WorldWideScience

Sample records for understanding plate tectonics

  1. Plate Tectonics and Planetary Evolution: Implications for Understanding Exoplanets

    Science.gov (United States)

    Elkins-Tanton, L. T.

    2015-12-01

    A primary purpose in our study of exoplanets is the search for life. In hypothesizing how we might detect life, we start by examining life on Earth; it is our only example. How do we understand the meaning of habitability when there is only one example? All clues seem significant: the common need for the existence of water, the range of temperatures over which life on Earth is found, and the chemical cycles that maintain the surface and near-surface of the Earth within that range. A common assertion is that plate tectonics is necessary for the carbon cycle that keeps the Earth at habitable temperatures by sequestering carbon in limetone in oceans, and parceling it back into the atmosphere through volcanoes. This is an unproven hypothesis. There are other tectonic processes that cycle carbon into a planetary interior and back to the atmosphere; one possibility is small-scale convection that returns lithospheric material to the mantle and produces small-scale volcanism. Whether this process is sufficient to stabilize climate on one-plate planets or planets with sluggish convection remains to be demonstrated. Before we can discuss the criticality of plate tectonics on other planets we need to understand its criticality on Earth, and its apparent lack on Venus. And before we can predict whether plate tectonics should exist on a given exoplanet, we need to understand why it exists on Earth, and apparently not on Venus, and we need to know more about that exoplanet than can currently be detected. In this talk I will compare the predictions for exoplanetary conditions conducive to plate tectonics, walk through possible pathways in planetary evolution that lead to plate tectonics, and discuss whether any aspect of plate tectonics on an exoplanet is detectable from Earth. Predicting and hoping to detect plate tectonics on exoplanets is walking out a shaky limb; making cautious incremental advances in understanding terrestrial plate tectonics is critical before extending

  2. Feeling and Understanding Plate Tectonics - How can We attract Museum Visitors Attention?

    Science.gov (United States)

    Simon, Gilla; Apel, Michael

    2017-04-01

    Earthquakes, volcano eruptions and other natural hazards are commonly paid attention to, if news about disastrous events reach us. The mission of an Earth Science or Natural History Museum, however, goes beyond explaining the causes of natural disasters, but should also present science history and cutting edge research. Since dealing with a subject, especially with one, which seems to be in the abstract, is more effective, we realised two new projects where our visitors can feel and understand plate tectonics in a more exciting way. In 2015 we installed an earthquake simulator in our permanent exhibition to allow our visitors the physical experience of an earthquake. Because of static restrictions the simulator is housed in a container outside the building where it can be visited as a booked program upon prior reservation or by joining public tours on Sundays and special occasions. The simulation of six real earthquakes in two spatial directions is accompanied by a movie presenting facts about the earthquake itself (e.g. location, magnitude, damage and victims), but also general information about plate tectonics. This standard program takes about 20 minutes. During an educational program, however, not only the simulator is visited, but also the permanent exhibition, where the guide can focus on different aspects and then might choose specific earthquakes and information blocs in the simulator. In addition workshops with experiments are offered for school classes and other groups. This allows us to offer an individual program fitting to the visitor group. In 2016 we converted an old movie room to a state of the art media room. In cooperation with Media Informatics students we developed a quiz for three different levels and various themes like earthquakes, volcanoes, history and plate tectonics in general. Starting the quiz, a virtual earthquake destroys a building which will be reconstructed if the participants answer multiple choice questions correctly. Though, the

  3. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  4. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  5. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  6. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  7. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  8. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  9. Plate Tectonic Cycle. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…

  10. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  11. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  12. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  13. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  14. MACMA: a Virtual Lab for Plate Tectonics

    Science.gov (United States)

    Grigne, C.; Combes, M.; Tisseau, C.

    2013-12-01

    MACMA (Multi-Agent Convective MAntle) is a tool developed to simulate evolutive plate tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). The model relies mainly on a force balance to compute the velocity of each plate, and on empirical rules to determine how plate boundaries move and evolve. It includes first-order features of plate tectonics: (a) all plates on Earth do not have the same size, (b) subduction zones are asymmetric, (c) plates driven by subducting slabs and upper plates do not exhibit the same velocities, and (d) plate boundaries are mobile, can collide, merge and disappear, and new plate boundaries can be created. The MACMA interface was designed to be user-friendly and a simple use of the simulator can be achieved without any prerequisite knowledge in fluid dynamics, mantle rheology, nor in numerical methods. As a preliminary study, the simulator was used by a few students from bachelor's degree to master's degree levels. An initial configuration for plate tectonics has to be created before starting a simulation: the number and types of plate boundaries (ridge, subduction, passive margins) has to be defined and seafloor ages must be given. A simple but interesting exercise consists in letting students build such an initial configuration: they must analyze a map of tectonic plates, choose a 2-D section and examine carefully a map of seafloor ages. Students mentioned that the exercise made them realize that the 3-D spherical structure of plate tectonics does not translate directly in a simple 2-D section, as opposed to what is usually shown in books. Physical parameters: e.g. mantle viscosity, number of layers to consider in the mantle (upper and lower mantle, possible asthenosphere), initial time and mantle temperature, have to be chosen, and students can use this virtual lab to see how different scenarios emerge when parameters are varied. Very importantly, the direct visualization of the mobility of plate

  15. DISCUSSION: When and How did Plate Tectonics Begin, What Came Before, and Why is this Controversy important for Understanding the Earth and Exoplanets?

    Science.gov (United States)

    Stern, R. J.; Gerya, T.; Sobolev, S. V.; Tackley, P.

    2015-12-01

    Because all 5 presentations in the Union session "When and How did Plate Tectonics Begin, What Came Before, and Why is this Controversy important for Understanding the Earth and Exoplanets?" will have 5 minute discussion periods, the scheduled 15 minute end-of-session discussion period is intended to allow other perspectives to be presented by the scientific community. We invite brief (2 powerpoint slides) comments from the community about any aspect of the topic at hand. We encourage anyone who has something pertinent or interesting to say to submit 2 powerpoint slides directly to any one of the four co-convenors listed on this abstract. The first slide should be a simple title with the name and affiliation of the commenter. The second slide should be the content of the comment. The convenors will compile all of these that are submitted up to the noon on the day before the session occurs, when we will upload the compiled files in the order that they were received (if we have received digital scans of signed waivers by that time, see below). During the discussion, we will call on those who have submitted 2 slides to the podium to make their points in 2 minutes or less (total time from being called to leaving the podium). Because this AGU Union session including the discussion period will be live-streamed and recorded, all Discussion Session commenters will be required to sign an AGU waiver acknowledging this and giving permission to be recorded. These will be sent via e-mail to those who submit 2 slide powerpoints. Commenters that do not sign and return the waiver will be scheduled after all commenters who have returned signed waivers and AGU will terminate live streaming and recording accordingly. If no one submits anything then we will have open discussion from the floor. We will also advertise the Monte Verita conference in Locarno Switzerland 17-22 July 2016. This conference will explore in greater detail the 5 key aspects of Plate Tectonic evolution briefly

  16. Plate Tectonics and Continental Drift: Classroom Ideas.

    Science.gov (United States)

    Stout, Prentice K.

    1983-01-01

    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  17. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  18. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  19. Oil prospection using the tectonic plate model

    Science.gov (United States)

    Pointu, Agnès

    2015-04-01

    Tectonic plate models are an intellectual setting to understand why oil deposits are so uncommon and unequally distributed and how models can be used in actual oil and gas prospection. In this case, we use the example of the Ghawar deposit (Saudi Arabia), one of the largest producing well in the world. In the first step, physical properties of rocks composing the oil accumulation are studied by laboratory experiments. Students estimate the porosity of limestone and clay by comparing their mass before and after water impregnation. Results are compared to microscopic observations. Thus, students come to the conclusion that oil accumulations are characterized by superposition of rocks with very different properties: a rich organic source rock (clays of the Hanifa formation), a porous reservoir rock to store the petroleum in (limestones of the Arab formation) and above an impermeable rock with very low porosity (evaporites of the Tithonien). In previous lessons, students have seen that organic matter is usually mineralized by bacteria and that this preservation requires particular conditions. The aim is to explain why biomass production has been so important during the deposit of the clays of the Hanifa formation. Tectonic plate models make it possible to estimate the location of the Arabian Peninsula during Jurassic times (age of Hanifa formation). In order to understand why the paleo-location of the Arabian Peninsula is important to preserve organic matter, students have different documents showing: - That primary production of biomass by phytoplankton is favored by climatic conditions, - That the position of continents determinate the ocean currents and the positions of upwelling zones and zones where organic matter will be able to be preserved, - That north of the peninsula there was a passive margin during Jurassic times. An actual seismic line is studied in order to highlight that this extensive area allowed thick sedimentary deposits to accumulate and that fast

  20. Caribbean plate tectonics from seismic tomography

    Science.gov (United States)

    Ten Brink, U. S.; Villasenor, A.

    2012-12-01

    New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.

  1. Seismology: tectonic strain in plate interiors?

    Science.gov (United States)

    Calais, E; Mattioli, G; DeMets, C; Nocquet, J-M; Stein, S; Newman, A; Rydelek, P

    2005-12-15

    It is not fully understood how or why the inner areas of tectonic plates deform, leading to large, although infrequent, earthquakes. Smalley et al. offer a potential breakthrough by suggesting that surface deformation in the central United States accumulates at rates comparable to those across plate boundaries. However, we find no statistically significant deformation in three independent analyses of the data set used by Smalley et al., and conclude therefore that only the upper bounds of magnitude and repeat time for large earthquakes can be inferred at present.

  2. Learning Plate Tectonics Using a Pre-Analogy Step

    Science.gov (United States)

    Glesener, G. B.; Sandoval, W. A.

    2011-12-01

    Previous research has shown that children tend to demonstrate lower performance on analogical reasoning tasks at a causal relations level compared to most adults (Gentner & Toupin, 1986). This tendency is an obstacle that geoscience educators must overcome because of the high frequency of analogies used in geoscience pedagogy. In particular, analog models are used to convey complex systems of non-everyday/non-observable events found in nature, such as plate tectonics. Key factors in successful analogical reasoning that have been suggested by researchers include knowledge of the causal relations in the base analog (Brown & Kane, 1988; Gentner, 1988; Gentner & Toupin, 1986), and development of learning strategies and metaconceptual competence(Brown & Kane, 1988). External factors, such as guiding cues and hints have been useful cognitive supports that help students reason through analogical problems (Gick & Holyoak, 1980). Cognitive supports have been seen by researchers to decrease processing demands on retrieval and working memory (Richland, Zur, & Holyoak, 2007). We observed third and fourth graders learning about plate tectonics beginning with a pre-analogy step-a cognitive support activity a student can do before working with an analogy to understand the target. This activity was designed to aid students in developing their understanding of object attributes and relations within an analog model so that more focus can be placed on mapping the corresponding higher-order relations between the base and target. Students learned targeted concepts of plate tectonics, as measured by pre to post gains on items adapted from the Geosciences Concept Inventory. Analyses of classroom interaction showed that students used the object attributes and higher-order relations highlighted in the pre-analogy activity as resources to reason about plate boundaries and plate movement during earthquakes.

  3. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  4. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  5. Activities for Plate Tectonics using GeoMapApp

    Science.gov (United States)

    Goodwillie, A. M.

    2016-12-01

    The concept of plate tectonics is a fundamental component of our understanding of how Earth works yet authentic, high-quality geoscience data related to plate tectonics may not be readily available to all students. To compound matters, when data is accessible, students may not possess the skills or resources necessary to explore and analyse it. As a result, much emphasis at federal and state level is now placed upon encouraging students to work with more data and more technology more often and more rigourously. Easy-to-use digital platforms offer much potential for promoting inquiry-based learning at all levels of education. GeoMapApp is one such tool. Developed at Columbia University's Lamont-Doherty Earth Observatory, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. Simple strategies for data manipulation, visualisation and presentation allow uses to explore the data in meaningful ways. Layering and transparency capabilities further allow learners to use GeoMapApp to compare multiple data sets at once, and high-impact Save Session functionality allows a GeoMapApp project to be saved for sharing or later use. In this presentation, activities related to plate tectonics will be highlighted. One GeoMapApp activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Each activity shown can be done by students on an individual basis, as pairs, or as groups. Educators report that student use of GeoMapApp fosters an increased sense of data "ownership" amongst students, promotes STEM skills, and provides them with access to authentic research-grade geoscience data using the same cutting

  6. Structure and tectonics of convergent plate margins

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš (ed.); Čadek, O. (ed.); Engdahl, E. R. (ed.)

    2004-01-01

    Roč. 141, č. 4 (2004), s. 241 ISSN 0031-9201 R&D Projects: GA AV ČR KSK3012103 Keywords : tectonics * subduction * convergent margins Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.370, year: 2004

  7. Scaling of plate tectonic convection with pseudoplastic rheology

    Science.gov (United States)

    Korenaga, Jun

    2010-11-01

    The scaling of plate tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate tectonic and stagnant lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tectonics is suggested to be plausible throughout the Earth history.

  8. A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics

    Science.gov (United States)

    Piper, John D. A.

    2013-03-01

    Plate Tectonics requires a specific range of thermal, fluid and compositional conditions before it will operate to mobilise planetary lithospheres. The response to interior heat dispersion ranges from mobile lids in constant motion able to generate zones of subduction and spreading (Plate Tectonics), through styles of Lid Tectonics expressed by stagnant lids punctured by volcanism, to lids alternating between static and mobile. The palaeomagnetic record through Earth history provides a test for tectonic style because a mobile Earth of multiple continents is recorded by diverse apparent polar wander paths, whilst Lid Tectonics is recorded by conformity to a single position. The former is difficult to isolate without extreme selection whereas the latter is a demanding requirement and easily recognised. In the event, the Precambrian palaeomagnetic database closely conforms to this latter property over very long periods of time (~ 2.7-2.2 Ga, 1.5-1.3 Ga and 0.75-0.6 Ga); intervening intervals are characterised by focussed loops compatible with episodes of true polar wander stimulated by disturbances to the planetary figure. Because of this singular property, the Precambrian palaeomagnetic record is highly effective in showing that a dominant Lid Tectonics operated throughout most of Earth history. A continental lid comprising at least 60% of the present continental area and volume had achieved quasi-integrity by 2.7 Ga. Reconfiguration of mantle and continental lid at ~ 2.2 Ga correlates with isotopic signatures and the Great Oxygenation Event and is the closest analogy in Earth history to the resurfacing of Venus. Change from Lid Tectonics to Plate Tectonics is transitional and the geological record identifies incipient development of Plate Tectonics on an orogenic scale especially after 1.1 Ga, but only following break-up of the continental lid (Palaeopangaea) in Ediacaran times beginning at ~ 0.6 Ga has it become comprehensive in the style evident during the

  9. Alfred Wegener-From Continental Drift to Plate Tectonics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Alfred Wegener – From Continental Drift to Plate Tectonics. A J Saigeetha Ravinder Kumar Banyal. General Article Volume 10 Issue 6 June 2005 pp 43-59. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Organization of the tectonic plates in the last 200 Myr

    Science.gov (United States)

    Morra, Gabriele; Seton, Maria; Quevedo, Leonardo; Müller, R. Dietmar

    2013-07-01

    The present tessellation of the Earth's surface into tectonic plates displays a remarkably regular plate size distribution, described by either one (Sornette and Pisarenko, 2003) or two (Bird, 2003) statistically distinct groups, characterised by large and small plate size. A unique distribution implies a hierarchical structure from the largest to the smallest plate. Alternatively, two distributions indicate distinct evolutionary laws for large and small plates, the first tied to mantle flow, the second determined by a hierarchical fragmentation process. We analyse detailed reconstructions of plate boundaries during the last 200 Myr and find that (i) large and small plates display distinct statistical distributions, (ii) the small plates display little organisational change since 60 Ma and (iii) the large plates oscillate between heterogeneous (200-170 Myr and 65-50 Ma) and homogeneous (120-100 Ma) plate tessellations on a timescale of about 100 Myr. Heterogeneous states are reached more rapidly, while the plate configuration decays into homogeneous states following a slower asymptotic curve, suggesting that heterogeneous configurations are excited states while homogeneous tessellations are equilibrium states. We explain this evolution by proposing a model that alternates between bottom- and top-driven Earth dynamics, physically described by fluid-dynamic analogies, the Rayleigh-Benard and Bénard-Marangoni convection, respectively. We discuss the implications for true polar wander (TPW), global kinematic reorganisations (50 and 100 Ma) and the Earth's magnetic field inversion frequency.

  11. Using a Web GIS Plate Tectonics Simulation to Promote Geospatial Thinking

    Science.gov (United States)

    Bodzin, Alec M.; Anastasio, David; Sharif, Rajhida; Rutzmoser, Scott

    2016-01-01

    Learning with Web-based geographic information system (Web GIS) can promote geospatial thinking and analysis of georeferenced data. Web GIS can enable learners to analyze rich data sets to understand spatial relationships that are managed in georeferenced data visualizations. We developed a Web GIS plate tectonics simulation as a capstone learning…

  12. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?

    Science.gov (United States)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.

    2017-12-01

    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.

  13. Barrel organ of plate tectonics - a new tool for outreach and education

    Science.gov (United States)

    Broz, Petr; Machek, Matěj; Šorm, Zdar

    2016-04-01

    Plate tectonics is the major geological concept to explain dynamics and structure of Earth's outer shell, the lithosphere. In the plate tectonic theory processes in the Earth lithosphere and its dynamics is driven by the relative motion and interaction of lithospheric plates. Geologically most active regions on Earth often correlate with the lithospheric plate boundaries. Thus for explaining the earth surface evolution, mountain building, volcanism and earthquake origin it is important to understand processes at the plate boundaries. However these processes associated with plate tectonics usually require significant period of time to take effects, therefore, their entire cycles cannot be directly observed in the nature by humans. This makes a challenge for scientists studying these processes, but also for teachers and popularizers trying to explain them to students and to the general public. Therefore, to overcome this problem, we developed a mechanical model of plate tectonics enabling demonstration of most important processes associated with plate tectonics in real time. The mechanical model is a wooden box, more specifically a special type of barrel organ, with hand painted backdrops in the front side. These backdrops are divided into several components representing geodynamic processes associated with plate tectonics, specifically convective currents occurring in the mantle, sea-floor spreading, a subduction of the oceanic crust under the continental crust, partial melting and volcanism associated with subduction, a formation of magmatic stripes, an ascent of mantle plume throughout the mantle, a volcanic activity associated with hot spots, and a formation and degradation of volcanic islands on moving lithospheric plate. All components are set in motion by a handle controlled by a human operator, and the scene is illuminated with colored lights controlled automatically by an electric device embedded in the box. Operation of the model may be seen on www

  14. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  15. Ore-lead isotopes and Grenville plate tectonics

    International Nuclear Information System (INIS)

    Farquhar, R.M.; Fletcher, I.R.

    1980-01-01

    Recent advances in the 'whole earth' modelling of evolutionary processes of Pb isotopes shed light upon the origin of the metals found in various types of ore deposits. On the bases of these models and several recently published data sets, we believe that the ore deposits formed in various plate tectonic environments may carry 'isotopic fingerprints' which, when used with other characteristics such as mineral assemblages, may identify the depositional environments of many ore bodies. In the present study Pb-isotopic measurements have been made of a number of Precambrain mineralization types and localities throughout the Central Metasedimentary Belt of the Grenville Province. The data for individual deposits are at best ambiguous, but fall into two groups sufficiently distinctive to allow some degree of 'fingerprint' identification. Comparisons with data from other areas suggest that the major periods of sedimentation within the Central Metasedimentary Belt accompanied plate rifting and/or island arc tectonic activity, with most of the mineralized lead being derived from mantle sources. Detailed comparisons between the Grenville and other regions are uncertain, mainly because there are few detailed high-accuracy data sets from younger, tectonically unambiguous mineral occurrences. We suggest that once these data sets are availble, isotopic fingerprinting may become diagnostic for deposits ranging well back into the Precambrain

  16. Geophysical Limitations on the Habitable Zone: Volcanism and Plate Tectonics

    Science.gov (United States)

    Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim

    2016-04-01

    Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophysical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate if the planet mass as well as the interior structure can set constraints on the occurrence of plate tectonics and outgassing, and therefore affect the habitable zone, using both parameterized evolution models [1] and mantle convection simulations [1,2]. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2), see also [3]. One-plate planets, however, may suffer strong volcanic limitations. The existence of a dense-enough CO2 atmosphere allowing for the carbon-silicate cycle and release of carbon at the outer boundary of the habitable zone may be strongly limited for planets: 1) without plate tectonics, 2) with a large planet mass, and/or 3) a high iron content. Acknowledgements This work has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and results within the collaboration of the COST Action TD 1308. References Noack, L., Rivoldini, A., and Van Hoolst, T.: CHIC - Coupling Habitability, Interior and Crust, INFOCOMP 2015, ISSN 2308-3484, ISBN 978

  17. The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…

  18. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean

    Science.gov (United States)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.

    2012-04-01

    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The

  19. Modelling continental deformation within global plate tectonic reconstructions

    Science.gov (United States)

    Williams, S.; Whittaker, J.; Heine, C.; Müller, P.

    2010-12-01

    A limitation of regional and global plate tectonic models is the way continental deformation is represented. Continental blocks are typically represented as rigid polygons - overlaps or gaps between adjacent continental blocks represent extension or compression respectively. Full-fit reconstructions of major ocean basins result in large overlaps between the conjugate continental plates, on the basis that the continental margins are highly extended compared to their pre-rift state. A fundamental challenge in generating more robust global-scale plate reconstructions is the incorporation of a more quantitative description of the kinematics within extended passive margins, based on observations. We have used the conjugate Southern Australia and Wilkes Land, Antarctica margins as a case study, and as part of this work have generated revised sediment thickness maps for these margins. These datasets are used to test different approaches for generating full-fit reconstructions in order to create a framework of methodologies that is globally applicable. One approach is to restore two conjugate continent-ocean boundaries (COBs) to their pre-rift configuration and then use the geometric fitting method of Hellinger (1981) and Royer and Chang (1991), used to generate fits of seafloor isochrons, to generate a “full-fit” Euler pole. To quantitatively restore the COBs to their palinspastic pre-rift configuration we integrate estimates of crustal thickness along small circle paths, defined by an initial estimate of the Euler stage pole describing plate motions during continental rifting. We then use the conjugate sets of restored COB’s as inputs to the geometric fitting method, treating them as isochrons, and so generate poles of rotation for the plate configuration prior to rifting. Two potential shortcomings of this methodology are that (1) the conjugate margins are treated independently, whereas in reality they were actually one continuous continental basin during rifting

  20. Plate tectonics, mantle convection and D'' seismic structures

    Science.gov (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  1. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.

    Science.gov (United States)

    Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel

    2017-09-22

    Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Plate tectonic reconstruction of the Carpathian-Pannonian region

    Science.gov (United States)

    Csontos, L.; Vörös, A.

    2003-04-01

    Plate tectonics of the Carpathian area is controlled by microcontinents between the European and African margins and the relative movements of these margins. Beside the generally accepted Apulian (Austroalpine, West Carpathian, Dinaric) microcontinents two others: the Bihor-Getic (Tisza) and Drina-Ivanjica are introduced. The first was attached to the European margin, the second to the Apulian microcontinent. During Permian a major ocean was obliquely subducted south of the Apulian microcontinents. Drina-Ivanjica rifted off the Apulian microcontinent in the Late Permian-Middle Triassic, as a consequence of back-arc rifting. Short-lived oceans subducted by the end of Jurassic, causing Drina-Ivanjica to collide with the internal Dinaric-West Carpathian and Bihor-Getic margins. An external Penninic-Váhic ocean tract began opening in the Early Jurassic, separating the East Alpine-West Carpathian microcontinent (and its fauna) from the European shelf. Further south, the Severin-Ceahlau-Magura also began opening in the Early Jurassic, but final separation of the Bihor-Getic (and its fauna) from the European shelf did not take place until the Middle-Late Jurassic. Two oroclinal bends: the Alcapa on the Dinaric margin and the Tisza-Dacia on the South Carpathian-Getic margin are essential elements of these reconstructions. Their bending (Aptian and Albian-Maastrichtian, respectively) are suggested by paleomagnetic and tectonic transport data. The two oroclinal bends are finally opposed and pushed into the Carpathian embayment by the Paleogene. In Miocene a back-arc basin develops on older tectonic elements. Differential rotations affect the wealded microcontinents.

  3. Initiation of Plate Tectonics from Post-Magma Ocean Thermo-Chemical Convection

    OpenAIRE

    Foley, Bradford J.; Bercovici, David; Elkins-Tanton, Linda T.

    2014-01-01

    Leading theories for the presence of plate tectonics on Earth typically appeal to the role of present day conditions in promoting rheological weakening of the lithosphere. However, it is unknown whether the conditions of the early Earth were favorable for plate tectonics, or any form of subduction, and thus how subduction begins is unclear. Using physical models based on grain-damage, a grainsize-feedback mechanism capable of producing plate-like mantle convection, we demonstrate that subduct...

  4. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    Science.gov (United States)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  5. Plate tectonic regulation of global marine animal diversity

    Science.gov (United States)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  6. Plate tectonic evolution of the Mediterranean-Middle East region

    Science.gov (United States)

    Gealey, W. K.

    1988-12-01

    An interpretive model for the Mesozoic-Cenozoic plate tectonic evolution of the Mediterranean and adjacent areas is illustrated by a series of paleoposition maps at selected intervals between the Late Triassic and Recent. This interval witnessed an important period of tensional development during the Triassic and Jurassic that fragmented Pangea after its Late Paleozoic consolidation. A number of oceanic areas evolved through Jurassic time, all of which have since been consumed during the Alpine orogeny. During the Cretaceous and Tertiary, sea-floor spreading geometry in the North and South Atlantic resulted in convergence between Africa and Eurasia that controlled the evolution of the Mediterranean and adjacent Middle East areas from the Late Mesozoic to Recent. The interpretation departs from several previous ones in the following respects: (1) The Eastern Mediterranean and adjacent Middle East area are interpreted to have developed as two seaways with an intervening continental sliver derived from Africa that now comprises Central Turkey and West Iran. These seaways persisted from the Late Triassic to Late Cretaceous, by which time they were largely consumed by northward subduction. (2) Spreading that produced the present Eastern Mediterranean Sea developed during the Late Cretaceous, driving the Tripolitza-Eratosthenes-Iskenderun continental fragments northward from Africa to collision with Central Turkey as the preceding southern arm of the Mesozoic Tethys sea-floor was entirely consumed. Initial block faulting in this zone occurred during the Jurassic and Early Cretaceous but without subsidence reaching clearly bathyal depths until the Cenomanian-Turonian. This differs from the timing of events in the "Ionian" sequence of the Pindic Nappe of Crete, which shows a change from shallow carbonate shelf in the Triassic to deep basin in the Liassic to the north of equivalent platform facies of the Tripolitza Nappe. (3) Moesia and Rhodope are concluded to have been a

  7. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic

  8. Experimental constraints on the degree of melting beneath tectonic plates

    Science.gov (United States)

    Clark, A. N.; Lesher, C. E.

    2017-12-01

    Determining the volume and geometric distribution of silicate melts is fundamentally important to understand the current structure of the Earth as well as the dynamics of the Earth's interior. Regions in the upper mantle and crust that have lower velocities than the 1D global average are commonly attributed to the presence of silicate melts. Constraining melt fraction and distribution from seismic data requires a robust equation of state for silicate melts. Commonly, silicate melts are modeled at high pressure using equations of state developed for crystalline materials (e.g. the Birch-Murnaghan equation of state). However, amorphous silicates (glasses and melts), which lack long-range ordering, violate Birch's law at high pressures and high temperatures (Clark et al., 2016). We present a new model for seismic velocity reductions that accounts for the violation of Birch's law (anomalous compressibility) observed in amorphous silicates, rendering compressional wave velocities more sensitive to melt fraction and distribution than previous estimates. Forward modeling that combines our experimental data with the analytical solution of Takei (2002) predicts comparable velocity reductions for compressional and shear waves for partially molten mantle. Additionally, models that use crystalline equations of state to determine melt fraction at high pressure may overestimate melt fraction by 20% at pressures corresponding to the lithosphere-asthenosphere boundary (LAB) with the overestimation increasing with depth (e.g. a factor of 2 at the transition zone). By applying our results to recent seismic studies below the western Pacific plate that have reported low velocity regions associated with the lithosphere - asthenosphere boundary (LAB), we predict melt present at Journal of Geophysical Research: Solid Earth, v. 121, no. 6, p. 4232-4248. Takei, Y., 2002, Journal of Geophysical Research: Solid Earth (1978-2012), v. 107, no. B2, p. 6-12.

  9. A planet in transition: The onset of plate tectonics on Earth between 3 and 2 Ga?

    Directory of Open Access Journals (Sweden)

    Kent C. Condie

    2018-01-01

    Full Text Available Many geological and geochemical changes are recorded on Earth between 3 and 2 Ga. Among the more important of these are the following: (1 increasing proportion of basalts with “arc-like” mantle sources; (2 an increasing abundance of basalts derived from enriched (EM and depleted (DM mantle sources; (3 onset of a Great Thermal Divergence in the mantle; (4 a decrease in degree of melting of the mantle; (5 beginning of large lateral plate motions; (6 appearance of eclogite inclusions in diamonds; (7 appearance and rapid increase in frequency of collisional orogens; (8 rapid increase in the production rate of continental crust as recorded by zircon age peaks; (9 appearance of ophiolites in the geologic record, and (10 appearance of global LIP (large igneous province events some of which correlate with global zircon age peaks. All of these changes may be tied directly or indirectly to cooling of Earth's mantle and corresponding changes in convective style and the strength of the lithosphere, and they may record the gradual onset and propagation of plate tectonics around the planet. To further understand the changes that occurred between 3 and 2 Ga, it is necessary to compare rocks, rock associations, tectonics and geochemistry during and between zircon age peaks. Geochemistry of peak and inter-peak basalts and TTGs needs to be evaluated in terms of geodynamic models that predict the existence of an episodic thermal regime between stagnant-lid and plate tectonic regimes in early planetary evolution.

  10. Geodynamic evolution of the Earth over the Phanerozoic: Plate tectonic activity and palaeoclimatic indicators

    Directory of Open Access Journals (Sweden)

    Christian Vérard

    2015-04-01

    In this paper, we compare values derived from the tectonic model (ages of oceanic floor, production and subduction rates, tectonic activity with a combination of chemical proxies (namely CO2, 87Sr/86Sr, glaciation evidence, and sea-level variations known to be strongly influenced by tectonics. One of the outstanding results is the observation of an overall decreasing trend in the evolution of the global tectonic activity, mean oceanic ages and plate velocities over the whole Phanerozoic. We speculate that the decreasing trend reflects the global cooling of the Earth system. Additionally, the parallel between the tectonic activity and CO2 together with the extension of glaciations confirms the generally accepted idea of a primary control of CO2 on climate and highlights the link between plate tectonics and CO2 in a time scale greater than 107 yr. Last, the wide variations observed in the reconstructed sea-floor production rates are in contradiction with the steady-state model hypothesized by some.

  11. Leading and trailing edges of moving plates record contrasting thermal, mechanical, tectonic and stratigraphic histories

    Science.gov (United States)

    Bodur, O. F.; Rey, P. F.; Müller, D.

    2017-12-01

    At the transition between thick continental plates and thinner adjacent oceanic plates, the deep-seated corner of the related lithospheric mantle step is exposed to thermomechanical erosion during plate motion, and lateral variations in lithospheric thickness and temperature at these regions initiate a corner flow. Here, we present a suite of thermomechanical numerical experiments to document and characterize the mechanical and thermal evolution of the trailing and leading edge of a moving plate. We show that the geometry of the trailing and leading margins of plates evolve by a combination of thermomechanical accretion or erosion, respectively. This drives subsidence and uplift, part of which is dynamically driven by the mantle flow, and the remainder is an isostatic response to the change in structure and/or temperature of the margins. Interestingly, leading and trailing edges record contrasting tectonic histories with magnitudes of extension/contraction measurable after tens of million years of plate motion. Our numerical experiments predict different sediment supply and accommodation space, along with different tectonics and heat flow for different margins during sedimentation. These suggest that measurable differences in tectonics and stratigraphy should exist between the trailing and leading margins of moving continents. This new modelling approach will provide new insights into fundamental differences in the evolution of Australian passive margin basins regarding their subsidence, thermal evolution and stratigraphy depending on their location along the southern, trailing edge or the northern leading edge of the continent.

  12. Comparing the Plate-Tectonics-Related Misconceptions of High School Students and University Undergraduates

    Science.gov (United States)

    Kàdàr, Anett; Farsang, Andrea

    2017-01-01

    International research into the nature, emergence, and development of geographical misconceptions is substantial. However, Hungarian educational research lags behind in exploring this phenomenon in detail. The present study identified some plate-tectonics-related misconceptions of three distinctive groups of students: ninth-grade secondary school…

  13. Introduction of the Concepts of Plate Tectonics into Secondary-School Earth Science Textbooks.

    Science.gov (United States)

    Glenn, William Harold

    1992-01-01

    Secondary school earth-science textbooks in print from 1960 through 1979 were examined to determine how rapidly concepts of plate tectonics were incorporated into those texts during the period when scientists' views about these concepts were evolving most rapidly. Suggests that delays were probably due to an unwillingness to engage in speculation…

  14. Plate Tectonics: The Way the Earth Works. Teacher's Guide. LHS GEMS.

    Science.gov (United States)

    Cuff, Kevin

    This teacher guide presents a unit on plate tectonics and introduces hands-on activities for students in grades 6-8. In each unit, students act as real scientists and gather evidence by using science process skills such as observing, graphing, analyzing data, designing and making models, visualizing, communicating, theorizing, and drawing…

  15. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    A fluid above the critical Rayleigh number is far from equilibrium and spontaneously organizes itself into patterns involving the collective motion of large numbers of molecules which are resisted by the viscosity of the fluid. No external template is involved in forming the pattern. In 1928 Pearson showed that Bénard's experiments were driven by variations in surface tension at the top of the fluid and the surface motions drove convection in the fluid. In this case, the surface organized itself AND the underlying fluid. Both internal buoyancy driven flow and flow driven by surface forces can be far-from-equilibrium self-organized open systems that receive energy and matter from the environment. In the Earth, the cold thermal boundary layer at the surface drives plate tectonics and introduces temperature, shear and pressure gradients into the mantle that drive mantle convection. The mantle provides energy and material but may not provide the template. Plate tectonics is therefore a candidate for a far-from-equilibrium dissipative self-organizing system. Alternatively, one could view mantle convection as the self-organized system and the plates as simply the surface manifestation. Lithospheric architecture also imposes lateral temperature gradients onto the mantle which can drive and organize flow. Far-from-equilibrium self-organization requires; an open system, interacting parts, nonlinearities or feedbacks, an outside steady source of energy or matter, multiple possible states and a source of dissipation. In uniform fluids viscosity is the source of dissipation. Sources of dissipation in the plate system include bending, breaking, folding, shearing, tearing, collision and basal drag. These can change rapidly, in contrast to plate driving forces, and introduce the sort of fluctuations that can reorganize far-from-equilibrium systems. Global plate reorganizations can alternatively be thought of as convective overturns of the mantle, or thermal weakening of plates

  16. Crustal history of Margarita Island (Venezuela) in detail: Constraint on the Caribbean plate-tectonic scenario

    Science.gov (United States)

    Stöckhert, Bernhard; Maresch, Walter V.; Brix, Manfred; Kaiser, Claudia; Toetz, Andreas; Kluge, Rolf; Krückhans-Lueder, Gabriela

    1995-09-01

    The pressure-temperature-time-deformation evolution for the crust of Margarita Island (Venezuela) has been established to allow comparison with current plate-tectonic models for the Caribbean region. On Margarita, the 12 recognizable stages of development can be summarized in terms of the following evolving tectonic settings: Protolith evolution as Aptian-Albian or older oceanic crust, as well as continental crust with Paleozoic basement (stages 1 and 2); accretion and high-pressure metamorphism (500 600 °C, 10 14 kbar) as the Margarita Complex in the deep level of a fore arc at 100 90 Ma (stage 3); ascent, cooling, and emplacement into the intermediate crustal level of a volcanic arc at 90 80 Ma (stage 4); transform plate-margin setting at a comparable level at 80 50 Ma (stage 5); second episode of rapid uplift and cooling (stages 6 and 7); and shallow crustal level close to transform plate margin from 50 Ma to present (stages 8 to 12). This complex sequence is in excellent agreement with plate-tectonic scenarios that require a Pacific origin for the Caribbean plate and eastward migration of the Margarita Complex and its correlatives along northern South America since the Cretaceous.

  17. Plate tectonics and continental basaltic geochemistry throughout Earth history

    Science.gov (United States)

    Keller, Brenhin; Schoene, Blair

    2018-01-01

    Basaltic magmas constitute the primary mass flux from Earth's mantle to its crust, carrying information about the conditions of mantle melting through which they were generated. As such, changes in the average basaltic geochemistry through time reflect changes in underlying parameters such as mantle potential temperature and the geodynamic setting of mantle melting. However, sampling bias, preservation bias, and geological heterogeneity complicate the calculation of representative average compositions. Here we use weighted bootstrap resampling to minimize sampling bias over the heterogeneous rock record and obtain maximally representative average basaltic compositions through time. Over the approximately 4 Ga of the continental rock record, the average composition of preserved continental basalts has evolved along a generally continuous trajectory, with decreasing compatible element concentrations and increasing incompatible element concentrations, punctuated by a comparatively rapid transition in some variables such as La/Yb ratios and Zr, Nb, and Ti abundances approximately 2.5 Ga ago. Geochemical modeling of mantle melting systematics and trace element partitioning suggests that these observations can be explained by discontinuous changes in the mineralogy of mantle partial melting driven by a gradual decrease in mantle potential temperature, without appealing to any change in tectonic process. This interpretation is supported by the geochemical record of slab fluid input to continental basalts, which indicates no long-term change in the global proportion of arc versus non-arc basaltic magmatism at any time in the preserved rock record.

  18. Organization of the tectonic plates in the last 200 Myr (Invited)

    Science.gov (United States)

    Morra, G.; Seton, M.; Quevedo, L. E.; Müller, D.

    2013-12-01

    The present tessellation of the Earth's surface into tectonic plates displays a remarkably regular plate size distribution, described by either one (Sornette and Pisarenko, 2003) or two (Bird, 2003) statistically distinct groups, characterised by large and small plate size. A unique distribution implies a hierarchical structure from the largest to the smallest plate. Alternatively, two distributions indicate distinct evolutionary laws for large and small plates, the first tied to mantle flow, the second determined by a hierarchical fragmentation process. We analyse detailed reconstructions of plate boundaries during the last 200 Myr and find that (i) large and small plates display distinct statistical distributions, (ii) the small plates display little organisational change since 60 Ma and (iii) the large plates oscillate between heterogeneous (200-170 Ma and 65-50 Ma) and homogeneous (120-100 Ma) plate tessellations on a timescale of about 100 Myr. Heterogeneous states are reached more rapidly, while the plate configuration decays into homogeneous states following a slower asymptotic curve, suggesting that heterogeneous configurations are excited states while homogeneous tessellations are equilibrium states. We explain this evolution by proposing a model that alternates between bottom- and top-driven Earth dynamics, physically described by fluid-dynamic analogies, the Rayleigh-Benard and Bénard-Marangoni convection, respectively. We discuss the implications for true polar wander (TPW), global kinematic reorganisations (50 and 100 Ma) and the Earth's magnetic field inversion frequency. Earth's present tessellation: grey scale proportional to the logarithm of plate size. Plot: logarithm of complementary 'cumulative plate count' (Y-axis) vs. the logarithm of the plate size (X-axis). Time evolution of the 'standard deviation' of the plate size every one million years.

  19. Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models

    Science.gov (United States)

    Yoshida, Masaki; Santosh, M.

