodes prone to earthquakes with magnitude larger or equal to M=5.0. The MSZ method differs from the standard morphostructural analysis where the term "lineament" is used to define the complex of alignments detectable on topographic maps or on satellite images. According to that definition the lineament is locally defined and the existence of the lineament does not depend on the surrounding areas. In MSZ, the primary element is the block - a relatively homogeneous area - while the lineament is a secondary element of the morphostructure

  1. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    Science.gov (United States)

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  2. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources

    Science.gov (United States)

    Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.

    2009-01-01

    The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.

  3. Explosion-produced ground motion: technical summary with respect to seismic hazards

    International Nuclear Information System (INIS)

    Rodean, Howard C.

    1970-01-01

    This paper summarizes the present technical knowledge, experimental and theoretical, of how underground nuclear explosions produce seismic motion that may be a hazard at distances measured in tens of kilometers. The effects of explosion yield and rock properties (at the explosion, along the signal propagation path, and at the site where a hazard may exist) on the ground motion are described in detail, and some consideration is given to the relation between ground motion and damage criteria. The energy released in a nuclear explosion is sufficient to vaporize the explosive and to generate an intense shock wave that is propagated outward into the surrounding rock. Part of the energy transported by the shock wave is dissipated in the shocked material. The shock wave strength decreases with distance from the center of the explosion as a consequence of this energy loss and because of geometric (approximately spherical) divergence. The dissipated energy fraction ranges from over 95% (for competent rocks like granite) to over 99% (for crushable, porous rocks like alluvium) of the explosion yield. Therefore, the energy fraction that is radiated in the form of seismic waves ranges from a few percent down to a few tenths of a percent. This is consistent with the observation that explosions in granite produce more severe ground motion than corresponding explosions in alluvium. The effects of explosion yield and rock properties on the frequency spectrum of the seismic source function are demonstrated by both experimental measurements and theoretical analysis. The characteristics of an ideal elastic medium are such that its frequency response is that of a low-pass filter, with its cutoff frequency being a function of the elastic properties of the material and the radius at which the explosion-produced stress wave becomes elastic. There is further frequency- and distance-dependent attenuation (especially of the higher frequencies) of the seismic waves, because rocks are not

  4. Building an Ensemble Seismic Hazard Model for the Magnitude Distribution by Using Alternative Bayesian Implementations

    Science.gov (United States)

    Taroni, M.; Selva, J.

    2017-12-01

    In this work we show how we built an ensemble seismic hazard model for the magnitude distribution for the TSUMAPS-NEAM EU project (http://www.tsumaps-neam.eu/). The considered source area includes the whole NEAM region (North East Atlantic, Mediterranean and connected seas). We build our models by using the catalogs (EMEC and ISC), their completeness and the regionalization provided by the project. We developed four alternative implementations of a Bayesian model, considering tapered or truncated Gutenberg-Richter distributions, and fixed or variable b-value. The frequency size distribution is based on the Weichert formulation. This allows for simultaneously assessing all the frequency-size distribution parameters (a-value, b-value, and corner magnitude), using multiple completeness periods for the different magnitudes. With respect to previous studies, we introduce the tapered Pareto distribution (in addition to the classical truncated Pareto), and we build a novel approach to quantify the prior distribution. For each alternative implementation, we set the prior distributions using the global seismic data grouped according to the different types of tectonic setting, and assigned them to the related regions. The estimation is based on the complete (not declustered) local catalog in each region. Using the complete catalog also allows us to consider foreshocks and aftershocks in the seismic rate computation: the Poissonicity of the tsunami events (and similarly the exceedances of the PGA) will be insured by the Le Cam's theorem. This Bayesian approach provides robust estimations also in the zones where few events are available, but also leaves us the possibility to explore the uncertainty associated with the estimation of the magnitude distribution parameters (e.g. with the classical Metropolis-Hastings Monte Carlo method). Finally we merge all the models with their uncertainty to create the ensemble model that represents our knowledge of the seismicity in the

  5. The Salton Seismic Imaging Project: Investigating Earthquake Hazards in the Salton Trough, Southern California

    Science.gov (United States)

    Fuis, G. S.; Goldman, M.; Sickler, R. R.; Catchings, R. D.; Rymer, M. J.; Rose, E. J.; Murphy, J. M.; Butcher, L. A.; Cotton, J. A.; Criley, C. J.; Croker, D. S.; Emmons, I.; Ferguson, A. J.; Gardner, M. A.; Jensen, E. G.; McClearn, R.; Loughran, C. L.; Slayday-Criley, C. J.; Svitek, J. F.; Hole, J. A.; Stock, J. M.; Skinner, S. M.; Driscoll, N. W.; Harding, A. J.; Babcock, J. M.; Kent, G.; Kell, A. M.; Harder, S. H.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP) is a collaborative effort between academia and the U.S. Geological Survey to provide detailed, subsurface 3-D images of the Salton Trough of southern California and northern Mexico. From both active- and passive-source seismic data that were acquired both onshore and offshore (Salton Sea), the resulting images will provide insights into earthquake hazards, rift processes, and rift-transform interaction at the southern end of the San Andreas Fault system. The southernmost San Andreas Fault (SAF) is considered to be at high-risk of producing a large damaging earthquake, yet the structure of this and other regional faults and that of adjacent sedimentary basins is not currently well understood. Seismic data were acquired from 2 to 18 March 2011. One hundred and twenty-six borehole explosions (10-1400 kg yield) were detonated along seven profiles in the Salton Trough region, extending from area of Palm Springs, California, to the southwestern tip of Arizona. Airguns (1500 and 3500 cc) were fired along two profiles in the Salton Sea and at points in a 2-D array in the southern Salton Sea. Approximately 2800 seismometers were deployed at over 4200 locations throughout the Salton Trough region, and 48 ocean-bottom seismometers were deployed at 78 locations beneath the Salton Sea. Many of the onshore explosions were energetic enough to be recorded and located by the Southern California Seismograph Network. The geometry of the SAF has important implications for energy radiation in the next major rupture. Prior potential field, seismicity, and InSAR data indicate that the SAF may dip moderately to the northeast from the Salton Sea to Cajon Pass in the Transverse Ranges. Much of SSIP was designed to test models of this geometry.

  6. Microseismicity in the Seoul Metropolitan Area, Korea, and its implications for the seismic hazards

    Science.gov (United States)

    Kim, K.; Kim, W.; Kang, S.; Ryoo, Y.; Kim, M.; Park, Y.; Kyung, J.

    2012-12-01

    On 9 February 2010, a minor earthquake occurred in the northwest of South Korea. The earthquake was widely felt in the Seoul National Capital Area (SNCA). The earthquake attracted much attention from media, politicians, policy makers and the public, who raised concerns about seismic hazards and risks in the Korea Peninsula, in particular, to the SNCA. SNCA includes the Seoul and Incheon metropolitans and most of the Gyeonggi province. It has a population of 24.5 million (as of 2007) and is ranked as the second largest metropolitan area in the world. The SNCA has been the center of the economics, politics, and culture during the past half millennium since the city has been designated as the capital city in 1394. We applied waveform correlation detector to 2007-2010 continuously recorded seismic data to identify repeating earthquakes. We identify 9 micro-earthquakes during 2007-2010 periods which are not reported in the KNSN bulletin because their magnitudes are too small. Estimated magnitudes using amplitude ratios measured at the station SEO indicate the smallest event detected by the waveform cross correlation technique in the study is as low as 0.19. The number of events for our interpretation becomes 11 including two previously reported events and nine newly identified micro-earthquakes. All of them occur in a very small area. While there are historic documents reporting earthquakes in the SNCA, repeating earthquakes or clustered seismicity from the instrumental earthquake record have not reported before. We have determined the focal mechanism solution for the representative events (9 February 2010, ML 3.0) using the first-motion polarities. The preferred focal mechanism solution for the representative event is the WNW-ESE striking fault, which are consistent with the precisely determined earthquake hypocenter distribution. It is also consistent with the results in the previous studies of stress orientation in and around the Korean peninsula. The new list of

  7. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards.

  8. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards

  9. Evaluation of seismic hazard in Marmara region based on the new datasets developed in the EU-MARSITE Project

    Science.gov (United States)

    Sesetyan, Karin; Akinci, Aybige; Betül Demircioglu, Mine

    2016-04-01

    Several studies with various degrees of sophistication have been conducted for the probabilistic assessment of seismic hazard in the Marmara Region (e.g. Atakan et al., 2002; Erdik et al., 2004; Kalkan et al., 2008; Gülerce and Ocak, 2013),. The common point of these studies was that they have all addressed the hazard in the region in terms of both time-independent probabilistic (simple Poissonian) and time-dependent probabilistic (renewal) models. This tendency was governed by the following considerations: 1) the region has experienced a considerable number of large magnitude events in the history, which have also shown some periodicity; 2) the existing seismic gap and the post-1999 earthquake stress transfer at the western portion of the 1000km-long NAFZ indicates a high probability of having a M>7 event in the near future close to the city of Istanbul; 3)the seismic history of the region was well documented and studied and there have been, especially in the aftermath of the 1999 Kocaeli and Düzce events, several geological investigations both on-shore and off-shore aiming to obtain a regional fault model as complete as possible, which were reflected in the fault segmentation models of the PSHA studies. Task 5.5. of the MARSITE Project aimed at a reassessment of the probabilistic seismic hazard of the Marmara region in the light of the new datasets compiled in the project. The improvement of the knowledge on the seismotectonic regime of the Marmara region paved the path for the development of alternative source models for the improvement of the existing probabilistic seismic hazard maps. In this connection, the most recent findings and outputs of different work packages of the project, in terms of seismicity, fault segmentation and slip rate data are utilized. A revised fault segementation model and associated Poisson and renewal recurrence models as well as recently emerged global and regional ground motion prediction equations are used to assessed the seismic

  10. Evidence of a Large Triggered Event in the Nepal Himalaya Following the Gorkha Earthquake: Implications Toward Enhanced Seismic Hazard

    Science.gov (United States)

    Mandal, Prantik

    2018-03-01

    A DC (double couple) constrained multiple point-source moment-tensor inversion is performed on the band-passed (0.008-0.10 Hz) displacement data of the 25 April (M w 7.8) 2015 Nepal mainshock, from 17 broadband stations in India. Our results reveal that the 25 April event (strike = 324°, dip = 14°, rake = 88°) ruptured the north-dipping main Himalayan thrust (MHT) at 16 km depth. We modeled the Coulomb failure stress changes (ΔCFS) produced by the slip on the fault plane of the 25 April Nepal mainshock. A strong correlation with occurrences of aftershocks and regions of increased positive ΔCFS is obtained below the aftershock zone of the 2015 Nepal mainshock. We notice that predicted ΔCFS at 16 km depth show a positive Coulomb stress of 0.06 MPa at the location of the 12 May 2015 event. These small modeled stress changes can lead to trigger events if the crust is already near to failure, but these small stresses can also advance the occurrence of future earthquakes. The main finding of our ΔCFS modeling implies that the 25 April event increased the Coulomb stress changes by 0.06 MPa at 16 km depth below the site of the 12 May event, and thus, this event can be termed as triggered. We propose that the seismic hazard in the Himalaya is not only caused by the mainshock slip on the MHT; rather, the occurrence of large triggered event on the MHT can also enhance our understanding of the seismic hazard in the Nepal Himalaya.

  11. Improved seismic risk estimation for Bucharest, based on multiple hazard scenarios, analytical methods and new techniques

    Science.gov (United States)

    Toma-Danila, Dragos; Florinela Manea, Elena; Ortanza Cioflan, Carmen

    2014-05-01

    Bucharest, capital of Romania (with 1678000 inhabitants in 2011), is one of the most exposed big cities in Europe to seismic damage. The major earthquakes affecting the city have their origin in the Vrancea region. The Vrancea intermediate-depth source generates, statistically, 2-3 shocks with moment magnitude >7.0 per century. Although the focal distance is greater than 170 km, the historical records (from the 1838, 1894, 1908, 1940 and 1977 events) reveal severe effects in the Bucharest area, e.g. intensities IX (MSK) for the case of 1940 event. During the 1977 earthquake, 1420 people were killed and 33 large buildings collapsed. The nowadays building stock is vulnerable both due to construction (material, age) and soil conditions (high amplification, generated within the weak consolidated Quaternary deposits, their thickness is varying 250-500m throughout the city). A number of 373 old buildings, out of 2563, evaluated by experts are more likely to experience severe damage/collapse in the next major earthquake. The total number of residential buildings, in 2011, was 113900. In order to guide the mitigation measures, different studies tried to estimate the seismic risk of Bucharest, in terms of buildings, population or economic damage probability. Unfortunately, most of them were based on incomplete sets of data, whether regarding the hazard or the building stock in detail. However, during the DACEA Project, the National Institute for Earth Physics, together with the Technical University of Civil Engineering Bucharest and NORSAR Institute managed to compile a database for buildings in southern Romania (according to the 1999 census), with 48 associated capacity and fragility curves. Until now, the developed real-time estimation system was not implemented for Bucharest. This paper presents more than an adaptation of this system to Bucharest; first, we analyze the previous seismic risk studies, from a SWOT perspective. This reveals that most of the studies don't use

  12. Time-dependent neo-deterministic seismic hazard scenarios for the 2016 Central Italy earthquakes sequence

    Science.gov (United States)

    Peresan, Antonella; Kossobokov, Vladimir; Romashkova, Leontina; Panza, Giuliano F.

