WorldWideScience

Sample records for understanding natural systems

  1. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  2. Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems

    Science.gov (United States)

    2011-07-01

    us now address complex systems which include a substantial social component. We may start with economics and theory of finance. Given the long memory ...Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems * Constantino Tsallis Centro Brasileiro de...Path for Understanding Complexity in Natural, Artificial and Social Systems 5a. CONTRACT NUMBER FA23861114006 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  3. Natural Language Understanding Systems Within the A. I. Paradigm: A Survey and Some Comparisons.

    Science.gov (United States)

    Wilks, Yorick

    The paper surveys the major projects on the understanding of natural language that fall within what may now be called the artificial intelligence paradigm of natural language systems. Some space is devoted to arguing that the paradigm is now a reality and different in significant respects from the generative paradigm of present-day linguistics.…

  4. Understanding the systemic nature of cities to improve health and climate change mitigation.

    Science.gov (United States)

    Chapman, Ralph; Howden-Chapman, Philippa; Capon, Anthony

    2016-09-01

    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Understanding coupling between natural and human systems to ensure disease resilient societies

    Science.gov (United States)

    Jutla, A.; Nguyen, T. H.; Colwell, R. R.; Akanda, A. S.

    2016-12-01

    Human well-being is one of the key long-term indicators of a sustainable environment. John Snow, a prominent 19th century physician, provided insights on the role of drinking contaminated water and cholera outbreak(s). Extrapolation of Snow's discovery on locating source of cholera bacteria (in local wells) lead to the tenets of traditional doctrines of environmental sustainability of water where source capacities (such as physical condition of water) are directly linked to sink capacities (e.g., bacterial growth in water) of a system, a balance that must be maintained to sustain human life supporting mechanisms. With a changing climate, stress on availability of safe drinking water is likely to increase, particularly where population vulnerability intersects with hydroclimatic extremes. This raises a critical question on how environmental sustainability of water will affect human societies. A dynamic equilibrium exists between large scale geophysical (e.g., sea surface temperature-SST; precipitation, evaporative fluxes) and local scale water-ecological processes (salinity, plankton, organic matter) in water resources (ponds, rivers, lakes). The ecological processes aid in growth and proliferation of water based pathogens (such as cholera, Rotavirus, Shigella and other vibrios). Societal determinants, such as access to safe drinking water and sanitation facilities, defines interaction of human population with water. The feedback loop, between geophysical and water-ecological processes is fundamental to ensure a sustainable environment for human well-being. However, the feedback loops are often misconstrued resulting in massive loss of human life, and further leading to outbreak of diseases at various spatial and temporal scales across region(s). Using historical data on Cholera and Zika virus as examples, we will demonstrate the intricacies involved in understanding coupled human-natural system. The two infections result from a very different asymmetric

  6. Enhancing Understanding Of Coupled Human-Natural Systems Through Collaborative Learning

    Science.gov (United States)

    Santelmann, M. V.; Chan, S.; Morzillo, A.; Stebbins, A.; Wright, M.

    2012-12-01

    In the past decade, it has become clear that the dynamic nature of coupled human-natural systems must be better understood and incorporated into decision making. If the interactions between society and the rest of the ecosystem are poorly represented in system models, our ability to explore the potential consequences of feedbacks between the biophysical system and policy or management actions will be limited. Teams of researchers from three Oregon universities are collaborating with regional experts, water managers, and decision-makers to examine how climate change, population growth, and economic growth may alter the availability and use of water in the Willamette River Basin over the next one hundred years. A central project component is development of a version of the ENVISION modeling framework that will provide decision makers with a way to visualize the Willamette water system and evaluate the interaction of management choices with changing environmental and socioeconomic conditions. Key objectives of the project broader impacts team include: 1) assist with incorporating the human component of the system into the model, (2) fostering growth of the research team as an interdependent, interdisciplinary research community, and (3) communicating effectively with regional stakeholders. Through Learning-Action Networks we have been able to gather insightful, project-relevant knowledge on water use, management, policies and issues that impact water management in the region. We have identified the types of project outputs that managers and decision makers would find useful for anticipating water scarcity and informing integrative water systems responses. Events and processes used to accomplish our objectives began with field trips involving researchers, educators, and other stakeholders. Follow-up meetings and an all day symposium featured focus group interviews, plenary sessions on project progress, and interactive poster sessions in which participants could help

  7. Understanding the coupled natural and human systems in Dryland East Asia

    International Nuclear Information System (INIS)

    Qi Jiaguo; Chen Jiquan; Wan Shiqian; Ai Likun

    2012-01-01

    Stressors including regional climate change, economic development effects upon land use and an increasing demand for food production have resulted in significant impacts on the dryland ecosystems in the East Asia (DEA) region. Ecosystem services, such as its provisional services in providing forage for grazing as well as its functional services in regulating water and carbon fluxes, have been significantly altered over the past three decades. Conversely, changes in the landscape, particularly land cover types, have also been blamed for intensified climatic events such as dust storms and severe and frequent droughts within the region. The interactive nature of climate, ecosystems and society is complex and not fully understood, making it difficult, if not impossible, to develop effective adaptation strategies for the region. A special synthesis workshop on ‘Dryland Ecosystems in East Asia: State, Changes, Knowledge Gaps, and Future’ was held from 18–20 July 2011 in Kaifeng, Henan Province, China, with the aim of identifying knowledge gaps, quantifying impacts and developing a future research agenda for the region. The specific objectives of this workshop were to answer some key socio-environmental questions, including the following. (1) What do we know about the drylands in DEA? (2) What are the knowledge gaps? (3) What are the solutions to these issues? This paper provides a synthesis of the workshop consensus and findings on the state of knowledge and challenges in addressing these science issues for the DEA region. (letter)

  8. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  9. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Research in Natural Language Understanding

    Science.gov (United States)

    1978-08-31

    of the lexical material to explain how many actions there were, how many actors , etc., and the nature of the map from actor onto action, etc. For...direction and make a measurement there, or may scan from the current focus in a specified " direccion " (or by some other specification of a trajectory

  11. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems - firstly the land management paradigm and its influence on the land administration framework, secondly the role that the cadastre plays...... in contributing to sustainable development, thirdly the changing nature of ownership and the role of land markets, and lastly a land management vision that promotes land administration in support of sustainable development and spatial enablement of society. We present here the first part of the paper. The second...... part focuses on the changing  role of ownership and the role of land markets, and a land management vision will be published in November issue of Coordinates. Udgivelsesdato: Oktober...

  12. Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel

    International Nuclear Information System (INIS)

    Suurs, Roald A.A.; Hekkert, Marko P.; Kieboom, Sander; Smits, Ruud E.H.M.

    2010-01-01

    This study contributes to insights into mechanisms that influence the successes and failures of emerging energy technologies. It is assumed that for an emerging technology to fruitfully develop, it should be fostered by a Technological Innovation System (TIS), which is the network of actors, institutions and technologies in which it is embedded. For an emerging technology a TIS has yet to be built up. This research focuses on the dynamics of this build-up process by mapping the development of seven key activities: so-called system functions. The main contribution revolves around the notion of cumulative causation, or the phenomenon that the build-up of a TIS accelerates due to system functions reinforcing each other over time. As an empirical basis, an analysis is provided of the historical development of the TIS around automotive natural gas technology in the Netherlands (1970-2007). The results show that this TIS undergoes a gradual build-up in the 1970s, followed by a breakdown in the 1980s and, again, a build-up from 2000 to 2007. It is shown that underlying these trends are different forms of cumulative causation, here called motors of innovation. The study provides strategic insights for practitioners that aspire to support such motors of innovation.

  13. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems. Readers may recall the first part of the paper in October issue of Coordinates. Here is the concluding part that focuses on the changing...

  14. Towards Understanding and Managing Sustainable Complex, Dynamic Environmental/Economic/Social Systems - The Evolving Role of the Natural Sciences

    Science.gov (United States)

    Historically the natural sciences have played a major role in informing environmental management decisions. However, review of landmark cases like Love Canal, NY and Times Beach, MO have shown that the value of natural science information in decision making can be overwhelmed by ...

  15. Theoretical approaches to natural language understanding

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This book discusses the following: Computational Linguistics, Artificial Intelligence, Linguistics, Philosophy, and Cognitive Science and the current state of natural language understanding. Three topics form the focus for discussion; these topics include aspects of grammars, aspects of semantics/pragmatics, and knowledge representation.

  16. The system of nature

    CERN Document Server

    D'Holbac, Baron

    1999-01-01

    "The source of Man's unhappiness is his ignorance of Nature."D'Holbach believed that the misery he saw in mankind around him was caused by religion and its superstitious beliefs - that there was a God who controlled destiny and would reward or punish individuals. The System of Nature was written to replace these delusions with a schema of understanding based solely on the physical workings of nature. "Let Man study this nature, let him learn her laws, contemplate her energies." For d'Holbach the soul is only the physical body, understood from a certain point of view, which dies when the body dies. All the events and the nature of the world can be understood in terms of the motion and properties of matter; even the tiniest causes contribute to huge events - a simple change in the diet of an Emperor (or some other such insignificant cause), he suggests might have been capable of "saving kingdoms." For him, nature's laws are fixed and necessary, and if Man wants to find happiness it is best to accept this - if g...

  17. What is 'Natural' in Natural Selection? To understand Darwin's ...

    Indian Academy of Sciences (India)

    IAS Admin

    level, and it could be at the level of populations. If we underline the distinctive nature of changes at different levels of biological organisation, we can understand how they are related in the long history of life. .... selection lies in the usefulness of variations: in their being “useful to man” or “useful in some way to each being” ...

  18. Shape understanding system machine understanding and human understanding

    CERN Document Server

    Les, Zbigniew

    2015-01-01

    This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.    

  19. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    Science.gov (United States)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  20. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  1. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  2. PHILOSOPHICAL UNDERSTANDING OF THE NATURE OF VIOLENCE

    Directory of Open Access Journals (Sweden)

    N. M. Boychenko

    2017-12-01

    Full Text Available Purpose. In order to consistently distinguish between violence, which is always primarily a destructive force, and the civilized use of force that involves constructive, creative goals, one should explore the main possible philosophical approaches to understand the nature of violence and try to give it a systematic outline. Methodology. This study uses a systematic approach to identify the internal relationship between different forms of violence and, accordingly, the counteraction against violence. Also, the author uses an axiology to identify the values that are the basis for distinguishing violence from its prototypes, as well as for the distinction between violence and coercion, as well as different types of coercion. Originality. This article presents significant clarifications on the classification of types of violence, in particular, it is clearly established that certain types of violence can not have ethical relevance, since they belong to the sphere of biology (expansion, aggression or social anthropology (cultural, institutional coercion. Actually violence or violence in the narrow sense implies the existence of will, consciousness and destructive purpose. Accordingly, counteraction against violence should include the formation of a certain non-violent type of will, non-violent culture and creative, constructive goals. This requires both personal effort and institutional support and the availability of appropriate moral traditions. Ethical theory is intended to clarify and systematize these efforts. In this sense, ethics is the core of practical philosophy. To the extent that the influence of ethics on changes in human culture and sociality in the counterfactual regime is increasing, one should also speak of the anthropological significance of ethics. Conclusions. From the socio-philosophical point of view, it is necessary to specify exactly which social institutions and in which constellation generate violence. The ethical aspect of

  3. Biological and social understanding of human nature: biopolitical dimension

    Directory of Open Access Journals (Sweden)

    S. K. Kostiuchkov

    2014-07-01

    Full Text Available This paper examines the position of the biopolitical nature of man as a biosocial being given supplies of both the two spheres of life – natural, biological and social. The necessity of understanding of human nature, which by definition are bio-social importance of the approach to the definition of man as an integral, binary-konnotovanoyi of the «social individual – a species» which is characterized by symmetrical opposition – upposition social and biological. It was found that the main task of modern political science, and in particular bio-political studies presented appeals to rethink the political picture of the world in order to predict the development of a new order or a new chaos. Understanding the formation of a new global civilization worldview is today one of the most important problems, which is connected with the main problem of the modern world – the task of preserving life on the planet. It is concluded that the contradictions of human nature – between the biological and the social, physical and spiritual, universal and the particular, natural and artificial, rational and emotional – in today’s conditions are extremely sharp. The said situation requires more in-depth scientific analysis of human nature, the study of the structural level as human biosocial system.

  4. Medical problem and document model for natural language understanding.

    Science.gov (United States)

    Meystre, Stephanie; Haug, Peter J

    2003-01-01

    We are developing tools to help maintain a complete, accurate and timely problem list within a general purpose Electronic Medical Record system. As a part of this project, we have designed a system to automatically retrieve medical problems from free-text documents. Here we describe an information model based on XML (eXtensible Markup Language) and compliant with the CDA (Clinical Document Architecture). This model is used to ease the exchange of clinical data between the Natural Language Understanding application that retrieves potential problems from narrative document, and the problem list management application.

  5. What is 'Natural' in Natural Selection? To understand Darwin's ...

    Indian Academy of Sciences (India)

    IAS Admin

    to circumvent a major misconception, if they fail to appreciate that natural selection is consequent on the variation's usefulness for the variant, not on the static or changing environmental conditions. For example, Darwin writes, “[A]ny variation, however slight and from whatever cause proceeding, if it be in any degree.

  6. [Human nature--understanding psychology in Nietzsche].

    Science.gov (United States)

    Dieckhöfer, K

    1980-01-01

    It was tried to show some decisive and essential points of the psychological analyses contained in the complex work of the philosopher Nietzsche. The extent of his knowledge of man and his changeability constitutes here the field of an understanding, "unmasking" psychology with a sociological-historical touch. The thorough, slow ("lento") study of the original sources on the part of the master of a "connaisseurship of the word" seems to be indispensable for any reader trying to occupy himself with Nietzsche in a work of his own and the questions arising therefrom.