    2011-03-01

    The periodic assembly and dispersal of supercontinents through the history of the Earth had considerable impact on mantle dynamics and surface processes. Here we synthesize some of the conceptual models on supercontinent amalgamation and disruption and combine it with recent information from numerical studies to provide a unified approach in understanding Wilson Cycle and supercontinent cycle. Plate tectonic models predict that superdownwelling along multiple subduction zones might provide an effective mechanism to pull together dispersed continental fragments into a closely packed assembly. The recycled subducted material that accumulates at the mantle transition zone and sinks down into the core-mantle boundary (CMB) provides the potential fuel for the generation of plumes and superplumes which ultimately fragment the supercontinent. Geological evidence related to the disruption of two major supercontinents (Columbia and Gondwana) attest to the involvement of plumes. The re-assembly of dispersed continental fragments after the breakup of a supercontinent occurs through complex processes involving 'introversion', 'extroversion' or a combination of both, with the closure of the intervening ocean occurring through Pacific-type or Atlantic-type processes. The timescales of the assembly and dispersion of supercontinents have varied through the Earth history, and appear to be closely linked with the processes and duration of superplume genesis. The widely held view that the volume of continental crust has increased over time has been challenged in recent works and current models propose that plate tectonics creates and destroys Earth's continental crust with more crust being destroyed than created. The creation-destruction balance changes over a supercontinent cycle, with a higher crustal growth through magmatic influx during supercontinent break-up as compared to the tectonic erosion and sediment-trapped subduction in convergent margins associated with supercontinent

  20. SECULAR CHANGES IN RELATIONSHIPS BETWEEN PLATE-TECTONIC AND MANTLE-PLUME ENGENDERED PROCESSES DURING PRECAMBRIAN TIME

    Directory of Open Access Journals (Sweden)

    M. V. Mints

    2016-01-01

    nature of the granulite-gneiss complexes has led to a fundamental new understanding of: a more important role than envisaged previously for mantle-plume processes in the juvenile additions to the continental crust, especially during the Neoarchaean-Proterozoic; the existence of the supercontinent Lauroscandia from ~2.80 to 0.85 Ga; the leading role of mantle plumes in the interaction of plate- and plume-tectonics in the Neoarchaean-Proterozoic history of Lauroscandia and perhaps of the continental crust as a whole. We propose that the evolution of the geodynamic settings of the Earth’s crust origin can be represented as a spiral sequence: the interaction of mantle-plume processes and embryonic microplate tectonics during the Palaeo-Mezoarchaean (~3.8–2.8 Ga → plume-tectonics and local plume-driven plate-tectonics (~2.80–0.55 Ga → Phanerozoic plate tectonics along with a reduced role of mantle plumes.

  1. Topography of Venus and earth - A test for the presence of plate tectonics

    Science.gov (United States)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  2. Tethyan evolution of Turkey: A plate tectonic approach

    Science.gov (United States)

    ^Şengör, A. M. Celâl; Yilmaz, Yücel

    nappe systems of the Taurides, and buried beneath these, the metamorphic axis of Anatolia, the Anatolides. The Maden basin closed during the early late Eocene by north-dipping subduction, synthetic to the Inner-Tauride subduction zone that had switched from south-dipping subduction beneath the Bitlis—Pötürge fragment to north dipping subduction beneath the Anatolide—Tauride platform during the later Palaeocene. Finally, the terminal collision of Arabia with Eurasia in eastern Turkey eliminated the Çüngüş basin as well and created the present tectonic regime of Turkey by pushing a considerable piece of it eastwards along the two newly-generated transform faults, namely those of North and East Anatolia. Much of the present eastern Anatolia is underlain by an extensive mélange prism that accumulated during the late Cretaceous—late Eocene interval north and east of the Bitlis—Pötürge fragment.

  3. JaMBES: A "New" Way of Calculating Plate Tectonic Reconstruction

    Science.gov (United States)

    Chambord, A. I.; Smith, E. G. C.; Sutherland, R.

    2014-12-01

    Calculating the paleoposition of tectonic plates using marine geophysical data has been usually done by using the Hellinger criterion [Hellinger, 1981]. However, for the Hellinger software [Kirkwood et al., 1999] to produce stable results, we find that the input data must be abundant and spatially well distributed. Although magnetic anomalies and fracture zone data have been increasingly abundant since the 1960s, some parts of the globe remain too sparsely explored to provide enough data for the Hellinger code to provide satisfactory rotations. In this poster, we present new software to calculate the paleopositions of tectonic plates using magnetic anomalies and fracture zone data. Our method is based on the theory of plate tectonics as introduced by [Bullard et al., 1965] and [Morgan, 1968], which states that ridge segments (ie. magnetic lineations) and fracture zones are at right angles to each other. In order to test our software, we apply it to a region of the world where climatic conditions hinder the acquisition of magnetic data: the Southwest Pacific, between New Zealand and Antarctica from breakup time to chron 20 (c43Ma). Bullard, E., J. E. Everett, and A. G. Smith (1965), The fit of continents around the atlantic, Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 258(1088), 41-51. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, Journal of Geophysical Research, 86(B10), 9312-9318. Kirkwood, B. H., J. Y. Royer, T. C. Chang, and R. G. Gordon (1999), Statistical tools for estimating and combining finite rotations and their uncertainties, Geophysical Journal International, 137(2), 408-428. Morgan, W. J. (1968), Rises, trenches, great faults, and crustal blocks, Journal of Geophysical Research, 73(6), 1959-1982.

  4. The fate of water within Earth and super-Earths and implications for plate tectonics.

    Science.gov (United States)

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  5. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  6. Mantle rheology and the scaling of bending dissipation in plate tectonics

    Science.gov (United States)

    Rose, I. R.; Korenaga, J.

    2011-06-01

    Plate tectonics on Earth involves the bending deformation of plates at subduction zones, and because plates are generally considered to be stiff owning to the rheology of mantle minerals, the role of energy dissipation by plate bending in the global energy balance has been frequently debated in the recent literature. Here we consider how bending dissipation should scale with slab parameters such as dip angle, plate age, the radius of curvature, and plate velocity by systematically exploring the parameter space with instantaneous Stokes flow calculations. We derive the scaling of bending dissipation for a range of mantle viscosity functions, including pseudoplastic rheology with olivine flow laws. Our results indicate that, as we move away from the isoviscous case, the scaling gradually deviates from what has commonly been assumed in previous studies, most notably for the radius exponent, which exhibits more than threefold reduction and even a sign reversal in some cases. These modifications in scaling exponents originate in the complication of the deformation field caused by viscosity variations within the bending plate. Approximating the lithospheric rheology by a single effective viscosity in the dynamical models of subduction has been a common practice, but we suggest that such approximation may limit the geological relevance of modeling studies, in particular when estimating the significance of bending dissipation.

  7. Collision tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  8. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean

    Science.gov (United States)

    Brown, Michael

    2006-11-01

    Ultrahigh-temperature (UHT) granulite metamorphism is documented predominantly in the Neoarchean to Cambrian rock record, but UHT granulite metamorphism also may be inferred at depth in Cenozoic orogenic systems. The first occurrence of UHT granulite metamorphism in the record signifies a change in geodynamics that generated transient sites of very high heat flow. Many UHT granulite metamorphic belts may have developed in settings analogous to modern continental backarcs; on a warmer Earth, destruction of oceans floored by thinner lithosphere may have generated hotter backarcs than those associated with the modern Pacific ring of fire. Medium-temperature eclogite high- pressure (EHP) granulite metamorphism is documented in the Neoarchean rock record and at intervals throughout the Proterozoic and Paleozoic record. EHP granulite metamorphic belts are complementary to UHT granulite metamorphic belts in that they are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record, but lawsonite blueschist eclogite metamorphism (high pressure [HP]) and ultrahigh-pressure metamorphism (UHP) characterized by coesite or diamond are predominantly Phanerozoic phenomena. HP-UHP metamorphism registers the low thermal gradients and deep subduction of continental crust during the early stage of subduction-to-collision orogenesis. A duality of metamorphic belts—reflecting a duality of thermal regimes—appears in the record only since the Neoarchean Era. A duality of thermal regimes is the hallmark of modern plate tectonics, and the duality of metamorphic belts is the characteristic imprint of plate tectonics in the rock record. The occurrence of both UHT and EHP granulite metamorphism since the Neoarchean marks the onset of a “Proterozoic plate tectonics” regime, which evolved during a Neoproterozoic transition to the modern plate tectonics regime, characterized by colder subduction as chronicled by HP

  9. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    ), for the first time, have proposed time scale for geomagnetic reversals making use of the Potassium- Argon (K-Ar) dates. Further, discovery of short polarity event of duration as small as 10 5 years within the major polarity intervals have led to modify... of geomagnetism e.g. Brunhes, Matuyama, Gauss, Gilbert, while the short duration polarity events (short intra-epoch fluctuations) were named after the sites of their discovery (Cox et al., 1964). A polarity epoch may contain several polarity events and can...

  10. Development of the Plate Tectonics and Seismology markup languages with XML

    Science.gov (United States)

    Babaie, H.; Babaei, A.

    2003-04-01

    The Extensible Markup Language (XML) and its specifications such as the XSD Schema, allow geologists to design discipline-specific vocabularies such as Seismology Markup Language (SeismML) or Plate Tectonics Markup Language (TectML). These languages make it possible to store and interchange structured geological information over the Web. Development of a geological markup language requires mapping geological concepts, such as "Earthquake" or "Plate" into a UML object model, applying a modeling and design environment. We have selected four inter-related geological concepts: earthquake, fault, plate, and orogeny, and developed four XML Schema Definitions (XSD), that define the relationships, cardinalities, hierarchies, and semantics of these concepts. In such a geological concept model, the UML object "Earthquake" is related to one or more "Wave" objects, each arriving to a seismic station at a specific "DateTime", and relating to a specific "Epicenter" object that lies at a unique "Location". The "Earthquake" object occurs along a "Segment" of a "Fault" object, which is related to a specific "Plate" object. The "Fault" has its own associations with such things as "Bend", "Step", and "Segment", and could be of any kind (e.g., "Thrust", "Transform'). The "Plate" is related to many other objects such as "MOR", "Subduction", and "Forearc", and is associated with an "Orogeny" object that relates to "Deformation" and "Strain" and several other objects. These UML objects were mapped into XML Metadata Interchange (XMI) formats, which were then converted into four XSD Schemas. The schemas were used to create and validate the XML instance documents, and to create a relational database hosting the plate tectonics and seismological data in the Microsoft Access format. The SeismML and TectML allow seismologists and structural geologists, among others, to submit and retrieve structured geological data on the Internet. A seismologist, for example, can submit peer-reviewed and

  11. Tectonics and Non-isostatic Topography of the Mariana Trench and Adjacent Plates

    Science.gov (United States)

    Hongyu, L.; Lin, J.; Zhou, Z.; Zhang, F.

    2017-12-01

    Multi-types of geophysical data including multibeam bathymetry, sediment thickness, gravity anomaly, and crustal magnetic age were analyzed to investigate tectonic processes of the Mariana Trench and the surrounding plates. We calculated non-Airy-isostatic topography by removing from the observed bathymetry the effects of sediment loading, thermal subsidence, and Airy local isostatically-compensated topography. The Mariana Trench was found to be associated with a clearly defined zone of negative non-isostatic topography, which was caused by flexural bending of the subducting Pacific plate and with the maximum depth anomaly and flexural bending near the Challenger Deep. In contrast, the Caroline Ridge and Caroline Islands Chain have much more subdued non-isostatic topography, indicating their higher topography is largely compensated by thicker crust. Along the Mariana Trough, the northern and central segments appear to be associated with relatively low magma supply as indicated by the relatively low topography and thin crust. In contrast, the southern Mariana Trough is associated with relatively high magma supply as indicated by the relatively high and smoother topography, an axial high spreading center, and relatively thick crust. The southern end of the Mariana Trough was also found to be associated with positive non-isostatic topographic anomaly, which might be caused by the complex tectonic deformation of the overriding Mariana and Philippine Sea plates and their interaction with the subducting Pacific plate. Analysis further revealed that the southern Mariana Arc, located between the Mariana Trench and Mariana Trough, is associated with positive non-isostatic topographic anomalies, which may be explained by the late stage magmatic loading on the older and thus stronger lithospheric plate of the Mariana volcanic arc.

  12. Initiation of modern-style plate tectonics recorded in Mesoarchean marine chemical sediments

    Science.gov (United States)

    Satkoski, Aaron M.; Fralick, Philip; Beard, Brian L.; Johnson, Clark M.

    2017-07-01

    The chemistry of the oceans in part reflects a balance between inputs from the continents and mantle. Traditionally, it has been thought that Archean ocean chemistry was dominated by mantle sources, but recent work has suggested that continental weathering during the Archean provided a much higher flux to the oceans than previously recognized. Here, we present new Rb-Sr and Sm-Nd isotope compositions on carbonate (dolomite and limestone) from the 2.94 Ga Red Lake and 2.80 Ga Steep Rock groups in the Superior Province, Canada to assess the potential impact continental weathering had on ocean chemistry during the Mesoarchean, a time when initiation of modern-style plate tectonics has been proposed to have occurred. The low Rb contents of all carbonate samples suggest that clastic contamination does not affect the Sr isotope compositions. Using O and Sr isotope modeling, we identified unaltered samples and estimate a 87Sr/86Sr ratio of 0.70173 for seawater at 2.94 Ga and 0.70182 at 2.80 Ga. Strontium isotope compositions from both Red Lake and Steep Rock indicate that seawater was significantly more radiogenic than contemporaneous mantle, and suggests that weathering of evolved continental crust was an important input to seawater. Continental weathering likely affected seawater chemistry through uplift of continental lithosphere during the initiation of modern-style plate tectonics at 3.2 Ga, a model that is contrary to those that suggest the Archean continents were small in extent and largely submerged. Initiation of modern-style plate tectonics and associated continental weathering had an important effect on the biosphere, including increased nutrient delivery, as well as creation of ecological niches that allowed development of the first biologically produced shallow marine redox gradients.

  13. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    probability that oceanic crustal segments could founder in an organized way, producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga. Plate tectonics today is constituted of: (1 a continental drift system that started in the Early Archaean, driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons; (2 a subduction-driven system that started near the end of the Archaean.

  14. Cenozoic Plate tectonic history of the northern Venezuela-Trinidad Area

    Science.gov (United States)

    Erlich, Robert N.; Barrett, S. F.

    1990-02-01

    Geological and geophysical data, coupled with recent plate tectonic reconstructions, suggest that the Cenozoic geologic history of the northern Venezuela-Trinidad area has been dominated by strike-slip displacement of discrete crustal blocks. Allochthonous terranes within the area include metavolcanic rocks of the Cretaceous Villa de Cura Group and metamorphic rocks of the Precambrian to Cretaceous Cordillera de la Costa. A relatively competent crustal block (Margarita Block) is defined by an outline around the metamorphic basement of Margarita Island, the Araya/Paria peninsula, the Northern Range of Trinidad, and Tobago Island. Reconstruction of the Margarita Block to its original position requires at least partial closure of the Falcon Basin, closure of the Bonaire and Cariaco basins, and restoration of about 50 km of motion on both the Oca and Bocono faults. Post middle Eocene eastward translation of the Caribbean plate caused eastward motion of the Margarita Block. A minor change in relative plate motion during the late Oligocene or early Miocene produced a right step in the Moron fault, forming the Cariaco pull-apart basin and El Pilar fault zone. Maximum offset on El Pilar fault is estimated to be no more than 125 km, though displacement along the entire fault zone may have been greater. Transpressional stresses between the Caribbean plate and northern South America caused folding of the Serrania del Interior of Venezuela and the Central Range of Trinidad. Eastward migration of transpressional stresses at the southeastern corner of the Caribbean-South American plate boundary is being accommodated by formation of oblique thrusts, transpressive anticlines, and downwarping of the crust. Bouguer gravity data suggest that Jurassic-aged Atlantic oceanic crust is being depressed as the Caribbean plate expands into the Demerara Plateau area. This study suggests that the faults and transtensional/transpressional/compressional structures identified in this study are

  15. Using Google Earth to Explore Multiple Data Sets and Plate Tectonic Concepts

    Science.gov (United States)

    Goodell, L. P.

    2015-12-01

    Google Earth (GE) offers an engaging and dynamic environment for exploration of earth science data. While GIS software offers higher-level analytical capability, it comes with a steep learning curve and complex interface that is not easy for the novice, and in many cases the instructor, to negotiate. In contrast, the intuitive interface of GE makes it easy for students to quickly become proficient in manipulating the globe and independently exploring relationships between multiple data sets at a wide range of scales. Inquiry-based, data-rich exercises have been developed for both introductory and upper-level activities including: exploration of plate boundary characteristics and relative motion across plate boundaries; determination and comparison of short-term and long-term average plate velocities; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions. Used successfully in undergraduate course settings, for TA training and for professional development programs for middle and high school teachers, the exercises use the following GE data sets (with sources) that have been collected/compiled by the author and are freely available for non-commercial use: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA, UNAVCO); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).

  16. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  17. Tectonics

    Science.gov (United States)

    John Dewey will complete his term as editor-in-chief of Tectonics at the end of 1984. Clark Burchfiel's term as North American Editor will also end. Tectonics is published jointly with the European Geophysical Society. This newest of AGU's journals has already established itself as an important journal bridging the concerns of geophysics and geology.James A. Van Allen, president of AGU, has appointed a committee to recommend candidates for both editor-in-chief and North American editor for the 1985-1987 term.

  18. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou

    2015-01-01

    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  19. Plate tectonic influences on Earth's baseline climate: a 2 billion-year record

    Science.gov (United States)

    McKenzie, R.; Evans, D. A.; Eglington, B. M.; Planavsky, N.

    2017-12-01

    Plate tectonic processes present strong influences on the long-term carbon cycle, and thus global climate. Here we utilize multiple aspects of the geologic record to assess the role plate tectonics has played in driving major icehouse­-greenhouse transitions for the past 2 billion years. Refined paleogeographic reconstructions allow us to quantitatively assess the area of continents in various latitudinal belts throughout this interval. From these data we are able to test the hypothesis that concentrating continental masses in low-latitudes will drive cooler climates due to increased silicate weathering. We further superimpose records of events that are believed to increase the `weatherability' of the crust, such as large igneous province emplacement, island-arc accretion, and continental collisional belts. Climatic records are then compared with global detrital zircon U-Pb age data as a proxy for continental magmatism. Our results show a consistent relationship between zircon-generating magmatism and icehouse-greenhouse transitions for > 2 billion years, whereas paleogeographic records show no clear consistent relationship between continental configurations and prominent climate transitions. Volcanic outgassing appears to exert a first-order control on major baseline climatic shifts; however, paleogeography likely plays an important role in the magnitude of this change. Notably, climatic extremes, such as the Cryogenian icehouse, occur during a combination of reduce volcanism and end-member concentrations of low-latitudinal continents.

  20. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  1. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  2. Evolution of the western segment of Juan Fernández Ridge (Nazca Plate): plume vs. plate tectonic processes

    Science.gov (United States)

    Lara, Luis E.; Rodrigo, Cristián; Reyes, Javier; Orozco, Gabriel

    2014-05-01

    The Juan Fernandez Ridge (Eastern Pacific, Nazca Plate) is thought to be a classic hot spot trail because of the apparent age progression observed in 40Ar-39Ar data. However, geological evidence and some thermochronological data suggest a more complex pattern with a rejuvenation stage in Robinson Crusoe Island, the most eroded of the Juan Fernandez Archipelago. In fact, a postshield stage at 900-700 ka separates the underlying shield-related pile from the post-erosional alkaline succession (Ba/Yb=38.15; La/Yb=15.66; Ba/Y=20.27; Ba/Zr=2.31). Shield volcanoes grew at high effusion rate at ca. 5-4 Ma erupting mostly tholeiitic to transitional magmas (Ba/Yb=18.07-8.32; La/Yb=4.59-9.84; Ba/Y=4.24-8.18; Ba/Zr=0.73-1.09). Taken together, shield volcanoes form a continuous plateau with a base at ca. 3900 mbsl. However, a more complex structural pattern can be inferred from geophysical data, which suggest some intracrustal magma storage and a more extended area of magma ascent. A role for the Challenger Fracture Zone is hypothesized fueling the controversy between pristine plume origin and the effect of plate tectonic processes in the origin of intraplate volcanism. This research is supported by FONDECYT Project 1110966.

  3. Active faulting and transpression tectonics along the plate boundary in North Africa

    Directory of Open Access Journals (Sweden)

    Mustapha Meghraoui

    2013-01-01

    Full Text Available We present a synthesis of the active tectonics of the northern Atlas Mountains, and suggest a kinematic model of transpression and block rotation that illustrates the mechanics of this section of the Africa–Eurasia plate boundary. Neotectonic structures and significant shallow seismicity (with Mw >5.0 indicate that coeval E-W-trending, right-lateral faulting and NE-SW, thrust-related folding result from oblique convergence at the plate boundary, which forms a transpressional system. The strain distribution obtained from fault–fold structures and P axes of focal mechanism solutions, and the geodetic (NUVEL-1 and GPS convergence show that the shortening and convergence directions are not coaxial. The transpressional strain is partitioned along the strike and the quantitative description of the displacement field yields a compression-to-transcurrence ratio varying from 33% near Gibraltar, to 50% along the Tunisian Atlas. Shortening directions oriented NNE and NNW for the Pliocene and Quaternary, respectively, and the S shape of the Quaternary anticline axes, are in agreement with the 2.24˚/Myr to 3.9˚/Myr modeled clockwise rotation of the small tectonic blocks and with the paleomagnetic data. The convergence between Africa and Eurasia is absorbed along the Atlas Mountains at the upper crustal level, by means of thrusting above decollement systems, which are controlled by subdued transcurrent faults. The Tell Atlas of northwest Algeria, which has experienced numerous large earthquakes with respect to the other regions, is interpreted as a restraining bend that localizes the strain distribution along the plate boundary.

  4. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    Science.gov (United States)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  5. Opening of the Aden Gulf Ridge Derived from GPS Constraints and Plate Tectonic Models

    Science.gov (United States)

    Fernandes, R. M.; Rolandone, F.; Leroy, S.; Alothman, A.; Al-Aydrus, A.; Khalil, H.; Ahmed, A.; Khanbari, K.; Bos, M. S.; Nicolon, P.; Heydel, L.

    2012-12-01

    The Aden Gulf Ridge forms, together with the Red Sea and the Ethiopian Rift, the only emerged RRR-type (Ridge/Ridge/Ridge) triple junction in the globe: the Afar Triple Junction. The Aden Gulf Ridge defines the boundary between two major tectonic blocks: Arabia and Somalia, being Nubia the third unit in the triple junction (bordering Arabia along the Red Sea and Somalia along the Ethiopian Rift). Although the extensional behaviour of these structures are well known, the present-day magnitudes of their opening rates are still under evaluation, in particular for the opening rate between the Arabia and Somalia plates. This work uses GPS observations acquired in campaign and continuous mode in order to better constrain the opening rates of the three plate boundaries. For the Nubia-Arabia and Nubia-Somalia boundary plates, we use solely the velocity predictions given by our computed angular velocity models using the available continuous stations in Nubia, Somalia and Arabia. The available data set is augmented here with several stations in Saudi Arabia, which allow us to better constrain the angular velocity for the stable part of the Arabia plate. We estimate the angular velocity model with respect to ITRF2008 (the latest realization of the International Terrestrial Reference System) using the value of 2.5 years (although most of the stations have already a significantly longer time-series) as threshold data span for the processed time-series. Temporal correlations are used to properly estimate the uncertainty of the time-series and derived angular velocity model. In addition, to study the near-field in the Aden Gulf, data acquired in denser campaign networks in Yemen and Oman are used to also directly compute the extension rate in the Red Sea. We show that most of the Arabian Peninsula is stable (within the uncertainties) but the southwest part (Yemen) is influenced by the proximity with the Afar Triple Junction.

  6. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    Science.gov (United States)

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  7. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  8. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf...

  9. Shear-wave splitting beneath western United States in relation to plate tectonics

    Science.gov (United States)

    Özalaybey, Serdar; Savage, Martha K.

    1995-09-01

    Andreas fault. Stations located over the young subducting Gorda plate mark a change in the fast direction to nearly NE-SW. This direction aligns well with the maximum compressive stress direction in the overlying North American plate and the NE-SW directed internal shearing of the Gorda plate. The anisotropic thicknesses calculated from delay times suggest roughly double that expected for purely lithospheric contributions. This implies that the anisotropic thickness may include some of the asthenosphere. Alternatively, using a higher anisotropy of 8% can bring thicknesses in line with other measures of lithospheric thicknesses. The correspondence between the fast directions and the present plate tectonic deformations suggest that mapping upper mantle deformation through seismic anisotropy is a viable method, and that asthenospheric flow may be a significant contributor to seismic anisotropy.

  10. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  11. Large-Scale Present-Day Plate Boundary Deformations in the Eastern Hemisphere Determined from VLBI Data: Implications for Plate Tectonics and Indian Ocean Growth

    Science.gov (United States)

    Akilan, A.; Abdul Azeez, K. K.; Schuh, H.; Yuvraaj, N.

    2015-10-01

    The dynamics of the planet Earth are manifestations of diverse plate tectonic processes which have been occurring since the Archean period of the Earth's evolution and continue to deform the plate boundaries. Very long baseline interferometry (VLBI) is an efficient space geodetic method that enables precise measurement of plate motion and associated deformations. We analyze here VLBI measurements made during a period of approximately three decades at five locations on the Eastern hemisphere of the globe, which are geographically distributed over five continents (plates) around the Indian Ocean. Computed rate of change of baseline length show the deformation pattern and its rate at the boundaries between the major tectonic plates constituting the Eastern hemisphere of the Earth. The African (Nubian) and Antarctic plates are moving apart at 13.5 mm/year, which is mostly attributed to spreading of the South West Indian Ridge. Similarly, spreading of 59.0 mm/year is observed for the South East Indian Ridge that separates the Antarctic and Australian plates. Shortening at the rate of 3.9 mm/year is estimated across the subduction boundary between Africa (Nubia) and Eurasia. Similar convergence is evident between the Australian and Sunda blocks (of the Eurasian plate). The associated deformation of -54.8 mm/year seems to be chiefly accommodated along the Banda arc system, where the Australian plate is subducting under the Sunda block. VLBI sites within the Eurasian plate, Wettzell in Germany, and Seshan on the South China block, are moving apart at 3.6 mm/year. This relative motion between locations on the same plate is interpreted as a result of the deformation process along a large strike-slip fault, which is identified as the Western boundary of the South China block. Expansion of the Indian Ocean, at +91.5 m2/year, is also estimated from the rate of deformation estimated within the five baselines studied here. From the Hurst exponent values, which are indicators of

  12. Apollo 17: One giant step toward understanding the tectonic evolution of the Moon

    Science.gov (United States)

    Sharpton, Virgil L.

    1992-01-01

    Our present understanding of the tectonic history of the Moon has been shaped in large measure by the Apollo Program, and particularly the Apollo 17 Mission. I attempt to summarize some of the interpretations that have emerged since Apollo 17, focusing on some of the problems and uncertainties that remain to stimulate future exploration of the Moon. The topics covered include: (1) Taurus-Littrow Valley; (2) origin of mare ridges; and (3) nature and timing of tectonic rille formation.

  13. A computed microtomography method for understanding epiphyseal growth plate fusion

    Science.gov (United States)

    Staines, Katherine A.; Madi, Kamel; Javaheri, Behzad; Lee, Peter D.; Pitsillides, Andrew A.

    2017-12-01

    The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron x-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion.

  14. From Dearth to El Dorado: Andean Nature, Plate Tectonics, and the Ontologies of Ecuadorian Resource Wealth

    Directory of Open Access Journals (Sweden)

    David Kneas

    2018-03-01

    Full Text Available Since the early 1990s, the Ecuadorian government has pledged to convert the nation into a “mining country” of global standing. Contemporary claims of mineral wealth, however, stand in stark contrast to previous assessments. Indeed, through much of the 20th century, geologists described Ecuador as a country of mineral dearth. Exploring the process through which Ecuador seemingly transitioned from a nation of resource scarcity to one of mineral plenty, I demonstrate how assessments of Ecuador’s resource potential relate to ideas of Andean nature. Promoters of resource abundance have emphasized Andean uniformity and equivalence—the notion that Ecuador’s mineral wealth is inevitable by virtue of the resource richness of its Andean neighbors. Geologists who have questioned Ecuador’s mineral content, on the other hand, have emphasized Andean heterogeneity. In the recent promotion of Ecuador’s resource potential, notions of Andean uniformity have been bolstered by models of subsoil copper that emerged in the in 1970s in the context of plate-tectonic theory. In highlighting the linkage between ideas of Andean nature and appraisals of Ecuadorian resource potential since the late 19th century, I outline the dialectics between nature and natural resources that underpin processes of resource becoming.

  15. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates.

    Science.gov (United States)

    Ikari, Matt J; Kopf, Achim J

    2017-11-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.

  16. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    Science.gov (United States)

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  17. Punctuated Neogene tectonics and stratigraphy of the African-Iberian plate-boundary zone: concurrent development of Betic-Rif basins (southern Spain, northern Morocco)

    NARCIS (Netherlands)

    Sissingh, W.

    2008-01-01

    This paper integrates the sequence stratigraphic and tectonic data related to the Neogene geodynamic and palaeogeographic development of the African-Iberian plate boundary zone between Spain and Morocco. Though the dating of individual tectonostratigraphic sequences and their delimiting sequence

  18. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    Science.gov (United States)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  19. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ?The fit of the continents around the Atlantic?

    OpenAIRE

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160?Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900?m),...

  20. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  1. Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2013-03-01

    theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets.

  2. Widespread remagnetizations and a new view of Neogene tectonic rotations within the Australia-Pacific plate boundary zone, New Zealand

    Science.gov (United States)

    Rowan, Christopher J.; Roberts, Andrew P.

    2008-03-01

    Large, clockwise, vertical axis tectonic rotations of the Hikurangi margin, East Coast, New Zealand, have been inferred over both geological and contemporary timescales, from paleomagnetic and geodetic data, respectively. Previous interpretations of paleomagnetic data have laterally divided the margin into independently rotating domains; this is not a feature of the short-term velocity field, and it is also difficult to reconcile with the large-scale boundary forces driving the rotation. New paleomagnetic results, rigorously constrained by field tests, demonstrate that late diagenetic growth of the iron sulfide greigite has remagnetized up to 65% of sampled localities on the Hikurangi margin. When these remagnetizations are accounted for, similar rates, magnitudes, and timings of tectonic rotation can be inferred for the entire Hikurangi margin south of the Raukumara Peninsula in the last 7-10 Ma. Numerous large (50-80°) declination anomalies from magnetizations acquired in the late Miocene require much greater rates of rotation (8-14° Ma-1) than the presently observed rate of 3-4° Ma-1, which is only likely to be characteristic of the tectonic regime established since 1-2 Ma. These new results are consistent with both long- and short-term deformation on the Hikurangi margin being driven by realignment of the subducting Pacific plate, with collision of the Hikurangi Plateau in the late Miocene potentially being key to both the initiation of tectonic rotations and the widespread remagnetization of Neogene sediments. However, accommodating faster, more coherent rotation of the Hikurangi margin in Neogene reconstructions of the New Zealand plate boundary region, particularly in the late Miocene, remains a challenge.

  3. The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets

    Science.gov (United States)

    Foley, Bradford J.

    2015-10-01

    The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.

  4. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets

    Science.gov (United States)

    Condie, Kent C.; Shearer, Charles K.

    2017-09-01

    The distribution of high field strength incompatible element ratios Zr/Nb, Nb/Th, Th/Yb and Nb/Yb in terrestrial oceanic basalts prior to 2.7 Ga suggests the absence or near-absence of an enriched mantle reservoir. Instead, most oceanic basalts reflect a variably depleted mantle source similar in composition to primitive mantle. In contrast, basalts from hydrated mantle sources (like those associated with subduction) exist from 4 Ga onwards. The gradual appearance of enriched mantle between 2 and 3 Ga may reflect the onset and propagation of plate tectonics around the globe. Prior to 3 Ga, Earth may have been in a stagnant-lid regime with most basaltic magmas coming from a rather uniform, variably depleted mantle source or from a non-subduction hydrated mantle source. It was not until the extraction of continental crust and accompanying propagation of plate tectonics that ;modern type; enriched and depleted mantle reservoirs developed. Consistent with the absence of plate tectonics on the Moon is the near absence of basalts derived from depleted (DM) and enriched (EM) mantle reservoirs as defined by the four incompatible element ratios of this study. An exception are Apollo 17 basalts, which may come from a mixed source with a composition similar to primitive mantle as one end member and a high-Nb component as the other end member. With exception of Th, which requires selective enrichment in at least parts of the martian mantle, most martian meteorites can be derived from sources similar to terrestrial primitive mantle or by mixing of enriched and depleted mantle end members produced during magma ocean crystallization. Earth, Mars and the Moon exhibit three very different planetary evolution paths. The mantle source regions for Mars and the Moon are ancient and have HFS element signatures of magma ocean crystallization well-preserved, and differences in these signatures reflect magma ocean crystallization under two distinct pressure regimes. In contrast, plate

  5. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria)

    Czech Academy of Sciences Publication Activity Database

    Briestenský, Miloš; Rowberry, Matthew David; Stemberk, Josef; Stefanov, P.; Vozár, J.; Šebela, S.; Petro, L.; Bella, P.; Gaal, L.; Ormukov, Ch.

    2015-01-01

    Roč. 66, č. 5 (2015), s. 427-438 ISSN 1335-0552 R&D Projects: GA MŠk LM2010008; GA MŠk OC 625.10; GA ČR GA205/05/2770; GA ČR GA205/06/1828; GA ČR GA205/09/2024 Institutional support: RVO:67985891 Keywords : Eurasian Plate * Balkan Peninsula * active tectonics research * aseismic transient deformations * slow-slip phenomena Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2015 http://www.geologicacarpathica.com/browse-journal/volumes/66-5/article-780

  6. Segmentation of the eastern North Greenland oblique-shear margin – regional plate tectonic implications

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Stemmerik, Lars; Dahl-Jensen, T.

    2010-01-01

    a highly complex, Paleozoic–early Cenozoic pre-opening setting. However, due to extreme ice conditions, very little is known about the offshore areas seawards of – and between – the peninsulas. Consequently, prevailing structural-tectonic models of the margin tend to be significantly oversimplified...... anticipated. In particular, we interpret strong margin segmentation along N/NE-striking fault structures. The structures are likely to have formed by Late Mesozoic–early Cenozoic strike-slip tectonics and have continued to be active during the late Cenozoic. A more than 8 km deep sedimentary basin...

  7. Plate tectonic reconstruction of India and Madagascar closing through the Mascarene Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Shuhail, M.

    of India and the adjacent ocean basins were evolved by rifting and subsequent Basin, and then from Seychelles, creating the conjugate Arabian and Eastern Somali basins. Since the hydrocarbon occurrence in passive continental margins is closely... with its conjugate region of Madagascar has been directly addressed or indirectly depicted in a number of earlier studies. However the proposed relative Indian Ocean is associated with Indian Plate (IND), African Plate (AFR) and Antarctic Plate (ANT...

  8. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  9. Discovering Plate Boundaries, A Data-Rich Inquiry-Based Classroom Exercise for Teaching Plate Tectonic Boundary Processes

    Science.gov (United States)

    Sawyer, D. S.

    2005-12-01

    Discovering Plate Boundaries is a classroom exercise based on 4 world maps containing earthquake, volcano, topography, and seafloor age data. A novel aspect of the exercise is the jigsaw manner in which student groups access the maps and use them to discover, classify, and describe plate boundary types. The exercise is based only on observation and description, which makes it useful at a wide variety of levels. We have used it successfully with middle school, high school, and college major and non-major earth science classes, as well as with pre-service and in-service teachers. The exercise takes three to four 50 minute class periods to complete and involves the students making presentations to one another in small groups and to the whole class. The students come away from the exercise with knowledge of the key features of each type of plate boundary and a sense of why each looks the way it does. While the materials are accessible on the web (http://terra.rice.edu/plateboundary/ and through http://www.dlese.org ), the actual exercise is not based on student access to the Web and is not dependent on classroom technology equipment.

  10. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    Science.gov (United States)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  11. On plate tectonics and the geologic evolution of southwestern North America

    Science.gov (United States)

    Ward, Peter L.

    1991-07-01

    Very rapid subduction of the Farallon plate under southwestern North America between 60 and 40 Ma was accompanied by a relatively low volume of magmatism throughout the southwestern United States and northern Mexico. Between 40 and 20 Ma, when subduction slowed significantly and in one area may have even stopped, magmatism became widespread and voluminous from Nevada and Utah to central Mexico. This correlation of rapid subduction with a relatively low volume of magmatism can be explained by the observation that subduction-related andesitic arc volcanism, often formed in a Laramide-style compressional regime, is relatively low volume compared to continental volcanism. The shallow roots of arc volcanic systems are clearly exposed in the porphyry copper deposits found in currently active arcs and common throughout southwestern North America between 60 and 50 Ma. By 43 Ma, worldwide plate motions changed, the Pacific plate began moving away from North America, and subduction of the Farallon plate slowed. By around 36 Ma, the easternmost part of the East Pacific Rise, which was located between the Pioneer and Murray fracture zones, approached the trench and the young, hot, buoyant lithosphere appears to have clogged part of the subduction zone. Uplift on land became widespread. Voluminous continental magmatism formed the Sierra Madre Occidental (SMO) of Mexico, one of the largest batholiths in the world, as well as volcanic centers now exposed in the San Juan Mountains of Colorado and the Rio Grande Rift of New Mexico. Vectors of motion of the Pacific plate relative to the North American plate determined by Stock and Molnar (1988) are consistent with formation of a transtensional environment along the plate boundary sufficient to create a 100- to 200-km-wide void just landward of the old volcanic arc. While the SMO batholith was forming within this void, the Monterey and Arguello microplates just offshore to the west were broken off from the Farallon plate and rotated

  12. HYBRID ACCRETIONARY/COLLISIONAL MECHANISM OF PALEOZOIC ASIAN CONTINENTAL GROWTH: NEW PLATE TECTONIC PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Karel Schulmann

    2017-01-01

    Full Text Available Continental crust is formed above subduction zones by well-known process of “juvenile crust growth”. This new crust is in modern Earth assembled into continents by two ways: (i short-lived collisions of continental blocks with the Laurussian or later Eurasian continent along the “Alpine Himalayan collisional/interior orogens” in the heart of the Pangean continental plates realm; and (ii long lived lateral accretion of ocean-floor fragments along “circum-Pacific accretionary/peripheral orogens” at the border of the PaleoPacific and modern Pacific oceanic plate.

  13. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    Science.gov (United States)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  14. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    Science.gov (United States)

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  15. Quantifying the net slab pull force as a driving mechanism for plate tectonics

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    It has remained unclear how much of the negative buoyancy force of the slab (FB) is used to pull the trailing plate at the surface into the mantle. Here I present three-dimensional laboratory experiments to quantify the net slab pull force (FNSP) with respect to FB during subduction. Results show

  16. Combining floating continents and a free surface in a 3D spherical mantle convection model with self-consistent plate tectonics

    Science.gov (United States)

    Rolf, T.; Crameri, F.; Tackley, P. J.

    2012-04-01

    The dynamics of the Earth's lithosphere and mantle are strongly influenced by its upper mechanical boundary condition. For instance, our previous work has shown that a necessity for the evolution of Earth-like, single-sided subduction is a free surface, which allows for vertical movement of the two converging plates, i.e. the development of surface topography [Crameri et al (2012), in press]. Single-sided subduction has an important effect on the evolution of self-consistent plate tectonics, e.g. by shaping subduction trenches. However, due to the usage of a homogeneous, i.e. purely oceanic, lithosphere these models tend to favour the rigid lid mode of plate tectonics for a realistic strength of the lithosphere, which is in contradiction to the present-day Earth. In contrast, our previous work with a pre-existing heterogeneous structure of the lithosphere has shown that the presence of continents floating at the top of the mantle may play an important role in the evolution of plate tectonics. Convective stresses may be focussed at the rheological boundary between continent and ocean, which facilitates the formation of plate boundaries and makes the Earth-like, mobile lid mode of plate tectonics easier to observe [Rolf & Tackley (2011)]. However, in these models subduction is single-sided when one oceanic and one continental plate converge, but double-sided in the case of two converging oceanic plates. Taking the previous findings as a motivation, we now combine both ingredients: the free surface and the heterogeneous lithosphere, in one self-consistent model. We approximate the free surface by using a "sticky air" layer [Schmeling et al, 2008; Crameri et al., submitted] and the continents by strong Archaean cratons, which can resist recycling on long timescales [Rolf & Tackley (2011)]. Such a model might produce single-sided subduction that is continuously evolving supported by the presence of continents. Performing global-scale self-consistent mantle convection

  17. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  18. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria

    Directory of Open Access Journals (Sweden)

    Briestenský Miloš

    2015-10-01

    Full Text Available The EU-TecNet monitoring network uses customized three-dimensional extensometers to record transient deformations across individual faults. This paper presents the first results from two newly established monitoring points in the Balkan Mountains in Bulgaria. The data from Saeva Dupka, recorded across an EEN-WWS striking fault, show sinistral strike-slip along the fault and subsidence of the southern block. Much of the subsidence occurred around the time of the distal MW = 5.6 Pernik Earthquake. An important transient deformation event, which began in autumn 2012, was reflected by significant compression and following extension, across the monitored fault. The data from Bacho Kiro, recorded across a NE–SW striking fault, show sinistral strike-slip along the fault and subsidence of the north-western block. The same important deformation event was reflected by changes in the strike-slip, dip-slip, and horizontal opening/closing trends. These results have been compared to data from other monitoring points in the Western Carpathians, External Dinarides, and Tian Shan. Many of the sites show evidence of simultaneous displacement anomalies and this observation is interpreted as a reflection of the plate-wide propagation of a tectonic pressure pulse towards the end of 2012.