    2017-04-01

    Predicting earthquakes and related ground shaking is widely recognized among the most challenging scientific problems, both for societal relevance and intrinsic complexity of the problem. The development of reliable forecasting tools requires their rigorous formalization and testing, first in retrospect, and then in an experimental real-time mode, which imply a careful application of statistics to data sets of limited size and different accuracy. Accordingly, the operational issues of prospective validation and use of time-dependent neo-deterministic seismic hazard scenarios are discussed, reviewing the results in their application in Italy and surroundings. Long-term practice and results obtained for the Italian territory in about two decades of rigorous prospective testing, support the feasibility of earthquake forecasting based on the analysis of seismicity patterns at the intermediate-term middle-range scale. Italy is the only country worldwide where two independent, globally tested, algorithms are simultaneously applied, namely CN and M8S, which permit to deal with multiple sets of seismic precursors to allow for a diagnosis of the intervals of time when a strong event is likely to occur inside a given region. Based on routinely updated space-time information provided by CN and M8S forecasts, an integrated procedure has been developed that allows for the definition of time-dependent seismic hazard scenarios, through the realistic modeling of ground motion by the neo-deterministic approach (NDSHA). This scenario-based methodology permits to construct, both at regional and local scale, scenarios of ground motion for the time interval when a strong event is likely to occur within the alerted areas. CN and M8S predictions, as well as the related time-dependent ground motion scenarios associated with the alarmed areas, are routinely updated since 2006. The issues and results from real-time testing of the integrated NDSHA scenarios are illustrated, with special

  13. Pitfalls of negationist approach in communicating induced seismicity hazard in Italy

    Science.gov (United States)

    Mucciarelli, Marco

    2013-04-01

    Italy is a country rich in hydropower, geothermal wells, extraction/reinjection of hydrocarbons, but surprisingly from 1964 to date only three papers have been published on the seismicity induced by dams, two on the problem of seismicity induced by reinjection of fluids and one that studies the effect on seismicity by the variation of the groundwater regime possibly caused by the excavation of a tunnel or by climate change. What has happened in Italy to cause this (at least apparent) disregard for the induced seismicity? We must go back to 1964, after the catastrophe of Vajont. In that year, prof. Caloi, then principal geophysicist of the National Institute of Geophysics published a work in which he noted as the start of the reservoir impounding gave rise to a sequence of induced seismicity in the same rock shoulder that later collapsed causing an inundation claiming more than 2000 casualties. Since then induced seismicity is a taboo, constantly downplayed by companies and utilities, dismissed as impossible or communicated with artifacts like the constant use of the prefix "micro-". The Emilia 2012 occurred close to a site that was selected for a gas storage facility in an (un)confined aquifer. Regional government denied permission due to the vicinity to an active fault and the question was still pending in front of the National authority in charge of licensing the plant when the earthquake occurred. The local residents, that were opposing the gas storage, misinterpreted the motivation of the denial of permission, understanding that the fault would became active only if the storage was working. Thus they concluded the the earthquake occurred because the company performed secret drillings. Badly informed journalists mounted the case, calling it a "fracking" operation. Incredible it may sound, the governor of the Emilia-Romagna region appointed an international commission charged to investigate the relationship between drillings (not storage) and earthquakes. In the

  14. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model

    Science.gov (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder

    2017-04-01

    The first detailed probabilistic seismic hazard assessment has been performed for the Kivu and northern Tanganyika rift region in Central Africa. This region, which forms the central part of the Western Rift Branch, is one of the most seismically active part of the East African rift system. It was already integrated in large scale seismic hazard assessments, but here we defined a finer zonation model with 7 different zones representing the lateral variation of the geological and geophysical setting across the region. In order to build the new zonation model, we compiled homogeneous cross-border geological, neotectonic and sismotectonic maps over the central part of East D.R. Congo, SW Uganda, Rwanda, Burundi and NW Tanzania and defined a new neotectonic sheme. The seismic risk assessment is based on a new earthquake catalogue, compiled on the basis of various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. From this initial catalogue, a catalogue of 359 events from 1956 to 2015 and with M > 4.4 has been extracted for the seismic hazard assessment. The seismotectonic zonation includes 7 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined using both the least square linear fit and the maximum likelihood method (Kijko & Smit aue program). Seismic hazard maps have been computed with the Crisis 2012 software using 3 different attenuation laws. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates (Delvaux et al., 2016). They vary laterally in function of the tectonic

  15. Seismic hazard analyses for Taipei city including deaggregation, design spectra, and time history with excel applications

    Science.gov (United States)

    Wang, Jui-Pin; Huang, Duruo; Cheng, Chin-Tung; Shao, Kuo-Shin; Wu, Yuan-Chieh; Chang, Chih-Wei

    2013-03-01

    Given the difficulty of earthquake forecast, Probabilistic Seismic Hazard Analysis (PSHA) has been a method to best estimate site-specific ground motion or response spectra in earthquake engineering and engineering seismology. In this paper, the first in-depth PSHA study for Taipei, the economic center of Taiwan with a six-million population, was carried out. Unlike the very recent PSHA study for Taiwan, this study includes the follow-up hazard deaggregation, response spectra, and the earthquake motion recommendations. Hazard deaggregation results show that moderate-size and near-source earthquakes are the most probable scenario for this city. Moreover, similar to the findings in a few recent studies, the earthquake risk for Taipei should be relatively high and considering this city's importance, the high risk should not be overlooked and a potential revision of the local technical reference would be needed. In addition to the case study, some innovative Excel applications to PSHA are introduced in this paper. Such spreadsheet applications are applicable to geosciences research as those developed for data reduction or quantitative analysis with Excel's user-friendly nature and wide accessibility.

  16. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  17. Assessing Lay Understanding of Common Presentations of Earthquake Hazard Information

    Science.gov (United States)

    Thompson, K. J.; Krantz, D. H.

    2010-12-01

    The Working Group on California Earthquake Probabilities (WGCEP) includes, in its introduction to earthquake rupture forecast maps, the assertion that "In daily living, people are used to making decisions based on probabilities -- from the flip of a coin (50% probability of heads) to weather forecasts (such as a 30% chance of rain) to the annual chance of being killed by lightning (about 0.0003%)." [3] However, psychology research identifies a large gap between lay and expert perception of risk for various hazards [2], and cognitive psychologists have shown in numerous studies [1,4-6] that people neglect, distort, misjudge, or misuse probabilities, even when given strong guidelines about the meaning of numerical or verbally stated probabilities [7]. The gap between lay and expert use of probability needs to be recognized more clearly by scientific organizations such as WGCEP. This study undertakes to determine how the lay public interprets earthquake hazard information, as presented in graphical map form by the Uniform California Earthquake Rupture Forecast (UCERF), compiled by the WGCEP and other bodies including the USGS and CGS. It also explores alternate ways of presenting hazard data, to determine which presentation format most effectively translates information from scientists to public. Participants both from California and from elsewhere in the United States are included, to determine whether familiarity -- either with the experience of an earthquake, or with the geography of the forecast area -- affects people's ability to interpret an earthquake hazards map. We hope that the comparisons between the interpretations by scientific experts and by different groups of laypeople will both enhance theoretical understanding of factors that affect information transmission and assist bodies such as the WGCEP in their laudable attempts to help people prepare themselves and their communities for possible natural hazards. [1] Kahneman, D & Tversky, A (1979). Prospect

  18. The «Natural Hazard WIKISAURUS»: explanation and understanding of natural hazards to build disaster resilience

    Science.gov (United States)

    Rapisardi, Elena; Di Franco, Sabina; Giardino, Marco

    2013-04-01

    not a unique meaning: e.g. Mercury could stand for the Roman god, the metallic element, the planet, or Freddy the singer. Similarly the word «alert»: in the common language has a certain meaning, whilst in the civil protection framework includes regulations, responsibilities and procedures. The NHW is intended as a collaborative virtual source with validated information on geosciences to support a common understanding of natural hazards, risks and civil protection. The NHW aims to become a point of reference both for acknowledged practitioners, who will share their expertise and data, and for citizens, civil servants, media representatives, and students allowed to comment and contribute to the scientifically validated content. The NHW is a simple tool to support information and communication on natural hazards and civil protection at all levels and would set up a shared and common knowledge. Moreover, NHW could represent the first step of a further challenging programme: through the power of «linked data» NHW could develop and contribute first to a natural hazard semantic, then to a «semantic disaster resilience».

  19. 230Th/U ages Supporting Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Paces, James B. [U.S. Geological Survey

    2014-08-31

    This product represents a USGS Administrative Report that discusses samples and methods used to conduct uranium-series isotope analyses and resulting ages and initial 234U/238U activity ratios of pedogenic cements developed in several different surfaces in the Hanford area middle to late Pleistocene. Samples were collected and dated to provide calibration of soil development in surface deposits that are being used in the Hanford Site-Wide probabilistic seismic hazard analysis conducted by AMEC. The report includes description of sample locations and physical characteristics, sample preparation, chemical processing and mass spectrometry, analytical results, and calculated ages for individual sites. Ages of innermost rinds on a number of samples from five sites in eastern Washington are consistent with a range of minimum depositional ages from 17 ka for cataclysmic flood deposits to greater than 500 ka for alluvium at several sites.

  20. Pattern recognition methodologies and deterministic evaluation of seismic hazard: A strategy to increase earthquake preparedness

    International Nuclear Information System (INIS)

    Peresan, Antonella; Panza, Giuliano F.; Gorshkov, Alexander I.; Aoudia, Abdelkrim

    2001-05-01

    Several algorithms, structured according to a general pattern-recognition scheme, have been developed for the space-time identification of strong events. Currently, two of such algorithms are applied to the Italian territory, one for the recognition of earthquake-prone areas and the other, namely CN algorithm, for earthquake prediction purposes. These procedures can be viewed as independent experts, hence they can be combined to better constrain the alerted seismogenic area. We examine here the possibility to integrate CN intermediate-term medium-range earthquake predictions, pattern recognition of earthquake-prone areas and deterministic hazard maps, in order to associate CN Times of Increased Probability (TIPs) to a set of appropriate scenarios of ground motion. The advantage of this procedure mainly consists in the time information provided by predictions, useful to increase preparedness of safety measures and to indicate a priority for detailed seismic risk studies to be performed at a local scale. (author)

  1. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL

  2. Site specific seismic hazard analysis and determination of response spectra of Kolkata for maximum considered earthquake

    Science.gov (United States)

    Shiuly, Amit; Sahu, R. B.; Mandal, Saroj

    2017-06-01

    This paper presents site specific seismic hazard analysis of Kolkata city, former capital of India and present capital of state West Bengal, situated on the world’s largest delta island, Bengal basin. For this purpose, peak ground acceleration (PGA) for a maximum considered earthquake (MCE) at bedrock level has been estimated using an artificial neural network (ANN) based attenuation relationship developed on the basis of synthetic ground motion data for the region. Using the PGA corresponding to the MCE, a spectrum compatible acceleration time history at bedrock level has been generated by using a wavelet based computer program, WAVEGEN. This spectrum compatible time history at bedrock level has been converted to the same at surface level using SHAKE2000 for 144 borehole locations in the study region. Using the predicted values of PGA and PGV at the surface, corresponding contours for the region have been drawn. For the MCE, the PGA at bedrock level of Kolkata city has been obtained as 0.184 g, while that at the surface level varies from 0.22 g to 0.37 g. Finally, Kolkata has been subdivided into eight seismic subzones, and for each subzone a response spectrum equation has been derived using polynomial regression analysis. This will be very helpful for structural and geotechnical engineers to design safe and economical earthquake resistant structures.

  3. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts

    Energy Technology Data Exchange (ETDEWEB)

    Budnitz, R.J.; Apostolakis, G.; Boore, D.M. [and others

    1997-04-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time period. Due to large uncertainties in all the geosciences data and in their modeling, multiple model interpretations are often possible. This leads to disagreement among experts, which in the past has led to disagreement on the selection of ground motion for design at a given site. In order to review the present state-of-the-art and improve on the overall stability of the PSHA process, the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), and the Electric Power Research Institute (EPRI) co-sponsored a project to provide methodological guidance on how to perform a PSHA. The project has been carried out by a seven-member Senior Seismic Hazard Analysis Committee (SSHAC) supported by a large number other experts. The SSHAC reviewed past studies, including the Lawrence Livermore National Laboratory and the EPRI landmark PSHA studies of the 1980`s and examined ways to improve on the present state-of-the-art. The Committee`s most important conclusion is that differences in PSHA results are due to procedural rather than technical differences. Thus, in addition to providing a detailed documentation on state-of-the-art elements of a PSHA, this report provides a series of procedural recommendations. The role of experts is analyzed in detail. Two entities are formally defined-the Technical Integrator (TI) and the Technical Facilitator Integrator (TFI)--to account for the various levels of complexity in the technical issues and different levels of efforts needed in a given study.

  4. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Apostolakis, G.; Boore, D.M.

    1997-04-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time period. Due to large uncertainties in all the geosciences data and in their modeling, multiple model interpretations are often possible. This leads to disagreement among experts, which in the past has led to disagreement on the selection of ground motion for design at a given site. In order to review the present state-of-the-art and improve on the overall stability of the PSHA process, the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), and the Electric Power Research Institute (EPRI) co-sponsored a project to provide methodological guidance on how to perform a PSHA. The project has been carried out by a seven-member Senior Seismic Hazard Analysis Committee (SSHAC) supported by a large number other experts. The SSHAC reviewed past studies, including the Lawrence Livermore National Laboratory and the EPRI landmark PSHA studies of the 1980's and examined ways to improve on the present state-of-the-art. The Committee's most important conclusion is that differences in PSHA results are due to procedural rather than technical differences. Thus, in addition to providing a detailed documentation on state-of-the-art elements of a PSHA, this report provides a series of procedural recommendations. The role of experts is analyzed in detail. Two entities are formally defined-the Technical Integrator (TI) and the Technical Facilitator Integrator (TFI)--to account for the various levels of complexity in the technical issues and different levels of efforts needed in a given study

  5. Differences in Approach between Nuclear and Conventional Seismic Standards with regard to Hazard Definition - CSNI Integrity And Ageing Working Group

    International Nuclear Information System (INIS)

    Djaoudi, Ali; Labbe, Pierre; Murphy, Andrew; Kitada, Yoshio

    2008-01-01

    The Committee on the safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities related to maintaining and advancing the scientific and technological knowledge base of the safety of nuclear installations. The Integrity and Ageing of Components and Structures Working Group of the CSNI is responsible for work related to the development and use of methods, data and information to assess the behaviour of materials and structures. It has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The CSNI, at its meeting in June 2003, agreed to initiate an activity aimed to identify any difference between nuclear and non-nuclear conventional standards and their potential significance with regard to seismic hazards and design methods. There was a perception, mainly in some of the European countries that nuclear seismic hazard and design standards may be lagging behind developments in similar standards for conventional facilities. Adequate answer to such perception, need the examination of the following aspects and their significance on the seismic assessment of structures and components: - The safety philosophy behind the seismic nuclear and conventional standards. - The differences in approach regarding the seismic hazard definition. - The difference in approach regarding the design and the methods of analysis. These topics are examined in this report. Appendices A to H of this report contain a brief description of the conventional and the nuclear approaches in the NEA member countries: Belgium, Canada, Czech Republic, Germany, Japan, South Korea, Spain,and USA. The following general conclusions can be drawn: - The approach adopted by the nuclear seismic standards is more conservative and more reliable (in particular for meeting the continued operation criteria) than the recommended by the currently applicable force based conventional seismic codes

  6. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  7. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  8. Perspectives on earthquake hazards in the New Madrid seismic zone, Missouri

    Science.gov (United States)

    Thenhaus, P.C.