  7. To fully exert the important role of natural gas in building a modern energy security system in China: An understanding of China's National l3th Five-Year Plan for Natural Gas Development

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-07-01

    Full Text Available Along with the introduction of 13th Five-Year Plans in succession for natural gas development programmed by governments at all levels and much more attention paid to haze governance by relevant departments, natural gas, as one of the major energy sources, has ushered in a strategic opportunity era. In view of this, based upon China's National 13th Five-Year Plan for Natural Gas Development formulated by the National Development and Reform Commission, the developing trend of natural gas sector was predicted in the period of 13th Five-Year Plan in terms of supply side, demand side, pricing system, infrastructure construction, etc. and some feasible proposals were made on the whole industrial chain. In terms of the supply side, natural gas will be of availability, accessibility, assurance, affordability, and accountability in the production and supply chains. In terms of the demand side, air pollution treatment will indirectly stimulate gas consumption increase. Gas power generation will become the dominant. Natural gas as a transportation fuel will bring a good new opportunity. Thus it is believed that as the present natural gas development is restricted by both gas pricing system and infrastructure construction, further reform should be strengthened to break the barriers of systems and mechanisms; and that due to many uncertainties in the natural gas market, the decisive role of market in the resource allocation should be fully exerted to ensure the main force of natural gas in building a dependable energy strategic system in present and future China.

  8. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  9. Understanding and managing compliance in the nature conservation context.

    Science.gov (United States)

    Arias, Adrian

    2015-04-15

    Nature conservation relies largely on peoples' rule adherence. However, noncompliance in the conservation context is common: it is one of the largest illegal activities in the world, degrading societies, economies and the environment. Understanding and managing compliance is key for ensuring effective conservation, nevertheless crucial concepts and tools are scattered in a wide array of literature. Here I review and integrate these concepts and tools in an effort to guide compliance management in the conservation context. First, I address the understanding of compliance by breaking it down into five key questions: who?, what?, when?, where? and why?. A special focus is given to 'why?' because the answer to this question explains the reasons for compliance and noncompliance, providing critical information for management interventions. Second, I review compliance management strategies, from voluntary compliance to coerced compliance. Finally, I suggest a system, initially proposed for tax compliance, to balance these multiple compliance management strategies. This paper differs from others by providing a broad yet practical scope on theory and tools for understanding and managing compliance in the nature conservation context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Natural interaction for unmanned systems

    Science.gov (United States)

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  11. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  12. Tracking Students' Understanding of the Particle Nature of Matter

    Science.gov (United States)

    Merritt, Joi Deshawn

    One reason students find it difficult to learn the particle model of matter is that traditional curriculum materials present concepts to students without helping them to develop these ideas. The How can I smell things from a distance? sixth grade chemistry unit takes the approach of building students' ideas through their construction and revision of models. Progress variables have been proposed as a means to address the need for curriculum and assessments that can help teachers' improve their practice as well as to inform both students and teachers about students' performance. Progress variables depict students' increasingly sophisticated conceptions of a specific construct during instruction. This study provides evidence that curriculum and assessment based on modern learning theories, can lead to the development of progress variables that are able to track middle school students' understanding of the particle nature of matter over time. This study used a progress variable to track student understanding of the particle nature of matter during the sixth grade chemistry unit. I describe the assessment system used to develop the progress variable for tracking students' development of particle model of matter during the sixth grade chemistry unit. A calibration study determined that the chemistry unit's assessments were reliable and valid measures of the particle model of matter progress variable. Further analysis revealed that the progress variable had to be modified such that the levels were more distinct. The modified progress variable was empirically validated so that it could be used to track students' understanding during instruction. Results indicate that a validated progress variable, linked to coherent curriculum and assessments can provide valid interpretations of students' knowledge of particular domain during instruction and that this progress variable is valid for students from varying populations and backgrounds. In addition, well-aligned curriculum and

  13. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  14. Diagnosing Students' Understanding of the Nature of Models

    Science.gov (United States)

    Gogolin, Sarah; Krüger, Dirk

    2017-10-01

    Students' understanding of models in science has been subject to a number of investigations. The instruments the researchers used are suitable for educational research but, due to their complexity, cannot be employed directly by teachers. This article presents forced choice (FC) tasks, which, assembled as a diagnostic instrument, are supposed to measure students' understanding of the nature of models efficiently, while being sensitive enough to detect differences between individuals. In order to evaluate if the diagnostic instrument is suitable for its intended use, we propose an approach that complies with the demand to integrate students' responses to the tasks into the validation process. Evidence for validity was gathered based on relations to other variables and on students' response processes. Students' understanding of the nature of models was assessed using three methods: FC tasks, open-ended tasks and interviews ( N = 448). Furthermore, concurrent think-aloud protocols ( N = 30) were performed. The results suggest that the method and the age of the students have an effect on their understanding of the nature of models. A good understanding of the FC tasks as well as a convergence in the findings across the three methods was documented for grades eleven and twelve. This indicates that teachers can use the diagnostic instrument for an efficient and, at the same time, valid diagnosis for this group. Finally, the findings of this article may provide a possible explanation for alternative findings from previous studies as a result of specific methods that were used.

  15. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  16. Understanding European education landscape on natural disasters - a textbook research

    Science.gov (United States)

    Komac, B.; Zorn, M.; Ciglič, R.; Steinführer, A.

    2012-04-01

    The importance of natural-disaster education for social preparedness is presented. Increasing damage caused by natural disasters around the globe draws attention to the fact that even developed societies must adapt to natural processes. Natural-disaster education is a component part of any education strategy for a sustainably oriented society. The purpose of this article is to present the role of formal education in natural disasters in Europe. To ensure a uniform overview, the study used secondary-school geography textbooks from the collection at the Georg Eckert Institute for International Textbook Research in Braunschweig, Germany. Altogether, nearly 190 textbooks from 35 European countries were examined. The greatest focus on natural disasters can be found in textbooks published in western Europe (3.8% of pages describing natural disasters), and the smallest in those published in eastern Europe (0.7%). A share of textbook pages exceeding three percent describing natural disasters can also be found in northern Europe (3.6%) and southeast Europe, including Turkey (3.4%). The shares in central and southern Europe exceed two percent (i.e., 2.8% and 2.3%, respectively). The types and specific examples of natural disasters most commonly covered in textbooks as well as the type of natural disasters presented in textbooks according to the number of casualties and the damage caused were analyzed. The results show that the majority of European (secondary-school) education systems are poorly developed in terms of natural-disaster education. If education is perceived as part of natural-disaster management and governance, greater attention should clearly be dedicated to this activity. In addition to formal education, informal education also raises a series of questions connected with the importance of this type of education. Special attention was drawn to the importance of knowledge that locals have about their region because this aspect of education is important in both

  17. Understanding Digital Learning from the Perspective of Systems Dynamics

    Science.gov (United States)

    Kok, Ayse

    2009-01-01

    The System Dynamics approach can be seen as a new way of understanding dynamical phenonema (natural, physical, biological, etc.) that occur in our daily lives taking into consideration not only single pairs of cause-effect variables, but the functioning of the system as a whole. This approach also provides the students with a new understanding in…

  18. Public understandings of nature: a case study of local knowledge about "natural" forest conditions

    Science.gov (United States)

    R. Bruce Hull; David P. Robertson; Angelina Kendra

    2001-01-01

    This study is intended to serve as an explicit and specific example of the social construction of nature. It is motivated by the need to develop a more sophisticated language for a critical public dialogue about society's relationship with nature. We conducted a case study of environmental discourse in one local population in hopes of better understanding how a...

  19. High Resolution Definition of Subsurface Heterogeneity for Understanding the Biodynamics of Natural Field Systems: Advancing the Ability for Scaling to Field Conditions

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Brockman, Fred J.

    1999-01-01

    This research is an integrated project which uses physical (geophysical and hydrologic) and innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect bioremediation. In the this effort data from controlled laboratory and in situ experiments at the Idaho National Engineering and Environmental (INEEL) Test Area North (TAN) site were used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in situ and correlated with flow and transport properties. Emphasis was placed on identifying fundamental scales of variation of physical parameters that control transport behavior relative to subsurface microbial dynamics that could be used to develop a predictive model. A key hypothesis of the work was that nutrient flux and transport properties are key factors in controlling microbial dynamics, and that geophysical techniques could be used to identify the critical physical properties and scales controlling transport. This hypothesis was essentially validated. The goal was not only to develop and apply methods to monitor the spatial and temporal distribution of the bioremediation in fractured sites such as TAN, but also to develop methods applicable to a wider range of DOE sites. The outcome has been an improved understanding of the relationship between physical, chemical and microbial processes in heterogeneous environments, thus applicable to the design and monitoring of bioremediation strategies for a variety of environments. In this EMSP work we demonstrated that high resolution geophysical methods have considerable resolving power, especially when linked with modern advanced processing and interpretation. In terms of basic science, in addition to providing innovative methods for monitoring bioremediation, the work also provided a strong motivation for developing and extending high resolution geophysical methods

  20. Understanding Marine Biocorrosion: Experiments with Artificial and Natural Seawater

    Science.gov (United States)

    2015-11-04

    9781782421252.3.329 Copyright © 2014 European Federation of Corrosion . Published by Elsevier Ltd. All rights reserved. Understanding marine biocorrosion...many years there has been a debate over the preferred laboratory medium for studying marine corrosion , i.e., natural or artifi cial seawater (Dexter...study of microbiologically infl uenced marine corrosion (MIMC) and the consideration of nutrients for microorganisms. Recent MIMC investigations have

  1. Nurse ethical awareness: Understanding the nature of everyday practice.

    Science.gov (United States)

    Milliken, Aimee; Grace, Pamela

    2017-08-01

    Much attention has been paid to the role of the nurse in recognizing and addressing ethical dilemmas. There has been less emphasis, however, on the issue of whether or not nurses understand the ethical nature of everyday practice. Awareness of the inherently ethical nature of practice is a component of nurse ethical sensitivity, which has been identified as a component of ethical decision-making. Ethical sensitivity is generally accepted as a necessary precursor to moral agency, in that recognition of the ethical content of practice is necessary before consistent action on behalf of patient interests can take place. This awareness is also compulsory in ensuring patient good by recognizing the unique interests and wishes of individuals, in line with an ethic of care. Scholarly and research literature are used to argue that bolstering ethical awareness and ensuring that nurses understand the ethical nature of the role are an obligation of the profession. Based on this line of reasoning, recommendations for education and practice, along with directions for future research, are suggested.

  2. Integrated oceanographic image understanding system

    Science.gov (United States)

    Lybanon, Matthew; Peckinpaugh, Sarah H.; Holyer, Ronald J.; Cambridge, Vivian

    1991-04-01

    A system was assembled to study several aspects of locating ship targets from infrared imagery. The system was either placed on shore sites or installed on an aircraft to collect data on the scene. The primary sensor was an infrared camera which produced images of the scene at standard RS-l70 rates. Requirements that included real time operation dictated the use of a parallel architecture for this task. As no suitable commercial systems were avail able, a custom array of bit slice microprocessors was assembled for the task. Through extensive field tests strengths and limitations of the design have been identified. These lessons are being applied to the development of next generation systems. A gimbal mounted infrared camera with digitization circuitry presents a new 256 by 256 pixel image to the parallel pipelined array of 17 bit slice microprocessors thirty times a second. To extend processor performance beyond the standard commercial microprocessors. two basic bit slice designs were employed. The bit slice machines were highly tuned for the assigned tasks and algorithms. Unfortunately this restricted the desired flexibility to readily examine alternate algorithms. The fundamental architecture concept performed well quickly reducing the large array of data to manageable set of information. Real time operator displays were driven to monitor the progress of each test run. Results of the system operation were stored on video and digi tal recorders permitting more detailed analysis after each test. Non real time data reduction provided many insights into the system operation and to algorithm improvements. Substantial operator interaction. and data interpretation was required greatly slowing the post test analysis phase. Overwhelmed with data, the analysts focused on locating a few data segments of interest. Significant work remains in improving the interfaces between the field data and the powerful laboratory computers. Automation of the data analysis is also needed

  3. Toward a Natural Speech Understanding System

    Science.gov (United States)

    1989-10-01

    visual and auditory detectors in frogs (Lettvin, Maturana , McColloch, and Pitts, 1959; Frishkopf and Goldstein, 1963). Eimas and Corbit (1973) provided...Processing, 1975, ASSP-23, 11.24. Lettvin, J. Y., Maturana , H. R., McColloch, W. S., and Pitts, W. H. What the frog’s eye tells the frog’s brain

  4. Understanding and Modeling Teams As Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Jamie C. Gorman

    2017-07-01

    Full Text Available By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a considering the question of why study teams as dynamical systems, (b considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals in the context of teams, (c describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area.

  5. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  6. Research in Knowledge Representation for Natural Language Understanding

    Science.gov (United States)

    1983-10-01

    of RUS 157 157 160 161 SECTION 9. THE PRAGMATICS OF NON-ANAPHORIC NOUN PHRASES 9.1 Introduction 163 9.2 Setting the Stage: Previous views on... ANAPHORA , ELLIPSIS, DISCOURSE,... MRL DATA BASE TRANSLATOR DBMS COMMAND GENERATOR DBMS COMMANDS FIG. 1 ORGANIZATION OF THE IRUS SYSTEM 146...understanding system (such as semantics, pragmatics , and a dialogue expert) can be used to improve the performance of the parser. The production of the

  7. Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook.

    Science.gov (United States)

    Jutla, Antarpreet; Khan, Rakibul; Colwell, Rita

    2017-03-01

    Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed. Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s). We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.

  8. Engineered containment and control systems: nurturing nature.

    Science.gov (United States)

    Clarke, James H; MacDonell, Margaret M; Smith, Ellen D; Dunn, R Jeffrey; Waugh, W Jody

    2004-06-01

    The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.

  9. Narrativity and enaction: the social nature of literary narrative understanding.

    Science.gov (United States)

    Popova, Yanna B

    2014-01-01

    This paper proposes an understanding of literary narrative as a form of social cognition and situates the study of such narratives in relation to the new comprehensive approach to human cognition, enaction. The particular form of enactive cognition that narrative understanding is proposed to depend on is that of participatory sense-making, as developed in the work of Di Paolo and De Jaegher. Currently there is no consensus as to what makes a good literary narrative, how it is understood, and why it plays such an irreplaceable role in human experience. The proposal thus identifies a gap in the existing research on narrative by describing narrative as a form of intersubjective process of sense-making between two agents, a teller and a reader. It argues that making sense of narrative literature is an interactional process of co-constructing a story-world with a narrator. Such an understanding of narrative makes a decisive break with both text-centered approaches that have dominated both structuralist and early cognitivist study of narrative, as well as pragmatic communicative ones that view narrative as a form of linguistic implicature. The interactive experience that narrative affords and necessitates at the same time, I argue, serves to highlight the active yet cooperative and communal nature of human sociality, expressed in the many forms than human beings interact in, including literary ones.