  19. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    Science.gov (United States)

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  20. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  1. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  2. Understanding plate-motion changes over the past 100 Myr with quantitative models of the coupled lithosphere/mantle system

    Science.gov (United States)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2015-04-01

    impact of the mantle time-evolving buoyancy-field on lithospheric plate-motions; and (ii) explore the dynamics of lithosphere/mantle interactions by using the geological record as constraint, focusing on regions featuring cratonic lithosphere, dynamic topography or high topographic features. This progress allows us to self-consistently simulate any tectonic scenario from the late Cretaceous -- through the Cenozoic -- to the present-day. Our work will aid with better understanding the processes that govern the coupled lithosphere/mantle system.

  3. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis

    Science.gov (United States)

    Wang, Xiangsong; Cai, Keda; Sun, Min; Xiao, Wenjiao; Xia, Xiaoping; Wan, Bo; Bao, Zihe; Wang, Yannan

    2018-03-01

    Late Carboniferous to Early Permian is a critical period for the final amalgamation of the Central Asian Orogenic Belt (CAOB). However, as most of the accreted terranes of the CAOB are unclear in tectonic nature and origin, the timing and processes of their mutual amalgamation have been poorly constrained. To understand assembly of the West Junggar Terrane with the Yili Block, a suite of the late Paleozoic magmatic rocks, including ignimbrite, rhyolite and granite, in northwestern Chinese Tianshan Belt were studied for their petrogenesis and tectonic implications. Our new results of secondary ion mass spectrometry (SIMS) zircon U-Pb dating reveal two separate magmatic episodes, ca. 300 Ma volcanism (ignimbrite and rhyolite) and ca. 288 Ma plutonsim (biotite granite). Geochemically, for the ca. 300 Ma volcanism, the ignimbrites have low SiO2 (65.8-71.5 wt.%) and Mg# (6-13) values, and exhibit arc affinity with significantly enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE) such as Nb, Ta and Ti. The whole-rock εNd(t) and zircon εHf(t) values range from +6.9 to +7.0 and +9.9 to +14.1 respectively, indicating a juvenile basaltic lower crustal origin. Rhyolites have slightly high SiO2 (72.7-74.0 wt.%) and K2O (3.86-4.53 wt.%) contents, high zircon δ18O (11.67-13.23‰) values, and low whole-rock εNd(t) (+2.9 to +3.8) and zircon εHf(t) (+2.8 to +10.0) values, which may suggest sediment involvements during magma generation. In contrast, for the ca. 288 Ma plutonism, the biotite granites have obviously higher SiO2 (74.7-75.5 wt.%) contents and whole-rock εNd(t) (+7.7 to +8.8), zircon εHf(t) (+9.8 to +12.7), and lower zircon δ18O (5.99-6.84‰) values, than those of the ca. 300 Ma volcanic rocks, which are consistent with signatures of juvenile magma source. According to our estimates of zircon saturation temperatures, together with their contrasting genesis, we attribute the formation of ca. 300 Ma high

  4. GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

    Science.gov (United States)

    Rundle, J. B.; Rundle, P. B.; Klein, W.; de sa Martins, J.; Tiampo, K. F.; Donnellan, A.; Kellogg, L. H.

    The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://www.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition

  5. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    Science.gov (United States)

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  6. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario......A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... for foot movements and weight distribution in the feet. During the end of the weight-bearing phase of the stride, the weight of the animal was transferred to the front of the digits, creating a rotated disc below the foot that was bounded by an extensional fault at the front and a thrust ramp toward...

  7. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  8. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    Science.gov (United States)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  9. Venus: No Catastrophic Resurfacing, No Plate Tectonics, But a Rich Ancient History - Results from Global Ribbon Tessera Terrain Mapping

    Science.gov (United States)

    Hansen, V. L.; López, I.

    2008-03-01

    A global map of ribbon tessera terrain rtt shows: rtt covers ~18% of Venus; distinct rtt suites "defined by tectonic fabric" cover millions of km2, and show crosscutting relations, forming the basis for a global-scale (relative) ancient timescale.

  10. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites

    Science.gov (United States)

    Moghadam, Hadi Shafaii; Stern, Robert J.

    2015-03-01

    Iran is a mosaic of continental terranes of Cadomian (520-600 Ma) age, stitched together along sutures decorated by Paleozoic and Mesozoic ophiolites. Here we present the current understanding of the Mesozoic (and rare Cenozoic) ophiolites of Iran for the international geoscientific audience. We summarize field, chemical and geochronological data from the literature and our own unpublished data. Mesozoic ophiolites of Iran are mostly Cretaceous in age and are related to the Neotethys and associated backarc basins on the S flank of Eurasia. These ophiolites can be subdivided into five belts: 1. Late Cretaceous Zagros outer belt ophiolites (ZOB) along the Main Zagros Thrust including Late Cretaceous-Early Paleocene Maku-Khoy-Salmas ophiolites in NW Iran as well as Kermanshah-Kurdistan, Neyriz and Esfandagheh (Haji Abad) ophiolites, also Late Cretaceous-Eocene ophiolites along the Iraq-Iran border; 2. Late Cretaceous Zagros inner belt ophiolites (ZIB) including Nain, Dehshir, Shahr-e-Babak and Balvard-Baft ophiolites along the southern periphery of the Central Iranian block and bending north into it; 3. Late Cretaceous-Early Paleocene Sabzevar-Torbat-e-Heydarieh ophiolites of NE Iran; 4. Early to Late Cretaceous Birjand-Nehbandan-Tchehel-Kureh ophiolites in eastern Iran between the Lut and Afghan blocks; and 5. Late Jurassic-Cretaceous Makran ophiolites of SE Iran including Kahnuj ophiolites. Most Mesozoic ophiolites of Iran show supra-subduction zone (SSZ) geochemical signatures, indicating that SW Asia was a site of plate convergence during Late Mesozoic time, but also include a significant proportion showing ocean-island basalt affinities, perhaps indicating the involvement of subcontinental lithospheric mantle.

  11. Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17.

    Science.gov (United States)

    Marques, Luis; Thompson, David

    1997-01-01

    This study investigates student misconceptions in the areas of continent, ocean, permanence of ocean basins, continental drift, Earth's magnetic field, and plates and plate motions. A teaching-learning model was designed based on a constructivist approach. Results show that students held a substantial number of misconceptions. (Author/DKM)

  12. Slab dip, surface tectonics: How and when do they change following an acceleration/slow down of the overriding plate?

    Science.gov (United States)

    Guillaume, Benjamin; Hertgen, Solenn; Martinod, Joseph; Cerpa, Nestor G.

    2018-02-01

    We present analogue models simulating the subduction of an oceanic lithosphere beneath an overriding plate advancing at variable rates. The convergence velocity is imposed by lateral boundary conditions in this experimental set. We analyze the geometry of the slab and the deformation of the overriding plate. Experiments confirm the strong correlation between the absolute velocity of the overriding plate on the one hand, the geometry of the subducting plate and the deformation of the overriding plate on the other hand. Following an instantaneous change in kinematic boundary conditions, the subduction system progressively shifts to a new steady-state regime. Models suggest that the adjustment time necessary to shift from the previous to the new equilibrium is independent of the imposed upper plate velocity. Transient stage lasts ∼ 12.5 ± 6 m.y. for the shallow slab dip (100-150-km depth), ∼ 29.2 ± 10 m.y. for the deeper slab dip (300-350-km depth), and ∼ 2.2 ± 2 m.y. for the upper plate deformation. The analysis of present-day subduction zones and their evolution through the last 20 m.y suggests an adjustment time of ∼15 m.y. for shallow slab dip and ∼20 m.y. for deep slab dip in Nature. Since only few subduction zones have shown a constant upper plate velocity over the last 15 m.y., it suggests that most of them are in a transient stage at present-day.

  13. Far-Field Deformation Resulting from Rheologic Differences Interacting with Tectonic Stresses: An Example from the Pacific/Australian Plate Boundary in Southern New Zealand

    Directory of Open Access Journals (Sweden)

    Phaedra Upton

    2014-07-01

    Full Text Available The Miocene in Southern New Zealand was dominated by strike-slip tectonics. Stratigraphic evidence from this time attests to two zones of subsidence in the south: (a a middle Cenozoic pull-apart basin and (b a regionally extensive subsiding lake complex, which developed east and distal to the developing plate boundary structure. The lake overlay a block of crust with a significantly weak mid-crustal section and we pose the question: can rheological transitions at an angle to a plate boundary produce distal subsidence and/or uplift? We use stratigraphic, structural and geophysical observations from Southern New Zealand to constrain three-dimensional numerical models for a variety of boundary conditions and rheological scenarios. We show that coincident subsidence and uplift can result from purely strike-slip boundary conditions interacting with a transition from strong to weak to strong mid-crustal rheology. The resulting pattern of vertical displacement is a function of the symmetry or asymmetry of the boundary conditions and the extent and orientation of the rheological transitions. For the Southern New Zealand case study, subsidence rates of ~0.1 mm/yr are predicted for a relative plate motion of 25 mm/yr, leading to ~500 m of subsidence over a 5 Ma time period, comparable to the thickness of preserved lacustrine sediments.

  14. Deciphering detailed plate kinematics of the Indian Ocean and developing a unified model for East Gondwanaland reconstruction: An Indian-Australian-French initiative

    Digital Repository Service at National Institute of Oceanography (India)

    Yatheesh, V.; Dyment, J.; Bhattacharya, G.C.; Muller, R.D.

    in the northwestern and central Indian Ocean by combining the available magnetic data from conjugate regions and provided a detailed understanding of plate tectonic evolution of Indian-Antarctic and Indian-African plate boundaries. Those projects were complemented...

  15. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    Science.gov (United States)

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  16. Tectono-stratigraphic evolution of the Canete Basin, Lima, Peru, a plate tectonic model for the Mesozoic evolution of the Central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, A.M. (Amoco Production Company, Houston, TX (United States))

    1993-02-01

    An arc-trench system has been active in the Central Andes since at least since Late Triassic. This Mesozoic margin was characterized by subduction-erosion processes, PreMesozoic metamorphic outer basement high, pervasive extension, tectonic inversion, sporadic igneous activity and segmentation of the arc. Episodic variations in the tectonic evolution of the associated basins were controlled by the variable angle of subduction, age of the subducted plate, rate and angle of convergence, and the relative motion of the Farallon and South America Plates. The Canete Basin is an elongate frontal arc basin, subparallel to the arc, which documents the early evolution of the Andean Orogeny. In the Canete Basin, the oldest arc volcanism is documented by the interbedded tuffs, lava flows and tuffaceous marine shales of the Late Jurassic Puente Piedra Group which was deposited along a series of isolated and elongated troughs that formed adjacent to the arc. During Late Berriasian the arc subsided and the lithofacies changed from arc to continental derived lithologies. The shallow marine, quartz rich Morro Solar Group was derived from the uplifted metamorphic basement high in the west, as the result of ensialic extension. Locally, volcanic quiescence was interrupted by deposition of the volcaniclastic rich Pucusana Formation. The Late Hauterivian to Aptian Lima Group consists of lime mudstones, shales and subordinated gypsum and bioclastic limestones with volcaniclastic and lava flow facies of the Chilca Group. Stratigraphic relationship rapid changes in thickness and facies of this unit document the development of an incipient arc and the persistence of ensialic extension prior to the maximum paroxysm of volcanic activity of the overlying Albian to Cenomanian Chillon Group. Interbedded volcaniclastic sandstones, lava flows, hyaloclastic breccias and the tuffaceous shales of the Chillon Group were coeval with the early phases of emplacement of the Coastal Batholith (CB).

  17. Plate convergence, crustal delamination, extrusion tectonics and minimization of shortening work as main controlling factors of the recent Mediterranean deformation pattern

    Directory of Open Access Journals (Sweden)

    D. Babbucci

    1997-06-01

    Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.

  18. Atmospheric Compensation of Variations in Tropical Ocean Heat Transport: Understanding Mechanisms and Implications on Tectonic Timescales

    Science.gov (United States)

    Rencurrel, M. C.; Rose, B. E. J.

    2015-12-01

    The poleward transport of energy is a key aspect of the climate system, with surface ocean currents presently dominating the transport out of deep tropics. A classic study by Stone (1978) proposed that the total heat transport is determined by astronomical parameters and is highly insensitive to the detailed atmosphere-ocean dynamics. On the other hand, previous modeling work has shown that past continental configurations could have produced substantially different tropical ocean heat transport (OHT). How thoroughly does the atmosphere compensate for changes in ocean transport in terms of the top-of-atmosphere (TOA) radiative budget, what are the relevant mechanisms, and what are the consequences for surface temperature and climate on tectonic timescales? We examine these issues in a suite of aquaplanet GCM simulations subject to large prescribed variations in OHT. We find substantial but incomplete compensation, in which adjustment of the atmospheric Hadley circulation plays a key role. We then separate out the dynamical and thermodynamical components of the adjustment mechanism. Increased OHT tends to warm the mid- to high latitudes without cooling the tropics due asymmetries in radiative feedback processes. The warming is accompanied by hydrological cycle changes that are completely different from those driven by greenhouse gases, suggesting that drivers of past global change might be detectable from combinations of hydroclimate and temperature proxies.

  19. Strike-slip tectonics within the northernmost Philippine Sea plate in an arc-continent collisional setting

    Science.gov (United States)

    Gong, Wei; Jiang, Xiaodian; Guo, Yufan; Xing, Junhui; Li, Congying; Sun, Yang

    2017-09-01

    The geological processes in the northernmost Philippine Sea plate, which is bounded by the Suruga and Sagami troughs, are a typical example of an active collision zone. We attempt to illustrate the stress field through seismic estimations and geodetic analysis and propose the kinematic mode of the northernmost tip of the Philippine Sea plate. Seven events (M ≥ 4.0) are chosen for waveform inversion by the ISOLA software to distinguish the stress field. In particular, six of the chosen events, which exhibit strike-slip motion, are distributed in the eastern area, where few focal mechanisms have been reported by previous studies. According to the available focal mechanisms, strike-slip faults with similar P and T axes are widely distributed in the study area. The stress inversion suggests that the northern area is characterized by a NW-SE compression and a NE-SW extension stress regime, although some spatial differences exist. As indicated by an analysis of the geodesy, epicenters, focal mechanisms, gravity anomalies and velocity structure, the deformation in the northernmost tip is mainly accommodated by several conjugate strike-slip fault systems with steep dips that center on the Izu volcanic line. Generally, the maximum principal stress of the kinematics is derived from the collision between the Philippine Sea plate and Central Japan. Because of the different subduction angles, rates and directions of the down-going plate, diverging slab-pull forces along the Suruga and Sagami troughs may be causing the NE-NNE extension in most of the areas that are bounded by the two troughs. The extension propagates southwards along the Izu volcanic line and reaches the area adjacent to Miyake-jima.

  20. Tectonics Timor-style: Episodic, early-stage orogenesis at a young collision plate margin and implications for orogenic and petroleum fluids

    Science.gov (United States)

    Keep, Myra; Haig, David; Benincasa, Aaron

    2017-04-01

    Timor Island, in the Outer Banda Arc, preserves the orogenic product of an arc-continent collision between the Australian Plate and the Banda Arc that commenced after 9.8 Ma GTS2004 but emerged above sea level only 3.1 Ma ago. The orogenic pile includes large tracts of material from the Australian margin, including the Permian to Middle Jurassic Gondwana Megasequence and the Late Jurassic to early Late Miocene Australian-Margin Megasequence, as well as stratigraphic sequences indicating a Gondwanan terrane with an oceanic affinity. In addition, material from the Banda Arc side of the plate margin, referred to as the Banda Terrane, occurs throughout the island and includes both seaf!oor metamorphosed igneous material and cover sediments. We document four distinct stages to this young orogeny, based largely on detailed and robust stratigraphic and biostratigraphic analyses. An early shortening, between 9.8 Ma and 5.5 Ma reflects the early collision. However, somewhat unexpectedly we found that this early collision was followed by a period of tectonic quiescence, 5.5 Ma to 4.5 Ma, during which time pelagic sedimentation occurred across much of Timor, reflecting locking of the subduction zone. Since 4.5 Ma deformation has been manifest as late, high-angle strike slip faults that dominate the topography and dismember the early-formed thrust sheets, and a more recent phase of broad doming causing uplift relate to the rapid rise of the island. Early deformation, manifest as south- to southeasterly directed thrust nappes, is now preserved in only a handful of locations. Oil and gas seeps and hot springs that occur across East Timor reflect control by underlying structural zones parallel to the strike of the island. These linear zones parallel plate-boundary scale strike-slip faults that exhume the Australian-derived (oldest) rocks on Timor. Recent strike-slip deformation, manifest as linear tectonic melange zones parallel to major, late, high-angle faults controls the

  1. Tectonic growth of a Cretaceous-Eocene accretionary orogen formed at the southern margin of the Caribbean Plate: integrated geological insights from northernmost Colombia

    Science.gov (United States)

    Cardona, A.; Weber, M. B.; Bayona, G.; Jaramillo, C.; Montes, C.; Ojeda, G.; Duque, J. F.; Salazar, C. A.

    2007-05-01

    Geological characteristics from the Cretaceous to Eocene metamorphic and igneous basement rocks from the Guajira and the NW corner of the Sierra Nevada de Santa Marta massifs in the northern Colombian Caribbean region, and the stratigraphy of adjacent basins, reveal different stages of growth of a segmented Late Cretaceous to Eocene accretionary orogen formed by interaction between the NW margin of South America and the Caribbean plate. Extensive intercalations of metavolcano-sedimentary rocks in the Santa Marta region, chemical composition of spinels and pyroxenes from serpentinized mantle tectonites and gabbros, as well as whole rock geochemistry from basaltic dykes from the Guajira massifs, record the evolution of a Cretaceous intra-oceanic arc in a succesion of Mariana- and Chile-type subduction styles. Geological and positive gravity signatures suggest that this arc was accreted and tectonically underplated to the continental margin of South America, creating a Maastrichian-Paleocene syn-orogenic basin, presently cropping out in the Cesar-Rancheria valley. After this collisional event, subduction of the Caribbean plate under South America started, as revealed by intrusion of composite stitched Late Paleocene-Eocene granitoids in the NW corner of the SNSM and Guajira massifs. These plutons show continental calc-alkaline geochemical signatures and more evolved Sr and Nd isotopic compositions than juvenile and older intra-oceanic arc magmatic rocks. This new subduction environment is linked to the convergence between North and South America at this time. Low pressure estimations and fast cooling rates between 450-250° for the Eocene granitoids in the Guajira and Santa Marta regions, indicate shallow < 7 Km depths of intrusion. Local unconformable stratigraphic relationships with Eocene-Miocene sediments at the Guajira region and overimposed post-magmatic low temperature deformation in some of these granitoids suggest an important Late Eocene unroofing and

  2. How We Got to the Northern Hemisphere Ice Ages: Late Miocene Global Cooling and Plate Tectonic CO2 Forcing

    Science.gov (United States)

    Herbert, T.; Dalton, C. A.; Carchedi, C.

    2017-12-01

    The evolution of Earth's climate between "refrigeration" of East Antarctica and the onset of cyclic Northern Hemisphere glaciation spanned more than 11 Myr. In the latest Miocene (Messinian) time, approximately half way on this journey, changes on land, ranging from the expansion of arid zones to major floral and faunal ecosystem shifts, accelerated. Recent compilations of marine surface temperatures reveal that global cooling from the Miocene Optimum (14-16Ma) also accelerated in late Miocene (7-5.35 Ma) time to reach temperatures not much above Holocene conditions. Both hemispheres cooled in parallel, with the changes amplified at higher latitudes in comparison to the tropics. Despite the strong circumstantial case for CO2 decline as the dominant cause of late Miocene climatic and evolutionary change, proxy indicators of CO2concentrations paint an equivocal picture of greenhouse forcing. Here we provide evidence that global sea floor spreading (SFS) rates decelerated at exactly the times of major climatic cooling, linking a decline in tectonic degassing (at both subduction zones and mid-ocean ridges) to fundamental shifts in the global carbon cycle. Our work utilizes newly available global compilations of seafloor fabric and marine magnetic anomalies provided by the NSF-funded Global Seafloor Fabric and Magnetic Lineation Data Base Project. Previous global compilations of SFS typically binned estimates over 10 Myr increments, losing critical resolution on the timescale of late Neogene climate changes. We further improve the signal:noise of SFS estimates by incorporating recent advances in the astronomical calibration of the Miocene geomagnetic polarity timescale. We use two approaches to compile spreading rate estimates over the past 20 Myr at each spreading system: optimized finite rotation calculations, and averages of sea floor-spreading derived from the distances of magnetic lineations along flow lines on the sea floor. Weighted by ridge length, we find an 25

  3. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...... of academic teaching and lecturing into account....

  4. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    Science.gov (United States)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  5. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics

    Directory of Open Access Journals (Sweden)

    N. Wright

    2013-03-01

    Full Text Available A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.

  6. Role of the Tectonic inheritance on multi-phased rifting of the Sperchios Basin (Greece), north-western boundary of the Aegean Plate

    Science.gov (United States)

    Chanier, Frank; Ferriere, Jacky; Averbuch, Olivier; Gaullier, Virginie; Graveleau, Fabien

    2017-04-01

    The Aegean plate is characterized by active extension, mainly occurring during the Pliocene to the Quaternary. This extensional deformation is considered as the upper plate response to the rollback of the northward subducting African slab. In Central Greece, it has led to the formation of large rifted basins, such as the Corinth Rift or the Sperchios basin. Both are experiencing active tectonics, as seismicity and morphotectonic analysis demonstrate. In this study, we focus on the East-West Sperchios basin, which has developed obliquely across a major NW-SE thrust zone separating the internal and external zones of the Hellenides mountain range. This range has developed since the late Jurassic, with the obduction of the Maliac Ocean, up to the Eocene times, with the collision of the External Zones. The Frontal Thrust of the internal Hellenides constitutes a major discontinuity within the crust, which may have influenced the development of the Sperchios basin. Our field investigations indicate that the southern boundary of the Sperchios rifted basin shows several large E-W to NW-SE normal faults that accommodate km-scale offsets. Our fault plane analysis showed a variety of fault orientations, all with dip-slip slicken-slides. It suggests at least two major episodes of extension, starting with a NE-SW direction in the Pliocene and then followed by a N-S direction. The latter is still active today and confirmed by geodetic studies and by earthquakes focal mechanisms. The early NE-SW episode of extension (mainly Pliocene in age) is expressed in the field by low-angle normal faults, dipping 20 to 30° northeastward, more or less parallel to the Frontal thrust of the Internal Hellenides. These low-angle normal faults are separating the platform limestones of the external zones from the upper tectonic units of the internal zones. We suggest that these low-angle normal faults are corresponding to the earlier stage of rifting and that they are rooted in the major thrust

  7. Evolution of Plate Tectonics on Earth since the Mid-Mesoarchean was Controlled by Sedimentary Fluxes from Continents to Oceans and Mantle Temperature

    Science.gov (United States)

    Sobolev, S. V.; Brown, M.

    2017-12-01

    Plate tectonics (PT) is the most important geological process operating on Earth, making it unique among the rocky planets in the Solar System. The question of how PT was initiated and which factors controlled its evolution over Earth's history are widely discussed, but remain controversial. It is broadly accepted that a necessary condition for initiation and stable operation of PT is maintaining low strength along plate boundaries, particularly along the subduction zone interfaces in the subduction channels. Examples from the South American Andes and other convergent margins show that unconsolidated continental sediments in trenches serve as an efficient lubricant for subduction; if these are lacking, friction in the subduction channel and strength of the plate boundary are significantly increased. We suggest that lubrication of subduction by accumulation of continental sediments in trenches played a crucial role during the evolution of PT on Earth since the mid-Mesoarchean. We posit that continental emergence and enhanced surface erosion caused an increasing flux of sediments into the oceans, which in turn lubricated subduction channels and intensified PT. Thus, peaks in orogenesis, as confirmed by several proxies, during periods of supercraton/supercontinent assembly represent periods of vigorous subduction and continental sedimentation in trenches prior to terminal collision. Conversely, a decrease in plate boundary length and a reduction in continental sediment accumulation in trenches during periods of stability after supercraton/supercontinent assembly is the likely reason for periods of lower PT vigor, including the so called `boring billion' between 1.8 and 0.8 Ga. The largest surface erosion and subduction-lubrication event occurred at the end of the `snowball' Earth epoch in the Neoproterozoic and likely accelerated the most recent episode of vigorous PT. Based on analysis of various geological observations, we suggest that the cyclic behavior of PT on

  8. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  9. Using global, quantitative models of the coupled plates/mantle system to understand Late Miocene dynamics of the Pacific plate

    Science.gov (United States)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2017-04-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of

  10. Using Global, Quantitative Models of the Coupled Plates/Mantle System to Understand Late Neogene Dynamics of the Pacific Plate

    Science.gov (United States)

    Stotz, I.; Davies, R.; Iaffaldano, G.

    2016-12-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of

  11. Geochemistry of subalkaline and alkaline extrusives from the Kermanshah ophiolite, Zagros Suture Zone, Western Iran: implications for Tethyan plate tectonics

    Science.gov (United States)

    Ghazi, A. Mohamad; Hassanipak, A. A.

    1999-06-01

    The Kermanshah ophiolite is a highly dismembered ophiolite complex that is located in western Iran and belongs to the Zagros orogenic system. The igneous rocks of this complex consist of both mantle and crustal suites and include peridotites (dunite and harzburgite), cumulate gabbros, diorites, and a volcanic sequence that exhibits a wide range in composition from subalkaline basalts to alkaline basalts to trachytes. The associated sedimentary rocks include a variety of Upper Triassic to Lower Cretaceous deep- and shallow-water sedimentary rocks (e.g., dolomite, limestone, and pelagic sediments, including umber). Also present are extensive units of radiolarian chert. The geochemical data clearly identifies some of the volcanic rocks to have formed from two distinct types of basaltic melts: (i) those of the subalkaline suite, which formed from an initial melt with a light rare earth elements (LREE) enriched signature and incompatible trace element patterns that suggest an island arc affinity; and (ii) those of the alkaline suite with LREE-enriched signature and incompatible trace element patterns that are virtually identical to typical oceanic island basalt (OIB) pattern. The data also suggests that the trachytes were derived from the alkaline source, with fractionation controlled by extensive removal of plagioclase and to a lesser extent clinopyroxene. The presence of compositionally diverse volcanics together with the occurrence of a variety of Triassic-Cretaceous sedimentary rocks and radiolarian chert indicate that the studied volcanic rocks from the Kermanshah ophiolite represent off-axis volcanic units that were formed in intraplate oceanic island and island arc environments in an oceanic basin. They were located on the eastern and northern flanks of one of the spreading centers of a ridge-transform fault system that connected Troodos to Oman prior to its subduction under the Eurasian plate.

  12. Earthquakes as Expressions of Tectonic Activity

    Indian Academy of Sciences (India)

    With an introduction to the ideas of plate tectonics and earthquake terminology, this article introduces ... timum thickness, to generate a fragmented architecture. A hard and fragmented outer shell, floating on the ... The basic idea of the plate tectonic model is that the outer shell of the Earth is divided into several plates, both ...

  13. The Tectonic Practice

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    has the consequence that it is difficult to create architecture where the technical concerns are an inherent part of the architectural expression. The aim of the thesis is to discuss the role of digital tools in overcoming the distance between the professional specializations and thereby support...... a tectonic practice. The project develops a framework to understand the role of digital tools in the tectonic practice from and discusses how and in which areas the tectonic practice could become supported by digital tools....

  14. Understanding DRM acquisition of plates and spheres: a first comparative experimental approach

    Science.gov (United States)

    Bilardello, Dario

    2013-10-01

    Since King presented the `plates and spheres' model in an attempt to investigate the origin of the inclination error in sediments, no one to date has conducted specific experiments designed to separate the individual contribution of platy and spherical particles to depositional remanent magnetizations (DRMs). It is commonly accepted that it is the flattening of plates, rather than the rolling of spheres that is the main source of inclination error in sediments. Recently, however, Bilardello et al. have shown that spheres alone may lead to significant amounts of shallowing. A comparison of experiments run in parallel using synthetic platy and spherical particles is presented. Experiments of the duration of 24 hr were run in 100 μT field intensity (μ0H) and varying field inclinations (IF) from vertical to horizontal. A systematic dependence of the magnetization on field inclination is apparent. Results indicate that magnetic moment measurements are more repeatable for spherical particles than for plates, yielding smaller uncertainties. Inclination measurements, however, are more repeatable for platy particles, with a more linear relationship of inclination error to applied field inclination. Moreover, plates yield smaller inclination error than spheres. A clear field inclination dependency of the inclination error also exists, with the error decreasing through field inclinations of 30°, 60° and 90°. A continuous acquisition experiment involving plates was also run up to 10 d of deposition in μ0H = 100 μT and IF = 60°. The acquisition curves for moment, inclination and thickness of depositing sediment are compared to the mean curves measured for spheres by Bilardello et al. under the same field conditions. No unequivocal evidence of compaction of the platy particles is observed, while the inclination error is acquired virtually instantaneously for all particles. These preliminary results contradict the widespread understanding that inclination shallowing is

  15. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  16. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2018-01-01

    Full Text Available To better understand Earth's present tectonic style–plate tectonics–and how it may have evolved from single plate (stagnant lid tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment (plate motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes; any other tectonic style is usefully called “stagnant lid” or “fragmented lid”. In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects, which we informally call “planetoids” and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice (Jupiter, Saturn, Uranus, and Neptune and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m3 or greater from 20 icy planetoids (including the gaseous and icy giant planets with ρ = 2200 kg/m3 or less. We define the “Tectonic Activity Index” (TAI, scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing (inferred from impact crater density. Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate (rocky planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is

  17. Maps, Plates, and Mount Saint Helens.

    Science.gov (United States)

    Lary, Barbara E.; Krockover, Gerald H.

    1987-01-01

    Describes a laboratory activity on plate tectonics which focuses on the connection between plate tectonics and the different types of volcanoes. Provides questions for discussion and includes suggestions for extending the activity. (ML)

  18. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2012-09-01

    Full Text Available This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints. The direction of the maximum principal stress axes is interpreted to be NW–SE (about 325°, and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index R′ is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleozoic.

  19. Tectonic History and Deep Structure of the Demerara Plateau from Combined Wide-Angle and Reflection Seismic Data and Plate Kinematic Reconstructions

    Science.gov (United States)

    Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.

    2017-12-01

    Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern

  20. Global tectonics and space geodesy.

    Science.gov (United States)

    Gordon, R G; Stein, S

    1992-04-17

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries \\m=~\\1 to 60 kilometers wide. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover \\m=~\\15 percent of Earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, is providing the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities averaged over millions of years.

  1. Performative Tectonics

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Mullins, Michael

    2010-01-01

    This paper studies two digital generative tools in terms of Performative Tectonics. Performative Tectonics is a term developed in the paper, which links the contemporary development of digital tools to the tectonic tradition of architecture. Within the theoretical framework of this definition......, the paper presents case studies of the structural optimisation software eifForm, and the parametric modelling software Generative-Components....

  2. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  3. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  4. Tectonic predictions with mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  5. Tectonic reconstruction models for the break-up and divergence of the Manihiki and Hikurangi plateaux

    Science.gov (United States)

    Pockalny, R. A.; Dahn, M. R.

    2013-12-01

    The plate tectonic history of the Mid-Cretaceous seafloor located between the Manihiki and Hikurangi plateaux is poorly constrained due to the complex pattern of fracture zones and the lack of correlatable magnetic anomalies. Conventional plate reconstruction models suggest the Manihiki, Hikurangi and Ontong Java plateau were once part of a larger igneous complex, which broke up during a major plate reorganization at about magnetic anomaly M0 time (~120 Ma). The divergence between the Manihiki and Hikurangi plateaux continued for an unspecified duration, but likely ceased during another major plate reorganization event in the Late Cretaceous (71-84 Ma). At that time, spreading near the Osbourn Trough relocated to the Pacific-Antarctic divergent plate boundary. To understand the detailed tectonic history of the region bracketed by these plate reorganization events, we have assembled all available high-resolution multibeam in the region. These data were used to quantify regional trends in abyssal hill orientations and to identify fracture zone locations and offset orientations. Our preliminary results suggest a fairly complex spreading history for the region, which requires multiple Euler Poles and ridge-axis relocation events. We present several tectonic reconstruction scenarios to account for these new observations. These tectonic reconstructions have important implications for the mantle plume-influenced history of the region and the origin/evolution of the Manihiki-Hikurangi-Ontong Java large igneous province.

  6. Tectonic stress pattern in the Chinese Mainland from the inversion of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 3. Tectonic stress pattern in the ... models (e.g., the extrusion model). From the perspective of tectonics, the mutual actions among the Eurasian plate, Pacific plate and Indian plate caused the present-day tectonic stress field in the Chinese Mainland.

  7. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  8. A contribution to better understanding of structural characteristics and tectonic phases of the Boč region, Periadriatic Fault Zone

    Directory of Open Access Journals (Sweden)

    Lea Žibret

    2016-12-01

    Full Text Available The aim of this study was to determine properties of the tectonic contact between Permian/Mesozoic limestones and less competent Miocene clastites on the northeastern foothill of the Boč Mt. Because fault planes signifiantly mark the relief, this contact was studied by a detailed structural mapping, which showed that the Boč Mt. is limited by subvertical faults in its northeastern part. To ensure that mapped subvertical contact is compatible with regional geodynamics of the area, additionally paleostress analysis of fault-slip data was performed. Four individual paleostress tensor groups were documented in a wider Boč area and compared by published structural data from the border zone between Alps, Dinarides and Pannonian Basin. The oldest paleostress tensor group (Phase 1 is likely of Lower and Middle Miocene age and indicates SW-NE extension accommodated by W-E to WNW-ESE striking normal faults. Phase 2 can be correlated with Middle to Late Miocene NW-SE to WNWESE directed extension accommodated by NNE-SSW striking normal faults. Phase 3 is correlated with Late Miocene W-E directed contraction accommodated by N-S striking sinistral faults and NNE-SSW to NE-SW striking dextral faults. The youngest paleostress tensor group (Phase 4 fis well with Pliocene to Quaternary NNW-SSE to N-S directed contraction accommodated by NW-SE to W-E striking dextral faults and NE-SW striking reverse faults. Since the documented paleostress phases fis well with the geodynamic processes of the Alps-Dinarides-Carpathians territory the subvertical border in the northeastern part of Boč Mt. seems to be an acceptable structural solution. The study is important because the study area is located at interaction zone between two major Alpine fault systems: the Periadriatic and the Lavanttal faults.

  9. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  10. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    Science.gov (United States)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  11. Active tectonics, fault patterns, and stress field of Deception Island: A response to oblique convergence between the Pacific and Antarctic plates

    Science.gov (United States)

    Maestro, A.; Somoza, L.; Rey, J.; Martínez-Frías, J.; López-Martínez, J.

    2007-02-01

    Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress ( σy) shows NW-SE and NNE-SSW to NE-SW orientations and horizontal extension ( σ3) in NE-SW and WNW-ESE to NW-SE directions. Alignments of mesofractures show a maximum of NNE-SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N-S, NNE-SSW, NE-SW, ENE-WSW to E-W, WNW-ESE, and NNW-SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.

  12. A palaeomagnetic perspective of Precambrian tectonic styles

    Science.gov (United States)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  13. Transcultural Tectonic Connections

    DEFF Research Database (Denmark)

    Carter, Adrian

    2014-01-01

    This paper presents an understanding of Jørn Utzon, as one of the most profound exponents of a transcultural and tectonic approach to modern architecture in the late twentieth century. The paper will examine the sources of inspiration, intersections and connections in Utzon’s architecture; which...... of cloud formations over a Hawaiian beach, when Utzon was teaching at the University of Hawai’i at Manoa. It is this ability to make connections and translate ideas from one context to another with poetic architectural vision and tectonic integrity, that is at the heart of Utzon’s architecture Together...... with such original unrealised projects as the subterranean Silkeborg Art Museum, Utzon’s work embodies a visionary approach to architecture that is site specific and poetic, tectonic and humane; informed by a profound appreciation of nature and diversity of human cultures, as sources of inspiration and analogy...

  14. Numerical Simulation of the Borehole Magnetic Field for Resolving the Possible Rotation of Tectonic Basins and Plates during ICDP and IODP Experiments

    Science.gov (United States)

    Lee, S. M.; Parq, J. H.

    2017-12-01

    An accurate measurement of magnetic field inside the borehole, together with a right set of paleomagnetic measurements on the recovered core samples, should allow one to resolve important elements such as the rotation of the basin or the plate on which the basin is located. The ability to resolve the rotation of the basin can be crucial during drilling experiments by International Continental Scientific Drilling Program (ICDP) and International Ocean Discovery Program (IODP). A good example where the rotation is a central question is the Philippine Sea Plate, which is thought to have rotated about 90° clockwise during the last 55 million years. Despite the significance, previous borehole magnetometers were not accurate enough to achieve such a goal because, among various technical issues, determining the orientation of the sensor inside the borehole to a very high level of accuracy was not easy. The next-generation (third-generation) borehole magnetometer (3GBM) was developed to overcome this difficulty and to bring paleomagnetic investigations to a new level. Even with the new development, however, there are still concerns whether the new instrument can really resolve the rotation because the magnetic field anomalies generated by the sediment is generally very low. In this paper, we present numerical simulations based on finite element method of the magnetic field inside the borehole that were conducted as part of a test to demonstrate that, despite low levels of magnetization, the magnetic fields can be resolved. The results also served as an important input on the design requirements of the borehole magnetometer. Various cases were considered, including the situation where the sedimentary layer is horizontal and inclined. We also explored the cases where volcanic sills were present within the sedimentary layer as they may provide a greater magnetic signature than having sediment alone, and thus improving our chances of determining the rotation. Simulations are

  15. Litho-tectonic mapping of the North Afar region from Sentinel-2A multispectral imagery and ALOS AW3D30 digital elevation data: Controls on Danakil-Nubia plate motion between the Erta'Ale ridge and the Gulf of Zula

    Science.gov (United States)

    Hartnady, Chris; Hartnady, Michael; Wise, Edward; Blake, Dylan; McGibbon, David; Hay, E. Rowena

    2017-04-01

    The Danakil Depression in the North Afar region of Ethiopia reaches elevations deeper than 120 m below sea level and contains a Pleistocene-Holocene evaporite sequence currently investigated for potash mineral deposits. Separated from the main Ethiopian escarpment by the Dogua horst mountains, the asymmetric half-graben is bordered on its western (Nubian) side by the active, normal Main Danakil Rift-border Fault (MDRF). Above the MDRF, a series of piedmont alluvial fans (bajadas) fringes the Dogua Horst, emanating from a series of wadi catchments between the larger perennial rivers (Ragali, Saba) that drain from the high (>2000 m) Ethiopian Plateau. On its eastern side, the Danakil block contains Proterozoic-Palaeozoic sequences correlated with similar units in the Dogua range, and forms a microplate rotating independently between the larger Nubian and Arabian plates (McClusky et al., 2010). An understanding of the sedimentary and tectonic evolution of the Danakil-Nubia (DA-NU) plate system is crucial to the beneficial development of fresh groundwater resources and to an assessment of seismotectonic and volcanic geohazards in the area. Between the Mt Alid caldera in the Dandeiro graben and the Erta'Ale crater in the south Danakil, the rate of present-day DA-NU motion is 10.9 - 13.5 mm/yr, with direction azimuths N106E- N096E (after Schettino et al., 2016). DA-NU relative motion is focussed along the east-dipping MDRF in the Danakil but switches to an eastern (west-dipping) rift-border normal fault in the Dandiero, a northward extension of the Renda-Maglalla-Coma graben, separating the Dogua Horst from the main part of the NU plate. This change in rifting asymmetry occurs across a WNW/ESE-striking zone of basement faulting that terminates the Dogua Horst and functions as a left-stepping proto-transform fault zone, across the NNW direction of DA-NU proto-rift propagation. From 13-channel multispectral data of the European Space Agency satellite Sentinel-2A, a false

  16. Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chhotanagpur Gneissic Terrain, eastern India: Implications for their emplacement in a plate margin tectonic environment

    Science.gov (United States)

    Srivastava, Rajesh K.; Sinha, Anup K.; Kumar, Suresh

    2012-04-01

    A number of mafic intrusive bodies (mostly dykes) are exposed in the Chhotanagpur Gneissic Terrain (CGT). Most dykes trend in ENE-WSW to E-W following major structural trends of the region. These metabasite dykes show granoblastic to grano-nematoblastic textures and contain hornblende, plagioclase, chlorite, quartz and epidote which suggest their metamorphism under amphibolite grade P-T conditions. Although no radiometric age is available for the metabasite dykes, field relationships with host rock and available geochronology on granitoids suggest their emplacement during Mesoproterozoic. Geochemical characteristics of these dykes classify them as low-K tholeiite to medium-K calc-alkaline type. At least two types of metabasite dykes are recognized on the basis of their HFSE contents; one group shows entirely calc-alkaline nature, whereas the other group has rocks of tholeiite-calc-alkaline series. High Mg# observed in a number of samples indicates their derivation from primary melt. Multi-element spidergrams and rare-earth element patterns observed in these samples also corroborate their derivation from different magma batches. Trace element patterns observed for Nb-Ta, Hf-Zr, Sr and Y suggesting involvement of subduction related processes in the genesis of CGT metabasite dykes. Perceived geochemical characteristics suggest that metamorphism did not affect much on the chemistry of metabasites but source region, responsible for the generation of CGT metabasites, was possibly modified during subduction process. This study suggests that magma generated in a destructive plate setting fed the Mesoproterozoic mafic dykes of the CGT.