    1990-01-01

    A sequence of three great earthquakes struck the Central United States during the winter of 1811-1812 in the area of New Madrid, Missouri. they are considered to be the greatest earthquakes in the conterminous U.S because they were felt and caused damage at far greater distances than any other earthquakes in U.S history. The large population currently living within the damage area of these earthquakes means that widespread destruction and loss of life is likely if the sequence were repeated. In contrast to California, where the earthquakes are felt frequently, the damaging earthquakes that have occurred in the Easter U.S-in 155 (Cape Ann, Mass.), 1811-12 (New Madrid, Mo.), 1886 (Charleston S.C) ,and 1897 (Giles County, Va.- are generally regarded as only historical phenomena (fig. 1). The social memory of these earthquakes no longer exists. A fundamental problem in the Eastern U.S, therefore, is that the earthquake hazard is not generally considered today in land-use and civic planning. This article offers perspectives on the earthquake hazard of the New Madrid seismic zone through discussions of the geology of the Mississippi Embayment, the historical earthquakes that have occurred there, the earthquake risk, and the "tools" that geoscientists have to study the region. The so-called earthquake hazard is defined  by the characterization of the physical attributes of the geological structures that cause earthquakes, the estimation of the recurrence times of the earthquakes, the estimation of the recurrence times of the earthquakes, their potential size, and the expected ground motions. the term "earthquake risk," on the other hand, refers to aspects of the expected damage to manmade strctures and to lifelines as a result of the earthquake hazard.  

  9. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  10. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  11. The Iquique 2014 sequence: understanding its nucleation and propagation from the seismicity evolution

    Science.gov (United States)

    Fuenzalida, A.; Rietbrock, A.; Woollam, J.; Tavera, H.; Ruiz, S.

    2017-12-01

    The Northern Chile and Southern Peru region is well known for its high seismic hazard due to the lack of recent major ruptures along long segments of the subduction interface. For this reason the 2014 Iquique Mw 8.1 earthquake that occurred in the Northern Chile seismic gap was expected and high quality seismic and geodetic networks were operating at the time of the event recording the precursory phase of a mega-thrust event with unprecedented detail. In this study we used seismic data collected during the 2014 Iquique sequence to generate a detailed earthquake catalogue. This catalogue consists of more than 15,000 events identified in Northern Chile during the period between 1/3/14 and 31/5/14 and provides full coverage of the immediate foreshock sequence, the main-shock and early after-shock series. The initial catalogue was obtained by automatic data processing and only selecting events with at least two associate S phases to improve the reliability of initial locations. Subsequently, this subset of events was automatically processed again using an optimized STA/LTA triggering algorithm for both P and S-waves and constraining the detection times by estimated arrival times at each station calculated for the preliminary locations. Finally, all events were relocated using a recently developed 1D velocity model and associated station corrections. For events Mw 4 or larger that occurred between the 15/3/14 and 10/04/14, we estimated it regional moment tensor by full-waveform inversion. Our results confirm the seismic activation of the upper plate during the foreshock sequence, as well highlight a crustal activity on the fore-arc during the aftershock series. The seismicity distribution was compared to the previous inter-seismic coupling studies obtained in the region, in which we observe interplay between high and low coupling areas, which are correlated to the seismicity rate. The spatial distribution of the seismicity and the complexities on the mechanisms observed

  12. Seismic hazard assessment in central Ionian Islands area (Greece) based on stress release models

    Science.gov (United States)

    Votsi, Irene; Tsaklidis, George; Papadimitriou, Eleftheria

    2011-08-01

    The long-term probabilistic seismic hazard of central Ionian Islands (Greece) is studied through the application of stress release models. In order to identify statistically distinct regions, the study area is divided into two subareas, namely Kefalonia and Lefkada, on the basis of seismotectonic properties. Previous results evidenced the existence of stress transfer and interaction between the Kefalonia and Lefkada fault segments. For the consideration of stress transfer and interaction, the linked stress release model is applied. A new model is proposed, where the hazard rate function in terms of X(t) has the form of the Weibull distribution. The fitted models are evaluated through residual analysis and the best of them is selected through the Akaike information criterion. Based on AIC, the results demonstrate that the simple stress release model fits the Ionian data better than the non-homogeneous Poisson and the Weibull models. Finally, the thinning simulation method is applied in order to produce simulated data and proceed to forecasting.

  13. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steve [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ma, Zhegang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Bob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA models for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.

  14. User's manual of a computer code for seismic hazard evaluation for assessing the threat to a facility by fault model. SHEAT-FM

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Onizawa, Kunio; Suzuki, Masahide

    2005-09-01

    To establish the reliability evaluation method for aged structural component, we developed a probabilistic seismic hazard evaluation code SHEAT-FM (Seismic Hazard Evaluation for Assessing the Threat to a facility site - Fault Model) using a seismic motion prediction method based on fault model. In order to improve the seismic hazard evaluation, this code takes the latest knowledge in the field of earthquake engineering into account. For example, the code involves a group delay time of observed records and an update process model of active fault. This report describes the user's guide of SHEAT-FM, including the outline of the seismic hazard evaluation, specification of input data, sample problem for a model site, system information and execution method. (author)

  15. Fault2SHA- A European Working group to link faults and Probabilistic Seismic Hazard Assessment communities in Europe

    Science.gov (United States)

    Scotti, Oona; Peruzza, Laura

    2016-04-01

    The key questions we ask are: What is the best strategy to fill in the gap in knowledge and know-how in Europe when considering faults in seismic hazard assessments? Are field geologists providing the relevant information for seismic hazard assessment? Are seismic hazard analysts interpreting field data appropriately? Is the full range of uncertainties associated with the characterization of faults correctly understood and propagated in the computations? How can fault-modellers contribute to a better representation of the long-term behaviour of fault-networks in seismic hazard studies? Providing answers to these questions is fundamental, in order to reduce the consequences of future earthquakes and improve the reliability of seismic hazard assessments. An informal working group was thus created at a meeting in Paris in November 2014, partly financed by the Institute of Radioprotection and Nuclear Safety, with the aim to motivate exchanges between field geologists, fault modellers and seismic hazard practitioners. A variety of approaches were presented at the meeting and a clear gap emerged between some field geologists, that are not necessarily familiar with probabilistic seismic hazard assessment methods and needs and practitioners that do not necessarily propagate the "full" uncertainty associated with the characterization of faults. The group thus decided to meet again a year later in Chieti (Italy), to share concepts and ideas through a specific exercise on a test case study. Some solutions emerged but many problems of seismic source characterizations with people working in the field as well as with people tackling models of interacting faults remained. Now, in Wien, we want to open the group and launch a call for the European community at large to contribute to the discussion. The 2016 EGU session Fault2SHA is motivated by such an urgency to increase the number of round tables on this topic and debate on the peculiarities of using faults in seismic hazard

  16. Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts

    Science.gov (United States)

    Gribler, G.; Mikesell, D.; Liberty, L. M.

    2017-12-01

    We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.

  17. Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata, India

    Science.gov (United States)

    Nath, S. K.; Adhikari, M. D.; Maiti, S. K.; Devaraj, N.; Srivastava, N.; Mohapatra, L. D.

    2014-09-01

    Seismic microzonation is a process of estimating site-specific effects due to an earthquake on urban centers for its disaster mitigation and management. The state of West Bengal, located in the western foreland of the Assam-Arakan Orogenic Belt, the Himalayan foothills and Surma Valley, has been struck by several devastating earthquakes in the past, indicating the need for a seismotectonic review of the province, especially in light of probable seismic threat to its capital city of Kolkata, which is a major industrial and commercial hub in the eastern and northeastern region of India. A synoptic probabilistic seismic hazard model of Kolkata is initially generated at engineering bedrock (Vs30 ~ 760 m s-1) considering 33 polygonal seismogenic sources at two hypocentral depth ranges, 0-25 and 25-70 km; 158 tectonic sources; appropriate seismicity modeling; 14 ground motion prediction equations for three seismotectonic provinces, viz. the east-central Himalaya, the Bengal Basin and Northeast India selected through suitability testing; and appropriate weighting in a logic tree framework. Site classification of Kolkata performed following in-depth geophysical and geotechnical investigations places the city in D1, D2, D3 and E classes. Probabilistic seismic hazard assessment at a surface-consistent level - i.e., the local seismic hazard related to site amplification performed by propagating the bedrock ground motion with 10% probability of exceedance in 50 years through a 1-D sediment column using an equivalent linear analysis - predicts a peak ground acceleration (PGA) range from 0.176 to 0.253 g in the city. A deterministic liquefaction scenario in terms of spatial distribution of liquefaction potential index corresponding to surface PGA distribution places 50% of the city in the possible liquefiable zone. A multicriteria seismic hazard microzonation framework is proposed for judicious integration of multiple themes, namely PGA at the surface, liquefaction potential

  18. An in-situ stimulation experiment in crystalline rock - assessment of induced seismicity levels during stimulation and related hazard for nearby infrastructure

    Science.gov (United States)

    Gischig, Valentin; Broccardo, Marco; Amann, Florian; Jalali, Mohammadreza; Esposito, Simona; Krietsch, Hannes; Doetsch, Joseph; Madonna, Claudio; Wiemer, Stefan; Loew, Simon; Giardini, Domenico

    2016-04-01

    A decameter in-situ stimulation experiment is currently being performed at the Grimsel Test Site in Switzerland by the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE). The underground research laboratory lies in crystalline rock at a depth of 480 m, and exhibits well-documented geology that is presenting some analogies with the crystalline basement targeted for the exploitation of deep geothermal energy resources in Switzerland. The goal is to perform a series of stimulation experiments spanning from hydraulic fracturing to controlled fault-slip experiments in an experimental volume approximately 30 m in diameter. The experiments will contribute to a better understanding of hydro-mechanical phenomena and induced seismicity associated with high-pressure fluid injections. Comprehensive monitoring during stimulation will include observation of injection rate and pressure, pressure propagation in the reservoir, permeability enhancement, 3D dislocation along the faults, rock mass deformation near the fault zone, as well as micro-seismicity. The experimental volume is surrounded by other in-situ experiments (at 50 to 500 m distance) and by infrastructure of the local hydropower company (at ~100 m to several kilometres distance). Although it is generally agreed among stakeholders related to the experiments that levels of induced seismicity may be low given the small total injection volumes of less than 1 m3, detailed analysis of the potential impact of the stimulation on other experiments and surrounding infrastructure is essential to ensure operational safety. In this contribution, we present a procedure how induced seismic hazard can be estimated for an experimental situation that is untypical for injection-induced seismicity in terms of injection volumes, injection depths and proximity to affected objects. Both, deterministic and probabilistic methods are employed to estimate that maximum possible and the maximum expected induced

  19. Historical Earthquake Records and their Application for Seismic Hazard and Risk Assessment in Tianshui, Gansu Province, Northwestern China

    Science.gov (United States)

    Wang, L.; Wang, Z.

    2009-12-01

    Tianshui, located in southeastern Gansu Province of northwestern China, was a center of early Chinese civilization and the birthplace of “Ba Gua” or “eight symbols.” It has a long history of earthquakes and many strong and large earthquakes have occurred there. Earthquakes, ancient or modern ones, have not only been well recorded, but also left marks on many historical landmarks and buildings that can still be seen today. For example, major damage by the 1654 Tianshui earthquake (M8.0) and some minor damage by the 2008 Wenchuan earthquake can be seen in the Maiji Grotto. A new effort to investigate and reexamine the historical macroseismic records is under way, with the aim of better seismic hazard and risk assessment for the Tianshui area. Seismic hazard and risk will be assessed for the Tianshui area using the 2,500 years of intensity observations (records). The results will be used by local governments and communities for developing more effective mitigation policies in the aftermath of the 2008 Wenchuan earthquake. The results will also be compared to hazard and risk assessments derived from other approaches, such as probabilistic and deterministic seismic hazard analyses.

  20. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  1. Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones

    Directory of Open Access Journals (Sweden)

    Naside Ozer

    2012-02-01

    Full Text Available We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0 is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0 activity, and test our results using San Andreas Fault Zone (SAFZ data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.

  2. A first-order second-moment calculation for seismic hazard assessment with the consideration of uncertain magnitude conversion

    Directory of Open Access Journals (Sweden)

    J. P. Wang

    2013-10-01

    Full Text Available Earthquake size can be described with different magnitudes for different purposes. For example, local magnitude ML is usually adopted to compile an earthquake catalog, and moment magnitude Mw is often prescribed by a ground motion model. Understandably, when inconsistent units are encountered in an earthquake analysis, magnitude conversion needs to be performed beforehand. However, the conversion is not expected at full certainty owing to the model error of empirical relationships. This paper introduces a novel first-order second-moment (FOSM calculation to estimate the annual rate of earthquake motion (or seismic hazard on a probabilistic basis, including the consideration of the uncertain magnitude conversion and three other sources of earthquake uncertainties. In addition to the methodology, this novel FOSM application to engineering seismology is demonstrated in this paper with a case study. With a local ground motion model, magnitude conversion relationship and earthquake catalog, the analysis shows that the best-estimate annual rate of peak ground acceleration (PGA greater than 0.18 g (induced by earthquakes is 0.002 per year at a site in Taipei, given the uncertainties of magnitude conversion, earthquake size, earthquake location, and motion attenuation.