  10. Mucosal vaccines: recent progress in understanding the natural barriers.

    Science.gov (United States)

    Borges, Olga; Lebre, Filipa; Bento, Dulce; Borchard, Gerrit; Junginger, Hans E

    2010-02-01

    It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.

  11. Sustaining salmonid populations: A caring understanding of naturalness of taxa

    Science.gov (United States)

    Nielsen, Jennifer L.; Regier, Henry A.; Knudsen, E. Eric

    2004-01-01

    Species of the family of Salmonidae occur naturally in Northern Hemisphere waters that remain clear and cool to cold in summer. For purposes of reproduction, salmonids generally behaviorally respond to the currents of streams and lakes in recently glaciated areas. For feeding and maturation, many larger species migrate into existing systems of large lakes, seas, and oceans. The subfamilies include Salmoninae, Coregoninae, and Thymallinae. In many locales and regions of the hemisphere, numerous species of these subfamilies evolved and self-organized into species flocks or taxocenes of bewildering complexity. For example, any individual species may play different or unique ecological roles in different taxocenes. The northern Pacific and Atlantic Ocean ecosystems, with their seas and tributaries, each contained a metacomplex of such taxocenes that, in their natural state some centuries ago, resembled each other but differed in many ways. Humans have valued all species of this family for subsistence, ceremonial, naturalist, gustatory, angling, and commercial reasons for centuries. Modern progressive humans (MPHs), whose industrial and commercial enterprises have gradually spread over this hemisphere in recent time, now affect aquatic ecosystems at all scales from local to global. These human effects mingle in complex ways that together induce uniquely natural salmonid taxocenes to disintegrate with the loss of species, including those groups least tolerant to human manipulations, but extending more recently to those taxa more adapted to anthropogenic change. As we leave the modern era, dominated by MPHs, will we find ways to live sustainably with salmonid taxocenes that still exhibit self-organizational integrity, or will only individual, isolated populations of salmonid species, derived from those most tolerant of MPHs, survive? To achieve future sustainability of salmonids, we suggest implementation of a search for intuitive knowledge based on faith in the wisdom of

  12. System of Natural Health Products

    Directory of Open Access Journals (Sweden)

    Angelica Paoletti

    2011-01-01

    Full Text Available Introduction. The safety of vitamin K antagonists (VKA use can be compromised by many popular herbal supplements taken by individuals. The literature reports that 30% of warfarin-treated patients self-medicates with herbs. Possible interactions represent an health risk. We aimed to identify all herbs-oral anticoagulants interactions collected in the Italian database of suspected adverse reactions to “natural health” products. Methods. The Italian database of spontaneous reports of suspected adverse reactions to natural products was analyzed to address herb-VKAs interactions. Results. From 2002 to 2009, we identified 12 reports with 7 cases of INR reduction in patients treated with warfarin (n=3 and acenocoumarol (n=4, and 5 cases of INR increase (all warfarin associated. It was reported 8 different herbal products as possibly interacting. Discussion. Our study confirms the risk of interactions, highlighting the difficulty to characterize them and their mechanisms and, finally, prevent their onset. The reported data underline the urgent need of healthcare providers being aware of the possible interaction between natural products and VKA, also because of the critical clinical conditions affecting patients. This is the first step to have the best approach to understand possible INR alterations linked to herb-VKA interaction and to rightly educate patients in treatment with VKA.

  13. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  14. Understanding Patterns for System of Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Schmid, Klaus; Nielsen, Claus Ballegård

    2013-01-01

    of systems integration patterns. These characteristics at the same time support the architecting process by highlighting important issues a SoS architect needs to consider. We discuss the consolidated template and illustrate it with an example pattern. We also discuss the integration of this novel pattern...

  15. Understanding natural moisturizing mechanisms: implications for moisturizer technology.

    Science.gov (United States)

    Chandar, Prem; Nole, Greg; Johnson, Anthony W

    2009-07-01

    Dry skin and moisturization are important topics because they impact the lives of many individuals. For most individuals, dry skin is not a notable concern and can be adequately managed with current moisturizing products. However, dry skin can affect the quality of life of some individuals because of the challenges of either harsh environmental conditions or impaired stratum corneum (SC) dry skin protection processes resulting from various common skin diseases. Dry skin protection processes of the SC, such as the development of natural moisturizing factor (NMF), are complex, carefully balanced, and easily perturbed. We discuss the importance of the filaggrin-NMF system and the composition of NMF in both healthy and dry skin, and also reveal new insights that suggest the properties required for a new generation of moisturizing technologies.

  16. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  17. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  18. Scientific literacy: Role of natural history studies in constructing understanding of the nature of science

    Science.gov (United States)

    Lutz, Martha Victoria Rosett

    2002-01-01

    Scientific literacy is a central goal of science education. One purpose of this investigation was to reevaluate the definition of 'scientific literacy.' Another purpose was to develop and implement new curriculum involving natural history experiments with insects, with the goal of allowing students opportunities to construct an understanding of the nature of science, a crucial aspect of scientific literacy. This investigation was a qualitative case study. Methods of data collection included direct observations, analysis of sketches and written products created by students and class-room teachers, and analysis of audio tapes. Major findings include: (1) Scientific literacy is generally defined by lists of factual information which students are expected to master. When asked to evaluate their knowledge of selected items on a list published in a science education reform curriculum guide, 15 practicing scientists reported lack of familiarity or comprehension with many items, with the exception of items within their areas of specialization. (2) Genuine natural history experiments using insects can be incorporated into the existing school schedule and need not require any increase in the budget for science materials. (3) Students as young as first through third grade can learn the manual techniques and conceptual skills necessary for designing and conducting original natural history experiments, including manipulating the insects, making accurate sketches, developing test able hypotheses, recording data, and drawing conclusions from their data. Students were generally enthusiastic both about working with live insects and also conducting genuine science experiments. (4) Girls appear both positive and engaged with natural history activities and may be more likely than boys to follow through on designing, conducting, and reporting on independent experiments. The results imply that a valid definition of scientific literacy should be based on the ability to acquire scientific

  19. Fractal Modeling and Scaling in Natural Systems - Editorial

    Science.gov (United States)

    The special issue of Ecological complexity journal on Fractal Modeling and Scaling in Natural Systems contains representative examples of the status and evolution of data-driven research into fractals and scaling in complex natural systems. The editorial discusses contributions to understanding rela...

  20. Database management systems understanding and applying database technology

    CERN Document Server

    Gorman, Michael M

    1991-01-01

    Database Management Systems: Understanding and Applying Database Technology focuses on the processes, methodologies, techniques, and approaches involved in database management systems (DBMSs).The book first takes a look at ANSI database standards and DBMS applications and components. Discussion focus on application components and DBMS components, implementing the dynamic relationship application, problems and benefits of dynamic relationship DBMSs, nature of a dynamic relationship application, ANSI/NDL, and DBMS standards. The manuscript then ponders on logical database, interrogation, and phy

  1. Japanese Children's Understanding of Notational Systems

    Science.gov (United States)

    Takahashi, Noboru

    2012-01-01

    This study examined Japanese children's understanding of two Japanese notational systems: "hiragana" and "kanji". In three experiments, 126 3- to 6-year-olds were asked to name words written in hiragana or kanji as they appeared with different pictures. Consistent with Bialystok ("Journal of Experimental Child…

  2. Engaging Systems Understanding through Games (Invited)

    Science.gov (United States)

    Pfirman, S. L.; Lee, J. J.; Eklund, K.; Turrin, M.; O'Garra, T.; Orlove, B. S.

    2013-12-01

    The Polar Learning And Responding (PoLAR) Climate Change Education Partnership (CCEP), supported by the National Science Foundation's CCEP Phase II program, uses novel educational approaches to engage adult learners and to inform public understanding about climate change. Both previous studies and our experience show that games and game-like activities lead people to explore systems and motivate problem-solving. This presentation focuses on three games developed by the PoLAR team: a multiplayer card game, a strategy board game, and a serious game, and discusses them within the larger framework of research and evaluation of learning outcomes. In the multiplayer card game EcoChains: Arctic Crisis, players learn how to build marine food chains, then strategize ways to make them resilient to a variety of natural and anthropogenic events. In the strategy board game Arctic SMARTIC (Strategic MAnagement of Resources in TImes of Change), participants take on roles, set developmental priorities, and then negotiate to resolve conflicts and deal with climate change scenarios. In the serious game FUTURE COAST, players explore "what if" scenarios in a collaborative narrative environment. Grounded on the award-winning WORLD WITHOUT OIL, which employed a similar story frame to impart energy concepts and realities, FUTURE COAST uses voicemails from the future to impel players through complexities of disrupted systems and realities of human interactions when facing change. Launching February 2014, FUTURE COAST is played online and in field events; players create media designed to be spreadable through their social networks. As players envision possible futures, they create diverse communities of practice that synthesize across human-environment interactions. Playtests highlight how the game evokes systems thinking, and engages and problem-solves via narrative: * 'While I was initially unsure how I'd contribute to a group I'd never met, the project itself proved so engaging that I

  3. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  4. An APOS analysis of natural science students' understanding of ...

    African Journals Online (AJOL)

    schema) theoretical framework to investigate university students' understanding of derivatives and their applica-tions. Research was done at the Westville Campus of the University of KwaZulu-Natal in South Africa. The relevant rules for finding ...

  5. Understanding the Nature of X-ray Weak Quasars

    Science.gov (United States)

    Brandt, William

    We propose a program of archival X-ray and related studies designed to advance understanding of the remarkable active galactic nucleus (AGN) population of X-ray weak quasars. These exceptional objects reveal phenomena that are more generally applicable but are difficult to investigate when more subtly expressed in the overall quasar population. X-ray weak quasars furthermore challenge a central tenet of X-ray astronomy that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes; this idea underlies the utility of X-ray surveys for identifying AGNs throughout the Universe. Our previous findings indicate that understanding of Xray weak quasars is now primed for rapid further advances. Our studies of X-ray weak quasars will employ data from the vast archives of forefront X-ray missions, particularly XMM-Newton and Chandra, and they will also benefit greatly from the use of NuSTAR, ROSAT, Suzaku, Swift, GALEX, and WISE data. They are largely enabled by the enormous quasar samples delivered by modern widefield sky surveys. In particular, we will identify X-ray weak quasars using the serendipitous X-ray coverage of the 380,000 relatively bright quasars spectroscopically identified by the Sloan Digital Sky Survey (SDSS) from z 0.1-5.5; these are wellmatched to the depths of typical archival X-ray observations. The number of SDSS spectroscopic quasars has more than tripled in recent years, and the sample-size improvements at redshifts of z = 2-4, important for our investigations, are even more dramatic. We will construct an unprecedented new sample of X-ray weak quasars, about 20 times larger than those used currently, to enable systematic studies of the X-ray weakness phenomenon. This work should reveal the cause of X-ray weakness for quasars with weak emission lines, allowing testing of a model that relies upon small-scale shielding of ionizing photons by a thick inner accretion disk around a black hole accreting at a high

  6. Dilemmas in Examining Understanding of Nature of Science in Vietnam

    Science.gov (United States)

    Thao-Do, Thi Phuong; Yuenyong, Chokchai

    2017-01-01

    Scholars proved nature of science (NOS) has made certain contributions to science teaching and learning. Nonetheless, what, how and how much NOS should be integrated in the science curriculum of each country cannot be a benchmark, due to the influence of culture and society. Before employing NOS in a new context, it should be carefully studied. In…

  7. The Influence of Argumentation on Understanding Nature of Science

    Science.gov (United States)

    Boran, Gül Hanim; Bag, Hüseyin

    2016-01-01

    The aim in conducting this study is to explore the effects of argumentation on pre-service science teachers' views of the nature of science. This study used a qualitative case study and conducted with 20 pre-service science teachers. Data sources include an open-ended questionnaire and audio-taped interviews. According to pretest and posttest…

  8. Understanding relations between pastoralism and its changing natural environment

    NARCIS (Netherlands)

    Tamou, Charles

    2017-01-01

    The competition for land has become an issue of major concern and cause of conflict, especially between pastoralists and crop farmers, but also between pastoralists and nature conservation institutions. The Biosphere Reserve of W in Benin Republic (WBR) and its surrounding lands are located in

  9. Homo Ethicus : Understanding the Human Nature that Underlies ...

    African Journals Online (AJOL)

    Abstract. The themes of human rights and human rights education in South Africa's multi-cultural society are central to the work of Cornelia Roux. This article discusses the human reality and ethics underlying those themes, using an approach based on a view of human nature. It has six sections, starting with an introduction ...

  10. Dilemmas in Examining Understanding of Nature of Science in Vietnam

    Science.gov (United States)

    Hatherley-Greene, Peter

    2017-01-01

    The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing "ancient" and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates,…

  11. Children's Understanding of Human and Super-Natural Mind

    Science.gov (United States)

    Makris, Nikos; Pnevmatikos, Dimitris

    2007-01-01

    Barrett, Richert, and Driesenga [Barrett, J. L., Richert, R. A., & Driesenga, A. (2001). "God's beliefs versus mother's: The development of nonhuman agents concepts." "Child Development," 72(1), 50-65] have suggested that children are able to conceptualize the representational properties held by certain super-natural entities, such as God, before…

  12. The «Natural Hazard WIKISAURUS»: explanation and understanding of natural hazards to build disaster resilience

    Science.gov (United States)

    Rapisardi, Elena; Di Franco, Sabina; Giardino, Marco

    2013-04-01

    not a unique meaning: e.g. Mercury could stand for the Roman god, the metallic element, the planet, or Freddy the singer. Similarly the word «alert»: in the common language has a certain meaning, whilst in the civil protection framework includes regulations, responsibilities and procedures. The NHW is intended as a collaborative virtual source with validated information on geosciences to support a common understanding of natural hazards, risks and civil protection. The NHW aims to become a point of reference both for acknowledged practitioners, who will share their expertise and data, and for citizens, civil servants, media representatives, and students allowed to comment and contribute to the scientifically validated content. The NHW is a simple tool to support information and communication on natural hazards and civil protection at all levels and would set up a shared and common knowledge. Moreover, NHW could represent the first step of a further challenging programme: through the power of «linked data» NHW could develop and contribute first to a natural hazard semantic, then to a «semantic disaster resilience».