  17. Evolution of the Theory of the Earth: A Contextualized Approach for Teaching the History of the Theory of Plate Tectonics to Ninth Grade Students

    Science.gov (United States)

    Dolphin, Glenn

    2009-01-01

    Current high school Earth Science curricula and textbooks organize scientific content into isolated "units" of knowledge. Within this structure, content is taught, but in the absence of the context of fundamental understandings or the process of how the science was actually done to reach the conclusions. These are two key facets of scientific…

  18. Global evaluation of erosion rates in relation to tectonics

    Science.gov (United States)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  19. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    for foot movements and weight distribution in the feet. During the end of the weight-bearing phase of the stride, the weight of the animal was transferred to the front of the digits, creating a rotated disc below the foot that was bounded by an extensional fault at the front and a thrust ramp toward...... of the undertrack. The total length of the tectonic disturbance created by the dinosaur is up to three times that of the original footprint. Early, near-surface cementation gave the substrate the rheological properties necessary for development of the observed structures....

  20. Tectonic framework of the southern portion of the Paraná Basin based on magnetotelluric method: a contribution to the understanding of unconventional reservoirs

    Science.gov (United States)

    Rolim, S.

    2015-12-01

    The characterization of the tectonic framework of Paleozoic terrains is crucial for the investigation of unconventional fractured volcanic reservoirs. In recent years, the need for exploitation of these areas showed the value of the non-seismic methods in Brazil. Here we present the results of a magnetotelluric imaging (MT) to identify and characterize the structural framework of the southern portion of the Paraná Basin, southern Brazil. We carried out a SW-NE ,1200 km-long MT profile, with 68 stations spaced between 5-15 km on the southernmost states in Brazil. The observation of the PSI profile highlights the presence of large scale NW-SE faults and emphasize the presence of two major regional structures: (i) the Rio Grande Arc in the southern portion, and (ii) the Torres Syncline in the northern portion. The Rio Grande Arc is a horst highlighted by the basement uplift and the thicker layers of sedimentary rocks in the extremes south and north of this structure. The fault system observed along the profile suggests simultaneously uplifting of the basement and deposition of the sedimentary sequences of the Paraná Basin. This hypothesis is in agreement with stratigraphic, borehole and geochronological data, which have shown that the Rio Grande arc is contemporaneous with the deposition of the Triassic to Early Jurassic sediments. The Torres Syncline is a structure characterized by the increasing thickness of sedimentary layers in the north section of our MT profile. The continuity of the layers is interrupted by large regional fault systems, which also affect the volcanic rocks of the Serra Geral Formation, indicating that the faults were active after the Cretaceous. The results show that the MT modeling brings a distinct contribution to the understanding of the present structural architecture of the Paraná basin and the construction of a model for potential fractured volcanic reservoirs.

  1. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.

    1989-05-01

    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  2. An earth systems approach to understanding the tectonic and cultural landscapes of linked marine embayments: Avon-Heathcote Estuary (Ihutai) and Lake Ellesmere (Waihora), New Zealand

    Science.gov (United States)

    McFadgen, Bruce G.; Goff, James R.

    2005-03-01

    An earth systems study of the Avon-Heathcote Estuary (Ihutai), New Zealand, shows that tectonic activity has a marked direct and indirect control upon its geomorphology and human settlement in the area. We discuss the Late Holocene history of the embayment in relation to large earthquakes and their after-effects. Of particular note is the rapid fluvial transfer of sand to the coast causing dune formation and a more delayed pulse of coarser sediment causing channel avulsion of the Waimakariri River. While dune system development seems to occur soon after tectonic activity, river channel avulsion, spit/barrier formation and ongoing geomorphological changes may well relate to periods of tectonic activity that occurred 100-200 years previously. The interaction between these two sediment delivery systems causes significant, and often rapid, changes to coastal geomorphology and ecosystems that have serious implications for human populations living at or near the coast. We show a more region-wide picture of the direct and indirect effects of tectonic activity, by comparing two embayments that represent coastal points of entry at opposite ends of the Waimakariri River floodplain: the Avon-Heathcote Estuary (Ihutai) and Lake Ellesmere (Waihora).

  3. Tectonics and metallogenic provinces

    Science.gov (United States)

    Guild, P.W.

    1983-01-01

    Various theories have been advanced to explain the well-known uneven distribution of metals and ore-deposit types in space and time. Primordial differences in the mantle, preferential concentration of elements in the crust, the prevalence of ore-forming processes at certain times and (or) places, and combinations of one or several of these factors have all been called upon to account for the "metallogenic provinces," which can be defined loosely as regions containing similar deposits of one or a group of metals or minerals. Because many, perhaps most, provinces have complex, multistage origins, the relative importance of inheritance vs. process is still controversial. In recent years the geographic relationship of many geologically young provinces to present-day plate-tectonic positions (accreting or consuming margins, intraplate structures, etc.) has been widely recognized, and the presumption is strong that older provinces had similar relationships to former plates. As most ore deposits resulted from a favorable conjunction of geological processes that are no longer operative, elucidation of their genesis requires reconstruction of the geologic history of the province, with particular emphasis on events coeval with mineralization. Tectonic analysis is an important aspect of this reconstruction; data from orbiting satellites have contributed greatly to this analysis, as the voluminous literature of the past decade testifies. Both the synoptic view of large areas and the ability to emphasize faint contrasts have revealed linear, curvilinear, and circular features not previously recognized from field studies. Some of these undoubtedly reflect basement structures that have contributed to the development, or limit the extent, of metallogenic provinces. Their recognition and delineation will be increasingly valuable to the assessment of resources available and as guides to exploration for the ores needed by future generations. ?? 1983.

  4. Tectonic shortening and coeval volcanism during the Quaternary ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Tectonic shortening ... Abstract. The Northeast Japan arc, a mature volcanic arc with a back-arc marginal basin (Japan Sea), is located on a convergent plate boundary along the subducting Pacific plate and the overriding North American plate. From a ...

  5. The seismicity of Ethiopia; active plate tectonics

    Science.gov (United States)

    Mohr, P.

    1981-01-01

    "But I tell you, when you look at the way the pieces of the northeastern portion of the African continent seem to fit together, separated by a narrow gulf, you could almost make a believer [in continental drift] of anybody" Astronaut Harrison Schmidt, on the view from Apollo 17.

  6. Marginal inherited structures impact on the oblique convergent N American Plate/ Central Caribbean plate-boundary in the Northern Caribbean. The tectonic evolution since Miocene times based on Haiti data acquired onshore and offshore since 2012- a step toward an ADP Drilling Proposal (Haiti-DRILL).

    Science.gov (United States)

    Ellouz, N.; Hamon, Y.; Deschamps, R.; Battani, A.; Wessels, R.; Boisson, D.; Prepetit, C.; Momplaisir, R.

    2017-12-01

    Since Early Paleogene times, the North Caribbean plate is colliding obliquely with the south continental part of the old N. American Margins, which is represented by various segments from West to East, inherited from Jurassic times. Location, amount of displacement, rotation and the structural deformation of these margin segments, resulting from the dislocation of the continental N American margin, are not clearly yet established. At present, the plate limits are marked either by two left lateral faults west and inside Haiti (OSF in the North and EPGF in the South), oblique collision front (further west in Cuba), oblique subducted segments (to the East, Porto-Rico). From our recent works operated both offshore (Haiti-SIS and Haiti-BGF surveys 2012-2015) and onshore (field campaigns 2013-2017) in Haitian zone, the position of the present-day and paleo major limits have been redefined. These paleolimits have been reconstructed up to early Miocene times, based on: restoration of regional structural cross-sections, sedimentology and on paleoenvironement studies. In a preliminary way, we analyzed the complexity of the tectonic heritage with possible nature, heterogeneity of the crustal fragments and associated margins close to Haiti (age, structure, environment, location of the dislocated blocks through times) which profoundly impact the partitioning of the deformation along this complex transformed margin. The change in the structure wavelength, decollement level variations are primary constraints in the restoration of the main units and do impose a deep connection along specific segments either related to strike-slip or to splay faults. The asymmetry on the repartition of the fault activity tend to prove that the past motion related to "EPGF transfer zone" is mainly partitioned in Haiti to the North of the present-day EPGF position. At present, these results are still coherent with the distribution of the aftershoks registered after 2010, and with the present

  7. Framework for Tectonic Thinking, a Conceptual Approach

    DEFF Research Database (Denmark)

    Garritzmann, Udo

    2017-01-01

    This research paper is a contribution to the field of architectural design theory in the area of tectonics. From the designer’s point of view, it will develop an overarching conceptual framework for tectonic thinking (FTT), which will serve as a tool for the comparative analysis and interpretation...... of a wide range of tectonic motifs and design positions. The understanding of tectonics will be broadened and differentiated. The conceptual framework will be developed in writing and in hand-drawn mappings. This comparative method assumes not one single, supposedly right, meaning of tectonics, but several...... a value judgement beforehand about any of these positions. Also a-tectonic design positions will be regarded as valid positions within this framework....

  8. Inversion tectonics of the benue trough | Mamah | Global Journal of ...

    African Journals Online (AJOL)

    The Benue Trough, an aulacogen at the entrant of the Gulf of Guinea in Nigeria, has been historically studied from the concepts of ortho-mio-eu-geosynclines at outcrops and in the subsurface. Its structural evolution reveals a tectonic scenario compatible with Plate tectonic evolution of the Atlantic Ocean. Spreading was ...

  9. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-16

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes.

  10. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes

  11. Continental tectonics and continental kinetics

    International Nuclear Information System (INIS)

    Allegre, C.J.; Jaupart, C.; Paris-7 Univ., 75

    1985-01-01

    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  12. The alternative concept of global tectonics

    Science.gov (United States)

    Anokhin, Vladimir; Kholmyansky, Mikhael

    2016-04-01

    The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set

  13. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  14. Numerical Models of Alaskan Tectonics: A Review and Looking Ahead to a New Era of Research

    Science.gov (United States)

    Jadamec, M. A.; Freymueller, J. T.

    2015-12-01

    The Pacific-North American plate boundary in Alaska is in the current scientific spotlight, as a highlighted tectonic region for integrated scientific investigation. It is timely, therefore, to step back and examine the previous numerical modeling studies of Alaska. Reviewing the numerical models is valuable, as geodynamic modeling can be a predictive tool that can guide and target field studies, both geologic and geophysical. This review presents a comparison of the previous numerical modeling studies of the Alaska-Aleutian subduction zone, including the mainland and extending into northwestern Canada. By distinguishing between the model set-up, governing equations, and underlying assumptions, non-modelers can more easily understand under what context the modeling predictions can be interpreted. Several key features in the Alaska tectonic setting appear in all the models to have a first order effect on the resulting deformation, such as the plate margin geometry and Denali fault. In addition, there are aspects of the tectonic setting that lead to very different results depending how they are implemented into the models. For example, models which fix the slab velocity to surface plate motions predict lower mantle flow rates than models that allow the slab to steepen. Despite the previous modeling studies, many unanswered questions remain, including the formation of the Wrangell volcanics, the driver for motion in western and interior Alaska, and the timing and nature of slab deformation. A synthesis of this kind will be of value to geologists, geodeticists, seismologists, volcanologists, sedimentologists, geochemists, as well as geodynamicists.

  15. Tectonics of montage

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2013-01-01

    We build in accordance with specific contemporary conditions, defined by production methods, construction and materials as well as ethics, meaning and values. Exactly this relationship between the work as such and the conditions behind its coming into being is a crucial point. The simultaneity of...... and the creation of meaning forms the core of tectonics. So tectonic thinking is not only about portraying a constructional logic. Tectonics is to create material realities that reveal narrative meaning. Tectonics is to construct with cultural references....

  16. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-09-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  17. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  18. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    the supercontinent. Hercynian uplift along the western margin of South America caused by the collision and docking of "Chilinia" at about 350 Ma (Late Tournasian—Early Visean) was the starting point of a long Late Palaeozoic glacial record that terminated at about 255 Ma (Kungurian-Kazanian) in western Australia. The arrival of large landmasses at high latitude may have been an important precondition for ice growth. Strong Namurian uplift around virtually the entire palaeo-Pacific rim of Gondwana culminated in glaciation of the interior of the supercontinent during the latest Westphalian (c. 300 Ma). There is a clear picture of plate margin compression and propagation of "far field" stresses to the plate interior allowing preservation of glacially-influenced strata in newly-rifted intracratonic basins. Many basins show a "steer's head" style of infill architecture recording successive phases of subsidence and overstepping of younger strata during basin subsidence and expansion. Exploration for oil and gas in Gondwanan glaciated basins is currently a major stimulus to understanding the relationship between tectonics and sedimentation. Warm Mesozoic palaeoclimates do not rule out the existence of restricted ice covers in the interiors of continental landmasses at high palaeolatitudes (e.g. Siberia, Antarctica) but there is as yet, no direct geological record of their existence. The most likely record of glaciers is contained in Late Jurassic and early Cretaceous strata. In any event, these ice masses are unlikely to have had any marked effect on global sea levels and alternative explanations should perhaps be sought for 4th order, so-called "glacio-eustatic" changes in sea level, inferred from Triassic, Jurassic and Cretaceous strata. The growth of extensive Northern Hemisphere ice sheets in Plio-Pleistocene time (c. 2.5 Ma) was the culmination of a long global climatic deterioration that began sometime after 60 Ma during the late Tertiary. Tectonic uplift of areas

  19. Animated tectonic reconstruction of the Lower Colorado River region: Implications for Late Miocene to Present deformation

    Science.gov (United States)

    Bennett, Scott E. K.; Darin, Michael H.; Dorsey, Rebecca J.; Skinner, Lisa A.; Umhoefer, Paul J.; Oskin, Michael E.

    2016-01-01

    Although the majority of late Miocene to present Pacific-North America plate boundary strain has been accommodated by faults of the San Andreas and Gulf of California systems, growing evidence of dextral shear east of the San Andreas Fault indicates that a component of plate boundary deformation occurred in the lower Colorado River (LoCR) region. Large-scale tectonic reconstructions across the Gulf of California and Salton Trough (GCAST) region (Fig. 1), a ~500 km-wide zone of deformation that affected the western margin of North America, provide important constraints on the location, timing, style, and magnitude of crustal deformation in the LoCR region (Fig. 2). Characterizing Miocene to present deformation in the LoCR region is important to resolve the presence and kinematics of upper crustal structures that accommodated intracontinental strain and improves our understanding of the processes that promoted localized or diffuse strain during reorganization of the Pacific-North America plate boundary.

  20. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  1. The Contributions of Leonid M. Parfenov to the Tectonics of Eastern Russia

    Science.gov (United States)

    Prokopiev, A. V.; Fujita, K.; Stone, D. B.

    2004-12-01

    Leonid M. Parfenov (1937-2002) was the leading force behind theinterpretation of northeast Russia in the context of plate tectonics. Originally interested in Precambrian geology, he conducted his early field work in southern Siberia in the 1960s. He was exposed to plate tectonics at Liverpool University in 1970 and published the first mobilistic reconstructions of the Precambrian in Russia in 1973. Starting in 1971, he began to systematically conduct field work and accumulate geologic data on what is now considered the accretionary collage of northeast Russia. With colleague Boris A. Natal'in, he published a series of papers on the tectonic evolution of eastern Russia starting in 1977, with a doctoral dissertation on "Comparative Tectonics and Evolution History of Mesozoides of Northeast Asia" in 1983. His work became known in the west with his publication in 1978 in the Journal of Physics of the Earth on "Geodynamics of the North-Eastern Asia in the Mesozoic and Cenozoic Time and the Nature of Volcanic Belt" in which the volcanic belts of eastern Russia were interpreted in the context of subduction zones. From the mid-1980s to his death, he concentrated on understanding the evolution of the fold belts of eastern Yakutia. Parfenov immediately became a proponent of terrane analysis as it evolved in the early 1980s and was the primary mover in developing the terrane map of northeast Russia in the late 1990s. In 1990, he developed joint programs with the University of Alaska Fairbanks and Michigan State University, and later with Stanford University and the U.S. Geological Survey, opening eastern Russia to western scientists. His life's work was synthesized in a monograph entitled "Tectonics, Geodynamics, and metallogenesis of the Territory of the Sakha Republic (Yakutia)" published in Russian in 2001 and currently being prepared in English translation. As a result of his efforts we now have a basic understanding of the plate tectonic evolution of northeast Russia as

  2. Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan

    Science.gov (United States)

    Konopelko, D.; Wilde, S. A.; Seltmann, R.; Romer, R. L.; Biske, Yu. S.

    2018-03-01

    the Turkestan Ocean to the north and an inferred oceanic basin to the south, where the evidence of supra-subduction magmatism was largely destroyed by subsequent tectonic processes. In this scenario, after collision, the position of the Alai microcontinent between two major sutures enabled delamination of its lithospheric mantle, which resulted in production of diverse post-collisional magmatic series by interaction of ascending asthenospheric material with lithospheric mantle and various crustal protoliths.

  3. Dynamics and stress field of the Eurasian plate: A combined lithosphere-mantle approach

    NARCIS (Netherlands)

    Ruckstuhl, K.N.|info:eu-repo/dai/nl/304848743

    2012-01-01

    This thesis presents a new combined lithosphere-mantle modeling approach to the dynamics of individual tectonic plates. This approach incorporates tractions from convective mantle flow modeling into a detailed analysis of the forces acting on a tectonic plate. Mechanical equilibrium of the plate is

  4. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay

    Directory of Open Access Journals (Sweden)

    Yiing Yng Chow

    2017-01-01

    Full Text Available This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb introduced into oil palm ramets (host model. The endophytes selected were Diaporthe phaseolorum (WAA02, Trichoderma asperellum (T2, and Penicillium citrinum (BTF08. Ramets were first inoculated with 100 mL of fungal cells (106 cfu mL−1 via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta. Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR detected and identified the isolates from the plant tissues. The ergosterol assay (via high-performance liquid chromatography, HPLC confirmed the presence of endophytes and Gb in planta. The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta. This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  5. Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling

    Science.gov (United States)

    Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.

    2017-12-01

    Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.

  6. Seismic link at plate boundary

    Indian Academy of Sciences (India)

    transfer between two major faults, and parallel to the geothermal area extension. 1. Introduction. Plate boundaries are the zones where most earth dynamics are focussed. The complexity of tectonic boundaries draws attention to them as the largest earthquakes are felt in these areas and they elicit the natural hazard of ...

  7. Plio-Pleistocene magnetostratigraphy of northern Bohai Bay and its implications for tectonic events since ca. 2.0 Ma

    Science.gov (United States)

    Xu, Qinmian; Yuan, Guibang; Yang, Jilong; Xin, Houtian; Yi, Liang; Deng, Chenglong

    2017-11-01

    The sediments of Bohai Bay Basin in North China have recorded the processes of basin filling and structural evolution, which may have resulted from the destruction of the North China Craton during the late Mesozoic and early Cenozoic. However, the absence of a reliable chronostratigraphic framework for the sedimentary sequences in the basin has prevented a comprehensive understanding of these processes. In this study, we combine paleomagnetic and sedimentary analyses of the sediments from two new boreholes (NY05 and TZ02) from northern Bohai Bay to provide new insights into the sedimentary history and regional tectonic processes since the Pliocene. The main findings are as follows: (1) Magnetite and hematite are the main carriers of the characteristic remanent magnetization. (2) The boreholes record the Brunhes and Gauss normal chrons, and the Matuyama reversed chron. (3) Subsidence-related differences in the depths of the Matuyama/Brunhes (M/B) and Gauss/Matuyama (G/M) boundaries, sediment accumulation rates, and the sedimentary environments of the different tectonic units, enable us to identify that tectonic movements started in the Olduvai normal subchron and the development of the WNW-orientated tectonic features were intensified. (4) In the Huanghua depression, comparative analysis of subsidence-related differences between western and northern Bohai Bay indicates that the subsidence of the northern Bohai Bay may have been superimposed on the WNW-orientated tectonic activity and faulting associated with the collision between the Indian and the Eurasian Plates, in the context of localized subsidence.

  8. Active tectonics and earthquake potential of the Myanmar region

    OpenAIRE

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-01-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subd...

  9. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  10. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  11. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    Science.gov (United States)

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-09-01

    The Eurasia (EU) - North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on the EU-OK-NA triple junction and is thus caught and compressed between converging EU and NA. We suggest that this leads to a coherent and understandable large scale deformation pattern of mostly northwest-southeast trending strike-slip faults which split Northwest OK into several extruding slivers. When the fault geometry is analysed together with space geodetic and focal mechanism data it suggests a central block which is extruding faster bordered east and west by progressively slower extruding blocks until the OK plate boundary faults are encountered. Taking into account elastic loading from both the intra-OK faults and the OK-Pacific (PA) boundary reconciles geodetic motions with geologic slip rates on at least the OK-NA boundary which corresponds to the Ulakhan fault.

  12. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte

    2015-01-01

    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... architectural practice. In this matter the paper focuses on the need to juxtapose theoretical studies, to bring the present vocabulary of the tectonic further, as well as to spur further practical experiments enabling theory to materialize in the everyday of the current practice....

  13. Deformation of the Northwestern Okhotsk Plate: How is it happening?

    OpenAIRE

    Hindle, D.; Fujita, K.; Mackey, K.

    2009-01-01

    The Eurasia (EU) – North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on ...

  14. The revised tectonic history of Tharsis

    Science.gov (United States)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand

    2018-04-01

    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  15. The effect of plate-scale rheology and plate interactions on intraplate seismicity

    Science.gov (United States)

    So, Byung-Dal; Capitanio, Fabio A.

    2017-11-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ =ηI /ηL, the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ =σY /σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  16. Subducting an old subduction zone sideways provides insights into what controls plate coupling

    Science.gov (United States)

    Reyners, Martin; Eberhart-Phillips, Donna; Bannister, Stephen

    2017-05-01

    The Hikurangi Plateau has had two episodes of subduction beneath New Zealand - firstly at ca. 100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. As a result of this ninety-degree change in convergence direction, an old subduction zone is now being subducted sideways, and the tectonic history of the subducted plate varies dramatically along the strike of the Hikurangi Margin. Here we identify the location of the underplated Hikurangi Plateau along the shallow part of the Hikurangi Margin, using results from both relocated seismicity and seismic tomography. Next we decipher the tectonic history of the plateau along strike, particularly in terms of the hydration state of the plateau, and the nature of any sedimentary rock units capping the plateau. We then use this information to understand plate coupling at two scales: on the large scale, the southward transition from typical subduction in the North Island to continental collision in the South Island; and at a smaller scale, the strong lateral change from a high deficit in slip rate at the plate interface in the southern North Island to a low deficit in slip rate in the northeastern North Island. We find that the southward transition from subduction to continental collision is controlled by the plateau being more dehydrated to the south, as a result of being more deeply subducted at the Gondwana margin. The southward transition from localized slip at the plate interface to distributed upper plate deformation with no active plate interface occurs in Cook Strait and is relatively sharp. The high deficit in slip rate at the plate interface in the southern North Island is likely due to a relatively smooth plate interface from sedimentary rocks capping the Hikurangi Plateau, an impermeable terrane in the overlying plate, and the hydrated plateau acting in concert to produce an interseismically sealed plate interface. Further northeast

  17. Framework for Tectonic Thinking, a Conceptual Tool of the Architect

    DEFF Research Database (Denmark)

    Garritzmann, Udo

    2017-01-01

    , supposedly right, meaning of tectonics, but several different meanings; nor do we attach a value judgement to any of the tectonic positions beforehand. The FTT will be developed in parallel in writing and in hand-drawn mappings. Research goal: The Framework for Tectonic Thinking will suggest a broadened......This paper is a contribution to the understanding of the term tectonics in the field of architectural design theory. It considers tectonic thinking as a ‘tool of the architect’ to analyse and interpret buildings from the past, to be operative in design practices of the present, and to trigger......: To answer the research question, this paper will develop an overarching Framework for Tectonic Thinking (FTT) by combining three different categories loadbearing construction, type of construction and constructive expression with the following oppositional poles as distinguishing criteria: loadbearing...

  18. Tectonic evolution of Tarim basin in Cambrian–Ordovician and its ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 2 ... In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth ...

  19. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  20. Evolution of the Late Cretaceous crust in the equatorial region of the Northern Indian Ocean and its implication in understanding the plate kinematics

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.

    history of the Late Cretaceous crust characterized by anomaly 34 through 31 (83.5-68.7Ma) under complex tectonic settings. Seafloor spreading model studies suggest that the crust, particularly between the chrons 33R and 33 (79.0-73.6 Ma), was formed...

  1. Seismic behaviour of mountain belts controlled by plate convergence rate

    Science.gov (United States)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.

    2018-01-01

    The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.

  2. Tectonic Theory and Practice

    DEFF Research Database (Denmark)

    Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning

    2010-01-01

    defined by Semper as a constructive precondition, a theory for developing a novel tectonic relation between home and system opens up. As a research result the paper suggests a practical spatial exploitation of the actual prefab construction, defining interiority not solely as a visual occupation......’ is an example of this sensuous interior transformation of a house into a home, a level of detailing which is, however, seldom represented in the prefabricated house. Consequently, this paper investigates whether interiority can be developed as a tectonic theory and design principle for uniting home and system......Since the first optimistic originally Modernist prefab visions were formulated there has been, and are still, challenges to be overcome in order to fulfill the increasing need for fast, precise and economically produced homes. The tectonic need to transform a home, into a system of joints...

  3. Tectonic environments and rare metal mineralization in pegmatites ...

    African Journals Online (AJOL)

    The discrimination diagrams show that the pegmatites were mainly emplaced in tectonic environments similar to those of syn-collisional granites (Syn COG) and within plate granites (WPG). Volcanic arc environment was not pronounced. The emplacement of the pegmatites was structurally controlled by the predominantly ...

  4. Fission-track evidence of tectonic evolution in the northwestern ...

    Indian Academy of Sciences (India)

    track evidence of tectonic evolution in the ... The later (1.2–32.0 Ma) tectonothermal event resulted from further collision of the Indian and Eurasian plates along the Yarlung Tsangpo suture zone. Strata in the Qaidam Basin were further ...

  5. Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry

    Directory of Open Access Journals (Sweden)

    Sedat Yayla

    2017-01-01

    Full Text Available The most widely utilized process of produced water treatment is considered to be use of coalescing or corrugated plate systems in the oil industry because these systems have promising results in the acceleration of the separation process. Even use of corrugated plate systems seem to be effective in separation processes, the geometrical parameters of the plate system could greatly influence the performance of separation process. In this study, a two-dimensional computational fluid dynamics model for coalescing plates was developed to investigate Reynolds number and plate hole shape on separation efficiency. Spacing between plates was set to 12 mm while fluid mixture’s Reynolds number varied between 5 and 45 for the computational model. Hole profile and dimensions were determined to be cylindrical, rectangular and ellipse shapes as 10, 15 and 20 mm based on hydraulic diameter definition, respectively. Furthermore, when hole profiles of coalescing plates were chosen to be ellipse and rectangular shapes, separation efficiency nearly stayed constant regardless of hole dimension. The study also reported that change of oil fraction from 5% to 15% caused approximately 30% increase in the separation efficiency. The investigation also revealed Reynolds number of the mixture was inversely proportional to the separation efficiency. It was also found that the highest separation efficiency was obtained for a cylindrical shape with a hole diameter of 15 mm when distance between plates was 12 mm and Reynolds number was 18.

  6. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  7. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  8. Gneiss Macuira: tectonic evolution of Paleozoic metamorphic rocks of the Alta Guajira, Colombia

    International Nuclear Information System (INIS)

    Lopez I; A Julian; Zuluaga C; A, Carlos

    2012-01-01

    The Macuira Gneiss is a Paleozoic metamorphic unit that outcrops in the Simarua, Jarara and Macuira ranges, Alta Guajira. It is composed by a lithologies metamorphosed under amphibolite facies P-T conditions and consist of amphibolitic and quartz feldspathic gneisses, amphibolites, schists, pegmatites, calc-silicated rocks and marbles, with migmatization evidences in gneisses and amphibolites. Five foliations (S1-5) and three folding events (F1-3) were identified and interpreted as product of two metamorphic events, developed in a progressive barrovian metamorphic gradient of intermediate pressure with intermediate P-T ratio, interpreted as product of continental collision tectonics. This unit is important in understanding of the tectonic evolution of the Alta Guajira and Caribbean because it records different deformational phases pre-, syn- and post-migmatitic, that could be related with different tectonic episodes: the first associated with the collision between Laurasia and Gondwana (Alleghanian Orogeny - Late Paleozoic), and the second related with the Caribbean Plate evolution (Andean Orogeny - Meso-Cenozoic).

  9. Presentation of new tectonic map (and accompanying sections) of Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1984-04-01

    The Geologic Map of Trinidad, compiled by H.G. Kugler and published in 1961, is currently out of print. While it is the most widely available geologic map, it is confined to onshore Trinidad. This map remains an important reference source, but there have been significant increases in our knowledge of Trindad and Tobago geology since its publication. In particular, there has been: (1) considerable geophysical work, on land and offshore, including 20,000 km (12,400 mi) of seismic lines; (2) approximately 1000 exploration and development wells drilled, including wells in the previously unexplored north and east coast of Trinidad; and (3) significant advances in our understanding of the tectonic evolution of the area, which has resulted largely from the development of the plate tectonic theory. The following items, which take into account many of these new data and concepts, have been compiled. (1) A geologic tectonic map of the entire territory of Trinidad and Tobago, at a scale of 1:200,000. Apart from the surface geology of the land areas, this map shows the major faults and their displacements and locations, total depths and status of exploration wells, and the positions of major petroleum fields. (2) Five accompanying geologic sections at the same scale. (3) A new stratigraphic correlation chart. These new compilations attempt to fill the gap in the published literature on the petroleum geology of Trinidad and Tobago.

  10. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  11. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    Science.gov (United States)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  12. Tectonic vision in architecture

    DEFF Research Database (Denmark)

    Beim, Anne

    1999-01-01

    By introducing the concept; Tectonic Visions, The Dissertation discusses the interrelationship between the basic idea, the form principles, the choice of building technology and constructive structures within a given building. Includes Mies van der Rohe, Le Corbusier, Eames, Jorn Utzon, Louis Kahn...

  13. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2012-01-01

    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  14. Tectonic vision in architecture

    DEFF Research Database (Denmark)

    Beim, Anne

    1999-01-01

    By introducing the concept; Tectonic Visions, The Dissertation discusses the interrelationship between the basic idea, the form principles, the choice of building technology and constructive structures within a given building. Includes Mies van der Rohe, Le Corbusier, Eames, Jorn Utzon, Louis Kah...

  15. Tectonic design strategies

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    The tectonic realm of architecture concerns elements such as intentions and meaning - the process of translating visions into physical constructions - as well as the actual realization of building structures. This field of architectural making has been characterized by Kenneth Frampton as the poe...

  16. Tectonics of montage

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2013-01-01

    in architecture. The Italian architectural theorist, Marco Frascari describes the concepts 'construction' and 'construing' as inherent dimensions of tectonics, and according to him both dimensions have to be present in meaningful architecture. This close link between the creation of concrete solutions...

  17. Tectonic feedback and the earthquake cycle

    Science.gov (United States)

    Lomnitz, Cinna

    1985-09-01

    The occurrence of cyclical instabilities along plate boundaries at regular intervals suggests that the process of earthquake causation differs in some respects from the model of elastic rebound in its simplest forms. The model of tectonic feedback modifies the concept of this original model in that it provides a physical interaction between the loading rate and the state of strain on the fault. Two examples are developed: (a) Central Chile, and (b) Mexico. The predictions of earthquake hazards for both types of models are compared.

  18. Evolution of the Mariana Convergent Plate Margin System

    Science.gov (United States)

    Fryer, Patricia

    1996-02-01

    The Mariana convergent plate margin system of the western Pacific provides opportunities for studying the tectonic and geochemical processes of intraoceanic plate subduction without the added complexities of continental geology. The system's relative geologic simplicity and the well-exposed sections of lithosphere in each of its tectonic provinces permit in situ examination of processes critical to understanding subduction tectonics. Its general history provides analogs to ancient convergent margin terranes exposed on land and helps to explain the chemical mass balance in convergent plate margins. The Mariana convergent margin's long history of sequential formation of volcanic arcs and extensional back arc basins has created a series of volcanic arcs at the eastern edge of the Philippine Sea plate. The trenchward edge of the overriding plate has a relatively sparse sediment cover. Rocks outcropping on the trench's inner slope are typical of the early formed suprasubduction zone's lithosphere and have been subjected to various processes related to its tectonic history. Pervasive forearc faulting has exposed crust and upper mantle lithosphere. Many large serpentinized peridotite seamounts are within 100 km of the trench axis. From these we can learn the history of regional metamorphism and observe and sample active venting of slab fluids. Ocean drilling recovered suprasubduction zone lava sequences erupted since the Eocene that suggest that the forearc region remains volcanologically dynamic. Seismic studies and seafloor mapping show evidence of deformation throughout forearc evolution. Large portions of uplifted southern forearc are exposed at the larger islands. Active volcanoes at the base of the eastern boundary fault of the Mariana Trough vary in size and composition along strike and record regional differences in source composition. Their locations along strike of the arc are controlled in part by cross-arc structures that also facilitate formation of submarine

  19. Towards a Tectonic Approach

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Kirkegaard, Poul Henning; Mortensen, Sophie Bondgaard

    2015-01-01

    with these demands. As the largest potential for energy savings lies in re-insulation of the building envelope, specifically by adding an additional insulation layer, this transformation will dramatically affect the everyday experience of the built environment. Articulating the architectural consequences...... and potentials of this transformation is an urgent matter if it is not to be realized solely as a monotonous technical cladding. In this matter, that of conceiving such extra insulation layer simultaneously as a technical ‘principle’ and as a spatial ‘gesture’ revealing an aesthetic architectural potential...... through this transformation is inevitably a tectonic question. By analyzing three historical examples, Adolf Loos’ Villa Moller, Le Corbusier’s Unité d’Habitation, and Frank Lloyd Wright’s Johnson Wax Administration Building, chosen for their tectonic ability to exploit the technical ‘principle’ defining...

  20. Tectonics wins AAP Award

    Science.gov (United States)

    AGU's newest journal, Tectonics, won the 1983 award for excellence in journal design and production given by the Association of American Publishers, Inc. (AAP), in the eighth annual professional and scholarly publishing awards competition. Edited by John F. Dewey, the bimonthly journal is a joint publication of AGU and the European Geophysical Society. Paul E. Tapponnier is the European editor and B.C. Burchfiel is the North American editor. The journal is now in its third year of publication.

  1. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  2. "Discovering Plate Boundaries in Data-Rich Environments": Supporting Pre-service Teachers involvement in Unique Practices of Geosciences

    Science.gov (United States)

    Barrie, A. S.; Moore, J.

    2012-12-01

    Plate tectonics is one of the core scientific concepts in both the NRC K-12 standards documents (#ESS2.B) and College Board Standards for Science (#ES.1.3). These documents also mention the scientific practices expected to improve as students are learning plate tectonics: interpreting data based on their observations of maps and argumentation around the evidence based on data. Research on students' understanding of maps emphasizes the difficulty of reading maps in science classrooms.We are conducting an ethnographic case study of the process of learning and teaching by novice teachers in the middle school science major at a mid-Atlantic University. The participants of the study are third-year majors (in the middle school science program and middle students at a suburban middle school. The study uses the data from four different fields (geography, geochronology, volcanology and seismology) to help involve preservice teachers in the practices of geosciences.The data for the study includes video and audio records of novice teachers' learning and teaching processes as well as teachers' reflections about their learning and on teaching Plate Tectonics by using real data. The video and audio data will be compiled and synthesized into event maps and transcripts, which are necessary for sociolinguistic analysis. Event maps provide an overall view of the events and are used to map the learning and teaching events into timely sequences and phases based on the subtopics and types of educational activities. Transcripts cover in detail the discussion and activity observed at each phase of the learning and teaching events. After compilation, event maps and transcripts will be analyzed by using Discourse analysis with an ethnographic perspective in order to identify novice teachers' challenges and the improvement they want to make on their teaching and assessment artifacts. The preliminary findings of the project identified challenges faced by novice teachers learning and teaching

  3. Numerical modeling of intraplate seismicity with a deformable loading plate

    Science.gov (United States)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  4. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin

    Science.gov (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  5. Land-ocean tectonics (LOTs) and the associated seismic hazard over the Eastern Continental Margin of India (ECMI)

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Subrahmanyam, V.; Subrahmanyam, A.S.; Murty, G.P.S.; Sarma, K.V.L.N.S.

    are hence more predominant on the east coast. Recent geophysical studies delineated land-ocean tectonics (LOTs) over the eastern margin, in some cases associated with moderate seismicity as a result of the compressional stress acting on the Indian Plate...

  6. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  7. Tectonic Theory and Practice

    DEFF Research Database (Denmark)

    Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning

    2010-01-01

    and assembly processes, seems a paradoxical challenge which has left prefabricated houses raw constructions rather than inhabitable homes. Based on the hypothesis that home is determined spatially via sensuous impressions of interiority at the threshold of furniture: The bath in Le Corbusier’s ‘Villa Savoye......’ is an example of this sensuous interior transformation of a house into a home, a level of detailing which is, however, seldom represented in the prefabricated house. Consequently, this paper investigates whether interiority can be developed as a tectonic theory and design principle for uniting home and system...

  8. Active tectonics and earthquake potential of the Myanmar region

    Science.gov (United States)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  9. Alfred Wegener - From Continental Drift to Plate Tectonics

    Indian Academy of Sciences (India)

    permanently fixed on the Earth's surface and their positions do not change with time. In order to explain a wide range of confusing geological data, they supported the existence of huge land bridges that seem to have connected the .... courageously uses his intelligence." Needless to say, Wegener's new theory sparked a ...

  10. Learning about Plate Tectonics through Argument-Writing

    Science.gov (United States)

    Klein, Perry D.; Samuels, Boba

    2010-01-01

    In a quasi-experimental study (N = 60), grade 7/8 teachers students were taught to write arguments in content-area subjects. After instruction, students drew on document portfolios to write on a new topic: "Do the continents drift?" In a MANCOVA, students who participated in argument instruction scored significantly higher than a control…

  11. Alfred Wegener - From Continental Drift to Plate Tectonics

    Indian Academy of Sciences (India)

    The seawater occupies more than 70% of the Earth's surface. Several oceanographic studies and deep-sea surv~ys carried out after the World War II, established the fact that the ocean basement is not as flat and featureless as it was originally thought. The sea floor consists of Mid-Ocean ridges, huge volcanic moun-.

  12. Using Google Earth to Teach Plate Tectonics and Science Explanations

    Science.gov (United States)

    Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen

    2012-01-01

    "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…

  13. The tectonics and mineral systems of Proterozoic Western Australia: Relationships with supercontinents and global secular change

    Directory of Open Access Journals (Sweden)

    A.R.A. Aitken

    2018-03-01

    Full Text Available The cratonisation of Western Australia during the Proterozoic overlapped with several key events in the evolution of Earth. These include global oxidation events and glaciations, as well as the assembly, accretionary growth, and breakup of the supercontinents Columbia and Rodinia, culminating in the assembly of Gondwana. Globally, Proterozoic mineral systems evolved in response to the coupled evolution of the atmosphere, hydrosphere, biosphere and lithosphere. Consequently, mineral deposits form preferentially in certain times, but they also require a favourable tectonic setting. For Western Australia a distinct plate-margin mineralisation trend is associated with Columbia, whereas an intraplate mineralisation trend is associated with Rodinia and Gondwana, each with associated deposit types. We compare the current Proterozoic record of ore deposits in Western Australia to the estimated likelihood of ore-deposit formation. Overall likelihood is estimated with a simple matrix-based approach that considers two components: The “global secular likelihood” and the “tectonic setting likelihood”. This comparative study shows that at least for the studied ore-deposit types, deposits within Western Australia developed at times, and in tectonic settings compatible with global databases. Nevertheless, several deposit types are either absent or poorly-represented relative to the overall likelihood models. Insufficient exploration may partly explain this, but a genuine lack of deposits is also suggested for some deposit types. This may relate either to systemic inadequacies that inhibited ore-deposit formation, or to poor preservation. The systematic understanding on the record of Western Australia helps to understand mineralisation processes within Western Australia and its past connections in Columbia, Rodinia and Gondwana and aids to identify regions of high exploration potential.