  3. A first-order second-moment calculation for seismic hazard assessment with the consideration of uncertain magnitude conversion

    Science.gov (United States)

    Wang, J. P.; Yun, X.; Wu, Y.-M.

    2013-10-01

    Earthquake size can be described with different magnitudes for different purposes. For example, local magnitude ML is usually adopted to compile an earthquake catalog, and moment magnitude Mw is often prescribed by a ground motion model. Understandably, when inconsistent units are encountered in an earthquake analysis, magnitude conversion needs to be performed beforehand. However, the conversion is not expected at full certainty owing to the model error of empirical relationships. This paper introduces a novel first-order second-moment (FOSM) calculation to estimate the annual rate of earthquake motion (or seismic hazard) on a probabilistic basis, including the consideration of the uncertain magnitude conversion and three other sources of earthquake uncertainties. In addition to the methodology, this novel FOSM application to engineering seismology is demonstrated in this paper with a case study. With a local ground motion model, magnitude conversion relationship and earthquake catalog, the analysis shows that the best-estimate annual rate of peak ground acceleration (PGA) greater than 0.18 g (induced by earthquakes) is 0.002 per year at a site in Taipei, given the uncertainties of magnitude conversion, earthquake size, earthquake location, and motion attenuation.

  4. Land-use changes as uncertainties in landslide hazard assessment. An application in Vrancea Seismic Region

    Science.gov (United States)

    Popovici, A.; Kucsicsa, Gh.; Balteanu, D.; Sandric, I.; Micu, M.

    2012-04-01

    Vrancea Seismic Region, covering a surface of 8 000 km2 in the Romanian Curvature Carpathians, represents one of Europe's most intensely affected by slope and channel processes area. Due to its geographical framework (a diverse relief, of mountains, hills and depressions) and socio-political situation (several changes of property due to historical circumstances), it shows also an increased predisposition for land-use changes. The purpose of this paper is to highlight the uncertainties that land-use (considered an independent variable within a landslide susceptibility assessment) changes may trigger within the assessment of landslide hazard, potentially amplifying the uncertainties already induced by climate change. Besides historical maps and CORINE-derived land use distributions, statistical data were used to run two modeling applications (CLUE-S model and Idrisi Taiga Land Change Modeler, who predicts new land-use covers using Markov Chain or Multiple Layer Perception). Based on certain driving forces, like bio-physical drivers (elevation, slope, geology, soil, climatic conditions etc.) but also on socio-economic drivers (population density, distance to towns, distance to roads, people employed in different economical sectors, livestock density, land-property type, farms type, etc.) predicted land-use changes pattern is studied through statistical analysis (logistic regression) backed-up by continuous expert-opinion analysis. The results, represented by land-use simulated maps (2010-2050), once validated (using land-use maps derived from 2007 to 2011 Landsat images, according to CORINE methodology), will give important information on both the suitable methodology for such simulation and on the landslide hazard assessment, a vital stage in the elaboration of landslide risk management strategies.

  5. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  6. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 1: Model components for sources parameterization

    Science.gov (United States)

    Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana

    2017-11-01

    The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps

  7. On the long-term seismic hazard analysis in the Zhangjiakou Penglai seismotectonic zone, China

    Science.gov (United States)

    Fu, Zhengxiang; Liu, Jie; Liu, Guiping

    2004-10-01

    The Zhangjiakou-Penglai seismotectonic zone (ZPSZ) lies in the northern part of North China and extends along the Zhangjiakou-Beijing-Tianjin-Bohai Bay-Penglai-Yellow Sea. It is about 900 km long and some 250 km wide in a northwest direction. The great Sanhe-Pinggu ( MS=8.0) earthquake occurred on September 1679 and the Tangshan ( MS=7.8) earthquake on July 1976 caused serious economic and life losses. According to some differences in crust structure and regional tectonic stress field, the ZPSZ is divided into western and eastern segment by the 117°E line for study on long-term seismic hazard analysis. An analysis of Gutenberg-Richter's empirical relation of earthquake-frequency and time process of historic and recent earthquakes along the eastern and western segments shows that the earthquake activity obeys a Poisson process, and these calculations indicate that the earthquake occurrence probability of MS=6.0-6.9 is 0.77-0.83 in the eastern segment and the earthquake occurrence probability of MS=7.0-7.9 is 0.78-0.80 in the western segment of the ZPSZ during a period from 2005 to 2015.

  8. Seismic Hazard Analysis in EL Paso/juarez Area from Study of Young Fault Scarps

    Science.gov (United States)

    ashenfelter, K. R.

    2012-12-01

    The El Paso-Juarez metropolitan area contains a known record of active faulting, but also has one of the most poorly known paleoseismic records. The scarcity of data means that nearly 2 million people are exposed to a seismic hazard with little known on the actual risk. Active faults are known along the eastern side of the Franklin Mountains as well as young ruptures within the Hueco Bolson in East El Paso, yet the only fault with paleoseismic studies is the East Franklin's fault. Recent population increases in the El Paso region have led to a construction boom in east El Paso, and many of these construction sites cross known Quaternary fault ruptures. This research project contains two potential components: 1) An exploratory component: students can use existing fault maps and high resolution aerial photography to seek out sites where active construction sites might be unearthing exposures of young fault ruptures. The study is exploratory, and involves carefully mapping using field GIS systems to document areas for potential study, map possible faults, etc. 2) An active fault study in an urbanized environment: The east Franklins fault is a known active fault. The scarp is exposed near trans-mountain road, and along some side streets in NE El Paso. Potential studies include careful mapping of fault scarp topographic profiles, and mapping surface traces.

  9. Seismic hazard assessment of Kashmir and Kangra valley region, Western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Basab Mukhopadhyay

    2015-02-01

    Full Text Available A complete earthquake catalogue of the Western Himalaya (latitudes 30°N–36°N and longitudes 72°E–78°E for the period of 1501–2010 has been compiled with earthquake magnitude computed in moment magnitude (Mw scale. Pre- and early twentieth century records of earthquake damage have been documented from rare and out of print publications. Seismotectonics and seismic hazard for Kohistan arc, Kashmir–Hazara Syntaxis, Nanga-Parbat (Western Syntaxis, Karakoram and Himachal Himalaya are discussed with special reference to 1905 Kangra and 2005 Muzaffarabad earthquakes. Analyses of spatio-temporal variation in b-value from the region indicate significant precursor prior to the 2005 Muzaffarabad earthquake; progressive rise of background b-value observed and the main shock locates close to relative high b-value domains. Regions surrounding the location of the 1905 Kangra earthquake also display such high b-value for the period of 2005–2010 that calls for closer scrutiny. Temporal analysis of b-value from the epicentral block of Muzaffarabad earthquake clearly showed a high–low b-value couplet of 1.45–0.72, which may be treated as a typical precursor before an imminent large earthquake. Gumbel extreme value statistics indicate probability of occurrence of an event of Mw > 7.0 within 50 years in the region.

  10. Seismic hazard of the Enriquillog-Plantain Garden fault in Haiti inferred from palaeoseismology

    Science.gov (United States)

    Prentice, C.S.; Mann, P.; Crone, A.J.; Gold, R.D.; Hudnut, K.W.; Briggs, R.W.; Koehler, R.D.; Jean, P.

    2010-01-01

    The Enriquillog-Plantain Garden fault zone is recognized as one of the primary plate-bounding fault systems in Haiti. The strike-slip fault runs adjacent to the city of Port-au-Prince and was initially thought to be the source of the 12 January 2010, M w 7.0 earthquake. Haiti experienced significant earthquakes in 1751 and 1770 (refsA, 3, 4, 5), but the role of the Enriquillog-Plantain Garden fault zone in these earthquakes is poorly known. We use satellite imagery, aerial photography, light detection and ranging (LIDAR) and field investigations to document Quaternary activity on the Enriquillog-Plantain Garden fault. We report late Quaternary, left-lateral offsets of up to 160m, and a set of small offsets ranging from 1.3 to 3.3m that we associate with one of the eighteenth century earthquakes. The size of the small offsets implies that the historical earthquake was larger than M w 7.0, but probably smaller than M w 7.6. We found no significant surface rupture associated with the 2010 earthquake. The lack of surface rupture, coupled with other seismologic, geologic and geodetic observations, suggests that little, if any, accumulated strain was released on the Enriquillog-Plantain Garden fault in the 2010 earthquake. These results confirm that the Enriquillog-Plantain Garden fault remains a significant seismic hazard. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  11. Ground motion input in seismic evaluation studies: impacts on risk assessment of uniform hazard spectra

    International Nuclear Information System (INIS)

    Wu, S.C.; Sewell, R.T.

    1996-07-01

    Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion does not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses

  12. Seismic hazard study for the TREAT Reactor facility at the INEL, Idaho

    International Nuclear Information System (INIS)

    1979-01-01

    The TREAT Reactor is founded on a thick unfaulted sequence of Plio-Pleistocene basalt on the Snake River Plain. The plain is presently aseismic; however, seismic activity occurs in the mountains around the plain. The Howe Scarp is located 19 miles from TREAT and contains a known capable fault. Evaluation of this and other faults in the region indicate the Howe Scarp is the most significant earthquake fault for TREAT. A maximum credible earthquake on this fault could produce a maximum ground motion of about .22 g at TREAT. A study of three range front fault systems north of the Snake River Plain indicates the fault systems have not ruptured as a unit in the past; and, cross range faults, mountain spurs and reentrants generally bound the definable fault sets in the range front systems. This study indicates future surface fault rupture and earthquake events will follow a similar pattern of contiguous faulting; each individual surface rupture event should only involve a single fault set of the range front fault system. Surface faulting on contiguous fault sets should be separated by significant intervals of geologic time. Certain volcanic hazards have been examined and discussed

  13. Recent Progress in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

    Science.gov (United States)

    Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.

    2015-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.

  14. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  15. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Investigating effects of near fault rupture directivity on seismic hazard assessment of the site of Tehran Research Reactor (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Sepanloo, Kamran; Saberi, Reza [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Bazarchi, Ehsan [Tabriz Univ. (Iran, Islamic Republic of)

    2017-10-15

    It is estimated that the occurrence of a major-earthquake in Tehran, Iran, which is not far-fetched, would face the country with a huge amount of collapsed structures, economical losses and fatalities. The issue becomes more important while the site of interest is attributed to the nuclear facilities and any under-estimation in predicting the design ground motion may cause a real disaster. In this study, using calculations coded in MATLAB, PSHA was conducted for the site of TRR. It was concluded that most of the hazard for considered site in a 10000-year period comes from distances lower than 20 km and considering rupture directivity effects of the North Tehran fault, as the nearest seismicity source to considered site, using narrowband method affected the response spectrum significantly. Therefore, it is necessary to incorporate the near fault rupture directivity effects into the higher levels of seismic hazard assessment attributed to important sites.

  17. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  18. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  19. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    International Nuclear Information System (INIS)

    Kammerer, Annie

    2015-01-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities–which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions–the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  20. Tsunami hazard maps of spanish coast at national scale from seismic sources

    Science.gov (United States)

    Aniel-Quiroga, Íñigo; González, Mauricio; Álvarez-Gómez, José Antonio; García, Pablo

    2017-04-01

    Tsunamis are a moderately frequent phenomenon in the NEAM (North East Atlantic and Mediterranean) region, and consequently in Spain, as historic and recent events have affected this area. I.e., the 1755 earthquake and tsunami affected the Spanish Atlantic coasts of Huelva and Cadiz and the 2003 Boumerdés earthquake triggered a tsunami that reached Balearic island coast in less than 45 minutes. The risk in Spain is real and, its population and tourism rate makes it vulnerable to this kind of catastrophic events. The Indian Ocean tsunami in 2004 and the tsunami in Japan in 2011 launched the worldwide development and application of tsunami risk reduction measures that have been taken as a priority in this field. On November 20th 2015 the directive of the Spanish civil protection agency on planning under the emergency of tsunami was presented. As part of the Spanish National Security strategy, this document specifies the structure of the action plans at different levels: National, regional and local. In this sense, the first step is the proper evaluation of the tsunami hazard at National scale. This work deals with the assessment of the tsunami hazard in Spain, by means of numerical simulations, focused on the elaboration of tsunami hazard maps at National scale. To get this, following a deterministic approach, the seismic structures whose earthquakes could generate the worst tsunamis affecting the coast of Spain have been compiled and characterized. These worst sources have been propagated numerically along a reconstructed bathymetry, built from the best resolution available data. This high-resolution bathymetry was joined with a 25-m resolution DTM, to generate continuous offshore-onshore space, allowing the calculation of the flooded areas prompted by each selected source. The numerical model applied for the calculation of the tsunami propagations was COMCOT. The maps resulting from the numerical simulations show not only the tsunami amplitude at coastal areas but

  1. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    International Nuclear Information System (INIS)

    Savy, J.B.; Foxall, W.

    2000-01-01

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999

  2. A random field model for the estimation of seismic hazard. Final report for the period 1 January 1990 - 31 December 1990

    International Nuclear Information System (INIS)

    Yucemen, S.