  13. Understanding conflict’s dynamics in participatory natural resources management

    NARCIS (Netherlands)

    Idrissou, L.; Aarts, M.N.C.; Leeuwis, C.; Paassen, van A.

    2018-01-01

    This paper investigated conflicts in participatory protected areas management in Benin to better understand their dynamics. This review paper is based on four articles written from three case-studies of conflicts that emerged and evolved in participatory protected areas management in Benin and a

  14. An APOS analysis of natural science students' understanding of ...

    African Journals Online (AJOL)

    User

    2005), (b) students‟ difficulties with the derivative increase and get worse when the function considered is a composite function ... ing students build appropriate mental structures, and [b] guiding them to apply these structures to construct their understanding of ...... In D Hewitt & A Noyes (eds). Proceedings of the sixth Brit-.

  15. Towards AN Understanding of the Nature of Racial Prejudice

    Science.gov (United States)

    Hoyle, Fred; Wickramasinghe, Chandra

    We discuss a possible biological explanation of the phenomenon of colour prejudice that hinges on the relative advantages and disadvantages in the expression of the strongly dominant gene(s) for melanin under ice-age conditions at different locations on the Earth. An understanding of the genesis of this prejudice could hopefully eradicate or ameliorate its worst manifestations in modern society.

  16. Understanding relations between pastoralism and its changing natural environment

    OpenAIRE

    Tamou, Charles

    2017-01-01

    The competition for land has become an issue of major concern and cause of conflict, especially between pastoralists and crop farmers, but also between pastoralists and nature conservation institutions. The Biosphere Reserve of W in Benin Republic (WBR) and its surrounding lands are located in the agro-pastoral contact zone in West Africa, enabling competition for land, and affecting the relations between pastoralism and its environment. The general aim of this thesis, therefore, was to under...

  17. From the Cover: Understanding nature's design for a nanosyringe

    Science.gov (United States)

    Lopez, Carlos F.; Nielsen, Steve O.; Moore, Preston B.; Klein, Michael L.

    2004-03-01

    Synthetic and natural peptide assemblies can possess transport or conductance activity across biomembranes through the formation of nanopores. The fundamental mechanisms of membrane insertion necessary for antimicrobial or synthetic pore formation are poorly understood. We observe a lipid-assisted mechanism for passive insertion into a model membrane from molecular dynamics simulations. The assembly used in the study, a generic nanotube functionalized with hydrophilic termini, is assisted in crossing the membrane core by transleaflet lipid flips. Lipid tails occlude a purely hydrophobic nanotube. The observed insertion mechanism requirements for hydrophobic-hydrophilic matching have implications for the design of synthetic channels and antibiotics.

  18. Dilemmas in examining understanding of nature of science in Vietnam

    Science.gov (United States)

    Hatherley-Greene, Peter

    2017-06-01

    The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing `ancient' and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates, where I have lived and worked for 20 years. In this forum piece, I described several areas of similarity and one striking area of difference between the two societies.

  19. Scaling view by the Virtual Nature Systems

    Science.gov (United States)

    Klenov, Valeriy

    2010-05-01

    , and of river basins, in multi-layer, multi-scale, and multi-driven structures of surface processes. It results in the Information Loss Law for observed memory of the VNS (and of external drivers) which gradually cut off own Past and distort own history. This view on the GeoDynamics appeared after long time field measurements thousand of terrace levels, hundreds of terrace ranks, and many terrace complexes in river basins of all scales - for the purpose to recognize their deforming by climatic and tectonic spatial-temporal influences. The method for following up of terrace levels along valleys was used in the Geomorphology and Geology for a long time, by linking fragments of level to ‘cycles'. It gradually linked them by heights above riverbed. The understanding of this logical mistake was happened (as insight) during observing from upstream a valley. All fragmental levels downstream were good visible, without chances for their correlation ‘by height' or ‘by number'. Instead of link of fragments, this explains process of river valleys' stochastic GeoDynamics by properties of the ONES (I. Prigogine et al., 1984) to generate oscillations. Is only first view, but later it turned to simple mechanic of Information Loss Law action in the GeoInformatics for Nature Systems (Klenov, 1980, et al.). The Information Loss distorts and destroys natural records (sources for data on the Past exogenous and endogenous rivers). This simple equation was received by multiple measures of terrace rank, and other natural records. It explains origin of false trend in natural records, destroys most own history by stochastic dynamics of the ONES. It prevents to restore of nature records as a memory of the Past. Non-disturbed is only small time between the Past and the Future, which looks like a peak between two non-linear losses. The history of Past (of the ANS, and of external drivers) are destroyed by the ANS. The Future becomes none determined due unknown 2D data of future external

  20. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  1. Never-Ending Learning for Deep Understanding of Natural Language

    Science.gov (United States)

    2017-10-01

    S / ALEKSEY PANASYUK MICHAEL J. WESSING Work Unit Manager Deputy Chief, Information Intelligence Systems & Analysis Division Information...background knowledge, including NELL’s KB, to achieve improvements over existing methods, • We developed a system for joint extraction of events and...entities within a document. This Bayesian approach substantially outperforms other state-of-the-art methods for event extraction, • We explored a

  2. Contribution of natural tracers for understanding transfers through argillaceous formations

    International Nuclear Information System (INIS)

    Bensenouci, F.

    2010-01-01

    This study is part of a research programme conducted by IRSN on the safety of deep geological disposal of high level and intermediate long-lived radioactive wastes. It more especially concerns the geological medium considered as a full component of the multi-barrier concept proposed by Andra for a deep repository. Indeed, the Callovo-Oxfordian argillite of the Paris Basin, in the east of France, is being investigated by Andra as a potential host rock for this repository. Performance assessment of this natural barrier is based on the knowledge of its confinement properties and therefore on phenomena possibly involved in the mass transport of radionuclides. In this context, this work aimed at studying the distribution of tracers naturally present in pore waters obtained from boreholes having crossed Mesozoic sedimentary series involving impervious and compacted clay rocks in the East (Andra borehole, EST433) and south of France (IRSN boreholes). Radial diffusion and vapour exchange methods were used to calculate the concentrations and diffusion parameters of the studied tracers. In Tournemire formations, the different profiles describe a curved shapes attributed to a diffusive exchange between the argillite pore water and the surrounding aquifers. Concerning the Mesozoic formations crossed by EST433, the study of the different profiles confirms the diffusion as the dominant transport mechanism in the Callovo-Oxfordian formation, and permits identifying the transport processes in the whole studied column from the Oxfordian formations down to the Liassic one. This study also helps to identify the Liassic formations as a major source of salinity of the Dogger aquifer

  3. An APOS analysis of natural science students' understanding of derivatives

    Directory of Open Access Journals (Sweden)

    Aneshkumar Maharaj

    2013-01-01

    Full Text Available This article reports on a study which used the APOS (action-process-object-schema theoretical framework to investigate university students' understanding of derivatives and their applications. Research was done at the Westville Campus of the University of KwaZulu-Natal in South Africa. The relevant rules for finding derivatives and their applications were taught to undergraduate science students. This paper reports on the analysis of students' responses to six types of questions on derivatives and their applications. The findings of this study suggest that those students had difficulty in applying the rules for derivatives and this was possibly the result of many students not having appropriate mental structures at the process, object and schema levels.

  4. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  5. Understanding Resilient Urban Futures: A Systemic Modelling Approach

    Directory of Open Access Journals (Sweden)

    Ralph Chapman

    2013-07-01

    Full Text Available The resilience of cities in response to natural disasters and long-term climate change has emerged as a focus of academic and policy attention. In particular, how to understand the interconnectedness of urban and natural systems is a key issue. This paper introduces an urban model that can be used to evaluate city resilience outcomes under different policy scenarios. The model is the Wellington Integrated Land Use-Transport-Environment Model (WILUTE. It considers the city (i.e., Wellington as a complex system characterized by interactions between a variety of internal urban processes (social, economic and physical and the natural environment. It is focused on exploring the dynamic relations between human activities (the geographic distribution of housing and employment, infrastructure layout, traffic flows and energy consumption, environmental effects (carbon emissions, influences on local natural and ecological systems and potential natural disasters (e.g., inundation due to sea level rise and storm events faced under different policy scenarios. The model gives insights that are potentially useful for policy to enhance the city’s resilience, by modelling outcomes, such as the potential for reduction in transportation energy use, and changes in the vulnerability of the city’s housing stock and transport system to sea level rise.

  6. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  7. Elite controllers: understanding natural suppressive control of HIV-1 ...

    African Journals Online (AJOL)

    immunity to HIV-1 (in the context of acquisition of infection using maternal-infant HIV-1 transmission as a study model) and protection from disease .... disease progression, most probably through its role as a ligand for KIR receptors.12. Immune factors. The immune system has classically been divided into two compartments: ...

  8. Dilemmas in examining understanding of nature of science in Vietnam

    Science.gov (United States)

    Thao-Do, Thi Phuong; Yuenyong, Chokchai

    2017-06-01

    Scholars proved nature of science (NOS) has made certain contributions to science teaching and learning. Nonetheless, what, how and how much NOS should be integrated in the science curriculum of each country cannot be a benchmark, due to the influence of culture and society. Before employing NOS in a new context, it should be carefully studied. In assessing views of NOS in Vietnam, a developing country with Eastern culture where the NOS is not consider a compulsory learning outcome, there are several issues that researchers and educators should notice to develop an appropriate instrument that can clearly exhibit a NOS view of Vietnamese. They may include: time for the survey; length, content, type, and terms of the questionnaire; Vietnamese epistemology and philosophy; and some other Vietnamese social and cultural aspects. The most important reason for these considerations is that a Vietnamese view of NOS and NOS assessment possibly differs from the Western ideas due to the social and cultural impact. As a result, a Western assessment tool may become less effective in an Eastern context. The suggestions and implications in this study were derived from a prolonged investigation on Vietnamese science teacher educators and student teachers of School of Education, at Can Tho University, a State University in Mekong Delta region, Vietnam.

  9. History and Philosophy of Science as a Guide to Understanding Nature of Science

    Directory of Open Access Journals (Sweden)

    Mansoor Niaz

    2016-06-01

    Full Text Available Nature of science (NOS is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others of understanding NOS: a Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick; b Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola; c Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understand ‘science in the making’ (Niaz. The following framework helps to facilitate integration: i Elaboration of a theoretical framework

  10. Understanding the nature of nuclear power plant risk

    International Nuclear Information System (INIS)

    Denning, R. S.

    2012-01-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  11. Expert Systems - A Natural History

    OpenAIRE

    Shadbolt, N. R.

    1989-01-01

    This paper examines the origins, current state and future prospects for expert systems. The origins are traced from the schism with classic Artificial Intelligence. The characteristics of early expert systems are described and contrasted with more recent developments. A number of influential forces operating on present day systems are reviewed. The future trends in the evolution of expert systems are discussed.

  12. Learner Characteristics and Understanding Nature of Science. Is There an Association?

    Science.gov (United States)

    Çetinkaya-Aydın, Gamze; Çakıroğlu, Jale

    2017-11-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the current study was 60 3rd-year preservice science teachers enrolled in the Nature of Science and History of Science course. Using a descriptive and associational case study design, data were collected by means of different qualitative and quantitative questionnaires. Analysis of the data revealed that preservice science teachers' understanding of nature of science and nature of scientific inquiry were highly associated. Similarly, science teaching self-efficacy beliefs, metacognitive awareness levels, and faith/worldviews of the preservice science teachers were found to be significantly associated with their understanding of nature of science. Thus, it can be concluded that there might be other factors interfering with the learning processes of nature of science.

  13. Understanding Natural Silks and Their Integration into Composites

    Science.gov (United States)

    2012-02-01

    arthropod  silk  processing  and  secretion  system  can  provide  not  only  important  insights...F.  Comparing  the  Rheology  of  Wild  and   Domesticated   Silkworm  Dope  Biopolymers  (in  press)   2011  Holland,  C...Vollrath,  F.   Animal  silks:  their  structures,  Chemical  Communications   43,6515-­‐6529  access   2009  Porter

  14. Homeostasis and Gauss statistics: barriers to understanding natural variability.

    Science.gov (United States)

    West, Bruce J

    2010-06-01

    In this paper, the concept of knowledge is argued to be the top of a three-tiered system of science. The first tier is that of measurement and data, followed by information consisting of the patterns within the data, and ending with theory that interprets the patterns and yields knowledge. Thus, when a scientific theory ceases to be consistent with the database the knowledge based on that theory must be re-examined and potentially modified. Consequently, all knowledge, like glory, is transient. Herein we focus on the non-normal statistics of physiologic time series and conclude that the empirical inverse power-law statistics and long-time correlations are inconsistent with the theoretical notion of homeostasis. We suggest replacing the notion of homeostasis with that of Fractal Physiology.

  15. Advancing Understanding of Emissions from Oil and Natural ...

    Science.gov (United States)

    Executive Summary Environmentally responsible development of oil and gas assets requires well-developed emissions inventories and measurement techniques to verify emissions and the effectiveness of control strategies. To accurately model the oil and gas sector impacts on air quality, it is critical to have accurate activity data, emission factors and chemical speciation profiles for volatile organic compounds (VOCs) and nitrogen oxides (NOx). This report describes a U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) Region 8 Regional Applied Research Effort (RARE) effort executed in Fiscal Year (FY) 2014 to FY 2016 that aimed to improve information on upstream oil and production emissions and identify areas where future work is needed. The project involved both field activities and data analysis and synthesis work with emphasis on product-related VOC emissions from well pads. In oil and gas basins with significant condensate and oil production, VOC emissions from well pads primarily arise from the separation of gas and liquid products and the storage process, with the control of emissions usually accomplished by enclosed combustion devices (ECDs), such as flares. Fugitive emissions of VOCs can originate from leaks and from potentially ineffective control systems. In the case of ECDs, byproducts of incomplete combustion may produce more highly reactive ozone precursor species. For both compliance and scientific purposes, the abili

  16. Learner Characteristics and Understanding Nature of Science: Is There an Association?

    Science.gov (United States)

    Çetinkaya-Aydin, Gamze; Çakiroglu, Jale

    2017-01-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the…

  17. [The fate of nuclides in natural water systems

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1989-01-01

    Our research at Yale on the fate of nuclides in natural water systems has three components to it: the study of the atmospheric precipitation of radionuclides and other chemical species; the study of the behavior of natural radionuclides in groundwater and hydrothermal systems; and understanding the controls on the distribution of radionuclides and stable nuclides in the marine realm. In this section a review of our progress in each of these areas is presented

  18. Understanding molecular interactions between scavenger receptor A and its natural product inhibitors through molecular modeling studies.