  14. Seismic structure and tectonics of the continental margins of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Chaubey, A.K.; Rao, D.G.; Reddy, P.R.

    floor belong to different lithospheric plates. Active margins are commonly the sites of tectonic activity such as earthquakes, volcanoes, mountain building and formation of new igneous rocks. Because of the mountainous terrain the continental shelf... greater proportion of the river borne sediments occur on the shelves, continental slopes, and deep sea fans where terrigenous sedimentation is dominant process. On lower slopes and continental rises, fine-grained siliciclastics commonly mixed...

  15. Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains

    Directory of Open Access Journals (Sweden)

    Nicola McLoughlin

    2009-09-01

    Full Text Available In the Barberton Scientific Drilling Program (BSDP we successfully completed three drill holes in 2008 across strategically selected rock formations in the early Archean Barberton Greenstone Belt, South Africa. This collaborative project’s goal is to advance understanding of geodynamic and biogeochemical processes of the young Earth. The program aims to better define and characterize Earth’s earliest preserved ocean crust shear zones and microbial borings in Archean basaltic glass, and to identify biogeochemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work will address the question of earliest plate tectonics in the Archean, the δ18O composition, the redox state and temperature of Archean seawater, and the origin of life question.

  16. Contemporary block tectonics: California and Nevada.

    Science.gov (United States)

    Hill, D.P.

    1982-01-01

    Well-determined fault plane solution and the gross pattern of late-Cenozoic faulting in California and Nevada show a systematic relation between the orientation of fault planes and slip directions. In general, normal faults have N strikes, reverse faults have E strikes, and dextral and sinstral strike slip faults have NW and NE strikes, respectively. Kinematically, this relation is consistent with the response of clusters of fault-bounded crustal blocks to a regional stress field generated by the relative motion between the Pacific and N American plates. In this stress field, the greatest and least principal (compressive) stresses are restricted to N and E striking vertical planes, respectively. Simple arrangements of block clusters mimic the gross kinematic pattern of Quaternary faulting in California and Nevada. Some implications for contemporary tectonics emphasized by this model involve the W displacement of the Sierra Nevada block with respect to the stable interior of the N American plates, oblique thrusting of the Salinian block over the Pacific plate, and a progressive increase in the offset of the San Andreas fault represented by the 'big bend' through the Transverse Ranges. -from Author

  17. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates

    Science.gov (United States)

    Grobys, Jan W. G.; Gohl, Karsten; Eagles, Graeme

    2008-01-01

    Zealandia is a key piece in the plate reconstruction of Gondwana. The positions of its submarine plateaus are major constraints on the best fit and breakup involving New Zealand, Australia, Antarctica, and associated microplates. As the submarine plateaus surrounding New Zealand consist of extended and highly extended continental crust, classic plate tectonic reconstructions assuming rigid plates and narrow plate boundaries fail to reconstruct these areas correctly. However, if the early breakup history shall be reconstructed, it is crucial to consider crustal stretching in a plate-tectonic reconstruction. We present a reconstruction of the basins around New Zealand (Great South Basin, Bounty Trough, and New Caledonia Basin) based on crustal balancing, an approach that takes into account the rifting and thinning processes affecting continental crust. In a first step, we computed a crustal thickness map of Zealandia using seismic, seismological, and gravity data. The crustal thickness map shows the submarine plateaus to have a uniform crustal thickness of 20-24 km and the basins to have a thickness of 12-16 km. We assumed that a reconstruction of Zealandia should close the basins and lead to a most uniform crustal thickness. We used the standard deviation of the reconstructed crustal thickness as a measure of uniformity. The reconstruction of the Campbell Plateau area shows that the amount of extension in the Bounty Trough and the Great South Basin is far smaller than previously thought. Our results indicate that the extension of the Bounty Trough and Great South Basin occurred simultaneously.

  18. Convergent plate margin dynamics : New perspectives from structural geology, geophysics and geodynamic modelling

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2010-01-01

    Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one of the converging plates is oceanic and plunges beneath the other into the mantle, or a collision zone, where two continents or a continent and a magmatic arc collide.

  19. Puzzling features of western Mediterranean tectonics explained by slab dragging

    Science.gov (United States)

    Spakman, Wim; Chertova, Maria V.; van den Berg, Arie.; van Hinsbergen, Douwe J. J.

    2018-02-01

    The recent tectonic evolution of the western Mediterranean region is enigmatic. The causes for the closure of the Moroccan marine gateway prior to the Messinian salinity crisis, for the ongoing shortening of the Moroccan Rif and for the origin of the seismogenic Trans-Alboran shear zone and eastern Betics extension are unclear. These puzzling tectonic features cannot be fully explained by subduction of the east-dipping Gibraltar slab in the context of the regional relative plate motion frame. Here we use a combination of geological and geodetic data, as well as three-dimensional numerical modelling of subduction, to show that these unusual tectonic features could be the consequence of slab dragging—the north to north-eastward dragging of the Gibraltar slab by the absolute motion of the African Plate. Comparison of our model results to patterns of deformation in the western Mediterranean constrained by geological and geodetic data confirm that slab dragging provides a plausible mechanism for the observed deformation. Our results imply that the impact of absolute plate motion on subduction is identifiable from crustal observations. Identifying such signatures elsewhere may improve the mantle reference frame and provide insights on subduction evolution and associated crustal deformation.

  20. Public regulations towards a tectonic architecture

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2006-01-01

    Public regulations can support tectonic architecture by changes to the tendering system, supporting new organizational structures of the building industry in public building projects and suggesting a focus on innovation through increased research and development activity. The Danish state......'s activities has primarily been to support the optimization of the building process through ‘trimmed building’ and ‘partnering’ that only takes the immediate economic benefits of the changes to the building process into account and as such has no measures for architectural quality. The public initiatives so...... are happening very slowly which is understandable when there is no economic incitement for the industry to change. A change of these public regulations from sticks to carrots could create the economic incitement for the building industry to create tectonic architecture and thereby develop the building industry...

  1. Tectonic pattern of mare ridges of the Letronne-Montes Riphaeus region of the Moon

    International Nuclear Information System (INIS)

    Raitala, J.

    1978-01-01

    A structural analysis is presented of mare ridges in an area of about 360 000 km 2 in the southeastern part of Oceanus Procellarum just north of Mare Humorum. Mare ridges can be regarded as the result of large-scale natural tectonic deformation experiments coupled with and extended by volcanic phenomena. The old lunar crust has evidently retained part of the Moon's original tectonic elements throughout major exo- and endogenic events. Those structures which in places were flooded by mare lavas were also the first flaws to yield and to extend during younger tectonic and volcanic activity. Linear mare ridges may thus have formed at the activated and re-activated junctures of lunar crustal plates. Implications for the tectonics of mare ridges evidently show that one global stress field cannot account for all lunar tectonics but that global and areal variations in the lunar stress system have probably occurred. (Auth.)

  2. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  3. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate

    Science.gov (United States)

    Harrison, R.W.; Tsiolakis, E.; Stone, B.D.; Lord, A.; McGeehin, J.P.; Mahan, S.A.; Chirico, P.

    2013-01-01

    The nature of the southern margin of the Anatolian microplate during the Neogene is complex, controversial and fundamental in understanding active plate-margin tectonics and natural hazards in the Eastern Mediterranean region. Our investigation provides new insights into the Late Pleistocene uplift history of Cyprus and the Troodos Ophiolite. We provide isotopic (14C) and radiogenic (luminescence) dates of outcropping marine sediments in eastern Cyprus that identify periods of deposition during marine isotope stages (MIS) 3, 4, 5 and 6. Past sea-levels indicated by these deposits are c. 95±25 m higher in elevation than estimates of worldwide eustatic sea-level. An uplift rate of c. 1.8 mm/year and possibly as much as c. 4.1 mm/year in the past c. 26–40 ka is indicated. Holocene marine deposits also occur at elevations higher than those expected for past SL and suggest uplift rates of c. 1.2–2.1 mm/year. MIS-3 marine deposits that crop out in southern and western Cyprus indicate uniform island-wide uplift. We propose a model of tectonic wedging at a plate-bounding restraining bend as a mechanism for Late Pleistocene to Holocene uplift of Cyprus; uplift is accommodated by deformation and seismicity along the margins of the Troodos Ophiolite and re-activation of its low-angle, basal shear zone.

  4. Problems of Tectonics and Tectonic Evolution of the Arctic

    Science.gov (United States)

    Vernikovskiy, V. A.; Metelkin, D. V.; Matushkin, N. Y.; Vernikovskaya, A. E.; Chernova, A. I.; Mikhaltsov, N. E.

    2017-12-01

    The Arctic Ocean within Russia remains poorly investigated area, in particular to geological structures and the Arctic Ocean floor. Many researchers believe that the basements of the terranes, composing the Arctic shelf and continental slopes, are of the Precambrian age. It was assumed that the Arctic terranes formed the ancient paleocontinent of Arctida that broke up during rifting, whereas the separated plates and terranes accreted to the periphery of the Arctic Ocean at a later stage. However, geological, geochronological and paleomagnetic evidence to test this assumption has been insufficient. Recently, geological and geophysical studies have significantly increased, in particular to the structures of Eastern Arctic. For example, the New Siberian Islands Archipelago is one of key structures for understanding geology and evolution of the Arctic region. Additionally, several submerged structures containing fragments of continental crust, including the Lomonosov Ridge and the Mendeleev Rise, are identified within the Arctic Ocean and adjacent to the New Siberian Islands Archipelago. Here we present new geochronological and paleomagnetic data to refine the evolution of the Arctida paleocontinent. Our model implies existence of the two Arctidas during Late Precambrian - Late Paleozoic. The earlier Arctida-I was located near equator and connected with the continental margins of Laurentia, Baltica and Siberia within the supercontinent of Rodinia. The initiation of Arctida-I rifting is associated with breakup of Rodinia. As a result, small plates, including Svalbard, Kara, New Siberia Island and other terranes, were formed. We have reconstructed the main stages of further remobilization and global drift of these plates before Pangea assemblage. We assume that the later Arctida-II was located at the Pangean periphery in the temperate latitudes, and was also connected to the Laurentia, Baltica, and Siberia cratons. The breakup of the Arctida-II is suggested to have

  5. Vertical tectonics at an active continental margin

    Science.gov (United States)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  6. Teaching Tectonics to Undergraduates with Web GIS

    Science.gov (United States)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  7. Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures

    Science.gov (United States)

    Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.

    1999-12-01

    The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.

  8. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  9. Teaching And Learning Tectonics With Web-GIS

    Science.gov (United States)

    Anastasio, D. J.; Sahagian, D. L.; Bodzin, A.; Teletzke, A. L.; Rutzmoser, S.; Cirucci, L.; Bressler, D.; Burrows, J. E.

    2012-12-01

    Tectonics is a new curriculum enhancement consisting of six Web GIS investigations designed to augment a traditional middle school Earth science curriculum. The investigations are aligned to Disciplinary Core Ideas: Earth and Space Science from the National Research Council's (2012) Framework for K-12 Science Education and to tectonics benchmark ideas articulated in the AAAS Project 2061 (2007) Atlas of Science Literacy. The curriculum emphasizes geospatial thinking and scientific inquiry and consists of the following modules: Geohazards, which plate boundary is closest to me? How do we recognize plate boundaries? How does thermal energy move around the Earth? What happens when plates diverge? What happens when plate move sideways past each other? What happens when plates collide? The Web GIS interface uses JavaScript for simplicity, intuition, and convenience for implementation on a variety of platforms making it easier for diverse middle school learners and their teachers to conduct authentic Earth science investigations, including multidisciplinary visualization, analysis, and synthesis of data. Instructional adaptations allow students who are English language learners, have disabilities, or are reluctant readers to perform advanced desktop GIS functions including spatial analysis, map visualization and query. The Web GIS interface integrates graphics, multimedia, and animation in addition to newly developed features, which allow users to explore and discover geospatial patterns that would not be easily visible using typical classroom instructional materials. The Tectonics curriculum uses a spatial learning design model that incorporates a related set of frameworks and design principles. The framework builds on the work of other successful technology-integrated curriculum projects and includes, alignment of materials and assessments with learning goals, casting key ideas in real-world problems, engaging students in scientific practices that foster the use of key

  10. Phanerozoic tectonic evolution of the Circum-North Pacific

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  11. Biological modulation of tectonics

    Science.gov (United States)

    Sleep, N. H.; Bird, D. K.

    2008-12-01

    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  12. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  13. The Aegean: A natural laboratory for tectonics

    International Nuclear Information System (INIS)

    Burchfiel, B C

    2008-01-01

    The Aegean, a young and active tectonic region, is a natural laboratory for analyzing many tectonic processes that occur in backarc extensional regimes, and the correlation of these processes from landscape development to deeper mantle dynamics. Cenozoic development of the Aegean region was dominated by subduction beneath Europe and coeval upper plate extension modified by westward extrusion of Anatolia. Intraorogenic and backarc extension began during early Cenozoic time within the Balkans and NW Turkey during closure of the Vardar ocean. Extension was manifested by core complex formation and a change in volcanism caused by the evolution of the lithosphere and mantle wedge. Following a short period of local (?) shortening in ∼ early Miocene time, regional extension began and continued to the present. Within the Hellenides, E-W extension and the subduction zone migrated westward as thick and thin crustal units were progressively accreted and were complexly rotated up to 40 0 CW. Within the eastern Balkans and NW Turkey, N-S extension migrated westward and southward, and in the Aegean the volcanic arc and subduction zone migrated southward. Turkish crustal elements rotated complexly CCW, which in concert with the CW rotation in the Hellenides increased the curvature of the subduction zone and lengthened the orogen causing greater subsidence and extension in the Aegean Sea. Westward extrusion of Anatolia from the Arabian collision zone was enhanced by slab roll back in west moving Aegean crust more rapidly westward. Abundant evidence supports slab rollback at different velocities along the subduction zone. In Pliocene time, the North Anatolian fault crossed the Hellenides in a complex transtensional zone and a diffuse zone of left-lateral shear crossed western Turkey at present isolating a relatively undeforming Aegean plate. Major tectonic questions include: What is the geometry and fate of subducted slabs?, How much crust is accreted during subduction of thick

  14. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha

    2013-05-01

    Full Text Available Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite-slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic–Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1 the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2 the older deformation and metamorphism relate to a Pacific type

  15. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.

    1979-01-01

    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  16. Tectonic Thinking in Contemporary Industrialized Architecture

    Directory of Open Access Journals (Sweden)

    Anne Beim

    2013-12-01

    Full Text Available This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction and how this attention forms a creative force in building constructions, structural features and architectural design (construing – helps to identify and refine technology transfer in contemporary industrialized building construction’. (This definition of tectonic thinking forms part of a large, central research project: Towards a tectonic sustainable building practice, that is presently (2010- 2014 executed in collaboration between; The Royal Danish Academy of Fine Arts – School of Architecture, Aarhus School of Architecture, and The Danish Building Research Institute.Through various references from the construction industry, business theory and architectural practice the paper offers various analyses, comparisons and concrete design approaches. How architectural design processes and the tectonic design can benefit from Integrated Product Deliveries, mass-customization and Design for Disassembly is examined and discussed. The paper concludes by presenting a series of arguments that call for adaptable systems based on sufficient numbers of industrialized building products of high quality and a great variety of suppliers, and point at the need for optimizing our use of resources in order to reach sustainable solutions in architecture.

  17. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    Science.gov (United States)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions

  18. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  19. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to

  20. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  1. How the continents deform: The evidence from tectonic geodesy

    Science.gov (United States)

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  2. Tectonics: The meaning of form

    DEFF Research Database (Denmark)

    Christiansen, Karl; Brandt, Per Aage

    Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill and insi......Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill...... perspectives. You can read the chapters in any order you like – from the beginning, end or the middle. There is no correct order. The project is methodologically inductive: the more essays you read, the broader your knowledge of tectonics get....

  3. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... of geometric forms in concrete. The former was referred to as mould tectonics, the latter concrete tectonics. A study of the concepts of ‘New Production Philosophy’, ‘Mass-customization’, and Digital Tectonics is presented as a basis for investigating their use in concrete casting. Digital modelling...... plastic in which precision is maintained. The ability to reuse the PETG moulds makes the technique a zero waste production. In general it was concluded that problems with existing techniques relate to production time, surface quality and precision and are caused by the use of mould fabrication technique...

  4. Crustal structure and rift tectonics across the Cauvery–Palar basin ...

    Indian Academy of Sciences (India)

    ping and Curie point isothermal surface for geothermal reconnaissance; J. Geophys. Res. 80 4461–4465. Biswas S K, Bhasin A L and Jokhan Ram 1993 Classifi- cation of Indian sedimentary basins in the framework of plate tectonics; In: Proceedings of the second seminar on petroliferous basins of India: Dehradun (eds) ...

  5. Is plate tectonis withstanding the test of time?

    Directory of Open Access Journals (Sweden)

    O. Shields

    1997-06-01

    Full Text Available Since the theory of plate tectonics was first proposed thirty years ago, some problems have arisen in its practical application. These call into question its fundamental assumptions of horizontal plate motion, hotspot fixity, true polar wander, Panthalassa, and the Earth’s constant size while leaving seafloor spreading and subduction intact. A rapidity expanding earth solves these problems and privides an alternative viewpoint worth reconsidering.

  6. Do cratons preserve evidence of stagnant lid tectonics?

    Directory of Open Access Journals (Sweden)

    Derek Wyman

    2018-01-01

    Full Text Available Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ∼3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume – volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ∼2.9 Ga and ∼2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ∼2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.

  7. Gravity anomalies, crustal structure and rift tectonics at the Konkan ...

    Indian Academy of Sciences (India)

    trolled by the mode of extension and thinning of continental lithosphere during its formation. Stud- ies on the evolution of passive margins therefore facilitate to understand the genetic link between tectonics, geomorphology and sedimentation. The. Western Continental Margin of India (WCMI) has evolved through rifting and ...

  8. Response of a dryland fluvial system to climate–tectonic ...

    Indian Academy of Sciences (India)

    Dryland rivers, dominated by short-lived, localised and highly variable flow due to discrete precipitation events, have characteristic preservation potential, which serves as suitable archives towards understanding the climate–tectonic coupling. In the present study, we have investigated the fluvial records of a major,.

  9. Post-Miocene Tectonics from Black Sea to Mediterrenean Sea along Central Anatolian Plateau

    Science.gov (United States)

    Rojay, B.; Özsayın, E.; Çiner, A.

    2012-04-01

    The existences of the gross structures are crucial elements in the understanding of the Neogene evolution of the Anatolia. The structures, from north to south, are fairly documented extensional Black Sea coast structures, "N vergent tectonics" in Black Sea region, the cross cutting scar/shear zone -North Anatolian Fault- , S verging tectonics in central Anatolian overthrust belt (Cretaceous ophiolitic mélange belt), extensional Tuzgölü basin, basins like Cilicia, Mut situated to the back of the Cyprian arc and Cyprus locked subduction and accretionary tectonics (locked by approaching and colliding of the Eratosthenes and Hecatacus "seamount" obstacles). The closure of the northern Neotethys during post-Late Eocene- pre-Miocene end with the collision of the squeezed "Anatolian Block" from south with the Eurasian Continent. Consequently the linkage of the central Anatolian basins is lost with the Seas (Paratethys) in north by the evolution of Black Sea Mountains. However, the subduction in southern Neotethys continued with a complex array due to oblique subduction between "Anatolian Block" and downgoing African-Arabian plates. The growth of the accretionary wedge along southeast Anatolia resulted in retreat of the Miocene Seas towards Basra Bay (Iraq) and collision of the southeast Anatolian belt operated to the end of late Miocene where the marine realm in eastern Mediterrenean Sea continues. The rifting - sea-floor spreading in Red Sea, propagating of Dead Sea Transform to the north and oblique subduction in southern Tethys Ocean during different times in Miocene-Pliocene manifested a various different tectonic mechanism stories in the evolution of the Neogene basin in Anatolia. Consequently progressive closure of the Tethys Oceans resulted in the development Central Anatolian and Eastern Anatolian Plateaus. The growth of the Plateaus, in other words, the progressive shortening from north to south during Late Miocene, ended with the escape of the Anatolian Block

  10. Florida: A Jurassic transform plate boundary

    Science.gov (United States)

    Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans

    1984-01-01

    Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our

  11. Active tectonics around the Mediterranean region: site studies and application of new methodologies

    Directory of Open Access Journals (Sweden)

    Luigi Cucci

    2013-01-01

    Full Text Available More than 25 years have passed since the definition of Active Tectonics as "tectonic movements that are expected to occur within a future time span of concern to society", formulated in a milestone book by the National Research Council on this topic (Studies in Geophysics, Active Tectonics, National Academy Press, Washington, D.C. 1986, and those words have still to be considered the most suitable and exhaustive way to explain this branch of the Earth Sciences. Indeed only bridging together basic studies ("tectonic movements", rates of occurrence ("time span" and hazard assessment ("society" can we fully evaluate ongoing tectonic activity and its associated hazards. The broad Mediterranean Sea region is a paradigmatic area from this point of view, as on one hand this region displays in a relatively limited geographic extent a great variety of tectonic processes such as plate collision, subduction, volcanic activity, large-magnitude earthquakes, active folding and faulting, vertical uplift and/or subsidence. On the other hand, all the above mentioned tectonic processes can potentially affect a total population of about 450 million, mostly concentrated in fast-growing urban areas and/or close to industrial compounds and critical facilities often located nearby hazard sources. […

  12. Mechanics and Partitioning of Deformation of the Northwestern Okhostk Plate, Northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.; Fujita, K.

    2007-12-01

    The tectonic evolution and present day deformation of northeastern Russia remains one of the major challenges in plate tectonics. Arguments over the existence of at least a separate Okhotsk plate between North America and Eurasia appear to be resolved on the basis of the latest GPS studies combined with elastic modeling. The question of the mechanical behaviour of the Okhotsk plate, caught between the slowly, obliquely converging North American and Eurasian plates now becomes important. We present an analysis of geological lineaments, micro-seismicity, total seismic moment release and seismic deformation rate and GPS campaign data and global plate tectonic model data (REVEL) to estimate the likelihood of future seismicity and the relative amount of elastic and viscous deformation of the lithosphere of the northwestern Okhotsk plate. We find that it is likely that the Okhotsk plate is cracked into slivers, but that rates of relative motion of these slivers are close to indistinguishable from the behaviour of a single, rigid plate. The analysis also suggests the upper bound for large earthquakes in the region to be Mw 7-7.5 which we expect to occur only on the plate boundary fault itself. This fits geological evidence for a long term offset rate 5-10 times higher on the major plate boundary fault than other lineaments cutting the Okhotsk plate itself.

  13. Is There Really A North American Plate?

    Science.gov (United States)

    Krill, A.

    2011-12-01

    Lithospheric plates are typically identified from earthquake epicenters and evidence such as GPS movements. But no evidence indicates a plate boundary between the North American and South American Plates. Some plate maps show them separated by a transform boundary, but it is only a fracture zone. Other maps show an "undefined plate boundary" or put no boundary between these two plates (check Google images). Early plate maps showed a single large American Plate, quite narrow east of the Caribbean Plate (Le Pichon 1968, Morgan 1968). The North and South American Plates became established by the leading textbook Earth (Press & Siever 1974). On their map, from a Scientific American article by John Dewey (1972), these new plates were separated by an "uncertain plate boundary." The reasons for postulating a North American Plate were probably more psychological than geological. Each of the other continents of the world had its own plate, and North American geologists naturally wanted theirs. Similarly, European geographers used to view Europe as its own continent. A single large plate should again be hypothesized. But the term American Plate would now be ambiguous ("Which plate, North or South?") Perhaps future textbook authors could call it the "Two-American Plate." Textbook authors ultimately decide such global-tectonic matters. I became aware of textbook authors' opinions and influence from my research into the history of Alfred Wegener's continental drift (see Fixists vs. Mobilists by Krill 2011). Leading textbook author Charles Schuchert realized that continental drift would abolish his cherished paleogeographic models of large east-west continents (Eria, Gondwana) and small oceans (Poseiden, Nereis). He and his junior coauthors conspired to keep drift evidence out of their textbooks, from the 1934-editions until the 1969-editions (Physical Geology by Longwell et al. 1969, Historical Geology by Dunbar & Waage 1969). Their textbooks ruled in America. Textbooks

  14. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    Science.gov (United States)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  15. Developing a new synthesis of Arctic Ocean tectonics

    Science.gov (United States)

    Coakley, Bernard

    2014-05-01

    Tectonic models for the Mesozoic opening of the Amerasia Basin are dominated by the "windshield wiper" model, first articulated by Sam Carey in 1958. This theory was developed in the context of an expanding earth paradigm for global tectonics. While the expanding earth theory has been rejected, this zombie hypothesis for the development of the Amerasia Basin lingers on. Most models for the development of the Mesozoic Arctic Ocean work from the large scale down, assuming the overall pattern for the tectonic development of the Amerasia Basin is effectively described by a scissors-like opening, a separation of northern Alaska and Siberia from the conjugate margin of northern Canada, rotating apart around a pivot in the Mackenzie Delta. The problem for these models is how to resolve the space problems caused by the ridges that subdivide the basin. The most prominent of these being the Chukchi Borderland, a large block of extended continental crust, which projects out northward into the basin from the continental shelf north of the Bering Strait. A new approach can be based on first understanding the features in the basin and their inter-relationships, then using that knowledge to infer the larger scale basin tectonics, building a tectonic model from local observations. This approach will be discussed in the light of new results from recent studies in the Amerasia Basin and plans for future activities.

  16. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe....

  17. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations

    NARCIS (Netherlands)

    Nielsen, S.B.; Stephenson, R.A.; Thomsen, E.

    2007-01-01

    The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic

  18. HVDC Ground Electrodes and Tectonic Setting

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  19. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin

    Science.gov (United States)

    Suo, Yanhui; Li, Sanzhong; Yu, Shan; Somerville, Ian D.; Liu, Xin; Zhao, Shujuan; Dai, Liming

    2014-07-01

    Tectonic migration is a common geological process of basin formation and evolution. However, little is known about tectonic migration in the western Pacific margins. This paper focuses on the representative Cenozoic basins of East China and its surrounding seas in the western Pacific domain to discuss the phenomenon of tectonic jumping in Cenozoic basins, based on structural data from the Bohai Bay Basin, the South Yellow Sea Basin, the East China Sea Shelf Basin, and the South China Sea Continental Shelf Basin. The western Pacific active continental margin is the eastern margin of a global convergent system involving the Eurasian Plate, the Pacific Plate, and the Indian Plate. Under the combined effects of the India-Eurasia collision and retrogressive or roll-back subduction of the Pacific Plate, the western Pacific active continental margin had a wide basin-arc-trench system which migrated or ‘jumped’ eastward and further oceanward. This migration and jumping is characterized by progressive eastward younging of faulting, sedimentation, and subsidence within the basins. Owing to the tectonic migration, the geological conditions associated with hydrocarbon and gashydrate accumulation in the Cenozoic basins of East China and its adjacent seas also become progressively younger from west to east, showing eastward younging in the generation time of reservoirs, seals, traps, accumulations and preservation of hydrocarbon and gashydrate. Such a spatio-temporal distribution of Cenozoic hydrocarbon and gashydrate is significant for the oil, gas and gashydrate exploration in the East Asian Continental Margin. Finally, this study discusses the mechanism of Cenozoic intrabasinal and interbasinal tectonic migration in terms of interplate, intraplate and underplating processes. The migration or jumping regimes of three separate or interrelated events: (1) tectonism-magmatism, (2) basin formation, and (3) hydrocarbon-gashydrate accumulation are the combined effects of the

  20. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  1. Rheological and structural inheritance : key parameters for intra-plate deformation. A study based on analogue models

    NARCIS (Netherlands)

    Calignano, E.

    2015-01-01

    Mountain ranges are impressive tectonic features that characterize the Earth’s surface. Their formation is often associated with regions where two tectonic plates, making up the Earth surface, collide, as in the case of the Himalaya. While the surface is forced to uplift, the displacement of rocks

  2. Geodynamical Nature of the Formation of Large Plates of Platforms, Jointed in North Caspian Oil and Gas Basin

    Science.gov (United States)

    Seitov, Nassipkali; Tulegenova, Gulmira P.

    2016-01-01

    This article addresses the problems of tectonic zoning and determination of geodynamical nature of the formation of jointed tectonic structures within the North Caspian oil and gas basin, represented by Caspian Depression of Russian platform of East European Pre-Cambrian Craton and plate ancient Precambrian Platform stabilization and Turan…

  3. Seismicity of the Earth 1900-2007, Caribbean Plate and Vicinity

    Science.gov (United States)

    Benz, Harley M.; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Dart, Richard L.; Rhea, Susan

    2010-01-01

    Extensive diversity of tectonic regimes characterizes the perimeter of the Caribbean plate, involving no fewer than four major adjacent plates (North America, South America, Nazca, and Cocos). Inclined zones of deep earthquakes (Wadati-Benioff zones), deep ocean trenches, and arcs of volcanoes clearly indicate subduction of oceanic lithosphere along the Central American and Atlantic Ocean margins of the Caribbean plate, while shallow seismicity and focal mechanisms of major shocks in Guatemala, northern Venezuela, and the Cayman Ridge and Cayman Trench indicate transform fault and pull-apart basin tectonics.

  4. Geoprospective study of a nuclear waste repository. Prospective tectonics: convergent and divergent episodes, evolution of stress during the next 100,000 years

    International Nuclear Information System (INIS)

    Gros, Y.

    1985-01-01

    Within the frame of a contract with the CEC, dealing with storage and disposal of radioactive wastes in geological formations, the B.R.G.M. has been involved in a research on prospective tectonics. Within the Western European continental plate, since Mesozoic times, one sees the alternation or succession of convergent and divergent tectonic episodes. These tectonic episodes, although representing geologically discontinuous phenomena, still have time periods of between 4 to 40 millions years. These tectonic phenomena are the cause of the formation or reactivation, at all scales in the continental plate, of brittle, fault-like structures. Tectonic analysis and the in situ measures of stress and the earthquake focal phenomena show that, from the lower Quaternary to the present, the Western European continental plate has been subjected to NNW to SSE convergent stress. A study of the arrangement of European and African plates in the Western Mediterranean shows that the entire region, is undergoing a period of continental collision. The change in the process implies a westerly continental drift of the Spanish plate, a movement which would take several million years. On the Western European scale, the most likely hypothesis during the next 100,000 years is the persistance of the present stress trending approximately N-5. On the other hand, on a local scale, reorganisations of this stress are possible, owing to the presence of tectonic or lithological heterogeneities

  5. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  6. Upright folding during extensional and transtensional tectonics

    Science.gov (United States)

    Teyssier, Christian; Fossen, Haakon; Rey, Patrice F.; Whitney, Donna L.

    2017-04-01

    Upright folds are common structures that develop in response to horizontal shortening in layered material, for example in foreland basins that surround orogens. While the contractional nature of these folds is not in doubt, interpretation of their tectonic setting needs careful consideration. Here we focus on two examples: (1) folds developed in transtension; and (2) folds developed during the flow of deep crust in response to lithospheric extension. In both cases we consider folding of nearly horizontal layers that are either primary (bedding) or secondary (foliation). Strain theory inspired by John Ramsay's work makes predictions for the behavior of material lines and planes as well as strain axes (instantaneous, finite) during transtensional deformation. Results show: folds can form in transtension; fold hinges rotate toward the direction of divergence (and not the shear zone boundary as they do in transpression), providing unique insight into ancient plate motions; fold tightness is controlled by the obliquity of divergence and not finite strain; hinge parallel stretching is always greater than hinge-perpendicular shortening, resulting in constriction strain and boudinage of fold hinges. Taken together these results provide a rigorous framework for interpreting field observations where structures are complex and boundary conditions unclear. These principles are applied to various tectonic settings ranging from active tectonic regions of oblique divergence in western North America to ancient folding that developed during oblique extension of the Western Gneiss Region, deposition of Devonian basins, and exhumation of ultrahigh-pressure rocks in the Norwegian Caledonides. The other class of upright folds that form during extension may require revision of the tectonic interpretation of structural overprints in orogenic cores, for example in gneiss/migmatite domes. Dynamic modeling of extension of thick/hot crust predicts a positive feedback between extension of

  7. Relative tectonic activity classification in the Kermanshah area, western Iran

    Science.gov (United States)

    Arian, M.; Aram, Z.

    2014-12-01

    Due to the closing of the subduction zone and the collision of the Arabian and Eurasian plates, the High Zagros region has always been affected by a wide range of tectonic variations. In this research, the Gharasu River basin, which is located in the Kermanshah area, was selected as the study area, six geomorphic indices were calculated, and the results of each one were divided into three classes. Then, using the indices, relative tectonic activity was calculated, and their values were classified and analysed in four groups. Regions were identified as very high, high, moderate and low. In analysing the results and combining them with field observations and regional geology, the results were often associated and justified with field evidence. The highest value is located on the Dokeral anticline in the crush zone in Zagros. Most of the areas with high and moderate values of Index of Active Tectonics (IAT) are also located in the crush zone in Zagros. Crushing in this zone is because of the main fault mechanism of the Zagros region. The result in this paper confirms previous research in this region. At the eastern end of the study area, the value of Iat is high, which could be the result of the Sarab and Koh-e Sefid fault mechanisms.

  8. ITRF2014 plate motion model

    Science.gov (United States)

    Altamimi, Zuheir; Métivier, Laurent; Rebischung, Paul; Rouby, Hélène; Collilieux, Xavier

    2017-06-01

    For various geodetic and geophysical applications, users need to have access to a plate motion model (PMM) that is consistent with the ITRF2014 frame. This paper describes the approach used for determining a PMM from the horizontal velocities of a subset of the ITRF2014 sites away from plate boundaries, Glacial Isostatic Adjustment regions and other deforming zones. In theory it would be necessary to include in the inversion model a translational motion vector (called in this paper origin rate bias, ORB) that would represent the relative motion between the ITRF2014 origin (long-term averaged centre of mass of the Earth as sensed by SLR) and the centre of tectonic plate motion. We show that in practice, the magnitude of the estimated ORB is strongly dependent on the selection of ITRF2014 sites used for the PMM adjustment. Its Z-component can in particular range between 0 and more than 1 mm yr-1 depending on the station network used, preventing any geophysical interpretation of the estimated value. Relying on rigorous statistical criteria, the site selection finally adopted for the ITRF2014-PMM adjustment leads to a relatively small ORB (0.30 ± 0.18 mm yr-1 in the Z-component), which is statistically insignificant at the 2-sigma level, but also according to an F-ratio test. Therefore we opted for an ITRF2014-PMM without estimating the ORB, which in turn accommodates geodetic applications that require access to the ITRF2014 frame through pure plate rotation poles.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Pacific Islanders American Indian/Alaska Native Programs Older Adults Family Link Diabetes EXPO Upcoming Diabetes EXPOs EXPO ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ...

  10. Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak River basin

    Science.gov (United States)

    Raj, Rachna

    2012-05-01

    Landscape owes its shape to the combination of tectonic and climatic forces. Differential displacement of land by tectonic processes changes the elevation of earth's surface locally and in turn affects the rate of geomorphic processes which are altitude dependent. The tectonic and geomorphic processes are very tightly coupled and their results are intertwined. To extract the tectonic signal, the numerical modelling of the landscape of the Vatrak River basin, part of which falls in the northern part of the Gujarat Alluvial Plains of western India, has been undertaken applying morphometric and morphostructural approach. The study helped in understanding the role of tectonic elements in the evolution of the basin. Demarcation of geomorphic indicators of active tectonics (which include the analyses of asymmetry factor, valley floor ratio, gradient, basin elongation ratio, long profile and related parameters, pseudo hypsometric integral, drainage basin asymmetry), drainage pattern analysis and azimuthal distribution of stream channels have been performed for each drainage network and associated basin. The morphological field evidence of tectonics combined with the results of morphometric analysis has been used to obtain information about the orientation of tectonic elements and the possible reconstruction of their activity in recent times. The analyses indicate eastward tilting of the drainage systems, strong asymmetry in some reaches, pronounced elongation of certain tributaries, long profiles indicating base level lowering, poor organisation of the hydrographic network, and close alignment between lower order streams and active faults. All these analyses point towards the active tectonism in the area. Data obtained through the statistical analysis of preferred stream orientations confirm that the old tectonic directions markedly influenced the drainage network development of the older order streams, whereas, streams of lower order which preferentially follow the N

  11. Archaean tectonic systems: A view from igneous rocks

    Science.gov (United States)

    Moyen, Jean-François; Laurent, Oscar

    2018-03-01

    with somewhat different tectonic systems. In particular, the familiar distinction between collision, arcs, ridges and hotspots seems to blur in the Archaean. Rather, the large-scale geochemical pattern reveals a long-lived, altered and periodically resurfaced basaltic crust. This protocrust is reworked, through a range of processes occurring at various depths that correspond to a progressive stabilization of burial systems and the establishment of true subductions. A punctuated onset of global plate tectonics is unlikely to have occurred, but rather short-term episodes of proto-subduction in the late Archaean evolved over time into longer-term, more stable style of plate tectonics as mantle temperature decayed.

  12. Tectonic pattern of the Azores spreading centre and triple junction

    Science.gov (United States)

    Searle, Roger

    1980-12-01

    The major tectonic elements of the Azores triple junction have been mapped using long-range side-scan sonar. The data enable the Mid-Atlantic Ridge axis to be located with a precision of a few kilometres. Major faults and other tectonic and volcanic elements of the ridge maintain their regional trend of 010° to 020° past the triple junction area. There is no oblique spreading, and only minor transform offsets of the Mid-Atlantic Ridge occur here. The main effect of the triple junction or Azores hot spot is to diminish the amplitude of the median valley to 200 m or less. There is no axial high: a topographic high seen on several profiles is located to the east of the Mid-Atlantic Ridge spreading axis and does not appear to have any fundamental significance. The third arm of the triple junction includes the Azores srreading centre which appears to have developed as a series of en echelon rifted basins (the Terceira Rift) extending from Formigas Trough at 36.8°N, 24.5°W to a point near 39.3°N, 28.8°W. There are indications that recent activity in the spreading centre may be concentrated in a series of ridges which flank the older rifted basins. Until recently the northwest end of the Terceira Rift was connected to the Mid-Atlantic Ridge axis either directly at an RRR junction, or via a transform fault. The triple junction has probably moved south during the last 6 Ma to a positin on the Mid-Atlantic Ridge near 38.7°N. Initiation of the Azores spreading centre may have occurred during the 36 Ma B.P. rearrangement of poles, with an RFF triple junction north from the East Azores fracture zone to the North Azores fracture zone and transferring a wedge of European plate to the African plate. The tectonic elements revealed by this study are in good agreement with inferred earthquake mechanisms and with the RM2 plate tectonic model of Minster and Jordan, but east-west motion between North America and Africa does not seem to be compatible with the other motions at the

  13. Teaching about the Early Earth: Evolution of Tectonics, Life, and the Early Atmosphere

    Science.gov (United States)

    Mogk, D. W.; Manduca, C. A.; Kirk, K.; Williams, M. L.

    2007-12-01

    The early history of the Earth is the subject of some of the most exciting and innovative research in the geosciences, drawing evidence from virtually all fields of geoscience and using a variety of approaches that include field, analytical, experimental, and modeling studies. At the same time, the early Earth presents unique opportunities and challenges in geoscience education: how can we best teach "uncertain science" where the evidence is either incomplete or ambiguous? Teaching about early Earth provides a great opportunity to help students understand the nature of scientific evidence, testing, and understanding. To explore the intersection of research and teaching about this enigmatic period of Earth history, a national workshop was convened for experts in early Earth research and undergraduate geoscience education. The workshop was held in April, 2007 at the University of Massachusetts at Amherst as part of the On the Cutting Edge faculty professional development program. The workshop was organized around three scientific themes: evolution of global tectonics, life, and the early atmosphere. The "big scientific questions" at the forefront of current research about the early Earth were explored by keynote speakers and follow-up discussion groups: How did plate tectonics as we know it today evolve? Were there plates in the Hadean Eon? Was the early Earth molten? How rapidly did it cool? When and how did the atmosphere and hydrosphere evolve? How did life originate and evolve? How did all these components interact at the beginning of Earth's history and evolve toward the Earth system we know today? Similar "big questions" in geoscience education were addressed: how to best teach about "deep time;" how to help students make appropriate inferences when geologic evidence is incomplete; how to engage systems thinking and integrate multiple lines of evidence, across many scales of observation (temporal and spatial), and among many disciplines. Workshop participants

  14. Tectonic thinking in contemporary industrialized architecture

    DEFF Research Database (Denmark)

    Beim, Anne

    2013-01-01

    and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction) and how this attention forms......This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect...... a creative force in building constructions, structural features and architectural design (construing) – helps to identify and refine technology transfer in contemporary industrialized building construction’. Through various references from the construction industry, business theory and architectural practice...