    1991-02-01

    The general theory of stationary random functions is utilized to assess the seismic hazard associated with a linearly extending seismic source. The past earthquake occurrence data associated with a portion of the North Anatolian fault are used to demonstrate the implementation of the proposed model. 18 refs, figs and tabs

  3. Identification of deep subaqueous co-seismic scarps through specific coeval sedimentation in Lesser Antilles: implication for seismic hazard

    Directory of Open Access Journals (Sweden)

    C. Beck

    2012-05-01

    Full Text Available During the GWADASEIS cruise (Lesser Antilles volcanic arc, February–March 2009 a very high resolution (VHR seismic-reflection survey was performed in order to constrain Late Quaternary to Present faulting. The profiles we obtained evidence frequent "ponding" of reworked sediments in the deepest areas, similar to the deposition of Mediterranean "homogenites". These bodies are acoustically transparent (few ms t.w.t. thick and are often deposited on the hanging walls of dominantly normal faults, at the base of scarps. Their thickness appears sufficient to compensate (i.e. bury co-seismic scarps between successive earthquakes, resulting in a flat and horizontal sea floor through time. In a selected area (offshore Montserrat and Nevis islands, piston coring (4 to 7 m long was dedicated to a sedimentological analysis of the most recent of these particular layers. It corresponds to non-stratified homogenous calcareous silty sand (reworked calcareous plankton and minor volcanoclastics. This layer can be up to 2 m thick, and overlies fine-grained hemipelagites. The upper centimeters of the latter represent the normal RedOx water/sediment interface. 210Pb and 137Cs activities lack in the massive sands, while a normal profile of unsupported 210Pb decrease is observed in the hemipelagite below, together with a 137Cs peak corresponding to the Atmospheric Nuclear Experiments (1962. The RedOx level was thus capped by a recent instantaneous major sedimentary event considered as post-1970 AD; candidate seismic events to explain this sedimentary deposits are either the 16 March 1985 earthquake or the 8 October 1974 one (Mw = 6.3 and Mw = 7.4, respectively. This leads to consider that the syntectonic sedimentation in this area is not continuous but results from accumulation of thick homogenites deposited after the earthquakes (as observed in the following weeks after Haiti January

  4. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and

  5. Seismic observations and multidisciplinary interpretation of their analysis: understanding the unrest at Turrialba volcano (Costa Rica)

    Science.gov (United States)

    Martini, F.; Ovsicori-Una Volcano Monitoring Group

    2009-04-01

    Turrialba is a basaltic-andesitic stratovolcano, 3340 m a.s.l., in the Cordillera Volcánica Central in Costa Rica, which has been significantly active for more than 10,000 years. Although most of the recent geologically recorded eruptions were phreatic or phreatomagmatic explosive eruptions, there are also important records of large Plinian eruptions. Moreover, it has a record of large gravitational collapses, representing a very significant potential hazard to nearby populated areas. Since the last eruption in 1864-1866, volcanic manifestations were limited to low temperature fumarolic degassing (continuous since 1980) through its Central and West craters. After many years of quiescence, from 1996 onward, its activity has been progressively increasing, with the occurrence of several seismic swarms. An increment in the number of fumaroles and level of degassing has been observed at the occurrence of each seismic swarm. New fumaroles have appeared in both Central and West craters (the latter now being the most active), and in the fracture system in between, showing sulfur deposits and progressively increasing degassing levels. The maximum seismic activity to date was recorded by the permanent seismic network in mid 2007 with swarms of up to thousands volcano-tectonic-type of events/day. Following this, temperatures measured at fumaroles in the bottom of the Western crater have increased from 90° to 280° C , while pH of fumarolic condensates at the same crater has decreased to values as low as 0,55 and their solute concentrations have largely increased. Changes in the fumarolic gas composition, isotopic composition of the condensates as well as in rainwater samples collected in the surroundings of the volcano have been showing a progressively higher magmatic signature, interacting with a shallow hydrothermal system. Since late 2007, SO2 flux measured with mini-DOAS has increased two orders of magnitude. The enhanced gas discharge at Turrialba volcano has caused

  6. Optimizing CyberShake Seismic Hazard Workflows for Large HPC Resources

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2014-12-01

    The CyberShake computational platform is a well-integrated collection of scientific software and middleware that calculates 3D simulation-based probabilistic seismic hazard curves and hazard maps for the Los Angeles region. Currently each CyberShake model comprises about 235 million synthetic seismograms from about 415,000 rupture variations computed at 286 sites. CyberShake integrates large-scale parallel and high-throughput serial seismological research codes into a processing framework in which early stages produce files used as inputs by later stages. Scientific workflow tools are used to manage the jobs, data, and metadata. The Southern California Earthquake Center (SCEC) developed the CyberShake platform using USC High Performance Computing and Communications systems and open-science NSF resources.CyberShake calculations were migrated to the NSF Track 1 system NCSA Blue Waters when it became operational in 2013, via an interdisciplinary team approach including domain scientists, computer scientists, and middleware developers. Due to the excellent performance of Blue Waters and CyberShake software optimizations, we reduced the makespan (a measure of wallclock time-to-solution) of a CyberShake study from 1467 to 342 hours. We will describe the technical enhancements behind this improvement, including judicious introduction of new GPU software, improved scientific software components, increased workflow-based automation, and Blue Waters-specific workflow optimizations.Our CyberShake performance improvements highlight the benefits of scientific workflow tools. The CyberShake workflow software stack includes the Pegasus Workflow Management System (Pegasus-WMS, which includes Condor DAGMan), HTCondor, and Globus GRAM, with Pegasus-mpi-cluster managing the high-throughput tasks on the HPC resources. The workflow tools handle data management, automatically transferring about 13 TB back to SCEC storage.We will present performance metrics from the most recent Cyber

  7. Development of a seismic source model for probabilistic seismic hazard assessment of nuclear power plant sites in Switzerland: the view from PEGASOS Expert Group 4 (EG1d)

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, S. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland); Garcia-Fernandez, M. [Spanish Council for Scientific Research, Museum of Natural History, Dept. of Volcanology and Geophysics, Madrid (Spain); Burg, J.-P. [Institute of Geology, ETH Zuerich, Zuerich (Switzerland)

    2009-05-15

    We present a seismogenic source model for site-specific probabilistic seismic hazard assessment at the sites of Swiss nuclear power plants. Our model is one of four developed in the framework of the PEGASOS project; it contains a logic tree with nine levels of decision-making. The two primary sources of input used in the areal zonation developed by us are the historical and instrumental seismicity record and large-scale geological/rheological units. From this, we develop a zonation of six macro zones, refined in a series of seven decision steps up to a maximum of 13 zones. Within zones, activity rates are either assumed homogeneous or smoothed using a Gaussian kernel with width of 5 or 15 km. To estimate recurrence rate, we assume a double truncated Gutenberg-Richter law, and consider five models of recurrence parameters with different degrees of freedom. Models are weighted in the logic tree using a weighted Akaike score. The maximum magnitude is estimated following the EPRI approach. We perform extensive sensitivity analyses in rate and hazard space in order to assess the role of de-clustering, the completeness model, quarry contamination, border properties, stationarity, regional b-value and magnitude-dependent hypocentral depth. (author)

  8. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 2: Computational implementation and first results

    Science.gov (United States)

    Peruzza, Laura; Azzaro, Raffaele; Gee, Robin; D'Amico, Salvatore; Langer, Horst; Lombardo, Giuseppe; Pace, Bruno; Pagani, Marco; Panzera, Francesco; Ordaz, Mario; Suarez, Miguel Leonardo; Tusa, Giuseppina

    2017-11-01

    This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA) for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017) and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude-scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014). Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent) and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M > 6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M risk reduction.

  9. Geo-Hazards and Mountain Road Development in Nepal: Understanding the Science-Policy-Governance Interface

    Science.gov (United States)

    Dugar, Sumit; Dahal, Vaskar

    2015-04-01

    The foothills of Nepalese Himalayas located in the neotectonic mountain environment are among some of the most unstable and geomorphologically dynamic landscapes in the world. Young fold mountains in this region are characterized by complex tectonics that influence the occurrence of earthquakes, while climatic processes such as intense orographic rainfall often dictate the occurrence of floods and landslides. Development of linear infrastructures, such as roads, in mountainous terrain characterized by high relief and orogeny is considerably challenging where the complexity of landscape in steep and irregular topography, difficult ground conditions and weak geology, presents engineers and planners with numerous difficulties to construct and maintain mountain roads. Whilst application of engineering geology, geomorphic interpretation of terrain in terms of physiography and hydrology, and identification of geo-hazards along the road corridor is critical for long term operation of mountain roads, low-cost arterial roads in the Himalayan foothills generally fail to incorporate standard road slope engineering structures. This research provides unique insights on policy and governance issues in developing mountainous countries such as Nepal, where achieving a sound balance between sustainability and affordability is a major challenge for road construction. Road development in Nepal is a complex issue where socio-economic and political factors influence the budget allocation for road construction in rural hilly areas. Moreover, most mountain roads are constructed without any geological or geo-technical site investigations due to rampant corruption and lack of adequate engineering supervision. Despite having good examples of rural road construction practices such as the Dharan-Dhankuta Road in Eastern Nepal where comprehensive terrain-evaluation methods and geo-technical surveys led to an improved understanding of road construction, learnings from this project have not

  10. Seismic Considerations--Elementary and Secondary Schools, Revised Edition. Earthquake Hazards Reduction Series 34.

    Science.gov (United States)

    Building Seismic Safety Council, Washington, DC.

    Elementary and secondary schools deserve special attention with respect to seismic safety because of their special occupancy characteristics and their importance to immediate and long-term earthquake disaster relief and recovery efforts. Seismic safety provisions, when incorporated in a sound design from the very beginning, usually amount to only…

  11. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    Science.gov (United States)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  12. Implementation of NGA-West2 ground motion models in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Harmsen, Stephen C.; Frankel, Arthur D.

    2014-01-01

    The U.S. National Seismic Hazard Maps (NSHMs) have been an important component of seismic design regulations in the United States for the past several decades. These maps present earthquake ground shaking intensities at specified probabilities of being exceeded over a 50-year time period. The previous version of the NSHMs was developed in 2008; during 2012 and 2013, scientists at the U.S. Geological Survey have been updating the maps based on their assessment of the “best available science,” resulting in the 2014 NSHMs. The update includes modifications to the seismic source models and the ground motion models (GMMs) for sites across the conterminous United States. This paper focuses on updates in the Western United States (WUS) due to the use of new GMMs for shallow crustal earthquakes in active tectonic regions developed by the Next Generation Attenuation (NGA-West2) project. Individual GMMs, their weighted combination, and their impact on the hazard maps relative to 2008 are discussed. In general, the combined effects of lower medians and increased standard deviations in the new GMMs have caused only small changes, within 5–20%, in the probabilistic ground motions for most sites across the WUS compared to the 2008 NSHMs.

  13. Seismic Isolation Working Meeting Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  14. Source and path parameters determination based on data from the digital accelerometer and CALIXTO networks to assess the seismic hazard

    International Nuclear Information System (INIS)

    Radulian, M.; Anghel, M.; Ardeleanu, L.; Bazacliu, O.; Grecu, B.; Popa, M.; Popescu, E.; Rizescu, M.

    2002-01-01

    For any strategy of seismic risk mitigation, it is essential to have a realistic description of the seismic input that means of the source and structure parameters. The present project is focused on the problem of determining accurate source and structure parameters and to analyze the way these parameters influence the seismic hazard distribution. The main objectives of the project are: determination of seismic source parameters, scaling properties, database of recent earthquakes, seismic source effects on the seismic hazard distribution, seismic attenuation, site effects, realistic scenarios for Vrancea earthquakes. To this purpose, we valorize the data provided by the instruments installed recently on the Romanian territory, in the framework of multiple international cooperation programs. Thus, a new digital accelerometer network was installed between 1996 and 1999 in cooperation with the Institute of Geophysics of the University of Karlsruhe (Germany), and an ample tomography experiment deployed for a 6-month time window (May - November 1999).The results obtained up to now refer to the determination of seismic source parameters and scaling. The source parameters are constrained using the spectral ratio technique and the seismic moment tensor inversion. The spectral ratio method is efficient when pairs of co-located earthquakes recorded at common stations are available. In this case the spectral ratio depends essentially on source only, and corrections for path, local response and instrument are not required. Another advantage of the method is the possibility to determine simultaneously source parameters for both selected events of a pair, if the instrument has a broadband frequency response and the signal/noise ratio is sufficiently high in the frequency domain of interest. The spectral ratio method is applied for 37 events, occurred between 1996 and 2000, with magnitudes between 3.0 and 5.3 in the intermediate-depth range. Seismic moment, source dimension and

  15. A New Methodology for Decreasing Uncertainties in the Seismic Hazard Assessment Results by Using Sensitivity Analysis. An Application to Sites in Eastern Spain

    Science.gov (United States)

    Giner, J. J.; Molina, S.; Jáuregui, P.; Delgado, J.

    - In this study a sensitivity analysis has been carried out by means of the seismic hazard results obtained using the non-zoning methodology (Epstein and Lomnitz, 1966) and the extreme value distribution functions proposed by Gumbel (1958), via a logic tree procedure. The aim of the sensitivity analysis is to identify the input parameters that have the largest impact on assessed hazard and its uncertainty. The research findings from the study of these parameters can serve as a useful guide to facilitate further research studies on seismic hazard evaluations because it allows us to identify parameters that have little or no effect on the seismic hazard results as well as parameters that have great effects on them. In this way, using the obtained results, we have proposed objective criteria in assigning probabilities to the different logic tree branches in a more objective way. It should be noted that, although the sensitivity of the logic tree branches depends on the site, it does not always do so in the same way. Finally, re-evaluation of seismic hazard using the proposed methodology applied to eastern Spain leads to a reduction of uncertainty from 52% to 27% of the expected acceleration with 10% probability of exceedence, at the site with the highest value of seismic hazard (Site 1: Torrevieja).

  16. Flash Mob Science - Increasing Seismic Hazard Awareness and Preparedness in Oregon

    Science.gov (United States)

    Hoffman, J. S.; Lownsbery, D. S.