    Science.gov (United States)

    Pagare, Piyusha P; Zaidi, Saheem A; Zhang, Xiaomei; Li, Xia; Yu, Xiaofei; Wang, Xiang-Yang; Zhang, Yan

    2017-10-01

    Scavenger receptor A (SRA), as an immune regulator, has been shown to play important roles in lipid metabolism, cardiovascular diseases, and pathogen recognition. Several natural product inhibitors of SRA have been studied for their potential application in modulating SRA functions. To understand the binding mode of these inhibitors on SRA, we conducted systematic molecular modeling studies in order to identify putative binding domain(s) that may be responsible for their recognition to the receptor as well as their inhibitory activity. Treatment of SRA with one of the natural product inhibitors, rhein, led to significant dissociation of SRA oligomers to its trimer and dimer forms, which further supported our hypothesis on their putative mechanism of action. Such information is believed to shed light on design of more potent inhibitors for the receptor in order to develop potential therapeutics through immune system modulation. Published by Elsevier Inc.

  19. Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians

    CERN Document Server

    Arnold, V I

    2014-01-01

    This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is both deep and simple, which makes the book interesting and accessible to an extremely broad readership. Original illustrations hand drawn by the author help the reader to further understand and appreciate Arnold's view on the relationship between math

  20. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral......This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....

  1. Understanding people's ideas on natural resource management : research on social representations of nature

    NARCIS (Netherlands)

    Buijs, A.E.; Hovardas, T.; Figari, H.; Castro, P.; Devine-Wright, P.; Fischer, A.; Mouro, C.; Selge, S.

    2012-01-01

    Ongoing fragmentation between social groups on the appropriate targets and relevant actors for nature conservation signals the need for further advancements in theorizing about the human–nature interaction. Through a focus on the complexity of social thought and confrontations between social groups,

  2. Understanding human metabolic physiology: a genome-to-systems approach.

    Science.gov (United States)

    Mo, Monica L; Palsson, Bernhard Ø

    2009-01-01

    The intricate nature of human physiology renders its study a difficult undertaking, and a systems biology approach is necessary to understand the complex interactions involved. Network reconstruction is a key step in systems biology and represents a common denominator because all systems biology research on a target organism relies on such a representation. With the recent development of genome-scale human metabolic networks, metabolic systems analysis is now possible and has initiated a shift towards human systems biology. Here, we review the important aspects of reconstructing a bottom-up human metabolic network, the network's role in modeling human physiology and the necessity for a community-based consensus reconstruction of human metabolism to be established.

  3. Understanding Absorptive Capacities is an "Innovation Systems" Context

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    2004-01-01

    This paper seeks to broaden our understanding of the concept underlying absorptive capacity atthe macro -level, paying particular attention to the growth and development perspectives. Weprovide definitions of absorptive and technological capacity, external technology flows,productivity growth......, employment creation and their interrelations. We then analyse the elementsof absorptive capability, focusing on the nature of the relationship within a systems view of aneconomy, focusing primarily on the role of firm and non-firm actors and the institutions thatconnect them, both within and across borders...

  4. Hybridizing Cultural Understandings of the Natural World to Foster Critical Science Literacy

    Science.gov (United States)

    Tang, Kok Sing

    Adolescents are constantly exposed to multiple cultural views of the natural world in juxtaposition with the dominant view of science taught in school. This dissertation explores the interaction of these multiple views, and how they shape students' understanding of and attitudes toward science. Situated in a high school physics classroom, a curricular approach was designed and enacted to open a space in the classroom for the convergence of multiple discourses (or systems of cultural knowledge), and subsequently study how students navigate around them. Ethnographic and critical inquiry revealed that when two or more discourses about similar natural events or objects (e.g., toss of a colorguard flag, human body) were directly juxtaposed in the classroom space, conceptual, affective, and ideological conflicts were generated for certain students. This was particularly so for students whose embedded experiences and social affiliations within certain discourse communities (e.g., sport clubs, church) led to their preferred ways of looking at the natural world from one particular discourse, and consequently a negative stance toward alternative ways in other discourses. However, through appropriate pedagogical design and support, such juxtaposition also created opportunities for some students to hybridize different cultural understandings of the natural world as they navigated around multiple discourses. Informed by Bakhtin's notions of heteroglossia and voice appropriation, the characteristics of such hybridization were found to include: (a) being aware of heteroglossic differences in the use of language, (b) a dynamic shift in identification toward the dialogic other, (c) a juxtaposition of the other's voices in one's utterances, and (d) a momentary suppression of one's preferences, for strategic motives. Not only did hybridization provide a means for some students to construct conceptual knowledge across discourses, but it also helped them develop critical literacy in

  5. Understanding Absorptive Capacities is an "Innovation Systems" Context

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    2004-01-01

    This paper seeks to broaden our understanding of the concept underlying absorptive capacity atthe macro -level, paying particular attention to the growth and development perspectives. Weprovide definitions of absorptive and technological capacity, external technology flows,productivity growth......, employment creation and their interrelations. We then analyse the elementsof absorptive capability, focusing on the nature of the relationship within a systems view of aneconomy, focusing primarily on the role of firm and non-firm actors and the institutions thatconnect them, both within and across borders....... We also undertake to explain how the nature ofabsorptive capacity changes with stages of economic development, and the importance of thedifferent aspects of absorptive capability at different stages. The relationship is not a linear one:the benefits that accrue from marginal increases in absorptive...

  6. American Indian Systems for Natural Resource Management.

    Science.gov (United States)

    Quintana, Jorge O.

    1992-01-01

    Outlines the philosophy and general principles of "primitive" indigenous production technologies and natural resource management systems in North and South America. Discusses indigenous practices that promote sustainable production in gathering, hunting and fishing, minerals extraction, and agriculture. (SV)

  7. Toward Understanding the Cold, Hot, and Neutral Nature of Chinese Medicines Using in Silico Mode-of-Action Analysis.

    Science.gov (United States)

    Fu, Xianjun; Mervin, Lewis H; Li, Xuebo; Yu, Huayun; Li, Jiaoyang; Mohamad Zobir, Siti Zuraidah; Zoufir, Azedine; Zhou, Yang; Song, Yongmei; Wang, Zhenguo; Bender, Andreas

    2017-03-27

    One important, however, poorly understood, concept of Traditional Chinese Medicine (TCM) is that of hot, cold, and neutral nature of its bioactive principles. To advance the field, in this study, we analyzed compound-nature pairs from TCM on a large scale (>23 000 structures) via chemical space visualizations to understand its physicochemical domain and in silico target prediction to understand differences related to their modes-of-action (MoA) against proteins. We found that overall TCM natures spread into different subclusters with specific molecular patterns, as opposed to forming coherent global groups. Compounds associated with cold nature had a lower clogP and contain more aliphatic rings than the other groups and were found to control detoxification, heat-clearing, heart development processes, and have sedative function, associated with "Mental and behavioural disorders" diseases. While compounds associated with hot nature were on average of lower molecular weight, have more aromatic ring systems than other groups, frequently seemed to control body temperature, have cardio-protection function, improve fertility and sexual function, and represent excitatory or activating effects, associated with "endocrine, nutritional and metabolic diseases" and "diseases of the circulatory system". Compounds associated with neutral nature had a higher polar surface area and contain more cyclohexene moieties than other groups and seem to be related to memory function, suggesting that their nature may be a useful guide for their utility in neural degenerative diseases. We were hence able to elucidate the difference between different nature classes in TCM on the molecular level, and on a large data set, for the first time, thereby helping a better understanding of TCM nature theory and bridging the gap between traditional medicine and our current understanding of the human body.

  8. Understanding cities as social-ecological systems

    CSIR Research Space (South Africa)

    Du Plessis, C

    2008-09-01

    Full Text Available This paper builds on earlier ecological approaches to urban development, as well as more recent thinking in the fields of sustainability science, resilience thinking and complexity theory, to propose a conceptual framework for understanding cities...

  9. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    Science.gov (United States)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  10. Prospective Elementary Teachers' Understanding of the Nature of Science and Perceptions of the Classroom Learning Environment

    Science.gov (United States)

    Martin-Dunlop, Catherine S.

    2013-01-01

    This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The…

  11. Understanding COBOL systems using inferred types

    NARCIS (Netherlands)

    A. van Deursen (Arie); L.M.F. Moonen (Leon)

    1999-01-01

    textabstractIn a typical COBOL program, the data division consists of 50 of the lines of code. Automatic type inference can help to understand the large collections of variable declarations contained therein, showing how variables are related based on their actual usage. The most problematic aspect

  12. Knowledge Systems and Natural Resources: Management, Policy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2007-10-31

    Oct 31, 2007 ... In recent years, knowledge systems have become a key area of concern for researchers, policy-makers, and development activists. Knowledge Systems and Natural Resources is a unique collection of case studies from Nepal. It provides rich and incisive insights into critical social processes and ...

  13. Introduction To Natural Resources Management Extension System ...

    African Journals Online (AJOL)

    Introduction To Natural Resources Management Extension System (Nrmes); Rethinking In Extension Systems For 21st Century. ... Growing food demands, soil nutrient depletion is occurring in many tropical and subtropical countries, and land degradation and desertification continues to progress in many other countries.

  14. Natural Resource Information System. Remote Sensing Studies.

    Science.gov (United States)

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  15. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  16. Two interpretive systems for natural language?

    Science.gov (United States)

    Frazier, Lyn

    2015-02-01

    It is proposed that humans have available to them two systems for interpreting natural language. One system is familiar from formal semantics. It is a type based system that pairs a syntactic form with its interpretation using grammatical rules of composition. This system delivers both plausible and implausible meanings. The other proposed system is one that uses the grammar together with knowledge of how the human production system works. It is token based and only delivers plausible meanings, including meanings based on a repaired input when the input might have been produced as a speech error.

  17. Examining Preservice Science Teacher Understanding of Nature of Science: Discriminating Variables on the Aspects of Nature of Science

    Science.gov (United States)

    Jones, William I.

    This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p Middle Childhood with a science concentration program major or in the Adolescent/Young Adult Science Education program major were more likely to have an informed understanding on each of the 7 target aspects of NOS. Analyses of the planning guides and the course syllabi in each teacher education program major revealed differences between the program majors that may account for the results.

  18. Control Systems Engineering for Understanding and Optimizing Smoking Cessation Interventions.

    Science.gov (United States)

    Timms, Kevin P; Rivera, Daniel E; Collins, Linda M; Piper, Megan E

    2013-01-01

    Cigarette smoking remains a major public health issue. Despite a variety of treatment options, existing intervention protocols intended to support attempts to quit smoking have low success rates. An emerging treatment framework, referred to as adaptive interventions in behavioral health, addresses the chronic, relapsing nature of behavioral health disorders by tailoring the composition and dosage of intervention components to an individual's changing needs over time. An important component of a rapid and effective adaptive smoking intervention is an understanding of the behavior change relationships that govern smoking behavior and an understanding of intervention components' dynamic effects on these behavioral relationships. As traditional behavior models are static in nature, they cannot act as an effective basis for adaptive intervention design. In this article, behavioral data collected daily in a smoking cessation clinical trial is used in development of a dynamical systems model that describes smoking behavior change during cessation as a self-regulatory process. Drawing from control engineering principles, empirical models of smoking behavior are constructed to reflect this behavioral mechanism and help elucidate the case for a control-oriented approach to smoking intervention design.

  19. The understanding of the students about the nature of light in recursive curriculum

    Directory of Open Access Journals (Sweden)

    Geide Rosa Coelho

    2010-01-01

    Full Text Available We report an inquiry on the development of students' understanding about the nature of light. The study happened in a learning environment with a recursive and spiral Physics syllabus. We investigated the change in students' understanding about the nature of light during their 3rd year in High School, and the level of understanding about this subject achieved by students at the end of this year. To assess the students' understanding, we developed an open questionnaire form and a set of hierarchical categories, consisting of five different models about the nature of light. The questionnaire was used to access the students´ understanding at the beginning and at the end of the third level of the recursive curriculum. The results showed that students have a high level of prior knowledge, and also that the Physics learning they experienced had enhanced their understanding, despite the effects are not verified in all the Physics classes. By the end of the third year, most of the students explain the nature of light using or a corpuscular electromagnetic model or a dual electromagnetic model, but some students use these models with inconsistencies in their explanations.

  20. Informationalising matter : systems understandings of the nanoscale.

    OpenAIRE

    Kearnes, M. B.

    2008-01-01

    Themes of mastery, domination and power are familiar to any scholar of modern technology. Science is commonly cast as enabling the technological control over both the natural and physical worlds. Indeed, Francis Bacon famously equated scientific knowledge with power itself—stating that ‘knowledge itself is a power’ (Bacon in Montagu 1825, 71). Bacon’s now ubiquitous phrase—commonly repeated as the banal ‘knowledge is power’—was an attempt to combat three heresies in scriptural interpretation ...

  1. Knowledge to Action - Understanding Natural Hazards-Induced Power Outage Scenarios for Actionable Disaster Responses

    Science.gov (United States)

    Kar, B.; Robinson, C.; Koch, D. B.; Omitaomu, O.