  15. TERRAIN TECTONICS OF THE CENTRAL ASIAN FOLDED BELT

    Directory of Open Access Journals (Sweden)

    M. M. Buslov

    2014-01-01

    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  16. African Cenozoic hotpot tectonism: new insights from continent-scale body-wave tomography

    Science.gov (United States)

    Bastow, I. D.; Boyce, A.; Caunt, E.; Guilloud De Courbeville, J.; Desai, S.; Kounoudis, R.; Golos, E. M.; Burdick, S.; van der Hilst, R. D.

    2017-12-01

    The African plate is an ideal study locale for mantle plumes and Cenozoic hotspot tectonism. On the eastern side of the continent, the uplifted East African and Ethiopian plateaus, and the 30Ma Ethiopian Traps, are widely considered to be the result of the African Superplume: a broad thermochemical anomaly that originates below southern Africa. Precisely where and how the superplume traverses the mantle transition zone is debated however. On the western side of the continent, the Cameroon Volcanic Line is a hotspot track with no age-progression; it is less easily attributed to the effects of a mantle plume. Central to our understanding of these issues is an improved picture of mantle seismic structure. Body-wave studies of African mantle wave-speed structure are typically limited to regional relative arrival-time studies that utilize data from temporary seismograph networks of aperture less than 1000km. The resulting tomographic images are higher resolution than continent-scale surface-wave models, but anomaly amplitudes cannot be compared from region to region using the relative arrival-time approach: the 0% contour in each region refers to the regional, not global mean. The challenge is thus to incorporate the often-noisy body-wave data from temporary seismograph networks into a continent-scale absolute delay-time model. We achieve this using the new Absolute Arrival-time Recovery Method (AARM) method of Boyce et. al., (2017) and the tomographic inversion approach described by Li et. al., (2008). We invert for mantle wavespeed structure using data recorded since 1990 by temporary networks in the Atlas Mountains, Cameroon, South Africa, East African Rift system, Ethiopia and Madagascar. Our model is well resolved to lower mantle depths beneath these temporary networks, and offers the most detailed picture yet of mantle wavespeed structure beneath Africa. The contrast between East African and Cameroon mantle structure suggests multiple development mechanisms for

  17. Recent uplift of the Atlantic Atlas (offshore West Morocco): Tectonic arch and submarine terraces

    Science.gov (United States)

    Benabdellouahed, M.; Klingelhoefer, F.; Gutscher, M.-A.; Rabineau, M.; Biari, Y.; Hafid, M.; Duarte, J. C.; Schnabel, M.; Baltzer, A.; Pedoja, K.; Le Roy, P.; Reichert, C.; Sahabi, M.

    2017-06-01

    Re-examination of marine geophysical data from the continental margin of West Morocco reveals a broad zone characterized by deformation, active faults and updoming offshore the High Atlas (Morocco margin), situated next to the Tafelney Plateau. Both seismic reflection and swath-bathymetric data, acquired during Mirror marine geophysical survey in 2011, indicate recent uplift of the margin including uplift of the basement. This deformation, which we propose to name the Atlantic Atlas tectonic arch, is interpreted to result largely through uplift of the basement, which originated during the Central Atlantic rifting stage - or even during phases of Hercynian deformation. This has produced a large number of closely spaced normal and reverse faults, ;piano key faults;, originating from the basement and affecting the entire sedimentary sequence, as well as the seafloor. The presence of four terraces in the Essaouira canyon system at about 3500 meters water depth and ;piano key faults; and the fact that these also affect the seafloor, indicate that the Atlantic Atlas is still active north of Agadir canyon. We propose that recent uplift is causing morphogenesis of four terraces in the Essaouira canyon system. In this paper the role of both Canary plume migration and ongoing convergence between the African and Eurasian plates in the formation of the Atlantic Atlas are discussed as possibilities to explain the presence of a tectonic arch in the region. The process of reactivation of passive margins is still not well understood. The region north of Agadir canyon represents a key area to better understand this process.

  18. Discovering Plate Boundaries in Data-integrated Environments: Preservice Teachers' Conceptualization and Implementation of Scientific Practices

    Science.gov (United States)

    Sezen-Barrie, Asli; Moore, Joel; Roig, Cara E.

    2015-08-01

    Drawn from the norms and rules of their fields, scientists use variety of practices, such as asking questions and arguing based on evidence, to engage in research that will contribute to our understanding of Earth and beyond. In this study, we explore how preservice teachers' learn to teach scientific practices while teaching plate tectonic theory. In particular, our aim is to observe which scientific practices preservice teachers use while teaching an earth science unit, how do they integrate these practices into their lessons, and what challenges do they face during their first time teaching of an earth science content area integrated with scientific practices. The study is designed as a qualitative, exploratory case study of seven preservice teachers while they were learning to teach plate tectonic theory to a group of middle school students. The data were driven from the video records and artifacts of the preservice teachers' learning and teaching processes as well as written reflections on the teaching. Intertextual discourse analysis was used to understand what scientific practices preservice teachers choose to integrate into their teaching experience. Our results showed that preservice teachers chose to focus on four aspects of scientific practices: (1) employing historical understanding of how the theory emerged, (2) encouraging the use of evidence to build up a theory, (3) observation and interpretation of data maps, and (4) collaborative practices in making up the theory. For each of these practices, we also looked at the common challenges faced by preservice teachers by using constant comparative analysis. We observed the practices that preservice teachers decided to use and the challenges they faced, which were determined by what might have come as in their personal history as learners. Therefore, in order to strengthen preservice teachers' background, college courses should be arranged to teach important scientific ideas through scientific practices

  19. Measurements of Active Tectonic Deformation on the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez, T.; Cundy, A.; Carranza-Edwards, A.; Morales, E.; Kostoglodov, V.; Urrutia-Fucugauchi, J.

    2004-12-01

    The study of tectonic deformation rates using displaced shoreline features is relatively well-established, and has provided much useful information on seismic hazard. Such studies have frequently been complemented by analysis of the coastal sedimentary record, where past marine to terrestrial environmental changes (and vice versa) may be recorded by clear changes in stratigraphy. Studies of this type are particularly valuable for tectonically-active areas where the preservation of former shoreline features is poor, or where long-term subsidence has resulted in their erosion, drowning or burial. The specific objective of this study is to derive rates of tectonic deformation from geomorphic and stratigraphic studies of the Guerrero coastal area, and to examine the feasibility of this stratigraphic approach in the coastal lagoons of the Mexican Pacific coast, in the Guerrero gap. The Guerrero gap coastal area, where a major earthquake is expected to occur, parallels the Cocos plate subduction zone. Here convergence rates vary from 5.2 cm/yr to 5.8 cm/yr. The Guerrero gap has experienced several historical earthquakes, notably the 1911 (7.8 Ms). However, no large magnitude events since the 1911 earthquake and only a few Ms~6 events have occurred near the Guerrero gap edges. It is expected that a major interplate earthquake of estimated magnitude Mw=8.1 to 8.4 has a high probability to occur. Landforms within the Guerrero gap indicate that the coast is subsiding. A series of key indicators such as elongated islands reminiscent of ancient barriers, submerged barriers island, extensive marshy environments, increased depths in the lagoons, and submerged anthropogenic features (shell mounds), among others, suggest active tectonic subsidence of the coast. In contrast, the adjacent northwest area off the Guerrero gap exhibits landforms characteristic of tectonic uplift (marine terraces and uplifted beach ridges), indicating a different seismo-tectonic regime northwest of the

  20. Tectonic inheritance, reactivation and long term fault weakening processes

    Science.gov (United States)

    Holdsworth, Bob

    2017-04-01

    This talk gives a geological review of weakening processes in faults and their long-term effect on reactivation and tectonic inheritance during crustal deformation. Examples will be drawn from the Atlantic margins, N America, Japan and the Alps. Tectonic inheritance and reactivation are fundamentally controlled by the processes of stress concentration and shear localisation manifested at all scales in the continental lithosphere. Lithosphere-scale controls include crustal thickness, thermal age and the boundary conditions imposed by the causative plate tectonic processes during extension. At the other end of the scale range, grain-scale controls include local environmental controls (depth, stress, strain rate), rock composition, grainsize, fabric intensity and the presence of fluids or melt. Intermediate-scale geometric controls are largely related to the size, orientation and interconnectivity of pre-existing anisotropies. If reactivation of pre-existing structures occurs, it likely requires a combination of processes across all three scale ranges to be favourable. This can make the unequivocal recognition of inheritance and reactivation difficult. Large (e.g. crustal-scale) pre-existing structures are especially important due to their ability to efficiently concentrate stress and localise strain. For big faults (San Andreas, Great Glen, Median Tectonic Line), detailed studies of the associated exposed fault rocks indicate that reactivation is linked to the development of strongly anisotropic phyllosilicate-rich fault rocks that are weak (e.g. friction coefficients as low as 0.2 or less) under a broad range of deformation conditions. In the case of pre-existing regional dyke swarms (S Atlantic, NW Scotland) - which may themselves track deep mantle fabrics at depth - multiple reactivation of dyke margins is widespread and may preclude reactivation of favourably oriented local basement fabrics. In a majority of cases, pre-existing structures in the crust are

  1. Petrogenesis of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan: Provenance, tectonic, and climatic implications

    Science.gov (United States)

    Amireh, Belal S.

    2018-04-01

    Detrital framework modes of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan are determined employing the routine polarized light microscope. The lower part of this sequence constitutes a segment of the vast lower Paleozoic siliciclastic sheet flanking the northern Gondwana margin that was deposited over a regional unconformity truncating the outskirts of the East African orogen in the aftermath of the Neoproterozoic amalgamation of Gondwana. The research aims to evaluate the factors governing the detrital light mineral composition of this sandstone. The provenance terranes of the Arabian craton controlled by plate tectonics appear to be the primary factor in most of the formations, which could be either directly inferred employing Dickinson's compositional triangles or implied utilizing the petrographic data achieved and the available tectonic and geological data. The Arabian-Nubian Shield constitutes invariably the craton interior or the transitional provenance terrane within the NE Gondwana continental block that consistently supplied sandy detritus through northward-flowing braided rivers to all the lower Paleozoic formations. On the other hand, the Lower Cretaceous Series received siliciclastic debris, through braided-meandering rivers having same northward dispersal direction, additionally from the lower Paleozoic and lower-middle Mesozoic platform strata in the Arabian Craton. The formations making about 50% of the siliciclastic sequence represent a success for Dickinson's plate tectonics-provenance approach in attributing the detrital framework components primarily to the plate tectonic setting of the provenance terranes. However, even under this success, the varying effects of the other secondary sedimentological and paleoclimatological factors are important and could be crucial. The inapplicability of this approach to infer the appropriate provenance terranes of the remaining formations could be ascribed either to the

  2. Land and OBS recordings of tectonic tremor on New Zealand's Alpine Fault

    Science.gov (United States)

    Wech, A.; Boese, C. M.; Stern, T. A.; Townend, J.; Sheehan, A. F.; Collins, J. A.

    2012-12-01

    Tectonic tremor is characterized by persistent, low-frequency seismic energy seen at major plate boundaries. Although predominantly associated with subduction zones, tremor also occurs along the deep extension of the strike-slip San Andreas Fault. Here we present the observations of tectonic tremor along New Zealand's Alpine Fault, a major transform boundary that is late in its earthquake cycle using a combination of land and ocean-bottom seismometers (OBS). We report tectonic tremor that occurred on the central section of the Alpine Fault on 12 days between March 2009 and October 2011. Tremor hypocenters concentrate in the lower crust at the downdip projection of the Alpine Fault; coincide with a zone of high P-wave attenuation (low Qp) and bright seismic reflections; occur in the 25-45 km depth range, below the seismogenic zone; and may define the deep plate boundary structure extending through the lower crust and into the upper mantle. We infer this tremor to represent slow slip on the deep extent of the Alpine Fault in a fluid-rich region marked by high attenuation and reflectivity. These observations provide the first indication of present-day displacement on the lower crustal portion of the Australia-Pacific transform plate boundary. Furthermore, the offshore observations—ground-truthed by onshore shallow borehole seismometers—demonstrate the potential utility of OBS experiments in better characterizing plate boundary processes.

  3. 431K/CD vehicle number plates

    CERN Multimedia

    GS Department

    2009-01-01

    The Green Plates Service, which is responsible for issuing the 431K/CD vehicle number plates , wishes to apologise for the delay in processing applications over the past weeks. The delay is outside the Service’s control, as it is due to the recent introduction of new rules governing the vehicle registration process in France. Normal service will be resumed as soon as possible. Thank you for your understanding. GS-SEM-LS – Green Plates Service

  4. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  5. Understanding Extension in the Southern Marianas and the Challenger Deep: a 21ST Century Geoscientific Challenge

    Science.gov (United States)

    Stern, R. J.; Ribeiro, J. M.; Martinez, F.; Ohara, Y.

    2017-12-01

    The Challenger Deep (CD) is the deepest spot on Earth's solid surface and the reasons for its great depth are controversial. In general, trench depths (without sediments) are thought to reflect slab age; old oceanic lithosphere arrives at the trench deeper so similar downbending makes deeper trenches than young oceanic lithosphere. Slab tears and edges and short slabs also may help trenches deepen by making it easier to roll back. In the case of the CD, we are unsure of subducted oceanic lithosphere age because this lies near the juncture of Jurassic and Oligocene crusts. A slab edge to the west and a slab tear to the east may also help the Pacific plate roll back and contribute to its depth. A possible unexamined reason for CD's great depth may be strong extension of the overlying plate associated with opening of the Mariana Trough backarc basin (MT-BAB). GPS on islands indicate southward-increasing extension rates of at least 45mm/yr at the latitude of Guam (Kato et al. 2003 GRL; see Martinez et al. T037 for more info); extension rates are likely to be greater in the MT-BAB north of CD. There are few convergent margins where strong extension affects the overriding plate. Overriding plate extension may help deepen trenches by narrowing the plate coupling zone (Gvirtzman and Stern 2003 Tectonics). Asthenosphere outflow from the shrinking Philippine Sea plate could also push against the slab to depress it. The region around the CD is very deep water, presenting major challenges for future study. The combined deepwater assets and brainpower of the US, Japan, and China are needed to do this work. Both subducting and overriding plates need study. For the downgoing plate, we need IODP drilling and refraction studies to determine its age and crustal and lithospheric structure; electromagnetic sounding would also help reveal upper plate structure. We need passive OBS studies to map slab tears and edges. We need to better understand the tectonic evolution of the MT

  6. The Arabia-India plate boundary unveiled

    Science.gov (United States)

    Fournier, M.; Chamot-Rooke, N. R.; Rodriguez, M.; Petit, C.; Huchon, P.; Beslier, M.; Hazard, B.

    2009-12-01

    Since the advent of Plate Tectonics, tectonic plate boundaries were explored on land as at sea for search of active faults where the destructive energy of earthquakes is released. Yet, some plate boundaries, less active or considered as less dangerous to humankind, escaped general attention and remained unknown to a large extent. Among them, the boundary between two major tectonic plates: Arabia and India. The Arabia-India motion is currently accommodated along the Owen Fracture Zone (OFZ) in the NW Indian Ocean, which connects the spreading centers of the Sheba and Carlsberg ridge system to the Makran subduction zone. We recently surveyed this fracture zone onboard the R/V Beautemps-Beaupré (Owen Cruise, March 2009) using a high-resolution deep-water multibeam echo-sounder. Bathymetric data reveal a spectacular submarine fault system running over a distance of 800 km between the Arabia-India-Somalia triple junction to the south and the Dalrymple Trough to the north. The morphology of the active faults is well preserved on the seafloor where fault scarps can be followed over hundreds of kilometres. The surficial trace of the faults is not obscured by the sediments of the aggrading deep-sea fan of the Indus River. The fault system is segmented in five main segments connected by pull apart basins. The length of the individual, apparently uninterrupted, segments is between 100 km and 220 km. The largest pull-apart basin at the latitude 20°N (20°N-Basin) corresponds to a right step-over of about 12 km between two fault segments. The 20°N-Basin is bounded by a normal fault scarp with a throw of 450-500 m. Numerous minor normal faults cutting the floor of the basin attest to recent activity. The 20°N-Basin is directly supplied in turbidity-current deposits by an active channel of the Indus fan. The preservation of tectonic features indicates that the dip-slip motion has exceeded the rate of burial by sediments. Some compressional structures are also deduced from

  7. Alps, Carpathians and Dinarides-Hellenides: about plates, micro-plates and delaminated crustal blocks

    Science.gov (United States)

    Schmid, Stefan

    2014-05-01

    Before the onset of Europe-Africa continental collision in the Dinarides-Hellenides (around 60Ma) and in the Alps and Western Carpathians (around 35 Ma), and at a large scale, the dynamics of orogenic processes in the Mediterranean Alpine chains were governed by Europe-Africa plate convergence leading to the disappearance of large parts of intervening oceanic lithosphere, i.e. the northern branch of Neotethys along the Sava-Izmir-Ankara suture and Alpine Tethys along the Valais-Magura suture (Schmid et al. 2008). In spite of this, two major problems concerning the pre-collisional stage are still poorly understood: (1) by now we only start to understand geometry, kinematics and dynamics of the along-strike changes in the polarity of subduction between Alps-Carpathians and Dinarides-Hellenides, and (2) it is not clear yet during exactly which episodes and to what extent intervening rifted continental fragments such as, for example, Iberia-Briançonnais, Tisza, Dacia, Adria-Taurides moved independently as micro-plates, and during which episodes they remained firmly attached to Europa or Africa from which they broke away. As Europe-Africa plate convergence slowed down well below 1 cm/yr at around 30 Ma ago these pre-collisional processes driven by plate convergence on a global scale gave way to more local processes of combined roll-back and crustal delamination in the Pannonian basin of the Carpathian embayment and in the Aegean (as well as in the Western Mediterranean, not discussed in this contribution). In the case of the Carpathian embayment E-directed roll back totally unrelated to Europe-Africa N-S-directed convergence, started at around 20 Ma ago, due to the presence relict oceanic lithosphere in the future Pannonian basin that remained un-subducted during collision. Due to total delamination of the crust from the eastward rolling back European mantle lithosphere the anticlockwise rotating ALCAPA crustal block, consisting of Eastern Alps and Western Carpathian

  8. Navigating Towards Digital Tectonic Tools

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2006-01-01

    The computer holds a great potential to break down the barriers between architecture and the technical aspects relating to architecture, thus supporting innovative architecture with an inner correspondence between form and technique. While the differing values in architecture and technique can seem...... a tectonic tool should encompass. Secondly the ability and validity of the model are shown by applying it to a case study of Jørn Utzon’s work on Minor Hall in Sydney Opera House - for the sake of exemplification the technical field focused on in this paper is room acoustics. Thirdly the relationship between...

  9. Tectonic and Hydrothermal Activities in Debagh, Guelma Basin (Algeria)

    OpenAIRE

    Maouche, Said; Abtout, Abdeslam; Merabet, Nacer-Eddine; Aïfa, Tahar; Lamali, Atmane; Bouyahiaoui, Boualem; Bougchiche, Sofiane; Ayache, Mohamed

    2013-01-01

    Quaternary and Pliocene travertines, deposited from hot springs, can reveal much about neotectonic and hydrothermal activity. The aim of this work is the understanding of the actual tectonic activity in the Guelma Basin and in one of its spa structures. Gravity data were collected during a field study in the Hammam Debagh (HD) area and then analyzed to better highlight the architecture of its subsurface underlying structures. This analysis was performed by means of a Bouguer anomaly, upward c...

  10. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  11. Impacts and tectonism in Earth and moon history of the past 3800 million years

    Science.gov (United States)

    Stothers, Richard B.

    1992-01-01

    The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.

  12. Design of bridges against large tectonic deformation

    Science.gov (United States)

    Anastasopoulos, I.; Gazetas, G.; Drosos, V.; Georgarakos, T.; Kourkoulis, R.

    2008-12-01

    The engineering community has devoted much effort to understanding the response of soil-structure systems to seismic ground motions, but little attention to the effects of an outcropping fault offset. The 1999 earthquakes of Turkey and Taiwan, offering a variety of case histories of structural damage due to faulting, have (re)fueled the interest on the subject. This paper presents a methodology for design of bridges against tectonic deformation. The problem is decoupled in two analysis steps: the first (at the local level) deals with the response of a single pier and its foundation to fault rupture propagating through the soil, and the superstructure is modeled in a simplified manner; and the second (at the global level) investigates detailed models of the superstructure subjected to the support (differential) displacements of Step 1. A parametric study investigates typical models of viaduct and overpass bridges, founded on piles or caissons. Fixed-head piled foundations are shown to be rather vulnerable to faulting-induced deformation. End-bearing piles in particular are unable to survive bedrock offsets exceeding 10 cm. Floating piles perform better, and if combined with hinged pile-to-cap connections, they could survive much larger offsets. Soil resilience is beneficial in reducing pile distress. Caisson foundations are almost invariably successful. Statically-indeterminate superstructures are quite vulnerable, while statically-determinate are insensitive (allowing differential displacements and rotations without suffering any distress). For large-span cantilever-construction bridges, where a statically determinate system is hardly an option, inserting resilient seismic isolation bearings is advantageous as long as ample seating can prevent the deck from falling off the supports. An actual application of the developed method is presented for a major bridge, demonstrating the feasibility of design against tectonic deformation.

  13. Tectonic thinking in contemporary industrialized architecture

    Directory of Open Access Journals (Sweden)

    Anne

    2013-12-01

    Full Text Available Corresponding author: Professor Anne Beim, Ph.D., CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts – School of Architecture, Phillip Langes ALlé 10, DK-1435 Copenhagen, Denmark. Tel.: +45 4170 1623; E-mail: anne.beim@kadk.dk This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction and how this attention forms a creative force in building constructions, structural features and architectural design (construing – helps to identify and refine technology transfer in contemporary industrialized building construction’. Through various references from the construction industry, business theory and architectural practice the paper offers various analyses, comparisons and concrete design approaches. How architectural design processes and the tectonic design can benefit from Integrated Product Deliveries, mass-customization and Design for Disassembly is examined and discussed. The paper concludes by presenting a series of arguments that call for adaptable systems based on sufficient numbers of industrialized building products of high quality and a great variety of suppliers, and point at the need for optimizing our use of resources in order to reach sustainable solutions in architecture.

  14. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    International Nuclear Information System (INIS)

    Lenardic, A.; Crowley, J. W.

    2012-01-01

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees, for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ( s uper-Earths ) . The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.

  15. Breaking rocks made easy: subcritical processes and tectonic predesign

    Science.gov (United States)

    Voigtlaender, Anne; Krautblatter, Michael

    2017-04-01

    In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of

  16. Pargo Chasma and its relationship to global tectonics

    Science.gov (United States)

    Ghail, R. C.

    1993-01-01

    Pargo Chasma was first identified on Pioneer Venus data as a 10,000 km long lineation extending from Atla Regio in the north terminating in the plains south of Phoebe Regio. More recent Magellan data have revealed this feature to be one of the longest chains of coronae so far identified on the planet. Stofan et al have identified 60 coronae and 2 related features associated with this chain; other estimates differ according to the classification scheme adopted, for example Head et al. identify only 29 coronae but 43 arachnoids in the same region. This highlights one of the major problems associated with the preliminary mapping of the Magellan data: there has been an emphasis on identifying particular features on Venus without a universally accepted scheme to classify those features. Nevertheless, Pargo Chasma is clearly identified as a major tectonic belt of global significance. Together with the Artemis-Atla-Beta tectonic zone and the Beta-Phoebe rift belt, Pargo Chasma defines a region on Venus with an unusually high concentration of tectonic and volcanic features. Thus, an understanding of the processes involved in the formation of Pargo Chasma may lend significant insight into the evolution of the region and the planet as a whole. I have produced a detailed 1 to 10 million scale map of Pargo Chasma and the surrounding area from preliminary USGS controlled mosaiced image maps of Venus constructed from Magellan data. In view of the problems highlighted above in relation the efforts already made at identifying a particular set of features I have mapped the region purely on the basis of the geomorphology visible in the magellan data without any attempt at identifying a particular set or class of features. Thus, the map produced distinguishes between areas of different brightness and texture. This has the advantage of highlighting the tectonic fabric of Pargo Chasma and clearly illustrates the close inter-relationship between individual coronae and the surrounding

  17. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang

    2012-03-01

    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  18. Slow slip hidden in the noise: the intermittence of tectonic release

    Science.gov (United States)

    Frank, W.

    2016-12-01

    Referred to as slow slip events, the transient aseismic slip that occurs along plate boundaries can be indirectly characterized through colocated seismicity, such as tectonic tremor and low-frequency earthquakes (LFEs). Using the timing of cataloged LFE and tremor activity in Guerrero, Mexico and northern Cascadia, I decompose the inter-aseismic GPS displacement, defined as the surface deformation between previously detected slow slip events, into separate regimes of tectonic loading and release. In such a way, previously undetected slow slip events that produce on average less than a millimeter of surface deformation are extracted from the geodetic noise. These new observations demonstrate that the inter-aseismic period is not quiescent and that slow slip occurs much more often than previously thought. This suggests that the plate interface where slow slip and tremor occur is in fact strongly coupled and undergoes rapid cycles of stress accumulation and release.

  19. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be

  20. Preliminary Results of Tectonic Geomorphology Investigation of the Northern Cyprus coasts

    Science.gov (United States)

    Yildirim, Cengiz; Tüysüz, Okan; Melnick, Daniel; Damla Altınbaş, Cevza; Zeynel Öztürk, Muhammed; Oruç Baykara, Mehmet; Shen, Chuan-Chou

    2016-04-01

    Cyprus, an island located in the Eastern Mediterranean region, is a part of subduction zone that defines the plate boundary at the southern margin of the Central Anatolian Plateau. The presence of uplifted marine terraces, wave-cut notches, surface ruptures and tsunami deposits are pieces of evidence of subduction related active deformation in the northern part of the island. To understand timing, mode and rate of deformation, we conducted high-resolution geomorphic mapping of marine terraces and levelling of wave-cut notches by using drone and DGPS. Tsunami boulders and boulder trains reaching up to 5-6 meters were discovered and surface rupture of an earthquake strechting from offshore to onshore was mapped for the first time with this study. Coral fossils were collected from marine terraces and tsunami boulders for age determinations by U-Th and 14C dating techniques, respectively. U-Th dating results indicate 144±12 (2s) ka for the MIS5e terrace at 40 m above sea level and 14C ages show the late Holocene (<4.5 ka) coseismic deformation. Here we will present tectonic implicatios from temporal and spatial distribution of marine terraces and wave-cut notches along the northern Cyprus. This study is supported by the Istanbul Technical University Research Found (Project no: 37548).

  1. Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation

    NARCIS (Netherlands)

    Sissingh, W.

    Sequence stratigraphic correlations indicate that intermittent changes of the kinematic far-field stress-field regimes, and the associated geodynamic re-organisations at the plate-tectonic contacts of the African, Apulian, Iberian and European plates, affected the Tertiary palaeogeographic evolution

  2. Mass loss as a driving mechanism of tectonics of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2015-04-01

    Summary We suggest that the mass loss from South Polar Terrain (SPT) is the main driving force of the following tectonic processes on Enceladus: subsidence of SPT, flow in the mantle and motion of plates. 1. Introduction Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic activity is observed. Every second, the mass of ~200 kg is ejected into space from the South Polar Terrain (SPT) - [1, 2, 3]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic model that could explain this paradox. 2. Subsidence of SPT and tectonics The volatiles escape from the hot region through the fractures forming plumes in the space. The loss of the volatiles results in a void, an instability, and motion of solid matter into the hot region to fill the void. The motion includes : Subsidence of the 'lithosphere' of SPT. Flow of the matter in the mantle. Motion of plates adjacent to SPT towards the active region. If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is ~0.05 mm-yr-1. However, all three types of motion are probably important, so the subsidence is slower but mantle flow and plates' motion also play a role in filling the void. Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. 3. Models of subsidence The numerical model of suggested process of subsidence is developed. It is based on the typical set of equation: Navier-Stokes equation for incompressible viscous liquid, equation of continuity and equation of heat conduction. The Newtonian and non-Newtonian rheologies are used. The preliminary results of the model indicate that the subsidence rate of

  3. Geomorphological features of active tectonics and ongoing ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6. Geomorphological features of active tectonics and ... concluded that the region is still tectonically active. The information would be very important in identifying the areas of hazard prone and also planning and designing of the socio-economic projects.

  4. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  5. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni

    2015-05-01

    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  6. Growth of a tectonic ridge

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, R.W.; Messerich, J.A. [Geological Survey, Denver, CO (United States); Johnson, A.M. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  7. The Ecology of Urban Tectonics

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    unfairly neglected when accounting for the great modern heroes of Danish architecture. Just recently, examples of his work have been thoroughly presented in the Danish architectural magazine; ‘Arkitekten’. (Keiding 2013) This paper analyses two works of Hansen: Bremerholm Transformer Station and Bellahøj......’. In this way Hansen’s work sets an example in itself as built heritage, but in addition, they set a methodological example when valued in relation to Frampton’s notion of the arrière-garde. Hansen’s work witnesses a critical and reflective ability on his behalf that enables him to act in everyday practice....... In concluding, it is our finding, that it is exactly here that research into the field of tectonics holds it potential. NOT as “optimization of advanced technology” and visual occupation with structural elements as such and NOT as “the ever-present tendency to regress into nostalgic historicism or the glibly...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Student Resources History of Diabetes Resources for School Projects How to Reference Our Site Diabetes Basics Myths ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...

  12. Williamson Polishing & Plating Site

    Science.gov (United States)

    Williamson Polishing & Plating Co. Inc. was a plating shop located in the Martindale-Brightwood neighborhood of Indianapolis. The facility conducted job shop polishing and electroplating services. The vacant site contains a 14,651-square-foot building.

  13. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia

    Science.gov (United States)

    Zahirovic, S.; Seton, M.; Müller, R. D.

    2014-04-01

    Tectonic reconstructions of Southeast Asia have given rise to numerous controversies that include the accretionary history of Sundaland and the enigmatic tectonic origin of the proto-South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the evolution of regional subduction zones, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the latest Jurassic, driven by northward slab pull from north-dipping subduction of Tethyan crust beneath Eurasia, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid-Cretaceous and subsequently accreted to the Sunda margin (i.e., southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the proto-South China Sea from ∼65 Ma, consistent with extension along east Asia and the formation of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from South China, which accreted to northern Borneo in the mid

  14. Investigation of the Plate Theories Accuracy for the Elastic Wave Propagation Analysis of FGM Plates

    OpenAIRE

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2012-01-01

    International audience; The importance of the elastic wave propagation problem in plates arises from application of the elastic waves in non-destructive evaluation of structures. However, precise understanding and analyzing of acoustic guided waves especially in non-homogeneous plates such as functionally graded material ones is so complicated that the exact elastodynamics methods are rarely used in practical applications. Hence, the simple approximate plate theories have attracted much inter...

  15. Vibration of plates

    CERN Document Server

    Chakraverty, Snehashish

    2008-01-01

    Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. This work provides a comprehensive introduction to vibration theory and analysis of two-dimensional plates. It offers information on vibration problems along with a discussion of various plate geometries and boundary conditions.

  16. Morphometric analysis of El Salvador Fault Zone. Implications to the tectonic evolution. Central America.

    Science.gov (United States)

    Alonso-Henar, Jorge; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio

    2013-04-01

    It is considered that the study of the recent topography development, and the use of geomorphological indexes are good tools for the quantification of the active tectonics. We have used quantitative geomorphology in order to improve our understanding of the recent activity and tectonic evolution of the El Salvador Fault Zone (ESFZ); an E-W oriented strike-slip fault zone that extends 150 km through El Salvador (Martínez-Díaz et al. 2004). Previous studies propose a transtensive tectonic regime at the Central America Volcanic Arc in El Salvador, which induces relative vertical motions on the faults within El Salvador Fault Zone (i.e. Álvarez-Gómez et al., 2008, Cáceres et al. 2005,). This relative vertical displacement can be quantified with the use of hypsometry as a geomorphological character. The morphometric analysis done contributes to a better understanding of the ESFZ. We have defined km scale tectonic block relative displacements that may be useful to constrain the strain distribution along the ESFZ, length of segments with homogeneous vertical movements and lateral relay of active structures. This study supports the hypothesis of a recent migration in the maximum shortening direction, and the accomodation of the current deformation through the reactivation of pre-existing structures inherited from a previous tectonic frame. A similar tectonic evolution as described Weinberg (1992) in Nicaragua, is interpreted from the results of this study.

  17. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    Science.gov (United States)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  18. Quaternary tectonics of recent basins in northwestern Armenia

    Science.gov (United States)

    Trifonov, V. G.; Shalaeva, E. A.; Saakyan, L. Kh.; Bachmanov, D. M.; Lebedev, V. A.; Trikhunkov, Ya. I.; Simakova, A. N.; Avagyan, A. V.; Tesakov, A. S.; Frolov, P. D.; Lyubin, V. P.; Belyaeva, E. V.; Latyshev, A. V.; Ozherelyev, D. V.; Kolesnichenko, A. A.

    2017-09-01

    New data on the stratigraphy, faults, and formation history of lower to middle Pleistocene rocks in Late Cenozoic basins of northwestern Armenia are presented. It has been established that the low-mountain topography created by tectonic movements and volcanic activity existed in the region by the onset of the Pleistocene. The manifestations of two geodynamic structure-forming factors became clear in Pleistocene: (i) collisional interaction of plates due to near-meridional compression and (ii) deep tectogenesis and magma formation expressed in the distribution of vertical movements and volcanism. The general uplift of the territory, which was also related to deep processes, reached 350-500 m in basins and 600-800 m in mountain ranges over the last 0.5 Ma. The early Pleistocene ( 1.8 Ma) low- and medium-mountain topography has been reconstructed by subtraction of the latest deformations and uplift of the territory. Ancient human ancestry appeared at that time.

  19. The quasi-rigid premise in Precambrian tectonics

    Science.gov (United States)

    Piper, J. D. A.

    1991-12-01

    A simple test of the proposition that movements between multiple continental fragments driven by plate tectonics took place during the earlier eons of geological time is presented. A random distribution is derived when the collective palaeomagnetic poles are rotated into any quasi-rigid reconstruction. The test surmounts the most serious limitation of Precambrian palaeomagnetic data, namely, that the ages of magnetization are mostly poorly known. Confirmation of the quasi-rigid premise is derived in a debased form, but is not suppressed, by the deficiencies of the database. This palaeomagnetic constraint explains the distinctive isotopic, geochemical, and lithofacies signatures of the Proterozoid eon and is independently supported by the trend and long temporal continuity of crustal lineaments.

  20. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  1. Relative tectonic activity classification in Kermanshah area, west Iran

    Science.gov (United States)

    Arian, M.; Aram, Z.

    2014-07-01

    The High Zagros region because of closing to subduction zone and the collision of the Arabian and Eurasian plates is imposed under the most tectonic variations. In this research, Gharasu river basin that it has located in Kermanshah area was selected as the study area and 6 geomorphic indices were calculated and the results of each ones were divided in 3 classes. Then, using the indices, relative tectonic activity was calculated and the values were classified and analyzed in 4 groups. Regions were identified as very high, high, moderate and low. In analyzing the results and combining them with field observation and regional geology the results are often associated and justified with field evidences. The highest value is located on Dokeral anticline in crush zone in Zagros Most of the areas with high and moderate values of lat are located on crush zone in Zagros too. Crushing of this zone is because of main faults mechanism of Zagros region. The result of this paper confirms previous researches in this region. At the end of the eastern part of the study area, the value of Iat is high that could be the result of Sarab and Koh-e Sefid faults mechanism.

  2. Tectonic stages in Southern Greater Caucasus and Adjara Trialeti belt in Georgia: new results on timing and structures of inverted basins

    Science.gov (United States)

    Candaux, Zoé; Sosson, Marc; Adamia, Shota; Sadradze, Nino; Alania, Victor; Enukidze, Onise; Chabukiani, Alexandre

    2017-04-01

    The Greater Caucasus mountain belt is the result of a long live subduction process and collisions of continental microplates (e.g. Dercourt et al., 1986; Barrier and Vrielynck, 2008). The northward subduction of Tethys beneath Eurasian plate initiated a back-arc basin: the Greater Caucasus basin (e.g. Adamia et al., 1981; Zonenshain and Le Pichon, 1986; Roberston et al., 1996; Stephenson and Schellart, 2010 among others). It took place from Middle Jurassic to Late Cretaceous. First compression stage started at the end of Cretaceous in the Lesser Caucasus (e.g. Rolland et al., 2010; Sosson et al. 2010, 2016) and Palaeocene-early Eocene in Crimean Mountains (northwestern continuation of the Greater Caucasus) (Sheremet et al., 2016). In southern Greater Caucasus (Georgian area) the age of deformation during the beginning of the collision is still a subject of debate: Oligocene-Lower Miocene at the frontal part (e.g. Adamia et al. 2010) or Eocene (Mosar et al., 2010). The deformation continues at Miocene, Pliocene and actual time in Kura and Rioni foreland basins (Forte et al., 2010; 2013; Mosar et al., 2010). The different timing is interpreted to be the result of the Taurides-Anatolides-South Armenian microcontinent collision with Eurasia, followed by the collision with Arabia. During the first collision, during Paleocene-Eocene, the so-called Adjara-Trialeti basin opened north of the volcanic arc. One question is if this local extension affect the timing of compression observed in the Greater Caucasus or not. In Georgia, we investigated new structural analyses, and considered unconformities and growth strata at the frontal part of deformations in Kura and Rioni forelands basins (in front of the Greater Caucasus). Our results evidence different tectonic stages and their timing. In Adjara-Trialeti, Kura and south Rioni basins deformation starts at Middle-Late Miocene. In northern Rioni basin Upper Cretaceous-Lower Paleocene compression is evidenced. The structures

  3. Towards a tectonic sustainable building practice

    DEFF Research Database (Denmark)

    Beim, Anne

    2010-01-01

    and environmental problems? The objective of the project is to analyse and develop the tectonic practice based on case studies, in relation to: • Cultural anchoring and identity creation • Building culture and creative processes • Sustainability, lifecycle and resource management The research project is divided...... into a main project and various subprojects, respectively, two levels that mutually feed each other.The main project, which constitutes the general level, seeks to identify a coherent strategy towards a new tectonically sustainable building culture.The subprojects look at partial issues and go into specific...... questions dealing with central aspects of the overall project: tectonics, identity creation, cultural heritage/recycling and sustainability....

  4. Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR

    Science.gov (United States)

    Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.

    2017-12-01

    The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground

  5. Mantle structure and tectonic history of SE Asia

    Science.gov (United States)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  6. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  7. Earthquake recurrence and magnitude and seismic deformation of the northwestern Okhotsk plate, northeast Russia

    Science.gov (United States)

    Hindle, D.; Mackey, K.

    2011-02-01

    Recorded seismicity from the northwestern Okhotsk plate, northeast Asia, is currently insufficient to account for the predicted slip rates along its boundaries due to plate tectonics. However, the magnitude-frequency relationship for earthquakes from the region suggests that larger earthquakes are possible in the future and that events of ˜Mw 7.5 which should occur every ˜100-350 years would account for almost all the slip of the plate along its boundaries due to Eurasia-North America convergence. We use models for seismic slip distribution along the bounding faults of Okhotsk to conclude that relatively little aseismic strain release is occurring and that larger future earthquakes are likely in the region. Our models broadly support the idea of a single Okhotsk plate, with the large majority of tectonic strain released along its boundaries.

  8. Tectonic controls on the 1960 Chile megathrust-earthquake segment

    Science.gov (United States)

    Melnick, D.; Moreno, M.,; Strecker, M. S.; Echtler, H. P.