    2015-12-01

    Living in a region of imminent threat of a magnitude-9.0 (M­­­w ≈ ­9) earthquake is a daily reality for the millions of people predicted to be directly affected by a full rupture of the Cascadia Subduction Zone (CSZ), a fault line extending for hundreds of miles off the western coast of North America. Many coastal residents and visitors will also be affected by the tsunami caused by the rupture. How can the scientific community effectively communicate with those who are unaware of the threat and unprepared to respond? We are studying the effects of a novel approach to science outreach we have called Flash Mob Science. You have probably seen examples of flash mobs staging dynamic musical and dance routines to unsuspecting audiences. Similarly, Flash Mob Science takes the challenging (and often avoided) topic of earthquake and tsunami awareness and preparedness to unsuspecting audiences. However, Flash Mob Science seeks to move beyond having an audience of observers by engaging others as participants who enact important roles in an unfolding drama. We simulate the effects of seismic and tsunami events (e.g., prolonged surface shaking, falling debris, repeated tsunami surges) and model best practices in response (e.g., "Drop, Cover, Hold On" and moving quickly to high ground). True to the general flash mob model, when the Cascadia event inevitably does occur, it will come suddenly, and everyone affected will unavoidably be involved as actors in a real-life drama of immense scale. We seek to embed the learning of basic understandings and practices for an actual Cascadia event in a very small-scale, memorable, and sometimes even humorous, dramatization. We present here the lessons we have learned in the background, planning, and implementation of Flash Mob Science. We highlight the successes, limitations, and preliminary results evaluating the effectiveness of this outreach in developing learners' understandings and preparedness in an Oregon community affected by

  17. Update of the tectonic model for the Pannonian basin: a contribution to the seismic hazard reassessment of the Paks NPP (Hungary)

    Science.gov (United States)

    Horváth, Ferenc; Tóth, Tamás; Wórum, Géza; Koroknai, Balázs; Kádi, Zoltán; Kovács, Gábor; Balázs, Attila; Visnovitz, Ferenc

    2015-04-01

    The planned construction of two new units at the site of the Paks NPP requires a comprehensive site investigation including complete reassessment of the seismic hazard according to the Hungarian as well as international standards. Following the regulations of the Specific Safety Guide no. 9 (IAEA 2010), the approved Hungarian Geological Investigation Program (HGIP) includes integrated geological-geophysical studies at different scales. The regional study aims at to elaborate a new synthesis of all published data for the whole Pannonian basin. This task is nearly completed and the main outcomes have already been published (Horváth et al. 2015). The near regional study is in progress and addresses the construction of a new tectonic model for the circular area with 50 km radius around the NPP using a wealth of unpublished oil company seismic and borehole data. The site vicinity study has also been started with a core activity of 300 km² 3D seismic data acquisition, processing and interpretation assisted by a series of additional geophysical surveys, new drillings and geological mapping. This lecture will present a few important results of the near regional study, which sheds new light on the intricate tectonic evolution of the Mid-Hungarian Fault Zone (MHFZ), which is a strongly deformed belt between the Alcapa and Tisza-Dacia megatectonic units. The nuclear power plant is located at the margin of the Tisza unit near to the southern edge of the MHFZ. Reassessment of seismic hazard at the site of the NPP requires better understanding of the Miocene to Recent tectonic evolution of this region in the central part of the Pannonian basin. Early to Middle Miocene was a period of rifting with formation of 1 to 3 km deep half-grabens filled with terrestrial to marine deposits and large amount of rift-related volcanic material. Graben fill became strongly deformed as a consequence of juxtaposition of the two megatectonic units leading to strong compression and development of

  18. A Probabilistic Risk Analysis for Taipei Seismic Hazards: An Application of HAZ-Taiwan with its Pre-processor and Post-processor

    OpenAIRE

    Daigee Shaw; Chin-Hsiung Loh; Chin-Hsun Yeh; Wen-Yu Jean; Yen-lien Kuo

    2004-01-01

    This paper employs probabilistic risk analysis to estimate exceedance probability curves, average annual loss (AAL) and probable maximum loss (PML) for seismic hazards. It utilizes and event-driven loss estimation model, HAZ-Taiwan, and develops its pre-processing and post-processing software modules. First, the pre-processingmodule establishes a set of hazard-consistent scenarios. Then, the HAZ-Taiwan modelextimates hazards, vulnerabilities and economic losses for each scenario. Finally, the...

  19. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    Science.gov (United States)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a

  20. Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes

    Science.gov (United States)

    Estay, Nicolás P.; Yáñez, Gonzalo; Carretier, Sebastien; Lira, Elias; Maringue, José

    2016-11-01

    Crustal faults located close to cities may induce catastrophic damages. When recurrence times are in the range of 1000-10 000 or higher, actions to mitigate the effects of the associated earthquake are hampered by the lack of a full seismic record, and in many cases, also of geological evidences. In order to characterize the fault behavior and its effects, we propose three different already-developed time-integration methodologies to define the most likely scenarios of rupture, and then to quantify the hazard with an empirical equation of peak ground acceleration (PGA). We consider the following methodologies: (1) stream gradient and (2) sinuosity indexes to estimate fault-related topographic effects, and (3) gravity profiles across the fault to identify the fault scarp in the basement. We chose the San Ramón Fault on which to apply these methodologies. It is a ˜ 30 km N-S trending fault with a low slip rate (0.1-0.5 mm yr-1) and an approximated recurrence of 9000 years. It is located in the foothills of the Andes near the large city of Santiago, the capital of Chile (> 6 000 000 inhabitants). Along the fault trace we define four segments, with a mean length of ˜ 10 km, which probably become active independently. We tested the present-day seismic activity by deploying a local seismological network for 1 year, finding five events that are spatially related to the fault. In addition, fault geometry along the most evident scarp was imaged in terms of its electrical resistivity response by a high resolution TEM (transient electromagnetic) profile. Seismic event distribution and TEM imaging allowed the constraint of the fault dip angle (˜ 65°) and its capacity to break into the surface. Using the empirical equation of Chiou and Youngs (2014) for crustal faults and considering the characteristic seismic event (thrust high-angle fault, ˜ 10 km, Mw = 6.2-6.7), we estimate the acceleration distribution in Santiago and the hazardous zones. City domains that are under

  1. Site Specific Probabilistic Seismic Hazard and Risk Analysis for Surrounding Communities of The Geysers Geothermal Development Area

    Science.gov (United States)

    Miah, M.; Hutchings, L. J.; Savy, J. B.

    2014-12-01

    We conduct a probabilistic seismic hazard and risk analysis from induced and tectonic earthquakes for a 50 km radius area centered on The Geysers, California and for the next ten years. We calculate hazard with both a conventional and physics-based approach. We estimate site specific hazard. We convert hazard to risk of nuisance and damage to structures per year and map the risk. For the conventional PSHA we assume the past ten years is indicative of hazard for the next ten years from Mnoise. Then, we interpolate within each geologic unit in finely gridded points. All grid points within a unit are weighted by distance from each data collection point. The entire process is repeated for all of the other types of geologic units until the entire area is gridded and assigned a hazard value for every grid points. We found that nuisance and damage risks calculated by both conventional and physics-based approaches provided almost identical results. This is very surprising since they were calculated by completely independent means. The conventional approach used the actual catalog of the past ten years of earthquakes to estimate the hazard for the next ten year. While the physics-based approach used geotechnical modeling to calculate the catalog for the next ten years. Similarly, for the conventional PSHA, we utilized attenuation relations from past earthquakes recorded at the Geysers to translate the ground motion from the source to the site. While for the physics-based approach we calculated ground motion from simulation of actual earthquake rupture. Finally, the source of the earthquakes was the actual source for the conventional PSHA. While, we assumed random fractures for the physics-based approach. From all this, we consider the calculation of the conventional approach, based on actual data, to validate the physics-based approach used.

  2. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland)

    Science.gov (United States)

    Burtan, Zbigniew

    2017-11-01

    The current level of rockburst hazard in copper mines of the (LGOM) Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  3. The influence of regional geological settings on the seismic hazard level in copper mines in the Legnica-Głogów Copper Belt Area (Poland

    Directory of Open Access Journals (Sweden)

    Burtan Zbigniew

    2017-01-01

    Full Text Available The current level of rockburst hazard in copper mines of the (LGOM Legnica- Głogów Copper Belt Area is mostly the consequence of mining-induced seismicity, whilst the majority of rockbursting events registered to date were caused by high-energy tremors. The analysis of seismic readings in recent years reveals that the highest seismic activity among the copper mines in the LGOM is registered in the mine Rudna. This study investigates the seismic activity in the rock strata in the Rudna mine fields over the years 2006-2015. Of particular interest are the key seismicity parameters: the number of registered seismic events, the total energy emissions, the energy index. It appears that varied seismic activity in the area may be the function of several variables: effective mining thickness, the thickness of burst-prone strata and tectonic intensity. The results support and corroborate the view that principal factors influencing the actual seismic hazard level are regional geological conditions in the copper mines within the Legnica-Głogów Copper Belt Area.

  4. Use of controlled dynamic impacts on hierarchically structured seismically hazardous faults for seismically safe relaxation of shear stresses

    Science.gov (United States)

    Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.

    2017-12-01

    In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.

  5. Earthquake Scenarios Based Upon the Data and Methodologies of the U.S. Geological Survey's National Seismic Hazard Mapping Project

    Science.gov (United States)

    Rukstales, K. S.; Petersen, M. D.; Frankel, A. D.; Harmsen, S. C.; Wald, D. J.; Quitoriano, V. R.; Haller, K. M.

    2011-12-01

    The U.S. Geological Survey's (USGS) National Seismic Hazard Mapping Project (NSHMP) utilizes a database of over 500 faults across the conterminous United States to constrain earthquake source models for probabilistic seismic hazard maps. Additionally, the fault database is now being used to produce a suite of deterministic ground motions for earthquake scenarios that are based on the same fault source parameters and empirical ground motion prediction equations used for the probabilistic hazard maps. Unlike the calculated hazard map ground motions, local soil amplification is applied to the scenario calculations based on the best available Vs30 (average shear-wave velocity down to 30 meters) mapping, or in some cases using topographic slope as a proxy. Systematic outputs include all standard USGS ShakeMap products, including GIS, KML, XML, and HAZUS input files. These data are available from the ShakeMap web pages with a searchable archive. The scenarios are being produced within the framework of a geographic information system (GIS) so that alternative scenarios can readily be produced by altering fault source parameters, Vs30 soil amplification, as well as the weighting of ground motion prediction equations used in the calculations. The alternative scenarios can then be used for sensitivity analysis studies to better characterize uncertainty in the source model and convey this information to decision makers. By providing a comprehensive collection of earthquake scenarios based upon the established data and methods of the USGS NSHMP, we hope to provide a well-documented source of data which can be used for visualization, planning, mitigation, loss estimation, and research purposes.

  6. GIS-based landslide hazard evaluation at the regional scale: some critical points in the permanent displacement approach for seismically-induced landslide maps

    Science.gov (United States)

    Vessia, Giovanna; Parise, Mario

    2013-04-01

    Landslide susceptibility and hazard are commonly developed by means of GIS (Geographic Information Systems) tools. Many products such as DTM (Digital Terrain Models), and geological, morphological and lithological layers (often, to be downloaded for free and integrated within GIS) are nowadays available on the web and ready to be used for urban planning purposes. The multiple sources of public information enable the local authorities to use these products for predicting hazards within urban territories by limited investments on technological infrastructures. On the contrary, the necessary expertise required for conducting pertinent hazard analyses is high, and rarely available at the level of the local authorities. In this respect, taking into account the production of seismically-induced landslide hazard maps at regional scale drawn by GIS tool, these can be performed according to the permanent displacement approach derived by Newmark's sliding block method (Newmark, 1965). Some simplified assumptions are considered for occurrence of a seismic mass movement, listed as follows: (1) the Mohr-Coulomb criterion is used for the plastic displacement of the rigid block; (2) only downward movements are accounted for; (3) a translative sliding mechanism is assumed. Under such conditions, several expressions have been proposed for predicting permanent displacements of slopes during seismic events (Ambresys and Menu, 1988; Luzi and Pergalani 2000; Romeo 2000; Jibson 2007, among the others). These formulations have been provided by researchers for different ranges of seismic magnitudes, and for indexes describing the seismic action, such as peak ground acceleration, peak ground velocity, Arias Intensity, and damage potential. With respect to the resistant properties of the rock units, the critical acceleration is the relevant strength variable in every expressions; it is a function of local slope, groundwater level, unit weight shear resistance of the surficial sediments, and

  7. Pattern recognition techniques and neo-deterministic seismic hazard: Time dependent scenarios for North-Eastern Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Vaccari, F.; Panza, G.F.; Zuccolo, E.; Gorshkov, A.

    2009-05-01

    An integrated neo-deterministic approach to seismic hazard assessment has been developed that combines different pattern recognition techniques, designed for the space-time identification of strong earthquakes, with algorithms for the realistic modeling of seismic ground motion. The integrated approach allows for a time dependent definition of the seismic input, through the routine updating of earthquake predictions. The scenarios of expected ground motion, associated with the alarmed areas, are defined by means of full waveform modeling. A set of neo-deterministic scenarios of ground motion is defined at regional and local scale, thus providing a prioritization tool for timely prevention and mitigation actions. Constraints about the space and time of occurrence of the impending strong earthquakes are provided by three formally defined and globally tested algorithms, which have been developed according to a pattern recognition scheme. Two algorithms, namely CN and M8, are routinely used for intermediate-term middle-range earthquake predictions, while a third algorithm allows for the identification of the areas prone to large events. These independent procedures have been combined to better constrain the alarmed area. The pattern recognition of earthquake-prone areas does not belong to the family of earthquake prediction algorithms since it does not provide any information about the time of occurrence of the expected earthquakes. Nevertheless, it can be considered as the term-less zero-approximation, which restrains the alerted areas (e.g. defined by CN or M8) to the more precise location of large events. Italy is the only region of moderate seismic activity where the two different prediction algorithms CN and M8S (i.e. a spatially stabilized variant of M8) are applied simultaneously and a real-time test of predictions, for earthquakes with magnitude larger than 5.4, is ongoing since 2003. The application of the CN to the Adriatic region (s.l.), which is relevant

  8. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  9. Educational Approach to Seismic Risk Mitigation in Indian Himalayas -Hazard Map Making Workshops at High Schools-

    Science.gov (United States)

    Koketsu, K.; Oki, S.; Kimura, M.; Chadha, R. K.; Davuluri, S.