    2017-12-01

    The Sendai Framework for Disaster Risk Reduction 2015-2030 identified the following four priorities to prevent and reduce disaster risks: i) understanding disaster risk; ii) strengthening governance to manage disaster risk; iii) investing in disaster risk reduction for resilience and; iv) enhancing disaster preparedness for effective response, and to "Build Back Better" in recovery, rehabilitation and reconstruction. While forecasting and decision making tools are in place to predict and understand future impacts of natural hazards, the knowledge to action approach that currently exists fails to provide updated information needed by decision makers to undertake response and recovery efforts following a hazard event. For instance, during a tropical storm event advisories are released every two to three hours, but manual analysis of geospatial data to determine potential impacts of the event tends to be time-consuming and a post-event process. Researchers at Oak Ridge National Laboratory have developed a Spatial Decision Support System that enables real-time analysis of storm impact based on updated advisory. A prototype of the tool that focuses on determining projected power outage areas and projected duration of outages demonstrates the feasibility of integrating science with decision making for emergency management personnel to act in real time to protect communities and reduce risk.

  2. Understanding the nature of apraxia of speech: Theory, analysis, and treatment

    Directory of Open Access Journals (Sweden)

    Kirrie J. Ballard

    2010-08-01

    Full Text Available Researchers have interpreted the behaviours of individuals with acquired apraxia of speech (AOS as impairment of linguistic phonological processing, motor control, or both. Acoustic, kinematic, and perceptual studies of speech in more recent years have led to significant advances in our understanding of the disorder and wide acceptance that it affects phonetic - motoric planning of speech. However, newly developed methods for studying nonspeech motor control are providing new insights, indicating that the motor control impairment of AOS extends beyond speech and is manifest in nonspeech movements of the oral structures. We present the most recent developments in theory and methods to examine and define the nature of AOS. Theories of the disorder are then related to existing treatment approaches and the efficacy of these approaches is examined. Directions for development of new treatments are posited. It is proposed that treatment programmes driven by a principled account of how the motor system learns to produce skilled actions will provide the most efficient and effective framework for treating motorbased speech disorders. In turn, well controlled and theoretically motivated studies of treatment efficacy promise to stimulate further development of theoretical accounts and contribute to our understanding of AOS.

  3. Optical engineering: understanding optical system by experiments

    Science.gov (United States)

    Scharf, Toralf

    2017-08-01

    Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.

  4. Understanding The Resistance to Health Information Systems

    OpenAIRE

    David Ackah; Angelito E Alvarado; Heru Santoso Wahito Nugroho; Sanglar Polnok; Wiwin Martiningsih

    2017-01-01

    User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing...

  5. Procedures as a Representation for Data in a Computer Program for Understanding Natural Language.

    Science.gov (United States)

    Winograd, Terry

    This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialogue. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a heuristic…

  6. Production monitoring system for understanding product robustness

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    study is used to demonstrate how the monitoring system can be used to efficiently guide corrective action to improve product performance. It is claimed that the monitoring system can be used to dramatically cut the time taken to identify, planand execute corrective action related to typical quality...... to be seven days. Using the monitoring system for the PRECI‐IN case, similar corrective action would have been achieved almost immediately.......In the current quality paradigm, the performance of a product is kept within specification by ensuring that its parts are within specification. Product performance is then validated after final assembly. However, this does not control how robust the product performance is, i.e. how much...

  7. Prospective Elementary Teachers' Understanding of the Nature of Science and Perceptions of the Classroom Learning Environment

    Science.gov (United States)

    Martin-Dunlop, Catherine S.

    2013-06-01

    This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The learning environment was assessed using previously-validated and reliable scales from What Is Happening In this Class? (WIHIC) and the Science Laboratory Environment Inventory (SLEI). Analyses indicated moderate multiple correlations that were statistically significant ( p Creative (R = 0.22), Testable (R = 0.29), and Unified (R = 0.27), and a positive learning environment. Regression coefficients revealed that Open-Endedness was a significant independent predictor of students' understanding of the role of creativity in science (β = 0.16), while Cooperation, Open-Endedness, and Material Environment were linked with understanding the testable nature of science (β = 0.10-0.12). Interview questions probed possible relationships between an improved understanding of the nature of science and elements of a positive classroom environment. Responses suggested that an appropriate level of open-endedness during investigations was very important as this helped students grapple with abstract nature of science concepts and shift their conceptions closer to a more realistic view of scientific practice.

  8. Rediscovering nature as commons in environmental planning: new understandings through dialogue

    Directory of Open Access Journals (Sweden)

    Mikaela Vasstrom

    2014-08-01

    Full Text Available A core challenge in environmental planning is the gap between a strong participatory ethos and top-down defined nature protection policies. Nature protection policies for large areas are concerned with securing ecological biodiversity and wildlife habitats against increasing societal claims. Such planning objectives also affect the socio-economic and cultural relations between the local community and the area they live in, and raise conflicts between local and national protection objectives and steering levels. Despite attempts to facilitate participatory planning approaches as a means of reducing conflict, nature protection continues to be contested in local communities. This paper explores the different understandings of nature at play between citizens and planning authorities throughout a habitat protection planning process in Norway. The paper discusses whether environmental planning of large spatial areas could develop communication arenas designed to deliberate different understandings of an area as a matter of commons between institutional planning perspectives of nature protection and (local understandings of the area as part of everyday life. The paper sheds light on how large spatial areas are understood at different government levels and from everyday life orientations, and how these could be used to develop mutual understandings of the area as a common.

  9. New Methods for Understanding Systems Consolidation

    Science.gov (United States)

    Tayler, Kaycie K.; Wiltgen, Brian J.

    2013-01-01

    According to the standard model of systems consolidation (SMC), neocortical circuits are reactivated during the retrieval of declarative memories. This process initially requires the hippocampus. However, with the passage of time, neocortical circuits become strengthened and can eventually retrieve memory without input from the hippocampus.…

  10. Computational Intelligence-Assisted Understanding of Nature-Inspired Superhydrophobic Behavior.

    Science.gov (United States)

    Zhang, Xia; Ding, Bei; Cheng, Ran; Dixon, Sebastian C; Lu, Yao

    2018-01-01

    In recent years, state-of-the-art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature-inspired superhydrophobic behavior. The relationships between experimental parameters (water droplet volume, weight percentage of nanoparticles used in the synthesis of the polymer composite, and distance separating the superhydrophobic surface and the pendant water droplet in adhesive force measurements) and multiple objectives (water droplet contact angle, sliding angle, and adhesive force) are built and weighted. The obtained optimal parameters are consistent with the experimental observations. This new approach to materials modeling has great potential to be applied more generally to aid design, fabrication, and optimization for myriad functional materials.

  11. Natural systems prediction of radionuclide migration

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1991-01-01

    This paper reviews the application (and limitations) of data from natural systems to the verification of performance assessments, particularly as they apply to the evaluation of the long-term performance of waste forms, backfill, canister materials, and finally, the integrity of the repository itself. Two specific examples, the corrosion of borosilicate glass and the formation of alteration products of spent fuel, will be discussed. In both cases, inferences are of three types: 1) directly applicable data (i.e. radiation effects, stable phase assemblages): 2) inferences based on the analogous behaviour of the natural and repository systems (e.g. long-term corrosion rate); 3) specific identification of new phenomena that could not have been anticipated from the short term laboratory data (i.e. new mechanisms for the retention or release of radionuclides). The latter can only be derived from the observation of natural systems. Finally, specific attention will be paid to the limitations in the use of natural systems, particularly as the spatial and temporal scales expand, and to the inherent limitations of prediction and verification. (J.P.N.)

  12. Understanding The Resistance to Health Information Systems

    Directory of Open Access Journals (Sweden)

    David Ackah

    2017-07-01

    Full Text Available User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing, using facts selectively, distorting facts and  raising objections. The manifestation of passive resistance are agreeing verbally but not following through, failing to implement change, procrastinating/dragging feet, feigning ignorance, withholding information, suggestions, help or support, and standing by and allowing the change to fail.

  13. Understanding symmetrical components for power system modeling

    CERN Document Server

    Das, J C

    2017-01-01

    This book utilizes symmetrical components for analyzing unbalanced three-phase electrical systems, by applying single-phase analysis tools. The author covers two approaches for studying symmetrical components; the physical approach, avoiding many mathematical matrix algebra equations, and a mathematical approach, using matrix theory. Divided into seven sections, topics include: symmetrical components using matrix methods, fundamental concepts of symmetrical components, symmetrical components –transmission lines and cables, sequence components of rotating equipment and static load, three-phase models of transformers and conductors, unsymmetrical fault calculations, and some limitations of symmetrical components.

  14. The natural number bias and its role in rational number understanding in children with dyscalculia. Delay or deficit?

    Science.gov (United States)

    Van Hoof, Jo; Verschaffel, Lieven; Ghesquière, Pol; Van Dooren, Wim

    2017-12-01

    Previous research indicated that in several cases learners' errors on rational number tasks can be attributed to learners' tendency to (wrongly) apply natural number properties. There exists a large body of literature both on learners' struggle with understanding the rational number system and on the role of the natural number bias in this struggle. However, little is known about this phenomenon in learners with dyscalculia. We investigated the rational number understanding of learners with dyscalculia and compared it with the rational number understanding of learners without dyscalculia. Three groups of learners were included: sixth graders with dyscalculia, a chronological age match group, and an ability match group. The results showed that the rational number understanding of learners with dyscalculia is significantly lower than that of typically developing peers, but not significantly different from younger learners, even after statistically controlling for mathematics achievement. Next to a delay in their mathematics achievement, learners with dyscalculia seem to have an extra delay in their rational number understanding, compared with peers. This is especially the case in those rational number tasks where one has to inhibit natural number knowledge to come to the right answer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improvement in understanding of natural circulation phenomena in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Cleveland, John; Aksan, Nusret

    2011-01-01

    Highlights: ► Phenomena influencing natural circulation in passive systems. ► Behaviour in large pools of liquid. ► Effect of non-condensable gas on condensation heat transfer. ► Behaviour of containment emergency systems. ► Natural circulation flow and pressure drop in various geometries. - Abstract: The IAEA has organized a coordinated research project (CRP) on “Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems That Utilize Natural Circulation.” Specific objectives of CRP were to (i) establish the status of knowledge: reactor start-up and operation, passive system initiation and operation, flow stability, 3-D effects, and scaling laws, (ii) investigate phenomena influencing reliability of passive natural circulation systems, (iii) review experimental databases for the phenomena, (iv) examine the ability of computer codes to predict natural circulation and related phenomena, and (v) apply methodologies for examining the reliability of passive systems. Sixteen institutes from 13 IAEA Member States have participated in this CRP. Twenty reference advanced water cooled reactor designs including evolutionary and innovative designs were selected to examine the use of natural circulation and passive systems in their designs. Twelve phenomena influencing natural circulation were identified and characterized: (1) behaviour in large pools of liquid, (2) effect of non-condensable gases on condensation heat transfer, (3) condensation on the containment structures, (4) behaviour of containment emergency systems, (5) thermo-fluid dynamics and pressure drops in various geometrical configurations, (6) natural circulation in closed loop, (7) steam liquid interaction, (8) gravity driven cooling and accumulator behaviour, (9) liquid temperature stratification, (10) behaviour of emergency heat exchangers and isolation condensers, (11) stratification and mixing of boron, and (12) core make-up tank behaviour. This paper summarizes the

  16. The Nature of Stability in Replicating Systems

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2011-02-01

    Full Text Available We review the concept of dynamic kinetic stability, a type of stability associated specifically with replicating entities, and show how it differs from the well-known and established (static kinetic and thermodynamic stabilities associated with regular chemical systems. In the process we demonstrate how the concept can help bridge the conceptual chasm that continues to separate the physical and biological sciences by relating the nature of stability in the animate and inanimate worlds, and by providing additional insights into the physicochemical nature of abiogenesis.

  17. Understanding learning in natural resource management : experiences with a contextualised responsive evaluation approach

    NARCIS (Netherlands)

    Kouévi, T.A.

    2013-01-01

    This dissertation may be located in the wide debate on the effectiveness of policy interventions in developing countries, in the field of natural resource management (NRM). It is especially concerned with contributing to the understanding of the limited effectiveness of fishery management

  18. Understanding the Nature of Science and Scientific Progress: A Theory-Building Approach

    Science.gov (United States)

    Chuy, Maria; Scardamalia, Marlene; Bereiter, Carl; Prinsen, Fleur; Resendes, Monica; Messina, Richard; Hunsburger, Winifred; Teplovs, Chris; Chow, Angela

    2010-01-01

    In 1993 Carey and Smith conjectured that the most promising way to boost students' understanding of the nature of science is a "theory-building approach to teaching about inquiry." The research reported here tested this conjecture by comparing results from two Grade 4 classrooms that differed in their emphasis on and technological…

  19. Lost in Transition: Secondary School Students' Understanding of Landscapes and Natural Resource Management

    Science.gov (United States)

    Kruger, Tarnya; Beilin, Ruth

    2012-01-01

    In 2007, a study titled "Living in the landscapes of the 21st century" was conducted in 11 high schools in metropolitan and rural Victoria. The research team investigated Year 10 students' conceptions of landscapes in order to explore their understandings of natural resource management (NRM), including agriculture, food, land and water…

  20. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    Science.gov (United States)

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  1. Understanding Nature-Related Behaviors among Children through a Theory of Reasoned Action Approach

    Science.gov (United States)

    Gotch, Chad; Hall, Troy

    2004-01-01

    The Theory of Reasoned Action has proven to be a valuable tool for predicting and understanding behavior and, as such, provides a potentially important basis for environmental education program design. This study used a Theory of Reasoned Action approach to examine a unique type of behavior (nature-related activities) and a unique population…

  2. Understanding learning in natural resource management : experiences with a contextualised responsive evaluation approach

    NARCIS (Netherlands)

    Kouévi, T.A.

    2013-01-01

    This dissertation may be located in the wide debate on the effectiveness of policy interventions in developing countries, in the field of natural resource management (NRM). It is especially concerned with contributing to the understanding of the limited effectiveness of fishery management

  3. Understanding the Nature of Learners' Out-of-Class Language Learning Experience with Technology

    Science.gov (United States)

    Lai, Chun; Hu, Xiao; Lyu, Boning

    2018-01-01

    Out-of-class learning with technology comprises an essential context of second language development. Understanding the nature of out-of-class language learning with technology is the initial step towards safeguarding its quality. This study examined the types of learning experiences that language learners engaged in outside the classroom and the…

  4. Descriptive Understandings of the Nature of Science: Examining the Consensual and Family Resemblance Approaches

    Science.gov (United States)

    do Nascimento Rocha, Maristela; Gurgel, Ivã

    2017-01-01

    This paper performs a critical analysis of the consensual and family resemblance approaches to the nature of science. Despite the debate that surrounds them, between a pragmatic consensus and a more comprehensive understanding, both approaches have in common the goal of helping students to "internalize" knowledge about science in a…

  5. Impacts of Contextual and Explicit Instruction on Preservice Elementary Teachers' Understandings of the Nature of Science

    Science.gov (United States)

    Bell, Randy L.; Matkins, Juanita Jo; Gansneder, Bruce M.