    2009-04-01

    Understanding the principles that govern the triggering of great subduction earthquakes and the finite rupture length, and consequently earthquake magnitude, is of utmost importance for a better assessment of natural hazards at active plate margins. In principle, two major processes have been inferred to generate and control the magnitude of a giant subduction earthquake (M > 9): (1) the forearc of the upper plate has to accumulate enough elastic strain to rupture and cause fault slip, and (2) the rupture has to propagate for a length of hundreds of kilometers. The great 1960 Chile earthquake (Mw 9.5) corresponds to such a megathrust event that ruptured ~1000 km of the Nazca-South America plate boundary. Rupture started at 38.2S, adjacent to the Arauco peninsula, and propagated southward until it stalled in the vicinity of the Chile Triple Junction. We integrate geologic, geodetic, and seismologic data to propose three major factors that control rupture propagation and upper-plate contraction during the 1960 earthquake. These include: microplate behaviour of the Chiloe forearc block, subduction of trench sediments, and the geometry of the deep-reaching, inherited Lanalhue fault zone in the South American plate. The first two factors provide a mechanical homogeneity of the upper plate and plate interface, respectively, smoothing the plate interface and reducing seismic strength, ultimately facilitating rupture propagation over a great distance. The third aspect leads to stress concentration and enhanced upper-plate contraction along the Lanalhue fault and the southern Arauco peninsula, at the leading edge of the Chiloe microplate, where the 1960 earthquake sequence nucleated. The combination of these fortuitous factors is not unique. Forearc microplates associated with trench sediments and inherited deep-reaching faults are characteristic of other subduction zones that have generated Mw > 9 earthquakes. In addition to Chile, the Alaska, Sumatra, and Cascadia

  9. Seismicity, structure and tectonics in the Arctic region

    Directory of Open Access Journals (Sweden)

    Masaki Kanao

    2015-09-01

    Full Text Available The “Arctic” region, where the North Pole occupies the center of the Arctic Ocean, has been affecting the environmental variation of the Earth from geological time to the present. However, the seismic activities in the area are not adequately monitored. Therefore, by conducting long term monitoring of seismic phenomenon as sustainable parameters, our understanding of both the tectonic evolution of the Earth and the dynamic interaction between the cryosphere and geosphere in surface layers of the Earth will increase. In this paper, the association of the seismicity and structure of the Arctic region, particularly focused on Eurasian continent and surrounding oceans, and its relationship with regional evolution during the Earth's history is studied. The target areas cover representative tectonic provinces in the Eurasian Arctic, such as the wide area of Siberia, Baikal Rift Zone, Far East Russia, Arctic Ocean together with Greenland and Northern Canada. Based on discussion including characteristics of seismicity, heterogeneous structure of the crust and upper mantle, tectonic history and recent dynamic features of the Earth's surface in the Arctic are summarized.

  10. Paleomagnetism and Tectonic Evolution of Mexico: Precambrian to Recent

    Science.gov (United States)

    Fucugauchi, J. U.

    2007-05-01

    It is 20yr since publication of the last synthesis of country-wide paleomagnetic data and almost 30yr of first attempt to construct an apparent polar wander path for Mexico. During this time, data has increased ten-fold and a new synthesis may appear long overdue. Mexico constitutes the southern portion of the North American plate, and tectonic models long suggested a complex evolution involving ocean-basin closure, continental collision/break-up, terrane accretion, large-scale motions, orogenic deformation, oceanic plate reorganizations and oceanic basin development. Paleoreconstructions of Atlantic-bordering continents show major overlap of northern South America onto Mexico, highlighting the geometric problem, allocthonous nature and opening room for a diversity of models. Paleomagnetism appears well-suited to tackle these problems, and data had early been used to evaluate tectonic models. Likewise, the larger database is now used to assess models and develop alternatives. This task is greatly aided by new available geochronological, geophysical and geological data. Our new synthesis still shows data gaps, with Paleozoic and Precambrian units poorly represented. Paleomagnetic data and tectonic models require complex large-scale motions of Precambrian and Paleozoic blocks, solutions for opening of Gulf of Mexico and Caribbean Sea, and post-Triassic-Jurassic amalgamation of Mexico and Central America. The southern edge of the North American craton is positioned in northern Mexico, marking the limit for accreted terranes to the south. Possible southern extension of Marathon-Ouachita Paleozoic belt, obscured or truncated when it comes into Mexico, remains unstudied paleomagnetically. Left-lateral motions along faults related to opening of Gulf of Mexico are not supported by paleomagnetism. The Western Cordilleran belt appears laterally displaced in southern US and into Mexico, where the paleomagnetic signature of northward latitudinal translations and clockwise

  11. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    Science.gov (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  12. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break with the indu......Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...... an increased customisation of casting moulds. The hypothesis of this research is that the techniques used in this research do not fully address the tectonic potentials of concrete which gives rise to the primary research question: Is it possible to enhance existing or develop new concrete casting techniques...

  13. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    International Nuclear Information System (INIS)

    Ismullah M, Muh. Fawzy; Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin

    2015-01-01

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault

  14. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    Energy Technology Data Exchange (ETDEWEB)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com [Master Program Geophysical Engineering, Faculty of Mining and Petroleum Engineering (FTTM), Bandung Institute of Technology (ITB), Jl. Ganesha no. 10, Bandung, 40116, Jawa Barat (Indonesia); Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin [Geophysics Program Study, Faculty of Mathematics and Natural Sciences, Hasanuddin University (UNHAS), Jl. PerintisKemerdekaan Km. 10, Makassar, 90245, Sulawesi Selatan (Indonesia)

    2015-04-24

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.

  15. Recent deeper geophysical results better account for the tectonics in the Italian area

    Directory of Open Access Journals (Sweden)

    C. Morelli

    1997-06-01

    Full Text Available Results from extended DSS profiles (1956-1986 in Italy and surrounding land and sea areas offer good constraints for other geophysical and geological data. Integrated interpretations outline the main tectonic features. Collisional tectonics is predominant in the Alps, for which the Adriatic plate acted as hinterland against the European plate foreland. Main results: W-wards, NW- and N-wards oriented overthrusting on the European crust, bending of the lower European crust, European Moho to 70 km depth with the Adriatic mantle indented above, crustal doubling (Adriatic over the European one. In the Apennines, on the contrary, the Adriatic plate acted as a foreland, against the overthrusts generated by the Tuscanian and Tyrrhenian mantellic bodies, heated, elevated and migrated NE-wards and SE-wards, respectively. Also the Adriatic plate bends under this load-centripetally towards the Tyrrhenian sea, so that the Adriatic Moho from 35 km depth is presumed to descend through a flexure till 40-50 km below the Tuscanian and Tyrrhenian land areas. The external peri-Apenninic area is still in compression and includes thick sedimentary basins, from the Po-plain to Sicily. The internal area is in extension, overlapped by thin, stretched crusts of Ligurian and Tyrrhenian origin, whose remnants occupy most of both seas areas, with two areas of oceanic crust in the SE-Tyrrhenian. Rifting and opening is in action also in the Ligurian Sea and Sicily Strait.

  16. Tectonic vocabulary and materialization: Discourse on the future of tectonic architectural research in the Nordic countries

    DEFF Research Database (Denmark)

    Beim, Anne; Bundgaard, Charlotte; Hvejsel, Marie Frier

    2015-01-01

    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... to establish a Nordic Network for Research and Teaching in Tectonics is currently forming. This paper seeks to jointly reflect upon these initiatives in order to bring them further, with the intention to clad a discourse on the future of tectonic architectural research that addresses the conditions of everyday...

  17. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  18. Evidence of Last Interglacial sea-level oscillations and recent tectonism in the Late Pleistocene Falmouth Formation of Jamaica

    Science.gov (United States)

    Skrivanek, A.; Dutton, A.; Stemann, T.

    2015-12-01

    The timing and rates of sea-level change during Marine Isotope Stage 5e (MIS 5e) are poorly constrained. Across the Caribbean, many MIS 5e reefs are exposed above modern sea level, and have been studied extensively to understand sea level and ice sheet dynamics during an interglacial climate. This study investigates potential evidence for sub-orbital sea-level oscillations in the limestone Falmouth Formation from the northern and southwestern coastlines of Jamaica, a tectonically active island on the northern boundary of the Caribbean Plate. Vertical exposures of MIS 5e reefs contain multiple facies transitions that are sometimes associated with sharp unconformities. Outcrops at East Rio Bueno contain a distinct change in coral taxonomy from an assemblage of in situ Montastraea spp., Siderastrea and Diploria sp. encrusted by coralline algae, next to a repeated succession of Porites furcata, Acropora cervicornis, coralline algae and Porites astreoides, to in situ P. furcata. This is overlain by a fining-upwards sequence of coral rubble, a laterally persistent layer of small in situ Siderastrea and a ~1-m thick caprock. Near Oracabessa, a unit dominated by Acropora palmata clearly transitions into in situ Montastraea spp., Siderastrea, Colpophyllia natans, and Diploria sp. overlain by A. cervicornis. An abrupt vertical displacement of the sequence, indicating faulting, was observed at Oracabessa. Along the south coast, transitions in coral assemblages were also noted upsection. Common facies observed include in situ A. palmata and/or rubble, with a trend of reduction in algal encrustation upsection, capped by head corals and a regressive beach unit. The structure and composition of reefs preserved in the Falmouth Formation provide detailed information about sea-level behavior during MIS 5e, that will be used to test the hypothesis that sub-orbital sea-level oscillations occurred during the MIS 5e highstand. Evidence of tectonic activity along portions of the northern

  19. Interaction between subducting plates: results from numerical and analogue modeling

    Science.gov (United States)

    Kiraly, Agnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio

    2016-04-01

    The tectonic setting of the Alpine-Mediterranean area is achieved during the late Cenozoic subduction, collision and suturing of several oceanic fragments and continental blocks. In this stage, processes such as interactions among subducting slabs, slab migrations and related mantle flow played a relevant role on the resulting tectonics. Here, we use numerical models to first address the mantle flow characteristic in 3D. During the subduction of a single plate the strength of the return flow strongly depends on the slab pull force, that is on the plate's buoyancy, however the physical properties of the slab, such as density, viscosity or width, do not affect largely the morphology of the toroidal cell. Instead, dramatic effects on the geometry and the dynamics of the toroidal cell result in models where the thickness of the mantle is varied. The vertical component of the vorticity vector is used to define the characteristic size of the toroidal cell, which is ~1.2-1.3 times the mantle depth. This latter defines the range of viscous stress propagation through the mantle and consequent interactions with other slabs. We thus further investigate on this setup where two separate lithospheric plates subduct in opposite sense, developing opposite polarities and convergent slab retreat, and model different initial sideways distance between the plates. The stress profiles in time illustrate that the plates interacts when slabs are at the characteristic distance and the two slabs toroidal cells merge. Increased stress and delayed slab migrations are the results. Analogue models of double-sided subduction show similar maximum distance and allow testing the additional role of stress propagated through the plates. We use a silicon plate subducting on its two opposite margins, which is either homogeneous or comprises oceanic and continental lithospheres, differing in buoyancy. The modeling results show that the double-sided subduction is strongly affected by changes in plate

  20. Interdisciplinary approach to exploit the tectonic memory in the continental crust of collisional belts.

    Science.gov (United States)

    Gosso, G.; Marotta, A. M.; Rebay, G.; Regorda, A.; Roda, M.; Spalla, M. I.; Zanoni, D.; Zucali, M.

    2015-12-01

    Collisional belts result by thoroughly competing thermo-mechanical disaggregation and coupling within both continental and oceanic lithospheric slices, during construction of tectono-metamorphic architectures. In multiply reworked metamorphics, tectonic units may be contoured nowadays on the base of coherent thermo-baric and structural time-sequences rather than simply relying on lithologic affinities. Sequences of equilibrium assemblages and related fabric imprints are an approach that appears as a more reliable procedure, that enables to define tectonic units as the volume of crustal slices that underwent corresponding variations during the dynamics of an active margin and takes into account a history of physical imprints. The dimensions of these tectonic units may have varied over time and must be reconstructed combining the tracers of structural and metamorphic changes of basement rocks, since such kind of tectono-metamorphic units (TMUs) is a realistic configuration of the discrete portions of orogenic crust that experienced a coherent sequence of metamorphic and textural variations. Their translational trajectories, and bulk shape changes during deformation, cannot simply be derived from the analysis of the geometries and kinematics of tectonic units, but are to be obtained by adding the reconstruction of quantitative P-T-d-t paths making full use of fossil mineral equilibria. The joint TMU field-and-laboratory definition is an investigation procedure that bears a distinct thermo-tectonic connotation, that, through modelling, offers the opportunity to test the physical compatibilities of plate-scale interconnected variables, such as density, viscosity, and heat transfer, with respect to what current interpretative geologic histories may imply. Comparison between predictions from numerical modelling and natural data obtained by this analytical approach can help to solve ambiguities on geodynamic significance of structural and thermal signatures, also as a

  1. Disparate Tectonic Settings of Devastating Earthquakes in Mexico, September 2017

    Science.gov (United States)

    Li, J.; Chen, W. P.; Ning, J.

    2017-12-01

    Large earthquakes associated with thrust faulting along the plate interface typically pose the highest seismic risk along subduction zones. However, both damaging earthquakes in Mexico of September 2017 are notable exceptions. The Tehuantepec event on the 8th (Mw 8.1) occurred just landward of the trench but is associated with normal faulting, akin to the large (Ms 8) historical event of 1931 that occurred about 200 km to the northwest along this subduction zone. The Puebla earthquake (on the 19th, Mw 7.1) occurred almost 300 km away from the trench where seismic imaging had indicated that the flat-lying slab steepens abruptly and plunges aseismically into the deep mantle. Here we show that both types of tectonic settings are in fact common along a large portion of the Mexican subduction zone, thus identifying source zones of potentially damaging earthquakes away from the plate interface. Additionally, modeling of broadband waveforms made clear that another significant event (Mw 6.1) on the 23rd, is associated with shallow normal faulting in the upper crust, not directly related to the two damaging earthquakes.

  2. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  3. From transpressional to transtensional tectonics in Northern Central America controlled by Cocos - Caribbean subduction coupling change

    Science.gov (United States)

    Alonso-Henar, Jorge; Alvarez-Gomez, José Antonio; Jesús Martinez-Diaz, José

    2017-04-01

    The Central American Volcanic Arc (CAVA) is located at the western margin of the Caribbean plate, over the Chortís Block, spanning from Guatemala to Costa Rica. The CAVA is associated to the subduction of the Cocos plate under the Caribbean plate at the Middle America Trench. Our study is focused in the Salvadorian CAVA segment, which is tectonically characterized by the presence of the El Salvador Fault Zone (ESFZ), part of the western boundary of a major block forming the Caribbean plate (the Chortis Block). The structural evolution of the western boundary of the Chortis Block, particularly in the CAVA crossing El Salvador remains unknown. We have done a kinematic analysis from seismic and fault slip data and combined our results with a review of regional previous studies. This approach allowed us to constrain the tectonic evolution and the forces that control the deformation in northern Central America. Along the active volcanic arc we identified active transtensional deformation. On the other hand, we have identified two deformation phases in the back arc region: A first one of transpressional wrenching close to simple shearing (Miocene); and a second one characterized by almost E-W extension. Our results reveal a change from transpressional to transtensional shearing coeval with a migration of the volcanism towards the trench in Late Miocene times. This strain change could be related with a coupled to decoupled transition on the Cocos - Caribbean subduction interface, which could be related to a slab roll-back of the Cocos Plate beneath the Chortis Block. The combination of different degrees of coupling on the subduction interface, together with a constant relative eastward drift of the Caribbean Plate, control the deformation style along the western boundary of the Chortis Block.

  4. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate

    NARCIS (Netherlands)

    Warners-Ruckstuhl, K.N.; Govers, R.; Wortel, R.

    2012-01-01

    Mechanical equilibrium of tectonic plates implies that lithospheric edge and body forces are balanced by forces arising from interaction with the underlying mantle. We use this quantitative physical relation to integrate existing modelling approaches of lithosphere dynamics and mantle flow into a

  5. What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?

    NARCIS (Netherlands)

    van Benthem, S.A.C.; Govers, R.; Wortel, R.

    2014-01-01

    The north Caribbean plate boundary zone is a broad deformation zone with several fault systems and tectonic blocks that move with different velocities. The indentation by the Bahamas Platform (the “Bahamas Collision”) is generally invoked as a cause of this fragmentation. We propose that a second

  6. Tectonic, Climatic and Anthropogenic Vertical Land Movements in Western Europe by Repeated Absolute Gravity Measurements

    Science.gov (United States)

    van Camp, M. J.; de Viron, O.; Lecocq, T.; Hinzen, K. G.; Quinif, Y.; Williams, S. D.; Camelbeeck, T.

    2010-12-01

    In continental plate interiors, tectonic deformations are small and the associated ground surface movements remain close to or below the accuracy of current geodetic techniques, and at the limit of the noise level. An absolute gravimeter is an appropriate tool to quantify slow vertical movements, as this instrument, based on length and time standards, is drift free and does not depend on any terrestrial reference frame. Repeated absolute gravity (AG) measurements have been performed in Oostende (Belgian coastline) and at 8 stations along a southwest-northeast profile across the Belgian Ardennes and the Roer Valley Graben (Germany), in order to estimate the tectonic deformations in the area. After 7-13 years (depending on the station), we find evidence that the movements are no larger than a few millimeter per year and result from a combination of anthropogenic, climatic, tectonic, and Glacial Isostatic Adjustment (GIA) effects. This demonstrates the importance of precisely modeling the GIA effects in order to investigate intraplate tectonic deformations at the sub-millimeter level. This study also shows that AG measurements, repeated once or twice a year, can resolve vertical velocities at the 1.0 mm/yr level after 10 years, even in difficult conditions, provided that the gravimeter is carefully maintained.

  7. Preface of special issue on ;tectonics, volcanism and geo-energy in East Asia;

    Science.gov (United States)

    Song, Sheng-Rong; Chen, Cheng-Hong; Ryu, Byong-Jae; Lin, Saulwood

    2017-11-01

    The East Asia, from north to south, including Russia, China, Korea, Japan, Taiwan, Philippines and Indonesia etc., is one of the most active tectonic and natural hazardous regions in the world. The subduction and collision zones, such as the Pacific Plate subducting into the Japan Arc and the Philippine Sea, and the Philippine Sea Plate subducting into the Eurasia Plate, and the collision zones of the Philippine Sea Plate with the Asian continental margin in the Taiwan mountain belt, and the India Plate with the Eurasia Plate in Himalaya mountain belts, distribute widely in this region. It is also the most densely populated areas in the world. More than two billion people (one/third populations of the world) live in East Asia. Most of disastrous natural hazards, such as volcanic eruptions, earthquakes and debris flows induced by floods occur frequently and cause many building collapses and causalities in this area. Geoscientists, therefore, must seriously consider and endeavor for mitigations of the natural hazards and reduction of the properties lose and human death.

  8. Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya Mountains (northern Central America): implications for the North American-Caribbean-Cocos plate boundary

    Science.gov (United States)

    Andreani, L.; Gloaguen, R.

    2016-01-01

    We use a geomorphic approach in order to unravel the recent evolution of the diffuse triple junction between the North American, Caribbean, and Cocos plates in northern Central America. We intend to characterize and understand the complex tectonic setting that produced an intricate pattern of landscapes using tectonic geomorphology, as well as available geological and geophysical data. We classify regions with specific relief characteristics and highlight uplifted relict landscapes in northern Central America. We also analyze the drainage network from the Sierra Madre de Chiapas and Maya Mountains in order to extract information about potential vertical displacements. Our results suggest that most of the landscapes of the Sierra Madre de Chiapas and Maya Mountains are in a transient stage. Topographic profiles and morphometric maps highlight elevated relict surfaces that are characterized by a low-amplitude relief. The river longitudinal profiles display upper reaches witnessing these relict landscapes. Lower reaches adjust to new base-level conditions and are characterized by multiple knickpoints. These results backed by published GPS and seismotectonic data allow us to refine and extend existing geodynamic models of the triple junction. Relict landscapes are delimited by faults and thus result from a tectonic control. The topography of the Sierra Madre de Chiapas evolved as the result of (1) the inland migration of deformation related to the coupling between the Chiapas Massif and the Cocos forearc sliver and (2) the compression along the northern tip of the Central American volcanic arc. Although most of the shortening between the Cocos forearc sliver and the North American Plate is accommodated within the Sierra de Chiapas and Sierra de los Cuchumatanes, a small part may be still transmitted to the Maya Mountains and the Belize margin through a "rigid" Petén Basin.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Monthly In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online ... Print Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? Making ... Forecast® magazine: wcie-meal-planning, . In this ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  12. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  13. Growth Plate Injuries

    Science.gov (United States)

    ... cause any lasting problems for your child or teen. Growth plates are areas of growing tissues that cause ... are replaced by solid bone. Who gets them? Growth plate injuries happen to children and teens. This injury happens twice as often in boys ...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  15. The Hikurangi Plateau: Tectonic Ricochet and Accretion

    Science.gov (United States)

    Willis, David; Moresi, Louis; Betts, Peter; Whittaker, Joanne

    2015-04-01

    80 million years between interactions with different subduction systems provided time for the Hikurangi Plateau and Pacific Ocean lithosphere to cool, densify and strengthen. Neogene subduction of the Hikurangi Plateau occurring orthogonal to its Cretaceous predecessor, provides a unique opportunity to explore how changes to the physical properties of oceanic lithosphere affect subduction dynamics. We used Underworld to build mechanically consistent collision models to understand the dynamics of the two Hikurangi collisions. The Hikurangi Plateau is a ~112 Ma, 15km thick oceanic plateau that has been entrained by subduction zones immediately preceding the final break-up of Eastern Gondwana and currently within the active Hikurangi Margin. We explore why attempted subduction of the plateau has resulted in vastly different dynamics on two separate occasions. Slab break-off occured during the collision with Gondwana, currently there is apparent subduction of the plateau underneath New Zealand. At ~100Ma the young, hot Hikurangi Plateau, positively buoyant with respect to the underlying mantle, impacted a Gondwana Margin under rapid extension after the subduction of an mid-ocean ridge 10-15Ma earlier. Modelling of plateaus within young oceanic crust indicates that subduction of the thickened crust was unlikely to occur. Frontal accretion of the plateau and accompanying slab break-off is expected to have occured rapidly after its arrival. The weak, young slab was susceptible to lateral propagation of the ~1500 km window opened by the collision, and break-off would have progressed along the subduction zone inhibiting the "step-back" of the trench seen in older plates. Slab break-off coincided with a world-wide reorganisation of plate velocites, and orogenic collapse along the Gondwana margin characterised by rapid extension and thinning of the over-riding continental plate from ~60 to 30km. Following extension, Zealandia migrated to the NW until the Miocene allowing the

  16. Two-dimensional thermal modeling associated with subduction of the Philippine Sea plate in southern Kyushu, Japan

    Science.gov (United States)

    Suenaga, Nobuaki; Yoshioka, Shoichi; Matsumoto, Takumi; Ji, Yingfeng

    2018-01-01

    In Hyuga-nada, southern Kyushu in southwest Japan, afterslip events were found in association with the two large interplate earthquakes, which occurred on October 19 and December 3, 1996. In Kyushu, low-frequency earthquakes (LFEs) and tectonic tremors are not common, but a considerable concentration of tectonic tremors is observed beneath the Pacific coast of the Miyazaki prefecture. To investigate the generation mechanisms of these seismic events, we performed 2-D box-type time-dependent thermal modeling in southern Kyushu. As a result, the temperature range of the upper surface of the subducting Philippine Sea (PHS) plate, where the afterslip occurred, reached approximately 300 to 350 °C. The temperatures where the tectonic tremors occurred ranged from 450 to 650 °C in the mantle wedge corner. We also estimated the spatial distribution of water content within the subducting PHS plate, using phase diagrams of hydrous mid-ocean ridge basalt (MORB) and ultramafic rock. Then, we found that no characteristic phase transformations accompany the dehydration of the subducting PHS plate in the afterslip region, but phase transformation from lawsonite blueschist to lawsonite eclogite is expected within the oceanic crust of the PHS plate just below the active region of the tectonic tremors. Our estimated water content distribution is consistent with the VP/VS ratio calculated from the seismic tomography. Therefore, we conclude that the occurrence of the afterslip is controlled by the temperature condition at the plate boundary, and occurs near the down-dip limit of the seismogenic zone. On the other hand, determining the major factors leading to the occurrence of the tectonic tremors is difficult, we estimated the temperature in the mantle wedge is ranging from 450 °C to 650 °C, and dehydration of 1.0 wt% would be expected from the subducting PHS plate near the active region of the tectonic tremors.

  17. Plate motion changes drive Eastern Indian Ocean microcontinent formation

    Science.gov (United States)

    Whittaker, J. M.; Williams, S.; Halpin, J.; Wild, T.; Stilwell, J.; Jourdan, F.; Daczko, N. R.

    2016-12-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margin - several well-studied microcontinent calving events coincide in space and time with mantle plume activity, but the significance of plumes in driving microcontinent formation remains controversial, and a role for plate-driven processes has also been suggested. In 2011, our team discovered two new microcontinents in the eastern Indian Ocean, the Batavia and Gulden Draak microcontinents. These microcontinents are unique as they are the only surviving remnants of the now-destroyed or highly deformed Greater Indian margin and provide us with an opportunity to test existing models of microcontinent formation against new observations. Here, we explore models for microcontinent formation using our new data from the Eastern Indian Ocean in a plate tectonic reconstruction framework. We use Argon dating and paleontology results to constrain calving from greater India at 101-104 Ma. This region had been proximal to the active Kerguelen plume for 30 Myrs but we demonstrate that calving did not correspond with a burst of volcanic activity. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces. Changes in the relative motions between Indian and Australia led to increasing compressive forces along the long-offset Wallaby-Zenith Fracture Zone, which was eventually abandoned during the jump of the spreading ridge into the Indian continental margin.

  18. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  19. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    . Nielsen, S.B., et al., The evolution of western Scandinavian topography: A review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. Journal of Geodynamics, 2009. 47(2-3): p. 72-95. 3. Summerfield, M.A., Global geomorphology: an introduction to the study of landforms. Global...... is much less constrained. For this period we therefore search for an alternative explanation in terms of climate and climate change [1-3] Methods The extensive seismic and well data set allow investigation of inland erosion rates via the offshore distribution of sediments. However, varying marine......-quantitative approach is applied in this study. Tectonism and climate in the Cenozoic era A number of Cenozoic tectonic episodes have been constrained by the offshore sedimentary record: 1) structures related to the opening of the North Atlantic [5], 2) changes in plate motions [6], 3) inversion movements...

  20. Convergent margin structure and tectonics of the Java subduction zone (105°E-122°E)

    Science.gov (United States)

    Kopp, H.; Barckhausen, U.; Djajadihardja, Y.; Engels, M.; Flueh, E. R.; Hindle, D. A.; Lueschen, E.; Mueller, C.; Planert, L.; Reichert, C. J.; Shulgin, A. A.; Wittwer, A.

    2009-12-01

    Australian Scott Plateau and the Sumba Block. Our contribution evaluates the differences in architecture and evolution along the Java forearc from a marine perspective to better understand the variation in tectonic styles and segmentation of the convergent margin, including its onshore components.

  1. Lohse's historic plate archive

    Science.gov (United States)

    Tsvetkov, M.; Tsvetkova, K.; Richter, G.; Scholz, G.; Böhm, P.

    The description and the analysis of Oswald Lohse's astrophotographic plates, collected at the Astrophysical Observatory Potsdam in the period 1879 - 1889, are presented. 67 plates of the archive, taken with the greatest instrument of the observatory at that time - the refractor (D = 0.30 m, F = 5.40 m, scale = 38''/mm) and with the second heliographic objective (D = 0.13 m, F = 1.36 m, scale = 152''/mm) - - survived two world wars in relative good condition. The plate emulsions are from different manufacturers in the beginning of astrophotography (Gädicke, Schleussner, Beernaert, etc.). The sizes of the plates are usually 9x12 cm2, which corresponds to fields of 1.2deg and 5deg respectively for each instrument mentioned above. The average limiting magnitude is 13.0(pg). Besides of the plates received for technical experiments (work on photographic processes, testing of new instruments and methods of observations), the scientific observations follow programs for studies of planet surfaces, bright stars, some double stars, stellar clusters and nebulous objects. Lohse's archive is included into the Wide Field Plate Database (http://www.skyarchive.org) as the oldest systematic one, covering the fields of Orion (M42/43), Pleiades, h & chi Persei, M37, M3, M11, M13, M92, M31, etc. With the PDS 2020 GM+ microdensitometer of Münster University 10 archive plates were digitized.

  2. Earthquakes, detecting and understanding them

    International Nuclear Information System (INIS)

    2008-05-01

    The signatures at the surface of the Earth is continually changing on a geological timescale. The tectonic plates, which make up this surface, are moving in relation to each other. On human timescale, these movements are the result of earthquakes, which suddenly, release energy accumulated over a period of time. The vibrations they produce propagate through the interior of the Earth: these are seismic waves. However, other phenomena can generate seismic waves, such as volcanoes, quarry blasts, etc. The surf of the ocean waves on the coasts, the wind in the trees and human activity (industry and road traffic) all contribute to the 'seismic background noise'. Sensors are able to detect signals from events which are then discriminated, analyzed and located. Earthquakes and active volcanoes are not distributed randomly over the surface of the globe: they mainly coincide with mountain chains and ocean trenches and ridges. 'An earthquake results from the abrupt release of the energy accumulated by movements and rubbing of different plates'. The study of the propagation of seismic waves has allowed to determine the outline of the plates inside the Earth and has highlighted their movements. There are seven major plates which are colliding, diverging or sliding past each other. Each year the continents move several centimeters with respect to one another. This process, known as 'continental drift', was finally explained by plate tectonics. The initial hypothesis for this science dates from the beginning of the 20. century, but it was not confirmed until the 1960's. It explains that convection inside the Earth is the source of the forces required for these movements. This science, as well as explaining these great movements, has provided a coherent, unifying and quantitative framework, which unites the explanations for all the geophysical phenomena under one mechanism. (authors)

  3. Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania)

    Science.gov (United States)

    Kounov, Alexandre; Schmid, Stefan M.

    2013-01-01

    New zircon and apatite fission-track (FT) data, including apatite thermal modelling, are combined with an extensive literature survey and reconnaissance-type structural fieldwork in the Eastern Apuseni Mountains. This leads to a better understanding of the complex structural and thermal history of a key area at the boundary between two megatectonic units in the Balkan peninsula, namely the Tisza and Dacia Mega-Units. Following Late Jurassic obduction of the Transylvanian ophiolites onto a part of the Dacia Mega-Unit, that is, the Biharia nappe system, both units were buried to a minimum of 8 km during late Early Cretaceous times when these units were underthrust below the Tisza Mega-Unit consisting of the present-day Codru and Bihor nappe systems. Tisza formed the upper plate during Early Cretaceous (`Austrian') east-facing orogeny. Turonian to Campanian zircon FT cooling ages (95-71 Ma) from the Bihor and Codru nappe systems and the Biharia and Baia de Arieş nappes (at present the structurally lowest part of the Dacia Mega-Unit) record exhumation that immediately followed a second Cretaceous-age (i.e. Turonian) orogenic event. Thrusting during this overprinting event was NW-facing and led to the overall geometry of the present-day nappe stack in the Apuseni Mountains. Zircon FT ages, combined with thermal modelling of the apatite FT data, show relatively rapid post-tectonic cooling induced by a third shortening pulse during the latest Cretaceous (`Laramian' phase), followed by slower cooling across the 120°-60 °C temperature interval during latest Cretaceous to earliest Paleogene times (75-60 Ma). Cenozoic-age slow cooling (60-40 Ma) was probably related to erosional denudation postdating `Laramian' large-scale updoming.

  4. Tectonique globale. Quelques difficultés Global Tectonics. a Few Problems

    Directory of Open Access Journals (Sweden)

    Vitart M. J.

    2006-11-01

    Full Text Available On constate que malgré la brillante démonstration apportée par les forages dans le fond des océans, les praticiens de la géologie observent une certaine réserve face aux concepts de la Tectonique globale. C'est que d'une part, certaines hypothèses de base sont difficiles à comprendre et que d'autre part, la théorie aide assez peu à la résolution des problèmes qui se présentent au géologue praticien. Nous prendrons comme exemple - la difficulté de l'interprétation des anomalies magnétiques des océans; - le problème des « structures reliques » en milieu océanique; - le problème du changement de plaque et de l'inversion du mouvement; - les bassins intraplaques transverses aux ouvertures. Despite the brilliant demonstration of drilling into ocean beds, geologists seems ta be maintaining a certain reserve when confronted with concepts of global tectonics. On one hand, some basic assumptions are difficult ta understand, and on the other the theory is of relatively little help in solving the problems faced by practicing geologists. A few examples of such problems are - the difficulty in interpreting magnetic anomalies in oceans; - the problem of « relic structures » in on oceanic environment; - the problem of plate changes and inversion of movements; - intraplate basins bridging openings.

  5. A Curriculum-Linked Professional Development Approach to Support Teachers' Adoption of Web GIS Tectonics Investigations

    Science.gov (United States)

    Bodzin, Alec; Anastasio, David; Sahagian, Dork; Henry, Jill Burrows

    2016-01-01

    A curriculum-linked professional development approach designed to support middle level science teachers' understandings about tectonics and geospatial pedagogical content knowledge was developed. This approach takes into account limited face-to-face professional development time and instead provides pedagogical support within the design of a…

  6. Multi-method geo- and thermochronology of glacially transported cobbles reveals the tectonic and exhumation history of the St. Elias Mountains (Alaska/Yukon)

    Science.gov (United States)

    Falkowski, Sarah; Enkelmann, Eva; Drost, Kerstin; Pfänder, Jörg; Stübner, Konstanze; Ehlers, Todd

    2016-04-01

    Multi-method dating is a powerful tool to understand tectonic processes and mountain building. In the case of inaccessible mountain regions, e.g., due to extensive glaciation, the dating of detrital material and bedrock samples from rare outcrops with geo- and thermochronologic methods is often the only applicable approach to study the timing and rates of tectonic processes. The St. Elias Mountains of southeast Alaska and southwest Yukon are an example of a heavily glaciated orogen. With the help of detrital thermochronology of sand-sized material, exhumation patterns could be mapped, though with a low spatial resolution. In contrast, geo- and thermochronology applied to glacially derived cobbles yields provenance information from cobble lithology, zircon U-Pb dating, and the entire cooling history from multiple mineral phases. Multi-grain and multi-aliquot analyses yield high-precision crystallization and cooling ages, while sand-sized detritus requires analysis of single minerals particularly resistant to weathering. We present a reconstruction of the Cenozoic tectonic and exhumation history of the St. Elias Mountains that was obtained from the analysis of 27 carefully selected and prepared cobble samples taken from two of the largest glacial catchments of the St. Elias Mountains. A total of 21 zircon U-Pb data sets as well as eight amphibole and seven biotite 40Ar/39Ar ages constrain the (maximum) formation and cooling ages, respectively, of the rocks in the source area. In addition, four zircon and six apatite (U-Th)/He ages as well as four apatite fission-track ages reveal the exhumation history of these source rocks. Integration of the cobble results with an additional three bedrock biotite 40Ar/39Ar ages and published geo- and thermochronologic data from along the St. Elias Mountains reveals details on the timing and rates of the Cenozoic tectonic evolution of the North American margin in southeast Alaska. Documented are the earliest Eocene spreading

  7. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  8. Early origins of the Caribbean plate from deep seismic profiles across the Nicaraguan Rise

    Science.gov (United States)

    Ott, B.; Mann, W. P.

    2012-12-01

    The offshore Nicaraguan Rise in the maritime zones of Honduras, Jamaica, Nicaragua and Colombia covers a combined area of 500,000 km2, and is one of the least known equatorial Cretaceous-Cenozoic carbonate regions remaining on Earth. The purpose of this study is to describe the Cretaceous to Recent tectonic and stratigraphic history of the deep water Nicaraguan Rise, and to better understand how various types of crustal blocks underlying the Eocene to Recent carbonate cover fused into a single, larger Caribbean plate known today from GPS studies. We interpreted 8700 km of modern, deep-penetration 2D seismic data kindly provided by the oil industry, tied to five wells that penetrated Cretaceous igneous basement. Based on these data, and integration with gravity, magnetic and existing crustal refraction data, we define four crustal provinces for the offshore Nicaraguan Rise: 1) Thicker (15-18 km) Late Cretaceous Caribbean ocean plateau (COP) with rough, top basement surface; 2) normal (6-8 km) Late Cretaceous COP with smooth top basement surface (B") and correlative outcrops in southern Haiti and Jamaica; 3) Precambrian-Paleozoic continental crust (20-22 km thick) with correlative outcrops in northern Central America; and 4) Cretaceous arc crust (>18 km thick) with correlative outcrops in Jamaica. These strongly contrasting basement belts strike northeastward to eastward, and were juxtaposed by latest Cretaceous-Paleogene northward and northwestward thrusting of Caribbean arc over continental crust in Central America, and the western Nicaraguan Rise (84 to 85 degrees west). A large Paleogene to recent, CCW rotation of the Caribbean plate along the Cayman trough faults and into its present day location explains why terranes in Central America and beneath the Nicaraguan Rise have their present, anomalous north-east strike. Continuing, present-day activity on some of these crustal block boundaries is a likely result of intraplate stresses imposed by the surrounding

  9. Developing an Education and Public Outreach (EPO) program for Caltech's Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2012-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past four years, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) inspire students to learn Earth Sciences, particularly tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools and community colleges. Our work toward these goals includes hosting local high school teachers and students each summer for six weeks of research experience (as part of Caltech's "Summer Research Connection"); organizing and hosting an NAGT conference aimed at Geoscience teachers at community colleges; participating in teacher training workshops (organized by the local school district); hosting tours for K-12 students from local schools as well as from China; and bringing hands-on activities into local elementary, middle, and high school classrooms. We also lead local school students and teachers on geology field trips through nearby canyons; develop education modules for undergraduate classes (as part of MARGINS program); write educational web articles on TO research (http://www.tectonics.caltech.edu/outreach/highlights/), and regularly give presentations to the general public. This year, we started providing content expertise for the development of video games to teach Earth Science, being created by GameDesk Institute. And we have just formed a scientist/educator partnership with a 6th grade teacher, to help in the school district's pilot program to incorporate new national science standards (NSTA's Next Generation Science Standards, current draft), as well as use Project-Based Learning. This presentation gives an overview of these activities.

  10. Regional Gravity and Magnetic Studies of Crustal Structure in Northeastern Mexico and Their Tectonic Implications

    Science.gov (United States)

    Sanchez-Alvarez, R.; Urrutia-Fucugauchi, J.

    2006-05-01

    Detailed modeling of regional Bouguer gravity and aeromagnetic anomalies in northeastern Mexico permits documentation of the crustal structure and tectonic relationships of major structural features at the southern margin of the North American craton. This region has experienced a complex evolution with major events that include Paleozoic subduction and consumption of an ocean, subsequent collision of continental plates to form the supercontinent Pangaea, major faulting and deformation, middle Mesozoic fragmentation and rifting between North and South America, formation of the Gulf of Mexico and Caribbean, strike-slip lateral faulting, Laramide compression and Cenozoic extension. The Marathon-Ouachita system in northern Mexico shows the effects of strike-slip faulting and deformation, which can be traced from its potential field anomalies and oil- exploration borehole logs and data. Major tectonic elements from west to east are the foreland, frontal zone, interior zone, the Coahuila terrane, and a large elongated intrusive province. Remnants of the Permo-Triassic magmatic arc and exotic continental crust are present in the Coahuila and Gulf coast terranes. They are all affected by lateral faulting along roughly east-west regional faults, and, if the characterization of tectonic elements is correct, the proposed paleoreconstruction sets limits on the amount of lateral translation and regional crustal deformation in northern Mexico. Younger deformational episodes during the Cenozoic need to be accounted for in the tectonic reconstruction. The apparent displacement of the intrusive belt is of the order of 600-700 km. The intrusive belt and the Ouachita frontal and interior zones appear also fragmented and displaced in the Coahuila area by lateral faults such as San Marcos, China-Sierra Mojada, Barroteran, San Carlos and Sabinas. Displacement is less than that observed for the Mojave-Sonora megashear south of Monterrey area, as documented from the gravity and

  11. Create Your Plate

    Medline Plus

    Full Text Available ... managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: September ...

  12. What's On Your Plate?

    Science.gov (United States)

    ... what these nutrients do in your body and what foods they are found in. Plans for Healthy Living ... food choices. Get more nutrition information online with What's On Your Plate? Smart Food Choices for Healthy Aging from the National Institute ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Edited: September 14, 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten ...

  16. Create Your Plate

    Medline Plus

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  17. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... one side, cut it again so you will have three sections on your plate. Fill the largest ... home, the office, or somewhere in between, you have an easy portion control solution that works. Last ...

  19. Tectonic, volcanic, and climatic geomorphology study of the Sierras Pampeanas Andes, northwestern Argentina

    Science.gov (United States)

    Bloom, A. L.; Strecker, M. R.; Fielding, E. J.

    1984-01-01

    A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.

  20. Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics

    Science.gov (United States)

    McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.

    2012-12-01

    An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.

  1. Provenance, tectonic setting and source-area weathering of the ...

    Indian Academy of Sciences (India)

    s12040-017-0803-5. Provenance, tectonic setting and source-area weathering of the lower Cambrian ... (2010) carried out detrital zircon studies in order to correlate ...... and tectonic evolution of the Central Asian Orogenic Belt;. Chinese Sci. Bull.