    2014-12-01

    How can we encourage people to take preventive measures against damage risks and empower them to take the right actions in emergencies to save their lives? The conventional approach taken by scientists had been disseminating intelligible information on up-to-date seismological knowledge. However, it has been proven that knowledge alone does not have enough impact to modify people's behaviors in emergencies (Oki and Nakayachi, 2012). On the other hand, the conventional approach taken by practitioners had been to conduct emergency drills at schools or workplaces. The loss of many lives from the 2011 Tohoku earthquake has proven that these emergency drills were not enough to save people's lives, unless they were empowered to assess the given situation on their own and react flexibly. Our challenge is to bridge the gap between knowledge and practice. With reference to best practices observed in Tohoku, such as The Miracles of Kamaishi, our endeavor is to design an effective Disaster Preparedness Education Program that is applicable to other disaster-prone regions in the world, even with different geological, socio-economical and cultural backgrounds. The key concepts for this new approach are 1) empowering individuals to take preventive actions to save their lives, 2) granting community-based understanding of disaster risks and 3) building a sense of reality and relevancy to disasters. With these in mind, we held workshops at some high schools in the Lesser Himalayan Region, combining lectures with an activity called "Hazard Map Making" where students proactively identify and assess the hazards around their living areas and learn practical strategies on how to manage risks. We observed the change of awareness of the students by conducting a preliminary questionnaire survey and interviews after each session. Results strongly implied that the significant change of students' attitudes towards disaster preparedness occurred not by the lectures of scientific knowledge, but

  10. Recent research in earth structure, earthquake and mine seismology, and seismic hazard evaluation in South Africa

    CSIR Research Space (South Africa)

    Wright, C

    2003-07-01

    Full Text Available earthquake data recorded by the temporary Kaapvaal broad-band seismic network and SANSN. A significant increase in crustal thickness of about 10km was also identified between the southern part of the Kaapvaal craton and the northern region affected...

  11. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    Science.gov (United States)

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of

  12. Developing an Internet Oriented Platform for Earthquake Engineering Application and Web-based Virtual Reality Simulation System for Seismic hazards: Towards Disaster Mitigation in Metropolises

    Directory of Open Access Journals (Sweden)

    Ali Alaghehbandian

    2003-04-01

    Full Text Available This paper reviews the state of the art on risk communication to the public, with an emphasis on simulation of seismic hazards using VRML. Rapid growth computer technologies, especially the Internet provide human beings new measures to deal with engineering and social problems which were hard to solve in traditional ways. This paper presents a prototype of an application platform based on the Internet using VR (Virtual Reality for civil engineering considering building an information system of risk communication for seismic hazards and at the moment in the case of bridge structure.

  13. Updated Long Term Fault Slip Rates and Seismic Hazard in the Central Alborz, Iran: New Constraints From InSAR and GPS

    Science.gov (United States)

    Weston, J. M.; Shirzaei, M.

    2015-12-01

    The Alborz mountain range, located south of the Caspian Sea, accommodates 30% of the 25 mm/yr convergence between Arabia and Eurasia. The resulting shortening and left lateral motion is distributed over several active fault zones within the Central Alborz. Despite earlier efforts using only GPS data, little is known about the long term rate of vertical deformation and aseismic slip. Several historical earthquakes have affected this region, some of the largest of these events occurred on the Mosha fault which is close to the capital city, Tehran, which has a population of over eight million. Thus, constraining the interseismic slip rates in this region is particularly important. In this study we complement existing horizontal velocities from a regional GPS network, with line of sight velocities from interferometric synthetic aperture radar (InSAR), to provide additional constraints on the vertical deformation and enhance the spatial coverage. Assuming a seismogenic depth of 30 km, based on microseismicity data, we solve for the geometry and long term slip rates on four major fault strands in this region. We obtain a long term slip rate of ~ 3 mm/yr for the Mosha and North Alborz faults, and ~ 10 mm/yr for the Khazar fault and Parchin faults. These rates and fault geometries are in agreement with earlier works, and fit the GPS data well. However, close to the fault traces there are large residuals in the InSAR data, suggesting that there is shallow creep (Khazar faults are creeping. This new observation of fault creep has direct implications for the seismic hazard in the region. On the Mosha fault we estimate a slip deficit equivalent to a Mw 7.0 event. The combination of InSAR and GPS provide vital information for assessing the interseismic deformation in the Central Alborz, and these results highlight the importance of closer monitoring of this region to better understand the seismic hazard.

  14. Re-evaluating seismic hazard along the southern Longmen Shan, China: Insights from the 1970 Dayi and 2013 Lushan earthquakes

    Science.gov (United States)

    Li, Zhigang; Liu-Zeng, Jing; Almeida, Rafael; Hubbard, Judith; Sun, Chuang; Yi, Guixi

    2017-10-01

    Competing hypotheses have been proposed to explain the seismic hazard (i.e. whether earthquakes with M ≥ 7 occur) of the southern Longmen Shan (LMS). This region did not rupture during the 2008 Mw 7.9 Wenchuan earthquake, but later generated the 2013 Mw 6.6 Lushan earthquake. Currently, the maximum possible earthquake magnitude, its average recurrence interval, and the seismogenic structure of the southern LMS, remain poorly documented. This study aims to re-evaluate seismogenic structures and seismic hazard along the southern LMS. We first describe the sub-surface structural geometry, as well as the total slip and Quaternary activity of the Range Front blind thrust (RFBT), using high-resolution seismic reflection profiles, borehole data, and intensity-derived macroscopic epicenters. This thrust, which generated the 1970 Ms 6.2 Dayi and 2013 Mw 6.6 Lushan earthquakes, extends for > 250 km along the LMS range front. Integrating new evidence of active faulting and folding and previous quantitative horizontal shortening rate results, we estimate that the Quaternary slip rate of the RFBT is nearly 1 mm/yr, with a minimum total slip of 5 km since 8-5 Ma. Furthermore, we calculate the accumulation rate of seismic moment, 8.04 (± 2.09) × 1017 N·m/yr, for the main active thrusts on the southern LMS, to compare with the moment release rate for earthquakes in the region. When we combine this with the Gutenberg-Richter distribution obtained from historical and instrumental catalogs, we estimate that the potential maximum moment magnitude of an earthquake in the southern LMS is 7.7. Finally, we conclude that the entire southern LMS is capable of generating much larger earthquakes (Mw 7.3-7.7) than seen recently, with an average frequency of once every 1000-1400 years. Therefore, our findings confirm that there is potential for large earthquakes in the southern LMS, especially on the RFBT, which extends beneath the densely populated Chengdu Plain.

  15. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): the case study of Ischia island, Italy

    Science.gov (United States)

    Caccavale, Mauro; Matano, Fabio; Sacchi, Marco; Mazzola, Salvatore; Somma, Renato; Troise, Claudia; De Natale, Giuseppe

    2014-05-01

    The Ischia island is a large, complex, partly submerged, active volcanic field located about 20 km east to the Campi Flegrei, a major active volcano-tectonic area near Naples. The island is morphologically characterized in its central part by the resurgent block of Mt. Epomeo, controlled by NW-SE and NE-SW trending fault systems, by mountain stream basin with high relief energy and by a heterogeneous coastline with alternation of beach and tuff/lava cliffs in a continuous reshape due to the weather and sea erosion. The volcano-tectonic process is a main factor for slope stability, as it produces seismic activity and generated steep slopes in volcanic deposits (lava, tuff, pumice and ash layers) characterized by variable strength. In the Campi Flegrei and surrounding areas the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. The most relevant seismic sources for Ischia are represented by the Campi Flegrei caldera and a 5 km long fault located below the island north coast. However those sources are difficult to constrain. The first one due to the on-shore and off-shore extension not yet completely defined. The second characterized only by few large historical events is difficult to parameterize in the framework of probabilistic hazard approach. The high population density, the presence of many infrastructures and the more relevant archaeological sites associated with the natural and artistic values, makes this area a strategic natural laboratory to develop new methodologies. Moreover Ischia represents the only sector, in the Campi Flegrei area, with documented historical landslides originated by earthquake, allowing for the possibility of testing the adequacy and stability of the method. In the framework of the Italian project MON.I.C.A (infrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify

  16. Urban earthquake hazard: perceived seismic risk and preparedness in Dhaka City, Bangladesh.

    Science.gov (United States)

    Paul, Bimal Kanti; Bhuiyan, Rejuan Hossain

    2010-04-01

    Bangladesh is vulnerable to seismic events. Experts suspect that if an earthquake with a 7.0 magnitude occurred in large cities of Bangladesh, there would be a major human tragedy due to the structural failure of many buildings. The primary objectives of this paper are to examine seismic risk perception among residents of Dhaka City and investigate their levels of earthquake preparedness. A questionnaire survey conducted among 444 residents of the city provided the major source of data for the paper. The survey results suggest that an overwhelming majority of the respondents were not prepared for a major earthquake, which is anticipated to occur in Dhaka. Multivariate analysis of survey data reveals that value of residential unit and respondent educational levels appear as the most significant determinants of preparedness status of the respondents. This study recommends increasing earthquake awareness and preparedness among residents of Dhaka City.

  17. Implosion, earthquake, and explosion recordings from the 2000 Seattle Kingdome Seismic Hazards Investigation of Puget Sound (SHIPS), Washington

    Science.gov (United States)

    Brocher, Thomas M.; Pratt, Thomas L.; Weaver, Craig S.; Snelson, Catherine M.; Frankel, Arthur D.

    2002-01-01

    This report describes seismic data obtained in Seattle, Washington, March 24-28, 2000, during a Seismic Hazards Investigation of Puget Sound (SHIPS). The seismic recordings obtained by this SHIPS experiment, nicknamed Kingdome SHIPS, were designed to (1) measure site responses throughout Seattle and to (2) help define the location of the Seattle fault. During Kingdome SHIPS, we recorded the Kingdome implosion, four 150-lb (68-kg) shots, and a Mw = 7.6 teleseism using a dense network of seismographs deployed throughout Seattle. The seismographs were deployed at a nominal spacing of 1 km in a hexagonal grid extending from Green Lake in the north to Boeing Field in the south. The Seattle Kingdome was a domed sports stadium located in downtown Seattle near the Seattle fault. The Seattle Kingdome was imploded (demolished) at 8:32 AM local time (16:32 UTC) on March 26 (JD 086), 2000. The seismic energy produced by implosion of the Kingdome was equivalent to a local earthquake magnitude of 2.3. Strong impacts produced by the implosion of the Kingdome generated seismic arrivals to frequencies as low as 0.1 Hz. Two shots located north of the Seattle fault, where the charges were detonated within the ground water column (Discovery and Magnuson Parks), were much more strongly coupled than were the two shots to the south of the Seattle fault, where the shots were detonated above the water table (Lincoln and Seward Parks). Thirty-eight RefTek stations, scattered throughout Seattle, recorded the Mw = 7.6 Japan Volcano Islands earthquake (22.4°N, 143.6°E, 104 km depth) of 28 March 2000 (JD 088). This teleseism produced useful signals for periods between 4 and 7 seconds. Only a few recordings of small magnitude local earthquakes were made, and these recordings are not presented. In this report, we describe the acquisition of these data, discuss the processing and merging of the data into common shot gathers, and illustrate the acquired data. We also describe the format and

  18. A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region -

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Nakagawa, S.; Ishikawa, M.; Sato, H.; Kasahara, K.; Kimura, H.; Honda, R.

    2012-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo metropolitan region. Devastating M8-class earthquakes occurred on the upper surface of the Philippine Sea plate (SPS), examples of which are the Genroku earthquake of 1703 (magnitude M=8.0) and the Kanto earthquake of 1923 (M=7.9), which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions although it is smaller than the megathrust type M8-class earthquakes. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. The M7+ earthquakes may occur either on the upper surface or intra slab of PSP. The Central Disaster Management Council of Japan estimates the next great M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss at worst case if it occur beneath northern Tokyo bay with M7.3. However, the estimate is based on a source fault model by conventional studies about the PSP geometry. To evaluate seismic hazard due to the great quake we need to clarify the geometry of PSP and also the Pacific palate (PAP) that subducs beneath PSP. We identify those plates with use of seismic tomography and available deep seismic reflection profiling and borehole data in southern Kanto area. We deployed about 300 seismic stations in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area. We obtain clear P- and S- wave velocity (Vp and Vs) tomograms which show a clear image of PSP and PAP. A depth to the top of PSP, 20 to 30 kilometer beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo

  19. Multicomponent Body and Surface Wave Seismic Analysis using an Urban Land Streamer System: An Integrative Earthquake Hazards Assessment Approach

    Science.gov (United States)

    Gribler, G.; Liberty, L. M.

    2014-12-01

    We present earthquake site response results from a 48-channel multicomponent seismic land streamer and large weight drop system. We acquired data along a grid of city streets in western Idaho at a rate of a few km per day where we derived shear wave velocity profiles to a depth of 40-50 m by incorporating vertical and radial geophone signals to capture the complete elliptical Rayleigh wave motion. We also obtained robust p-wave reflection and refraction results by capturing the returned signals that arrive at non-vertical incidence angles that result from the high-velocity road surface layer. By integrating the derived shear wave velocity profiles with p-wave reflection results, we include depositional and tectonic boundaries from the upper few hundred meters into our analysis to help assess whether ground motions may be amplified by shallow bedrock. By including p-wave refraction information into the analysis, we can identify zones of high liquefaction potential by comparing shear wave and p-wave velocity (Vp/Vs) measurements relative to refraction-derived water table depths. The utilization of multicomponent land streamer data improves signal-noise levels over single component data with no additional field effort. The added multicomponent data processing step can be as simple as calculating the magnitude of the vector for surface wave and refraction arrivals or rotating the reflected signals to the maximum emergence angle based on near surface p-wave velocity information. We show example data from a number of Idaho communities where historical earthquakes have been recorded. We also present numerical models and systematic field tests that show the effects of a high velocity road surface layer in surface and body wave measurements. We conclude that multicomponent seismic information derived from seismic land streamers can provide a significant improvement in earthquake hazard assessment over a standard single component approach with only a small addition in

  20. Tiechanshan-Tunghsiao anticline earthquake analysis: Implications for northwestern Taiwan potential carbon dioxide storage site seismic hazard

    Directory of Open Access Journals (Sweden)

    Ruey-Juin Rau

    2017-01-01

    Full Text Available We analyze the seismicity and earthquake focal mechanisms beneath the Tiechanshan-Tunghsiao (TCS-TH anticline over the last two decades for seismic hazard evaluation of a potential carbon dioxide storage site in northwestern Taiwan. Seismicity in the TCS-TH anticline indicates both spatial and temporal clustering at a depth range of 7 - 12 km. Thirteen 3.0 ≤ ML ≤ 5.2 earthquake focal mechanisms show a combination of thrust, strike-slip, and normal faulting mechanisms under the TCS-TH anticline. A 1992 ML 5.2 earthquake with a focal depth of ~10 km, the largest event ever recorded beneath the TCS-TH anticline during the last two decades, has a normal fault mechanism with the T-axis trending NNE-SSW and nodal planes oriented NNW-SSE, dipping either gently to the NNE or steeply to the SSW. Thrust fault mechanisms that occurred with mostly E-W or NWW-SEE striking P-axes and strike-slip faulting events indicate NWW-SEE striking P-axes and NNE-SSW trending T-axes, which are consistent with the regional plate convergence direction. For the strike-slip faulting events, if we take the N-S or NNW-SSE striking nodal planes as the fault planes, the strike-slip faults are sinistral motions and correspond to the Tapingting fault, which is a strike-slip fault reactivated from the inherited normal fault and intersects the Tiechanshan and Tunghsiao anticlines.