    2011-01-01

    This mixed-methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional…

  6. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  7. The Mismatch among Students' Views about Nature of Science, Acceptance of Evolution, and Evolutionary Science Understandings

    Science.gov (United States)

    Cavallo, Ann M. L.; White, Kevin J.; McCall, David

    2011-01-01

    This study explored interrelationships among high school students' views about nature of science (NOS), acceptance of evolution, and conceptual understanding of evolution, and the extent to which these may have shifted from pre- to post-instruction on evolutionary theory. Eighty-one students enrolled in ninth-grade Biology responded to…

  8. Student Teachers' Understanding and Acceptance of Evolution and the Nature of Science

    Science.gov (United States)

    Coleman, Joy; Stears, Michèle; Dempster, Edith

    2015-01-01

    The focus of this study was student teachers at a South African university enrolled in a Bachelor of Education (B.Ed.) programme and a Postgraduate Certificate in Education (PGCE), respectively. The purpose of this study was to explore students' understanding and acceptance of evolution and beliefs about the nature of science (NOS), and to…

  9. Artificial intelligence, expert systems, computer vision, and natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  10. Studies of natural analogues and geological systems

    International Nuclear Information System (INIS)

    Brandberg, F.; Grundfelt, B.; Hoeglund, L.; Skagius K.; Karlsson, F.; Smellie, J.

    1993-04-01

    This review has involved studies of natural analogues and natural geological systems leading to the identification and quantification of processes and features of importance to the performance and safety of repositories for radioactive waste. The features and processes selected for the study comprise general geochemical issues related to the performance of the near- and far-field, the performance and durability of construction materials and the effects of glaciation. For each of these areas a number of potentially important processes for repository performance have been described, and evidence for their existence, as well as quantification of parameters of models describing the processes have been sought from major natural analogue studies and site investigations. The review has aimed at covering a relatively broad range of issues at the expense of in-depth analysis. The quantitative data presented are in most cases compilations of data from the literature; in a few cases results of evaluations made within the current project are included

  11. A model integrating social-cultural concepts of nature into frameworks of interaction between social and natural systems

    DEFF Research Database (Denmark)

    Muhar, Andreas; Raymond, Christopher M.; van den Born, Riyan J.G.

    2018-01-01

    Existing frameworks for analysing interactions between social and natural systems (e.g. Social-Ecological Systems framework, Ecosystem Services concept) do not sufficiently consider and operationalize the dynamic interactions between people's values, attitudes and understandings of the human-nature...... relationship at both individual and collective levels. We highlight the relevance of individual and collective understandings of the human-nature relationship as influencing factors for environmental behaviour, which may be reflected in natural resource management conflicts, and review the diversity....... Integrating this model into existing frameworks provides a tool for the exploration of how social-cultural concepts of nature interact with existing contexts to influence governance of social-ecological systems....

  12. A Guide to Understanding Data Remanence in Automated Information Systems

    National Research Council Canada - National Science Library

    1991-01-01

    The purpose of A Guide to Understanding Data Remanence in Automated Information Systems is to provide information to personnel responsible for the secure handling of sensitive automated information system (AIS...

  13. Knowledge Systems and Natural Resources : Management, Policy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    31 oct. 2007 ... Knowledge Systems and Natural Resources est un recueil unique d'études de cas réalisées au Népal. Cet ouvrage apporte un éclairage ... Un débat d'experts organisé par le CRDI s'attaque au mariage précoce lors du forum sur la condition des femmes à l'ONU. Des chercheurs appuyés par le CRDI ...

  14. Arabic Natural Language Processing System Code Library

    Science.gov (United States)

    2014-06-01

    POS Tagging, and Dependency Parsing. Fourth Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL). English (Note: These are for...Detection, Affix Labeling, POS Tagging, and Dependency Parsing" by Stephen Tratz presented at the Statistical Parsing of Morphologically Rich Languages ...and also English ) natural language processing (NLP), containing code for training and applying the Arabic NLP system described in Stephen Tratz’s

  15. Understanding the sediment routing system along the Gulf of ...

    Indian Academy of Sciences (India)

    Understanding the sediment routing system along the Gulf of Kachchh coast, western India: Significance of small ephemeral rivers ... is an attempt towards understanding the sediment routing system in the semi-arid margin of the Gulf of Kachchh, which is one of the largest macrotidal regimes in the northern Arabian Sea.

  16. Thai in-service teacher understanding of nature of science in biology teaching: Case of Mali

    Science.gov (United States)

    Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to investigate the existing ideas of nature of science (NOS) teaching in Thailand biology classroom. The study reported the existing ideas of nature of science (NOS) teaching of one biology teacher Mrs. Mali who had been teaching for 6 years at in a school in Khon Kaen city. Methodology regarded interpretive paradigm. Tools of interpretation included 2 months of classroom observation, interviewing, and questionnaire of NOS. The findings revealed Mali held good understanding of the nature of science in the aspect of the use of evidence, the aspect of knowledge inquiry through different observation and deduction, the aspect of creativity and imagination influencing science knowledge inquiry, and the aspect of changeable scientific knowledge. Her biology teaching indicated that she used both the deficient nature of science approach and the implicit nature of science approach. The implicit nature of science approach was applied mostly in 7 periods and only 2 periods were arranged using the deficient nature of science approach. The paper has implication for professional development and pre-service program on NOS teaching in Thailand.

  17. The frequency and nature of medical error in primary care: understanding the diversity across studies.

    Science.gov (United States)

    Sandars, John; Esmail, Aneez

    2003-06-01

    The identification and reduction of medical error has become a major priority for all health care providers, including primary care. Understanding the frequency and nature of medical error in primary care is a first step in developing a policy to reduce harm and improve patient safety. There has been scant research into this area. This review had two objectives; first, to identify the frequency and nature of error in primary care, and, secondly, to consider the possible causes for the diversity in the stated rates and nature of error in primary care. Literature searches of English language studies identified in the National Patient Safety Foundation bibliography database, in Medline and in Embase were carried out. Studies that were relevant to the purpose of the study were included. Additional information was obtained from a specialist medico-legal database. Studies identified that medical error occurs between five and 80 times per 100000 consultations, mainly related to the processes involved in diagnosis and treatment. Prescribing and prescription errors have been identified to occur in up to 11% of all prescriptions, mainly related to errors in dose. There are a wide variety of definitions and methods used to identify the frequency and nature of medical error. Incident reporting, systematic identification and medico-legal databases reveal differing aspects, and there are additional perspectives obtained from GPs, primary health care workers and patients. An understanding of the true frequency and nature of medical error is complicated by the different definitions and methods used in the studies. Further research is warranted to understand the complex nature and causes of such errors that occur in primary care so that appropriate policy decisions to improve patient safety can be made.

  18. Natural oscillation frequencies for arbitrary piping systems

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2007-01-01

    This paper concerns axial and lateral oscillations and oscillation frequencies of various empty (natural frequency of oscillation) and fluid filled (forced oscillation) piping systems. Forced oscillations of fluid filled piping systems and corresponding exchange of energy are denominated also Fluid-Structure-Interaction (FSI). Oscillations appear due to various external or internal impacts and are successfully described with eight-equation physical model for simulations of FSI during fast transients. The physical model is solved with characteristic upwind numerical method and is compiled into a computer code. Simulations were compared to the analytical solutions or solutions from the literature whenever was possible. Discussion on results and problems encountered is given. The proposed physical model gives accurate results, and it enables evaluation of natural frequency of arbitrarily loaded, arbitrarily shaped and arbitrarily supported piping systems. Piping systems are rarely empty, thus forced oscillations due to FSI effects were observed and simulated. Application of various fluids pointed out importance of the fluid's compressibility on pipe's axial oscillations. (author)

  19. A Look into Students' Retention of Acquired Nature of Science Understandings

    Science.gov (United States)

    Khishfe, Rola

    2015-07-01

    Having the learning and retention of science content and skills as a goal of scientific literacy, it is significant to study the issue of retention as it relates to teaching and learning about nature of science (NOS). Then, the purpose of this study was to investigate the development of NOS understandings of students, and the retention of these understandings four months after being acquired through explicit reflective instruction in relation to two contexts. Participants were 24 tenth-grade students at a private high school in a city in the Middle East. Explicit NOS instruction was addressed within a six-week unit about genetic engineering. Three NOS aspects were integrated and dispersed across the unit. A questionnaire, together with semi-structured interviews, was administered as pre-, post-, and delayed post-test to assess the retention of participants' NOS understandings. The questionnaire had two open-ended scenarios addressing controversial socioscientific issues about genetically modified food and water fluoridation. Results showed that most students improved their naïve understandings of NOS in relation to the two contexts following the six-week unit with the explicit NOS instruction. However, these newly acquired NOS understandings were not retained by all students four months after instruction. Many of the students reverted back to their earlier naïve understandings. Conclusions about the factors facilitating the process of retention as the orientation to meaningful learning and the prolonged exposure to the domain were discussed in relation to practical implications in the classroom.

  20. Reliability evaluation of a natural circulation system

    International Nuclear Information System (INIS)

    Jafari, Jalil; D'Auria, Francesco; Kazeminejad, Hossein; Davilu, Hadi

    2003-01-01

    This paper discusses a reliability study performed with reference to a passive thermohydraulic natural circulation (NC) system, named TTL-1. A methodology based on probabilistic techniques has been applied with the main purpose to optimize the system design. The obtained results have been adopted to estimate the thermal-hydraulic reliability (TH-R) of the same system. A total of 29 relevant parameters (including nominal values and plausible ranges of variations) affecting the design and the NC performance of the TTL-1 loop are identified and a probability of occurrence is assigned for each value based on expert judgment. Following procedures established for the uncertainty evaluation of thermal-hydraulic system codes results, 137 system configurations have been selected and each configuration has been analyzed via the Relap5 best-estimate code. The reference system configuration and the failure criteria derived from the 'mission' of the passive system are adopted for the evaluation of the system TH-R. Four different definitions of a less-than-unity 'reliability-values' (where unity represents the maximum achievable reliability) are proposed for the performance of the selected passive system. This is normally considered fully reliable, i.e. reliability-value equal one, in typical Probabilistic Safety Assessment (PSA) applications in nuclear reactor safety. The two 'point' TH-R values for the considered NC system were found equal to 0.70 and 0.85, i.e. values comparable with the reliability of a pump installed in an 'equivalent' forced circulation (active) system having the same 'mission'. The design optimization study was completed by a regression analysis addressing the output of the 137 calculations: heat losses, undetected leakage, loop length, riser diameter, and equivalent diameter of the test section have been found as the most important parameters bringing to the optimal system design and affecting the TH-R. As added values for this work, the comparison has

  1. Methane Leaks from Natural Gas Systems Follow Extreme Distributions.

    Science.gov (United States)

    Brandt, Adam R; Heath, Garvin A; Cooley, Daniel

    2016-11-15

    Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4 ) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.

  2. How Information Visualization Systems Change Users' Understandings of Complex Data

    Science.gov (United States)

    Allendoerfer, Kenneth Robert

    2009-01-01

    User-centered evaluations of information systems often focus on the usability of the system rather its usefulness. This study examined how a using an interactive knowledge-domain visualization (KDV) system affected users' understanding of a domain. Interactive KDVs allow users to create graphical representations of domains that depict important…

  3. Scaling view by the Virtual Nature Systems

    Science.gov (United States)

    Klenov, Valeriy

    2010-05-01

    The Virtual Nature System is irreplaceable for research and evaluation for governing processes on the Earth. Processes on the Earth depends on external exogenous and endogenous influences, and on own dynamics of the Actual Nature Systems (ANS). To select part of the actors is impossible without take in account factor of the Time, factor for information safety during the Time. The stochastic nature of external influences and stochastic pattern for dynamics of Nature systems complicates evaluation of 2D threat of disasters. These are multi-layer, multi-scale, and multi-driven structures of surface processes. Their spatial-temporal overlapping of them generates relatively stable structure of river basins and of river net. Dynamics of processes in river basins results in remove of the former sediments and levels, and in displace of erosion/sedimentation pattern, in destroy and dissipation for a memory the ANS. This complex process results in the Information Loss Law (ILL) in the ANS, which gradually cut off own Past. This view on the GeoDynamics appeared after long time field measurements thousands of terrace levels, hundreds of terrace ranks, and terrace complexes in river basins (Klenov, 1986, 2004). Action of the ILL leads to blanks in natural records, which are non-linearly increasing to the Past, and in appearance of false trends in the records. This temporal barrier prevents evaluation of the history. The way to view spatial-temporal dynamics of the ANS is creation for the portrait Virtual Nature Systems, as acting doubles of the actual nature systems (ANS). Exogenous and endogenous influences are governing drivers of the ANS and of corresponding VNS. The VNS is necessary for research of spatial-temporal GeoDynamics. Unfortunately, the ILL is working not only for the Past, but also restrict ‘view' the Future. It is because of future drivers are yet unknown with necessary exactness, and due high sensitivity of nature systems to external pressure. However, a time

  4. Characterising the Development of the Understanding of Human Body Systems in High-School Biology Students--A Longitudinal Study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-01-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated…

  5. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    Science.gov (United States)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  6. Naturalness, value systems and perception of risk

    International Nuclear Information System (INIS)

    Drottz Sjoberg, B.M.