  2. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  3. 16 Years, 16 Cruises, 1.6 Billion Soundings: a Compilation of High-Resolution Multibeam Bathymetry of the Active Plate Boundary Along the Chilean Continental Margin

    Science.gov (United States)

    Weinrebe, W.; Flueh, E. R.; Hasert, M.; Behrmann, J. H.; Voelker, D.; Geersen, J.; Ranero, C. R.; Diaz-Naveas, J. L.

    2011-12-01

    Chile, a country stranding the active plate boundary between the South-American and the Nazca Plate is afflicted by recurrent earthquakes and hazardous volcanic eruptions. The strongest earthquake ever recorded occurred here, and volcanic hazards are frequent. Consequently, this area has been studied by geoscientists for many years to improve the understanding of subduction zone processes. Swath bathymetry mapping of the ocean floor has proven to bear a large potential for the interpretation of subduction-related processes, such as tectonic deformation of the marine forearc, release and migration of fluids as well as earthquake-triggered mass wasting. Multibeam bathymetry data of 16 major cruises of German, British, and Chilean research vessels recorded between 1995 and December 2010, in total more than 10,000 data files comprising about 1.6 billion soundings, have now been carefully reprocessed, compiled and merged into a unifying set of high-resolution bathymetric maps of the Chilean continental margin from latitude 40°S to 20°S. The imprint of subsurface processes on the surface morphology is well displayed in the case of the Chilean continental margin. The 3,500 km long Chilean convergent margin is not uniform, as various segments with different tectonic characteristics can be distinguished. Major factors that control margin morphology and thus the style of subduction are (1) relief and structure of the incoming oceanic plate, (2) supply of trench sediment, (3) turbidite transport within the trench, and (4) the input of terrigeneous sediments down the continental slope. A major segment boundary occurs at latitude 32°-33° S where the hotspot-related volcanic chain of Juan Fernandez is presently subducting. South of the area of ridge subduction the trench is filled with turbidites, and accretionary ridges develop across the base of the slope along most of the segment, whereas north of this boundary the turbiditic infill is reduced and subduction erosion is

  4. 3D monitoring of active tectonic structures

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Košťák, Blahoslav; Vilímek, V.

    2003-01-01

    Roč. 36, 1-2 (2003), s. 103-112 ISSN 0264-3707 R&D Projects: GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z3046908 Keywords : tectonics * monitoring * active structures Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.754, year: 2003

  5. Radial Extension, Prototypicality, and Tectonic Equivalence

    Directory of Open Access Journals (Sweden)

    Shaver Stephen R.

    2018-01-01

    Full Text Available In his book “Without Metaphor, No Saving God: Theology After Cognitive Linguistics”, Robert Masson describes a metaphoric process by which newly accepted truths emerge: for example, in the assertion “Jesus is the Messiah,” Christians reconfigure the field of meanings associated with an existing concept from the Hebrew scriptures (messiah by asserting its identification with Jesus. Masson dubs this process a “tectonic equivalence” or “tectonic shift.” In this paper I build on Masson‘s work by examining some of the shifts he describes as tectonic through the lens of the cognitive linguistics concepts of radial extension and polysemy. I propose that a lasting tectonic shift may be understood as a blend creating a radial extension that substantially alters the category structure of the original source frame so that the blended space comes to be understood as a central instance of that category. Such an approach allows a fruitful analysis of the similarities and differences among three example blends: god is a rock, jesus is the messiah, and jesus is god.

  6. Tectonically Induced Anomalies Without Large Earthquake Occurrences

    Science.gov (United States)

    Shi, Zheming; Wang, Guangcai; Liu, Chenglong; Che, Yongtai

    2017-06-01

    In this study, we documented a case involving large-scale macroscopic anomalies in the Xichang area, southwestern Sichuan Province, China, from May to June of 2002, after which no major earthquake occurred. During our field survey in 2002, we found that the timing of the high-frequency occurrence of groundwater anomalies was in good agreement with those of animal anomalies. Spatially, the groundwater and animal anomalies were distributed along the Anninghe-Zemuhe fault zone. Furthermore, the groundwater level was elevated in the northwest part of the Zemuhe fault and depressed in the southeast part of the Zemuhe fault zone, with a border somewhere between Puge and Ningnan Counties. Combined with microscopic groundwater, geodetic and seismic activity data, we infer that the anomalies in the Xichang area were the result of increasing tectonic activity in the Sichuan-Yunnan block. In addition, groundwater data may be used as a good indicator of tectonic activity. This case tells us that there is no direct relationship between an earthquake and these anomalies. In most cases, the vast majority of the anomalies, including microscopic and macroscopic anomalies, are caused by tectonic activity. That is, these anomalies could occur under the effects of tectonic activity, but they do not necessarily relate to the occurrence of earthquakes.

  7. Discriminating four tectonic settings: Five new geochemical ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data. Surendra P Verma Mirna Guevara Salil Agrawal. Volume 115 Issue 5 October 2006 ...

  8. The Phenomenology and Tectonics of Making

    DEFF Research Database (Denmark)

    Carter, Adrian

    2012-01-01

    “The material, detail and structure of a building is an absolute condition. Architecture’s potential is to deliver authentic meanings in what we see, touch and smell; the tectonic is ultimately central to what we feel” Steven Holl...

  9. Tectonic studies in the Lansjaerv region

    International Nuclear Information System (INIS)

    Henkel, H.

    1987-10-01

    This report contains the results and the analysis of ground geophysical measurements and the tectonic interpretation in the 150x200 km Lansjaerv study area. It describes the data and methods used. The significance of strike slip fault patterns in relation to the surface morphology is discussed. The obtained results are used to suggest a tentative model for the present tectonic deformation. The report is part of the bedrock stability programme of SKB. The major conclusions regarding the tectonic structure are: Three regional fault systems are identified, two steep NW and N trending and a third NNE trending with gentle ESE dips, the steep fault systems have strike slip generated deformation patterns both in the Precambrian structures and in the surface morphology, the post-glacial faults of the area are part of this fault pattern and represent movements mainly on reactivated, gently dipping zones, several suspected late or post-glacial, fault related features are found along the steep NW and N faults. Sites for drilling and geodetic networks for deformation measurements are suggested. Detailed background data are documented in additional 4 reports. The basic geophysical and geological datasets are documented in color plotted 1:250 000 maps. A tectonic interpretation map in the same scale has been produced by combined interpretation of magnetic, elevation, elevation relief and gravity data. (orig./HP) With 6 maps

  10. Provenance, tectonics and palaeoclimate of Proterozoic Chandarpur ...

    Indian Academy of Sciences (India)

    climatic condition. The provenance analysis revealed that the Chandarpur clastics were derived from granites and granite–gneisses of a continental block tectonic provenance. Petrographic stud- ies further indicate that high grade metamorphic rocks did not make any perceptible contribution to the Chandarpur system.

  11. Geomorphological features of active tectonics and ongoing ...

    Indian Academy of Sciences (India)

    floods, cloud-bursts and earthquakes. Slopes in the region were formed by combining the effect of geomorphic, tectonic and climatic process and the landslides frequently occurring during the monsoon. The highly deformed, fractured and shattered rocks of Great Himalaya and the prox- imity of active thrusts and fault zones ...

  12. Structural highs on the western continental slope of India: Implications for regional tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Rajesh, M.; De, Suritha; Chakraborty, B.; Jauhari, P.

    and Scotese, 1999). Continental rifting coupled with a magma-assisted thermal anomaly from beneath is accepted as the fundamental component of the plate tectonic process (e.g., Northern Ethiopian Rift, Kendall et al., 2005). Similarly it is possible that mafic... 279, 312–315. Kendall, J-M., Stuart, G.W., Ebinger, C.J., Bastow, I.D., Keir, D., 2005. Magma assisted rifting in Ethiopia. Nature 433, 146–148. Krishna, K.S., Murty, G.P.S., Srinivas, K., Rao, D.G., 1992. Magnetic studies over the northern extension...

  13. Tectonic controls on the Yamanlar volcano and Yuntdağı volcanic region, western Turkey: Implications for an incremental deformation

    Science.gov (United States)

    Karaoğlu, Özgür

    2014-03-01

    Over the past ten years, it has been proposed that the western part of the Menderes Massif was strongly structurally-controlled by the İzmir-Balıkesir transfer zone (İBTZ). Yamanlar volcano is a key area for understanding the deformation of Miocene volcanoes in western Turkey because of its progressive extensional tectonics. Structural analysis provides that this volcano has undergone the incremental tectonic controls in western Turkey since Early Miocene. The volcano experienced deformation and erosional processes associated with activity of intense tectonic regime that resulted in the dissection of the southern flank of the volcano mostly by NE-SW-striking oblique and strike-slip faults together with cross-cutting faults during and after Miocene period. The orientation of volcanic domes, dykes and intrusive bodies indicates successive and reactive tectonic phases that caused incremental complex movements of numerous fault blocks during the destruction area of the Yamanlar volcano.

  14. Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand

    Science.gov (United States)

    Rajabi, Mojtaba; Ziegler, Moritz; Tingay, Mark; Heidbach, Oliver; Reynolds, Scott

    2016-08-01

    The present-day stress state is a key parameter in numerous geoscientific research fields including geodynamics, seismic hazard assessment, and geomechanics of georeservoirs. The Taranaki Basin of New Zealand is located on the Australian Plate and forms the western boundary of tectonic deformation due to Pacific Plate subduction along the Hikurangi margin. This paper presents the first comprehensive wellbore-derived basin-scale in situ stress analysis in New Zealand. We analyze borehole image and oriented caliper data from 129 petroleum wells in the Taranaki Basin to interpret the shape of boreholes and determine the orientation of maximum horizontal stress (SHmax). We combine these data (151 SHmax data records) with 40 stress data records derived from individual earthquake focal mechanism solutions, 6 from stress inversions of focal mechanisms, and 1 data record using the average of several focal mechanism solutions. The resulting data set has 198 data records for the Taranaki Basin and suggests a regional SHmax orientation of N068°E (±22°), which is in agreement with NW-SE extension suggested by geological data. Furthermore, this ENE-WSW average SHmax orientation is subparallel to the subduction trench and strike of the subducting slab (N50°E) beneath the central western North Island. Hence, we suggest that the slab geometry and the associated forces due to slab rollback are the key control of crustal stress in the Taranaki Basin. In addition, we find stress perturbations with depth in the vicinity of faults in some of the studied wells, which highlight the impact of local stress sources on the present-day stress rotation.

  15. Tectonic and hydrothermal activities in Debbagh, Guelma Basin, Eastern Algeria

    Science.gov (United States)

    Maouche, S.; Abtout, A.; Merabet, N.; Aïfa, T.; Lamali, A.; Bouyahyaoui, B.; Boughchiche, S.; Ayache, M.

    2012-04-01

    Quaternary and Pliocene travertine, deposited from hot springs, can reveal much about tectonic and hydrothermal activities. The aim of this work is to understand the actual tectonic activity in the Guelma Basin and in one of its spas structure. Considering the fieldwork observations in the Hammam Debbagh area, gravity data were analyzed to better highlight the architecture of its subsurface underlying hydrothermal structures. Analysis of the gravity data included the computation of a Bouguer anomaly, upward continuations, as well as residual and derivative maps. Comparison of gravity maps, field geology, geomorphic observations and structural maps allowed us to identify the major structural features. As a result we propose a model of three subsurface structure sources at 0.2, 1 and 7 km depth from north to south, respectively. This confirms some structural elements collected from outcrops and defines subsurface structures, where the Hammam Debbagh active fault is superimposed to the hydrothermal active source in the NW-SE direction characterized by a negative gravity anomaly.

  16. A New Framework For The Evolution of Terrestrial Planets: Bi-stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States

    Science.gov (United States)

    Weller, M. B.; Lenardic, A.

    2017-12-01

    Of all the Solar System bodies, the Earth is the only one for which significant observation and constraints are accessible such that they can be used to discriminate between competing models of Earth's tectonic evolution. Therefore, it is a natural tendency to use these observations to inform more general models of planetary evolution. Yet, our understating of Earth's evolution is far from complete. Geodynamic and geochemical evidence suggests that plate tectonics may not have operated on the early Earth, with both the timing of its onset and the length of its activity far from certain. In recent years, the potential of tectonic bi-stability (multiple stable, energetically allowed solutions) has been shown to be dynamically viable, both from analytical analysis and through numeric experiments in two and three dimensions. The indication is that multiple tectonic modes may operate on a single planetary body at different times within its temporal evolution. Further, there exists the potential that feedback mechanisms between the internal dynamics and surface processes (e.g., surface temperature changes driven by long term climate evolution), acting at different thermal evolution times, can cause terrestrial worlds to alternate between multiple tectonic states over giga-year timescales. Implied here is that terrestrial planets have the potential to migrate through tectonic regimes at similar `thermal evolutionary times' - points were planets have a similar bulk mantle temperature and energies -, but at very different `temporal times' - time since planetary formation. It can then be shown that identical planets at similar stages of their evolution may exhibit different tectonic regimes due to random fluctuations. A new framework of planetary evolution that moves toward probabilistic arguments based on general physical principals, as opposed to particular rheologies, and incorporates the potential of tectonic regime transitions and multiple tectonics states being viable

  17. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  18. Tectonics of the southern escarpment of Ishtar Terra on Venus from observations of morphology and gravity

    International Nuclear Information System (INIS)

    Janle, P.; Jannsen, D.

    1984-01-01

    Maxima of calculated topographical line-of-sight (LOS) gravity attractions caused by Ishtar Terra are shifted to the north with respect to the measured LOS free air gravity maxima south of the highland. This implies a tendency to isostatic compensation of central Ishtar and mass surpluses at the continental border and the southern forelands. The authors present a scenario compatible with the interpretation of the gravity anomalies and morphological features. The existence of global plate tectonics on Venus like on Earth is not necessarily implied, but at least limited horizontal movements of the Venusian lithosphere seem to be likely. This result shows that plate recycling must be considered for heat transfer through the lithosphere beside conduction and hot spot volcanism. (Auth.)

  19. Fluctuations in seafloor spreading predicted by tectonic reconstructions and mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Seton, Maria; Rolf, Tobias; Müller, R. Dietmar; Tackley, Paul J.

    2013-04-01

    The theory of plate tectonics theory has enabled possible the reconstruction of the ancient seafloor and paleogeography. Over 50 years of data collection and kinematic reconstruction efforts, plate models have improved significantly (Seton et al., 2012) although reconstructions of ancient seafloor are naturally limited by the limited preservation of of very old seafloor. It is challenging to reconstruct ancient ocean basins and associated plate boundaries for times earlier than 200 Ma, since seafloor of this age is not preserved. This means we can merely reconstruct only 5% of the history of the planet in this fashion. However, geodynamic models can now help evaluate how seafloor spreading may evolve over longer time periods, since recent developments of numerical models of mantle convection with pseudo-plasticity can generate long-term solutions that simulate a form of seafloor spreading (Moresi and Solomatov, 1998; Tackley, 2000a; Tackley, 2000b). The introduction of models of continental lithosphere further improves the quality of the predictions: the computed distribution of seafloor ages reproduces the consumption of young seafloor as observed on the present-day Earth (Coltice et al., 2012). The time-dependence of the production of new seafloor has long been debated and there is no consensus on how much it has varied in the past 150My, and how it could have fluctuated over longer time-scales. Using plate reconstructions, Parsons (1982) and Rowley (2002) proposed the area vs. age distribution of the seafloor could have experienced limited fluctuations in the past 150My while others suggest stronger variations would fit the observations equally well (Seton et al., 2009. Here we propose to investigate the global dynamics of seafloor spreading using state-of-the-art plate reconstructions and geodynamic models. We focus on the evolution of the distribution of seafloor ages because fundamental geophysical observations like mantle heat flow or sea level provide

  20. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  1. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    Science.gov (United States)

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  2. From P-T-age to secular change and global tectonic regimes (or Essene in reverse - from granulites to blueschists and eclogites over time)

    Science.gov (United States)

    Brown, M.

    2006-12-01

    Essene's contributions began pre-plate tectonics more than 40 years ago; they range from mineralogy to tectonics, from experiments and thermobarometry to elements and isotopes, and from the Phanerozoic to the Precambrian. Eric is a true polymath! Assessing the P-T conditions and age distribution of crustal metamorphism is an important step in evaluating secular change in tectonic regimes and geodynamics. In general, Archean rocks exhibit moderate-P - moderate-to-high-T facies series metamorphism (greenstone belts and granulite terranes); neither blueschists nor any record of deep continental subduction and return are documented and only one example of granulite facies ultrahigh-temperature metamorphism is reported. Granulite facies ultrahigh temperature metamorphism (G-UHTM) is documented in the rock record predominantly from Neoarchean to Cambrian, although G-UHTM facies series rocks may be inferred at depth in younger orogenic systems. The first occurrence of G-UHTM in the rock record signifies a change in geodynamics that generated transient sites of very high heat flow. Many G-UHTM belts may have developed in settings analogous to modern continental backarcs. On a warmer Earth, the formation and breakup of supercontinents, particularly by extroversion, which involved destruction of ocean basins floored by thinner lithosphere, may have generated hotter continental backarcs than those around the modern Pacific rim. Medium-temperature eclogite - high-pressure granulite metamorphism (E-HPGM) also is first recognized in the Neoarchean rock record, and occurs at intervals throughout the Proterozoic and Paleozoic rock record. E- HPGM belts are complementary to G-UHTM belts, and are generally inferred to record subduction-to-collision orogenesis. Blueschists become evident in the Neoproterozoic rock record; lawsonite blueschists and eclogites (high-pressure metamorphism, HPM), and ultrahigh pressure metamorphism (UHPM) characterized by coesite or diamond are

  3. Boninites: Characteristics and tectonic constraints, northeastern Appalachians

    Science.gov (United States)

    Kim, J.; Jacobi, R.D.

    2002-01-01

    Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the

  4. Morphological expression of active tectonics in the Southern Alps

    Science.gov (United States)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan

    2015-04-01

    Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion

  5. Plating on Zircaloy-2

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Jones, A.

    1979-03-01

    Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory

  6. NICKEL PLATING PROCESS

    Science.gov (United States)

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  7. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  8. John F. Dewey—Tectonics Editor

    Science.gov (United States)

    Richman, Barbara T.

    ‘I want the journal to acquire a reputation for very rapid, fair, and accurate reviewing,’ asserted John F. Dewey, editor-in-chief of AGU's newest journal, Tectonics. Dewey said that he will rule the bimonthly, which will begin publication in February, ‘with a bit of a rod of iron’ to ensure that Tectonics is ‘where only original and important papers are published.’‘I'm going to be very strict with reviewers,’ Dewey explained in his quick British clip. ‘If the review does not come back to me within 10 days to 2 weeks, I'll review the paper myself. I'm also going to have a system whereby, if a paper needs major surgery after being refereed, it will be rejected. Papers will have to be in virtually publishable condition before they are first submitted,’ he said.

  9. Searching for the Lost Jurassic and Cretaceous Ocean Basins of the Circum-Arctic Linking Plate Models and Seismic Tomography

    Science.gov (United States)

    Shephard, G. E.; Müller, R.

    2012-12-01

    The tectonic evolution of the circum-Arctic since the breakup of Pangea involves the opening and closing of ocean basins including the Oimyakon, Angayucham, South Anuyi, Amerasia and Eurasia basins. The time-dependent configurations and kinematic history of the basins, adjacent continental terranes, and subduction zones involved are not well understood, and many published tectonic models for particular regions are inconsistent with models for adjacent areas. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins since at least the Late Jurassic have implications for mantle structure, which can be used as an additional constraint for building plate and plate boundary models. Here we integrate an analysis of both surface and deep mantle observations back to 200 Ma. Based on a digitized set of tectonic features with time-dependent rotational histories we present a refined plate model with topologically closed plate polygons for the circum-Arctic with particular focus on the northern Pacific, Siberian and Alaskan margins (Fig 1). We correlate the location, geometry and timing of subduction zones with associated seismic velocities anomalies from global P and S wave tomography models across different depths. We design a plate model that best matches slabs imaged in seismic tomography in an iterative fashion. This match depends on a combination of relative and absolute plate motions. Therefore we test two end-member absolute plate motion models, evaluating a paleomagnetic model and a model based on hotspot tracks and large igneous provinces. This method provides a novel approach to deciphering the Arctic tectonic history in a global context. Fig 1:Plate reconstruction at 200Ma and 140Ma, visualized using GPlates software. Present-day topography raster (ETOPO2) segmented into major tectonic elements of the circum-Arctic. Plate boundaries delineated in black and selected subduction and arc features labeled in

  10. Hot-spot tectonics on Io

    Science.gov (United States)

    Mcewen, A. S.

    1985-01-01

    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  11. Tectonic evolution of Lavinia Planitia, Venus

    Science.gov (United States)

    Squyres, Steven W.; Frank, Sharon L.; Mcgill, George E.; Solomon, Sean C.

    1991-01-01

    High resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. Lavinia is a broad lowland over 2000 km across, centered at about 45 deg S latitude, 345 deg E longitude. Herein, the tectonic evolution of Lavinia is discussed, and its possible relationship to processes operating in the planet's interior. The discussion is restricted to the region from 37.3 to 52.6 deg S latitude and from about 340 to 0 deg E longitude. One of the most interesting characteristics of Lavinia is that the entire region possesses a regional tectonic framework of striking regularity. Lavinia is also transected by a complex pattern of belts of intense tectonic deformation known as ridge belts. Despite the gross topographic similarity of all of the ridge belts in Lavinia, they exhibit two rather distinct styles of near surface deformation. One is composed of sets of broad, arch-like ridges rising above the surrounding plains. In the other type, obvious fold-like ridges are rare to absent in the radar images. Both type show evidence for small amounts of shear distributed across the belts.

  12. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  13. The influence of mantle refertilisation on the formation of TTGs in a plume-lid tectonics setting

    Science.gov (United States)

    Fischer, R.; Gerya, T.

    2017-12-01

    Higher amounts of radiogenic elements and leftover primordial heat in the early Earth both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Early Earth. The increased upper mantle temperature precludes the modern plate tectonics regime and stabilizes another type of global tectonics often called plume-lid tectonics (Fischer and Gerya, 2016) or 'plutonic squishy lid' tectonics(Rozel et al., 2017). Plume-lid tectonics is dominated by intrusive mantle-derived magmatism which results in a thickening of the overlaying crust. The overthickened basaltic crust is transformed into eclogite and episodically recycled back into the mantle. Melt extraction from hydrated partially molten basaltic crust leads to the production of primordial tonalite-trondhjemite-granodiorite (TTG) continental crust. TTGs make up over half of the Archean crust and can be classied into low-, medium- and high-pressure types (Moyen, 2011). Field studies show that the three different types (low-, medium- and high-pressure) appear in a ratio of 20%, 60% and 20% (Moyen, 2011). Numerical models of plume-lid tectonics generally agree very well with these values (Rozel et al., 2017) but also show that the ratio between the three different TTG types varies greatly during the two phases of the plume-lid tectonics cycle: growth phase and overturn phase. Melt productivity of the mantle decreases rapidly after removal of the garnet and clinopyroxene components. Addition of new garnet and clinopyroxene-rich material into the harzburgitic residue should lead to a refertilised lherzolite which could potentially yield new melt (Bédard, 2006). Mixing of eclogite drips back into the mantle can lead to the geochemical refertilisation of already depleted mantle and allow for further extraction of melt (Bédard, 2006). We will explore this

  14. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  15. Tectonic and Hydrothermal Activities in Debagh, Guelma Basin (Algeria

    Directory of Open Access Journals (Sweden)

    Said Maouche

    2013-01-01

    Full Text Available Quaternary and Pliocene travertines, deposited from hot springs, can reveal much about neotectonic and hydrothermal activity. The aim of this work is the understanding of the actual tectonic activity in the Guelma Basin and in one of its spa structures. Gravity data were collected during a field study in the Hammam Debagh (HD area and then analyzed to better highlight the architecture of its subsurface underlying structures. This analysis was performed by means of a Bouguer anomaly, upward continuations, and residual and derivative maps. Comparison of gravity maps, field geology, geomorphic observations, and structural maps allowed us to identify the major structural features in the Hammam Debagh. As a result, we confirm the position of the Hammam Debagh active fault which is superimposed to the hydrothermal active source in the NW-SE direction characterized by a negative gravity anomaly.

  16. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate ...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-1.html A Future ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Types of Activity Weight Loss Assess Your Lifestyle Getting Started Food Choices In My Community Home Find Your ... but changes the portion sizes so you are getting larger portions of ... seven steps to get started: Using your dinner plate, put a line down ...

  20. Create Your Plate

    Medline Plus

    Full Text Available ... Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... for Donations - ways-to-give-201710-hotelscom.html Ways to Give ... to help prevent and manage diabetes. Ask the Experts: Learn to Live Well ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Type 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ ... Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate Today We Can Help - we- ...

  4. Create Your Plate

    Medline Plus

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  5. Plate girders under bending

    NARCIS (Netherlands)

    Abspoel, R.; Dubina, D.; Ungureanu, V.

    2016-01-01

    In a material economy driven plate girder design, the lever arm between the flanges will increase. This leads to higher stiffness and bending moment resistance, but also to an in-crease of the web slenderness. This means that high strength steels can be used leading to a large reduction of the steel

  6. Plate tectonics, seaways and climate in the historical biogeography of mammals

    Directory of Open Access Journals (Sweden)

    C Barry Cox

    2000-08-01

    Full Text Available The marsupial and placental mammals originated at a time when the pattern of geographical barriers (oceans, shallow seas and mountains was very different from that of today, and climates were warmer. The sequence of changes in these barriers, and their effects on the dispersal of the mammal families and on the faunas of mammals in the different continents, are reviewed. The mammal fauna of South America changed greatly in the Pliocene/Pleistocene, when the newly-complete Panama Isthmus allowed the North American fauna to enter the continent and replace most of the former South American mammal families. Marsupial, but not placental, mammals reached Australia via Antarctica before Australia became isolated, while rats and bats are the only placentals that dispersed naturally from Asia to Australia in the late Cenozoic. Little is known of the early history of the mammal fauna of India. A few mammal families reached Madagascar from Africa in the early Cenozoic over a chain of islands. Africa was isolated for much of the early Cenozoic, though some groups did succeed in entering from Europe. Before the climate cooled in the mid-Cenozoic, the mammal faunas of the Northern Hemisphere were much richer than those of today.

  7. Paleogene plate tectonic evolution of the Arabian and Eastern Somali basins

    Digital Repository Service at National Institute of Oceanography (India)

    Royer, J.-Y.; Chaubey, A.K.; Dyment, J.; Bhattacharya, G.C.; Srinivas, K.; Yatheesh, V.; Ramprasad, T.

    Universitaire Europeen de la Mer (IUEM), Place Copernic, 29280 Plouzane, France (e-mail: jyroyer@univ-brest.fr) 2 Geological Oceanography Division, National Institute of Oceanography (NIO), Dona Paula, Goa 403 004, India Abstract: We review previous models... 'ocean Indien: cinematique Inde-Afrique. These de Doctorat, Universite Denis Diderot (Paris 7), Paris. DYMENT, J. 1991. Structure et evolution de la litho- sphe're oceanique dans I'ocean Indien: apport des anomalies magnetiques. These de Doctorat, Univcr...

  8. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    Science.gov (United States)

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  9. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne M.

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools to assess the potential for cascading hazards, such as landslides, tsunamis, coastal changes, and flooding caused by earthquakes or volcanic eruptions;Geospatial models of permanent, widespread land- and sea-level changes that may occur in the immediate aftermath of great (M ≥8.0) subduction zone earthquakes;Strong partnerships between scientists and public safety providers for effective decision making during periods of elevated hazard and risk;Accurate forecasts of far-reaching hazards (for example, ash clouds, tsunamis) to avert catastrophes and unnecessary disruptions in air and sea transportation;Aftershock forecasts to guide decisions about when and where to re-enter, repair, or rebuild buildings and infrastructure, for all types of subduction zone earthquakes.

  10. It's "Your" Fault!: An Investigation into Earthquakes, Plate Tectonics, and Geologic Time

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    Earthquakes "have" been in the news of late--from the disastrous 2010 Haitian temblor that killed more than 300,000 people to the March 2011 earthquake and devastating tsunami in Honshu, Japan, to the unexpected August 2011 earthquake in Mineral, Virginia, felt from Alabama to Maine and as far west as Illinois. As expected, these events…

  11. Surveys on environmental tectonics. Special volume.

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.; Cornu, T.

    2005-01-01

    Until now, research on neotectonics and related seismicity has mostly focused on active plate boundaries characterized by generally high earthquake activity. Current seismic hazard estimates for intraplate areas are commonly based on probabilistic analyses of historical and instrumental earthquake

  12. BOLIVAR: Crustal structure of the Caribbean-South America plate boundary between 60W and 70W from wide-angle seismic data

    Science.gov (United States)

    Zelt, C. A.; Christeson, G. L.; Magnani, M. B.; Clark, S. A.; Guedez, M. C.; Bezada, M.; Levander, A.; Schmitz, M.

    2007-12-01

    We present the results from five wide-angle seismic profiles collected onshore and offshore Venezuela in 2004 as part of the Broadband Ocean Land Investigation of Venezuela and the Antilles arc Region project (BOLIVAR). The study area is the diffuse plate boundary between South America (SA) and the SE Caribbean plate (CAR) covering roughly 1000 km by 500 km. Over the past 55 My the Leeward Antilles island arc that borders the CAR plate has been colliding obliquely with the SA continent resulting in a collision front that has migrated from west to east. The five wide-angle profiles sample different stages of the time-transgressive margin from west to east, each crossing the margin roughly perpendicularly. The main purpose of this presentation is to contrast and compare the crustal velocity structure along these profiles to better understand the tectonic processes that are responsible for the evolution and present-day configuration of the plate boundary. Each of the wide-angle profiles is about 500 km in length and includes both onshore and offshore shots and receivers, except the easternmost profile, which is entirely offshore. The dense wide-angle data were modeled in the same way along each profile using a two-step, layer-stripping approach: (1) the first-arrival times were tomographically inverted for a smooth velocity model, and (2) the lower crust, Moho, and uppermost mantle were determined by simultaneous inversion of the PmP refection and Pn refraction phases while keeping the upper and middle crust from the first step fixed. The five models show tremendous lateral heterogeneity, as they cross features such as normal oceanic crust, oceanic plateau crust, an accretionary wedge, active and remnant island arcs, forearc and foreland basins, a major strike-slip system, a fold and thrust belt, and the edge of cratonic continental crust. Two of the main contributions of the wide-angle models to the BOLIVAR project, and the focus of this presentation, are the Moho

  13. Plate motions and deformations from geologic and geodetic data

    Science.gov (United States)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  14. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  15. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone

    Science.gov (United States)

    Laurencin, M.; Marcaillou, B.; Graindorge, D.; Klingelhoefer, F.; Lallemand, S.; Laigle, M.; Lebrun, J.-F.

    2017-05-01

    The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto Rico-Virgin Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013-2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW trending left-stepping en échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults, and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the south of Puerto Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. The Anegada Passage is formed by a NW-SE extension, possibly related to the rotation or escape of PRVI block due to collision of the Bahamas Bank. Currently, it is deformed by an active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.

  16. Radon daughter plate-out onto Teflon

    Science.gov (United States)

    Morrison, E. S.; Frels, T.; Miller, E. H.; Schnee, R. W.; Street, J.

    2018-01-01

    Radiopure materials for detector components in rare event searches may be contaminated after manufacturing with long-lived 210Pb produced by the decay of atmospheric radon. Charged radon daughters deposited on the surface or implanted in the bulk of detector materials have the potential to cause noticeable backgrounds within dark matter regions of interest. Understanding the mechanics governing these background signals is therefore a paramount concern in dark matter experiments in order to distinguish a real signal from internal detector backgrounds. Teflon (i.e. PTFE) is a specific material of interest because it makes up the walls of the inner detector of many liquid noble detectors such as the LUX-ZEPLIN experiment. The rate of radon daughter plate-out onto Teflon can be orders of magnitude larger than the plate-out rate onto other materials. Mitigation of plate-out onto Teflon and steel by proximity to other materials is demonstrated.

  17. Geophysical Data (Gravity and Magnetic) from the Area Between Adana, Kahramanmaras and Hatay in the Eastern Mediterranean Region: Tectonic Implications

    Science.gov (United States)

    Over, Semir; Akin, Ugur; Sen, Rahime

    2018-01-01

    The gravity and magnetic maps of the area between Adana-Kahramanmaras-Hatay provinces were produced from a compilation of data gathered during the period between 1973 and 1989. Reduced to the pole (RTP) and pseudo-gravity transformation (PGT) methods were applied to the magnetic data, while derivative ratio (DR) processing was applied to both gravity and magnetic data, respectively. Bouguer, RTP and PGT maps show the image of a buried structure corresponding to ophiolites under undifferentiated Quaternary deposits in the Adana depression and Iskenderun Gulf. DR maps show two important faults which reflect the tectonic framework in the study area: (1) the Karatas-Osmaniye Fault extending from Osmaniye to Karatas in the south between Adana and Iskenderun depressions and (2) Amanos Fault (southern part of East Anatolian Fault) in the Hatay region running southward from Turkoglu to Amik Basin along Amanos Mountain forming the actual plate boundary between the Anatolian block (part of Eurasian plate) and Arabian plate.

  18. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    Science.gov (United States)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  19. Tectonic resemblance of the Indian Platform, Pakistan with the Moesian Platform, Romania and strategy for exploration of hydrocarbons

    International Nuclear Information System (INIS)

    Memon, A.D.

    1994-01-01

    There is a remarkable tectonic resemblance between the indian Platform (Pakistan) and the Moesian Platform (Romania). As viewed in global tectonic perspective Moeslan and Indian Plates have played important role in Alpine Himalayan Orogeny; Moesian and Indian Platforms are extension of these respective plates. Characteristics features of both the platforms are block faulting which has effected not only the general tectonic framework but has also played important role in oil accumulation. Main producing rocks in the Moesian platform are Jurassic sandstones and cretaceous limestones while in the indian platform cretaceous sandstones are important reservoirs. The average geothermal gradient in the indian platform is 2.45 C/100m with the higher gradients in the central gas producing region. Geothermal gradients in the Moesian platform have an average value of 3 C/100m with higher gradients in the northern in the northern part. Some of the producing structures in both the platforms are remarkably similar, traps associated with normal faults are very important. Extensive exploration carried in the Moesian Platform makes it very important oil producing region of Romania. After the discovery of oil lower Sindh, serious exploration is being carried in the Indian platform. The paper deals with the similarities between these two important platforms. In the light of the studies of the Moesian platform, strategies or exploration of oil and gas in the Indian Platform are suggested. (author)

  20. Tectonic map of the Circum-Pacific region, Pacific basin sheet

    Science.gov (United States)

    Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.

    2013-01-01

    Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and

  1. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    Science.gov (United States)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  2. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    Science.gov (United States)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (viscosity contrasts (>1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  3. A new GPS velocity field for the Pacific Plate - Part 1: constraints on plate motion, intraplate deformation, and the viscosity of Pacific basin asthenosphere

    Science.gov (United States)

    DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique

    2014-12-01

    We combine new, well-determined GPS velocities from Clarion, Guadalupe and Socorro islands on young seafloor in the eastern Pacific basin with newly estimated velocities for 26 GPS sites from older seafloor in the central, western and southern parts of the Pacific Plate to test for deformation within the interior of the Pacific Plate and estimate the viscosity of the asthenosphere below the plate. Relative to a Pacific Plate reference frame defined from the velocities of the 26 GPS sites in other areas of the Pacific Plate, GPS sites on Clarion and Guadalupe islands in the eastern Pacific move 1.2 ± 0.6 mm yr-1 (1σ) towards S09°W ± 38° and 1.9 ± 0.3 mm yr-1 towards S19°E ± 10°, respectively. The two velocities, which are consistent within their 95 per cent uncertainties, both differ significantly from Pacific Plate motion. Transient volcanic deformation related to a 1993-1996 eruption of the Socorro Island shield volcano renders our GPS velocity from that island unreliable for the tectonic analysis although its motion is also southward like those of Clarion and Guadalupe islands. We test but reject the possibilities that drift of Earth's origin in ITRF2008 or unmodelled elastic offsets due to large-magnitude earthquakes around the Pacific rim since 1993 can be invoked to explain the apparent slow southward motions of Clarion and Guadalupe islands. Similarly, corrections to the Pacific Plate GPS velocity field for possible viscoelastic deformation triggered by large-magnitude earthquakes since 1950 also fail to explain the southward motions of the two islands. Viscoelastic models with prescribed asthenospheric viscosities lower than 1 × 1019 Pa s instead introduce statistically significant inconsistencies into the Pacific Plate velocity field, suggesting that the viscosity of the asthenosphere below the plate is higher than 1 × 1019 Pa s. Elastic deformation from locked Pacific-North America Plate boundary faults is also too small to explain the southward

  4. Three-dimensional seismo-tectonics in the Po Valley basin, Northern Italy

    Science.gov (United States)

    Turrini, Claudio; Angeloni, Pamela; Lacombe, Olivier; Ponton, Maurizio; Roure, François

    2015-10-01

    The Po Valley (Northern Italy) is a composite foreland-foredeep basin caught in between the Southern Alps and Northern Apennine mountain belts. By integrating the 3D structural model of the region with the public earthquake dataset, the seismo-tectonics of the basin is shown at different scales of observation. The three-dimensional geo-volume is used to review the seismicity around the region and validate the structure-earthquake association for such a complex tectonic framework. Despite the overall uncertainty due to the original data distribution-quality as well as the crustal scale model dimension, the direct correlation between structures and seismicity a) confirms the Po Valley region as an active tectonic system and b) allows the whole structural architecture to be revised by a unique three-dimensional perspective and approach. This study also indicates that 3D methodology is a powerful tool for better understanding of highly complex seismo-tectonic situations at both regional and local scales.

  5. Is the Juan Fernandez Ridge (nazca Plate) a Deep-Mantle Hot SPOT Trail?

    Science.gov (United States)

    Lara, L. E.; Selles, D.; Díaz, A.; Piña-Gauthier, M.

    2011-12-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. Geochronological data is still scarce to prove this is the case, and other hypothesis should be taken into account. There are a few constrains, like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages in Robinson Crusoe yield ca. 1-3 Ma, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. New geological mapping also shows a sharp unconformity between the older, strongly altered sequences and more recent, post-erosional volcanic piles, where only the vent facies have disappeared. A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. Fondecyt grant 110966 is acknowledged for financial support.

  6. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  7. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate

    DEFF Research Database (Denmark)

    Jones, David T; Davies, D. R.; Campbell, I. H.

    2017-01-01

    Mantle plumes are buoyant upwellings of hot rock that transport heat from Earth's core to its surface, generating anomalous regions of volcanism that are not directly associated with plate tectonic processes. The best-studied example is the Hawaiian-Emperor chain, but the emergence of two sub......-parallel volcanic tracks along this chain, Loa and Kea, and the systematic geochemical differences between them have remained unexplained. Here we argue that the emergence of these tracks coincides with the appearance of other double volcanic tracks on the Pacific plate and a recent azimuthal change in the motion...... of the plate. We propose a three-part model that explains the evolution of Hawaiian double-track volcanism: first, mantle flow beneath the rapidly moving Pacific plate strongly tilts the Hawaiian plume and leads to lateral separation between high- and low-pressure melt source regions; second, the recent...

  8. Tectonic analysis of the Oklo deposit

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Ruhland, M.; Weber, F.

    1975-01-01

    A large folded structure with a 40 0 incline and extending 500 m in the north-south direction has been uncovered at the Oklo mine. This structure has been analysed from the geometric and dynamic points of view in order to determine the possible role of tectonic activity in the creation of the uraniferous concentrations. Compression and extension zones which at certain points control the shape and arrangement of the lodes are associated with the structure. The natural reactors are situated in an extension zone where compartmentation and slippage, which explain the arrangement of the reactors, are observed

  9. Tectonic movements monitored in the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Košťák, Blahoslav; Mrlina, Jan; Stemberk, Josef; Chán, Bohumil

    2011-01-01

    Roč. 52, č. 1 (2011), s. 34-44 ISSN 0264-3707 R&D Projects: GA ČR GA205/09/2024; GA AV ČR IBS3012353; GA AV ČR IAA300120905; GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30120515 Keywords : pressure pulse * tectonic displacement * earthquake micro swarm Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.007, year: 2011

  10. The Nature of Tectonic Spatial Structures

    DEFF Research Database (Denmark)

    Carter, Adrian; Kirkegaard, Poul Henning

    2010-01-01

    Since earliest times mankind has sought inspiration from nature for our built structures. However until the dawn of the modern era in architecture and design, the true structural character of a building was invariably full y or partially encased in an ornamented cladding, of often stylised motifs...... particularly of Kenneth Frampton, this paper will argue that the direct inspiration of nature and the increasing use of advanced parametric digital design tools that replicate virtually instantaneously evolutionary processes results in structures that are not only elegant tectonically and in terms of economy...