  1. Seismic Hazard Analysis based on Earthquake Vulnerability and Peak Ground Acceleration using Microseismic Method at Universitas Negeri Semarang

    Science.gov (United States)

    Sulistiawan, H.; Supriyadi; Yulianti, I.

    2017-02-01

    Microseismic is a harmonic vibration of land that occurs continuously at a low frequency. The characteristics of microseismic represents the characteristics of the soil layer based on the value of its natural frequency. This paper presents the analysis of seismic hazard at Universitas Negeri Semarang using microseismic method. The data acquisition was done at 20 points with distance between points 300 m by using three component’s seismometer. The data was processed using Horizontal to Vertical Spectral Ratio (HVSR) method to obtain the natural frequency and amplification value. The value of the natural frequency and amplification used to determine the value of the earthquake vulnerability and peak ground acceleration (PGA). The result shows then the earthquake vulnerability value range from 0.2 to 7.5, while the value of the average peak ground acceleration (PGA) is in the range 10-24 gal. Therefore, the average peak ground acceleration equal to earthquake intensity IV MMI scale.

  2. Assessment of seismic hazard for NPP sites in France analysis of several aftershocks of November 8, 1983, Liege earthquake

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Mohammadioun, G.; Bresson, A.

    1984-03-01

    Current French practice for assessing seismic hazard on the sites of nuclear facilities is outlined. The procedure calls for as rich and varied an assortment of actual earthquake recordings as can be procured, including earthquakes in France itself and in nearby countries, recorded by the CEA/IPSN's own staff. Following the November 8, 1983, Liege earthquake, suitably equipped, temporary recording stations were set up in the epicentral area in order to record its aftershocks. Ground motion time histories and response spectra were computed for several of these, and a quality factor Q was derived from these data for the most superficial sedimentary layers of the area. The values obtained show reasonable agreement with ones found for similar materials in other regions

  3. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.

  4. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970's, which were below the threshold of completeness established in the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC's Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory

  5. The distinction between risk and hazard: understanding and use in stakeholder communication.

    Science.gov (United States)

    Scheer, Dirk; Benighaus, Christina; Benighaus, Ludger; Renn, Ortwin; Gold, Stefan; Röder, Bettina; Böl, Gaby-Fleur

    2014-07-01

    A major issue in all risk communication efforts is the distinction between the terms "risk" and "hazard." The potential to harm a target such as human health or the environment is normally defined as a hazard, whereas risk also encompasses the probability of exposure and the extent of damage. What can be observed again and again in risk communication processes are misunderstandings and communication gaps related to these crucial terms. We asked a sample of 53 experts from public authorities, business and industry, and environmental and consumer organizations in Germany to outline their understanding and use of these terms using both the methods of expert interviews and focus groups. The empirical study made clear that the terms risk and hazard are perceived and used very differently in risk communication depending on the perspective of the stakeholders. Several factors can be identified, such as responsibility for hazard avoidance, economic interest, or a watchdog role. Thus, communication gaps can be reduced to a four-fold problem matrix comprising a semantic, conceptual, strategic, and control problem. The empirical study made clear that risks and hazards are perceived very differently depending on the stakeholders' perspective. Their own worldviews played a major role in their specific use of the two terms hazards and risks in communication. © 2014 Society for Risk Analysis.

  6. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system)

    Science.gov (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi, Mwene Ntabwoba Stanislas; Bondo, Silvanos Fiama; Kervyn, François; Havenith, Hans-Balder

    2017-10-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focusing on the Kivu and northern Tanganyika rift region in Central Africa, a new probabilistic seismic hazard assessment has been performed for the Kivu rift segment in the central part of the western branch of the East African rift system. As the geological and tectonic setting of this region is incompletely known, especially the part lying in the Democratic Republic of the Congo, we compiled homogeneous cross-border tectonic and neotectonic maps. The seismic risk assessment is based on a new earthquake catalogue based on the ISC reviewed earthquake catalogue and supplemented by other local catalogues and new macroseismic epicenter data spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. The final catalogue used for the seismic hazard assessment spans 60 years, from 1955 to 2015, with 359 events and a magnitude of completeness of 4.4. The seismotectonic zonation into 7 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined by the least square linear fit and the maximum likelihood method. Seismic hazard maps have been computed using existing attenuation laws with the Crisis 2012 software. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates. They also vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone.

  7. Tsunamigenic scenarios for southern Peru and northern Chile seismic gap: Deterministic and probabilistic hybrid approach for hazard assessment

    Science.gov (United States)

    González-Carrasco, J. F.; Gonzalez, G.; Aránguiz, R.; Yanez, G. A.; Melgar, D.; Salazar, P.; Shrivastava, M. N.; Das, R.; Catalan, P. A.; Cienfuegos, R.

    2017-12-01

    Plausible worst-case tsunamigenic scenarios definition plays a relevant role in tsunami hazard assessment focused in emergency preparedness and evacuation planning for coastal communities. During the last decade, the occurrence of major and moderate tsunamigenic earthquakes along worldwide subduction zones has given clues about critical parameters involved in near-field tsunami inundation processes, i.e. slip spatial distribution, shelf resonance of edge waves and local geomorphology effects. To analyze the effects of these seismic and hydrodynamic variables over the epistemic uncertainty of coastal inundation, we implement a combined methodology using deterministic and probabilistic approaches to construct 420 tsunamigenic scenarios in a mature seismic gap of southern Peru and northern Chile, extended from 17ºS to 24ºS. The deterministic scenarios are calculated using a regional distribution of trench-parallel gravity anomaly (TPGA) and trench-parallel topography anomaly (TPTA), three-dimensional Slab 1.0 worldwide subduction zones geometry model and published interseismic coupling (ISC) distributions. As result, we find four higher slip deficit zones interpreted as major seismic asperities of the gap, used in a hierarchical tree scheme to generate ten tsunamigenic scenarios with seismic magnitudes fluctuates between Mw 8.4 to Mw 8.9. Additionally, we construct ten homogeneous slip scenarios as inundation baseline. For the probabilistic approach, we implement a Karhunen - Loève expansion to generate 400 stochastic tsunamigenic scenarios over the maximum extension of the gap, with the same magnitude range of the deterministic sources. All the scenarios are simulated through a non-hydrostatic tsunami model Neowave 2D, using a classical nesting scheme, for five coastal major cities in northern Chile (Arica, Iquique, Tocopilla, Mejillones and Antofagasta) obtaining high resolution data of inundation depth, runup, coastal currents and sea level elevation. The

  8. Fusion of High-Rate GPS and Seismic Data: Applications to Early Warning Systems for Mitigation of Geological Hazards

    Science.gov (United States)

    Bock, Y.; Crowell, B.; Webb, F.; Kedar, S.; Clayton, R.; Miyahara, B.

    2008-12-01

    We discuss the fusion of low-latency (1 s) high-rate (1 Hz or greater) CGPS displacements and traditional seismic data, in order to extend the frequency range and timeliness of surface displacement data already available at lower frequencies from space borne InSAR and (typically daily) CGPS coordinate time series. The goal is development of components of early warning systems for mitigation of geological hazards (direct seismic damage, tsunamis, landslides, volcanoes). The advantage of the GPS data is that it is a direct measurement of ground displacement. With seismic data, this type of measure has to be obtained by deconvolution of the instrument response and integration of the broadband (velocity) measurements, or a double integration of the strong motion (acceleration) measurements. Due to the bandwidth and the dynamic range limits of seismometers the accuracy of absolute displacements so derived is poor. This problem is not present in the high-sample rate GPS data. While the seismic measurement provides a powerful constraint on the much noisier GPS measurements, unlike the seismometer, the GPS receiver never clips. Using the Network for Earthquake Engineering Simulation (NEES) Large High-Performance Outdoor Shake Table at USCD, we present an example of combining in real-time 50 Hz GPS displacements and 250 Hz raw accelerometer data using a multi-rate Kalman filter, previously applied to bridge monitoring. A full-scale 7- story building atop the shake table was subjected to high intensity shaking by replaying the Sylmar accelerometer record from the Mw 6.7 1994 Northridge earthquake. The resulting 250 Hz displacement waveform is significantly more accurate than obtained solely by low-pass filtering and double integration of the 250 Hz accelerometer records. Next we demonstrate the elements of an earthquake early warning system by analyzing the 2003 Mw 8.3 Tokachi-Oki thrust earthquake off Hokkaido Island detected by the dense Japan national real-time CGPS

  9. Seismic-hazard maps and time histories for the commonwealth of Kentucky.

    Science.gov (United States)

    2008-06-01

    The ground-motion hazard maps and time histories for three earthquake scenarios, expected earthquakes, probable earthquakes, and maximum credible earthquakes on the free surface in hard rock (shear-wave velocity >1,500 m/s), were derived using the de...

  10. Urban Vulnerability Assessment to Seismic Hazard through Spatial Multi-Criteria Analysis. Case Study: the Bucharest Municipality/Romania

    Science.gov (United States)

    Armas, Iuliana; Dumitrascu, Silvia; Bostenaru, Maria

    2010-05-01

    In the context of an explosive increase in value of the damage caused by natural disasters, an alarming challenge in the third millennium is the rapid growth of urban population in vulnerable areas. Cities are, by definition, very fragile socio-ecological systems with a high level of vulnerability when it comes to environmental changes and that are responsible for important transformations of the space, determining dysfunctions shown in the state of the natural variables (Parker and Mitchell, 1995, The OFDA/CRED International Disaster Database). A contributing factor is the demographic dynamic that affects urban areas. The aim of this study is to estimate the overall vulnerability of the urban area of Bucharest in the context of the seismic hazard, by using environmental, socio-economic, and physical measurable variables in the framework of a spatial multi-criteria analysis. For this approach the capital city of Romania was chosen based on its high vulnerability due to the explosive urban development and the advanced state of degradation of the buildings (most of the building stock being built between 1940 and 1977). Combining these attributes with the seismic hazard induced by the Vrancea source, Bucharest was ranked as the 10th capital city worldwide in the terms of seismic risk. Over 40 years of experience in the natural risk field shows that the only directly accessible way to reduce the natural risk is by reducing the vulnerability of the space (Adger et al., 2001, Turner et al., 2003; UN/ISDR, 2004, Dayton-Johnson, 2004, Kasperson et al., 2005; Birkmann, 2006 etc.). In effect, reducing the vulnerability of urban spaces would imply lower costs produced by natural disasters. By applying the SMCA method, the result reveals a circular pattern, signaling as hot spots the Bucharest historic centre (located on a river terrace and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic

  11. Historical Earthquakes As Examples To Assess The Seismic Hazard In The Eastern Region of Venezuela

    Science.gov (United States)

    Martin, J.; Posadas, A.; Avendaño, J.; Sierra, R.; Bonive, F.

    The North-East region of Venezuela lies on the border of the friction zone between the Caribbean and South-American tectonic plates, a source of great seismicity. The first written news of an earthquake in the American Continent were those of the earth- quake of september 1530 which caused damage to Cumaná, the first town of that Continent. Since then a continuous series of earthquakes have been reported, many of them with damaging effects on Cumaná; those caused in the 1929 earthquake (17-01- 1929; with IX Mercalli degrees) were well described by Sidney Paige in the Vo. 20 of the B.S.S.A., March, 1930. An earthquake of magnitude 5.9 {11-06-1986; 10.26z N,63.29z W} was the trigger for the Unesco`s intention to declare the Estado Sucre as a pilot zone for seismological studies. In 1991 a report issued by the International Institute of Earthquake Prediction Theory and Matematical Geophysics (Academy of Sciences, U.R.S.S.) stated that the ocurrence of an earthquake of great magnitude which could affect the North-East region of Venezuela was possible. Other studies of the seismicity of the region have been carried out. The interest of the authorities and of the seismologists reached a peak with the earthquake of july 1997 (10.456z N, 63.555z W), with a magnitude of 6.9; there was a death toll of 73, around 528 people injured and more than 2000 houses needed to be completely rebuilt. A study of micro- zonification of the city of Cumaná has been carried out recently and the results of this study will be presented also to this Congress.

  12. Performance of USGS one-year earthquake hazard map for natural and induced seismicity in the central and eastern United States

    Science.gov (United States)

    Brooks, E. M.; Stein, S.; Spencer, B. D.; Salditch, L.; Petersen, M. D.; McNamara, D. E.

    2017-12-01

    Seismicity in the central United States has dramatically increased since 2008 due to the injection of wastewater produced by oil and gas extraction. In response, the USGS created a one-year probabilistic hazard model and map for 2016 to describe the increased hazard posed to the central and eastern United States. Using the intensity of shaking reported to the "Did You Feel It?" system during 2016, we assess the performance of this model. Assessing the performance of earthquake hazard maps for natural and induced seismicity is conceptually similar but has practical differences. Maps that have return periods of hundreds or thousands of years— as commonly used for natural seismicity— can be assessed using historical intensity data that also span hundreds or thousands of years. Several different features stand out when assessing the USGS 2016 seismic hazard model for the central and eastern United States from induced and natural earthquakes. First, the model can be assessed as a forecast in one year, because event rates are sufficientl