    1998-01-01

    Full text of publication follows: what is natural? And what is Nature? Are perceptions of Nature and naturalness related to perceptions of risk? This paper focuses on these aspects based on results from a Swedish representative sample (N=731), where subjects indicated e.g. the degree of naturalness of various phenomena, their views of nature, and personal life values, as well as perceptions of risk in specified contexts. The results showed a tendency to perceive as natural the phenomenon which is positively valued, i.e. what is natural is also good or desirable. Further, there were weak correlations between perceived naturalness and indicators of technological optimism, possibly indicating that persons with a more generous view of what is natural also more easily might accept change and outcomes due to human intelligence and activity. The construct of 'tampering with nature' has previously been shown to be one good predictor of perceived risk. The respondents also rated their agreement with items aimed to reflect the four 'views of nature' as suggested by Cultural Theory, i.e. nature as robust, capricious, tolerant and fragile. Nature was foremost perceived as fragile, but the main result clearly revealed that peoples' views of nature were complex and most often involved several of the suggested categories. The discussion focuses on the possible implications on environmental concern and risk perception given that Nature would develop into an undesirable type of locality. (author)

  7. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  8. Testing primary-school children's understanding of the nature of science.

    Science.gov (United States)

    Koerber, Susanne; Osterhaus, Christopher; Sodian, Beate

    2015-03-01

    Understanding the nature of science (NOS) is a critical aspect of scientific reasoning, yet few studies have investigated its developmental beginnings and initial structure. One contributing reason is the lack of an adequate instrument. Two studies assessed NOS understanding among third graders using a multiple-select (MS) paper-and-pencil test. Study 1 investigated the validity of the MS test by presenting the items to 68 third graders (9-year-olds) and subsequently interviewing them on their underlying NOS conception of the items. All items were significantly related between formats, indicating that the test was valid. Study 2 applied the same instrument to a larger sample of 243 third graders, and their performance was compared to a multiple-choice (MC) version of the test. Although the MC format inflated the guessing probability, there was a significant relation between the two formats. In summary, the MS format was a valid method revealing third graders' NOS understanding, thereby representing an economical test instrument. A latent class analysis identified three groups of children with expertise in qualitatively different aspects of NOS, suggesting that there is not a single common starting point for the development of NOS understanding; instead, multiple developmental pathways may exist. © 2014 The British Psychological Society.

  9. Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples

    Science.gov (United States)

    Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun

    2014-01-01

    System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…

  10. Understanding information retrieval systems management, types, and standards

    CERN Document Server

    Bates, Marcia J

    2011-01-01

    In order to be effective for their users, information retrieval (IR) systems should be adapted to the specific needs of particular environments. The huge and growing array of types of information retrieval systems in use today is on display in Understanding Information Retrieval Systems: Management, Types, and Standards, which addresses over 20 types of IR systems. These various system types, in turn, present both technical and management challenges, which are also addressed in this volume. In order to be interoperable in a networked environment, IR systems must be able to use various types of

  11. Limits to natural variation: implications for systemic management

    Directory of Open Access Journals (Sweden)

    Fowler, C. W.

    2002-12-01

    Full Text Available Collectively, the tenets and principles of management emphasize the importance of recognizing and understanding limits. These tenets require the demonstration, measurement and practical use of information about limits to natural variation. It is important to identify limits so as not to incur the risks and loss of integrity when limits are exceeded. Thus, by managing within natural limits, humans (managers simultaneously can achieve sustainability and minimize risk, as well as account for complexity. This is at the heart of systemic management. Systemic management embodies the basic tenets of management. One tenet requires that management ensure that nothing exceed the limits observed in its natural variation. This tenet is based on the principle that variation is constrained by a variety of limiting factors, many of which involve risks. Another tenet of management requires that such factors be considered simultaneously, exhaustively, and in proportion to their relative importance. These factors, in combination, make up the complexity that managers are required to consider in applying the basic principles of management. This combination of elements is reflected in observed limits to natural variation that account for each factor and its relative importance. This paper summarizes conclusions from the literature that has addressed the concept of limits to natural variation, especially in regard to management. It describes: 1. How such limits are inherent to complex systems; 2. How limits have been recognized to be important to the process of management; 3. How they can be used in management. The inherent limits include both those set by the context in which systems occur (extrinsic factors as well as those set by the components and processes within systems (intrinsic factors. This paper shows that information about limits is of utility in guiding human action to fit humans within the normal range of natural variation. This is part of systemic

  12. Are Human and Natural Systems Decoupling?

    Science.gov (United States)

    Ehrlich, P. R.; Ehrlich, A. H.

    2012-12-01

    Typically, studies of coupled human and natural systems focus on reciprocating interactions and feedbacks between social systems and their biophysical environments. A major challenge today for CHANS scholars is to determine whether significant coupling remains or whether society is simply plunging ahead without reacting effectively to the deterioration of the environment. Thresholds for serious climate disruption are passing, toxification of Earth is proceeding apace and producing worrying symptoms, losses of vital biodiversity are at a 65 million-year high with serious consequences for ecosystem services, the epidemiological environment is deteriorating and a race is building to control water flows and extract the last high-quality resources, increasing the chances of ending civilization in an environment-wrecking nuclear war. The social system has attempted to respond to this perfect storm of problems. In the 1960s, building on much earlier work, scientists began assessing the consequences of an ever-growing human population and expanding consumption, overuse of pesticides, radioactive fallout, air and water pollution, and other environmental issues - and to recommend ameliorative steps. In the mid-1980s, biologists formed the discipline of conservation biology with the explicit purpose of stemming the hemorrhage of biodiversity. In the late 1980s, perhaps the single most important reaction to the worsening environmental situation was the development of the Montreal Protocol to preserve the vital stratospheric ozone layer. Around the same time, it dawned on the scientific community that climate disruption was going to be more immediate and dangerous than previously thought, but attempts by the world community to take mitigating steps have been pathetic. Action to deal with other dimensions of the environmental dilemma has been utterly inadequate. To see the growing disconnect, one only has to consider the attention paid in public discourse to the relatively

  13. Spatial Reasoning and Understanding the Particulate Nature of Matter: A Middle School Perspective

    Science.gov (United States)

    Cole, Merryn L.

    This dissertation employed a mixed-methods approach to examine the relationship between spatial reasoning ability and understanding of chemistry content for both middle school students and their science teachers. Spatial reasoning has been linked to success in learning STEM subjects (Wai, Lubinski, & Benbow, 2009). Previous studies have shown a correlation between understanding of chemistry content and spatial reasoning ability (e.g., Pribyl & Bodner, 1987; Wu & Shah, 2003: Stieff, 2013), raising the importance of developing the spatial reasoning ability of both teachers and students. Few studies examine middle school students' or in-service middle school teachers' understanding of chemistry concepts or its relation to spatial reasoning ability. The first paper in this dissertation addresses the quantitative relationship between mental rotation, a type of spatial reasoning ability, and understanding a fundamental concept in chemistry, the particulate nature of matter. The data showed a significant, positive correlation between scores on the Purdue Spatial Visualization Test of Rotations (PSVT; Bodner & Guay, 1997) and the Particulate Nature of Matter Assessment (ParNoMA; Yezierski, 2003) for middle school students prior to and after chemistry instruction. A significant difference in spatial ability among students choosing different answer choices on ParNoMA questions was also found. The second paper examined the ways in which students of different spatial abilities talked about matter and chemicals differently. Students with higher spatial ability tended to provide more of an explanation, though not necessarily in an articulate matter. In contrast, lower spatial ability students tended to use any keywords that seemed relevant, but provided little or no explanation. The third paper examined the relationship between mental reasoning and understanding chemistry for middle school science teachers. Similar to their students, a significant, positive correlation between

  14. Recent Progress in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

    Science.gov (United States)

    Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.

    2015-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.

  15. Understanding Patterns for System-of-Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Nielsen, Claus Ballegård; Schmid, Klaus

    and interoperation among systems through some form of system integration. Previous work has approached the information system integration challenge in a generic way, not specific to a SoS context, or has provided only a limited range of solutions. This technical report discusses how an IT architect can address...... the SoS integration challenge from an architectural perspective; it also illustrates the breadth of potential solutions to the challenge through a categorization of SoS soft-ware architectural patterns. To demonstrate the practical relevance of this work, the authors instantiate this categorization...

  16. Understanding the influence of power and empathic perspective-taking on collaborative natural resource management.

    Science.gov (United States)

    Wald, Dara M; Segal, Elizabeth A; Johnston, Erik W; Vinze, Ajay

    2017-09-01

    Public engagement in collaborative natural resource management necessitates shared understanding and collaboration. Empathic perspective-taking is a critical facilitator of shared understanding and positive social interactions, such as collaboration. Yet there is currently little understanding about how to reliably generate empathic perspective-taking and collaboration, particularly in situations involving the unequal distribution of environmental resources or power. Here we examine how experiencing the loss or gain of social power influenced empathic perspective-taking and behavior within a computer-mediated scenario. Participants (n = 180) were randomly assigned to each condition: high resources, low resources, lose resources, gain resources. Contrary to our expectations, participants in the perspective-taking condition, specifically those who lost resources, also lost perspective taking and exhibited egoistic behavior. This finding suggests that resource control within the collaborative process is a key contextual variable that influences perspective-taking and collaborative behavior. Moreover, the observed relationship between perspective-taking and egoistic behavior within a collaborative resource sharing exercise suggests that when resource control or access is unequal, interventions to promote perspective-taking deserve careful consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  18. 33 CFR 183.620 - Natural ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...

  19. Perception and Understanding of Invasive Alien Species Issues by Nature Conservation and Horticulture Professionals in Belgium

    Science.gov (United States)

    Vanderhoeven, Sonia; Piqueray, Julien; Halford, Mathieu; Nulens, Greet; Vincke, Jan; Mahy, Grégory

    2011-03-01

    We conducted a survey to determine how two professional sectors in Belgium, horticulture professionals and nature reserve managers (those directly involved in conservation), view the issues associated with invasive plant species. We developed and utilized a questionnaire that addressed the themes of awareness, concept and use of language, availability of information, impacts and, finally, control and available solutions. Using co-inertia analyses, we tested to what extent the perception of invasive alien species (IAS) was dependent upon the perception of Nature in general. Only forty-two percent of respondent horticulture professionals and eighty-two percent of nature reserve managers had a general knowledge of IAS. Many individuals in both target groups nonetheless had an accurate understanding of the scientific issues. Our results therefore suggest that the manner in which individuals within the two groups view, or perceive, the IAS issue was more the result of lack of information than simply biased perceptions of target groups. Though IAS perceptions by the two groups diverged, they were on par with how they viewed Nature in general. The descriptions of IAS by participants converged with the ideas and concepts frequently found in the scientific literature. Both managers and horticulture professionals expressed a strong willingness to participate in programs designed to prevent the spread of, and damage caused by, IAS. Despite this, the continued commercial availability of many invasive species highlighted the necessity to use both mandatory and voluntary approaches to reduce their re-introduction and spread. The results of this study provide stakeholders and conservation managers with practical information on which communication and management strategies can be based.

  20. Perception and understanding of invasive alien species issues by nature conservation and horticulture professionals in Belgium.

    Science.gov (United States)

    Vanderhoeven, Sonia; Piqueray, Julien; Halford, Mathieu; Nulens, Greet; Vincke, Jan; Mahy, Grégory

    2011-03-01

    We conducted a survey to determine how two professional sectors in Belgium, horticulture professionals and nature reserve managers (those directly involved in conservation), view the issues associated with invasive plant species. We developed and utilized a questionnaire that addressed the themes of awareness, concept and use of language, availability of information, impacts and, finally, control and available solutions. Using co-inertia analyses, we tested to what extent the perception of invasive alien species (IAS) was dependent upon the perception of Nature in general. Only forty-two percent of respondent horticulture professionals and eighty-two percent of nature reserve managers had a general knowledge of IAS. Many individuals in both target groups nonetheless had an accurate understanding of the scientific issues. Our results therefore suggest that the manner in which individuals within the two groups view, or perceive, the IAS issue was more the result of lack of information than simply biased perceptions of target groups. Though IAS perceptions by the two groups diverged, they were on par with how they viewed Nature in general. The descriptions of IAS by participants converged with the ideas and concepts frequently found in the scientific literature. Both managers and horticulture professionals expressed a strong willingness to participate in programs designed to prevent the spread of, and damage caused by, IAS. Despite this, the continued commercial availability of many invasive species highlighted the necessity to use both mandatory and voluntary approaches to reduce their re-introduction and spread. The results of this study provide stakeholders and conservation managers with practical information on which communication and management strategies can be based.

  1. Shape Understanding System – Knowledge Implementation and Learning

    CERN Document Server

    Les, Zbigniew

    2013-01-01

    This book presents the selected results of research on the further development of the shape understanding system (SUS) described in our previous book titled “Shape Understanding System: the First Steps Toward the Visual Thinking Machines”. This is the second book that presents the results of research in the area of thinking and understanding carried out by authors in the newly founded the Queen Jadwiga Research Institute of Understanding. In this book, the new term knowledge implementation is introduced to denote the new method of the meaningful learning in the context of machine understanding. SUS ability to understand is related to the different categories of objects such as the category of visual objects, the category of sensory objects and the category of text objects. In this book, new terms and concepts are introduced in order to describe and explain some issues connected with SUS development. These terms are explained by referring to the content of our books and other our works rather than to exist...

  2. Speech perception and reading: two parallel modes of understanding language and implications for acquiring literacy naturally.

    Science.gov (United States)

    Massaro, Dominic W

    2012-01-01

    I review 2 seminal research reports published in this journal during its second decade more than a century ago. Given psychology's subdisciplines, they would not normally be reviewed together because one involves reading and the other speech perception. The small amount of interaction between these domains might have limited research and theoretical progress. In fact, the 2 early research reports revealed common processes involved in these 2 forms of language processing. Their illustration of the role of Wundt's apperceptive process in reading and speech perception anticipated descriptions of contemporary theories of pattern recognition, such as the fuzzy logical model of perception. Based on the commonalities between reading and listening, one can question why they have been viewed so differently. It is commonly believed that learning to read requires formal instruction and schooling, whereas spoken language is acquired from birth onward through natural interactions with people who talk. Most researchers and educators believe that spoken language is acquired naturally from birth onward and even prenatally. Learning to read, on the other hand, is not possible until the child has acquired spoken language, reaches school age, and receives formal instruction. If an appropriate form of written text is made available early in a child's life, however, the current hypothesis is that reading will also be learned inductively and emerge naturally, with no significant negative consequences. If this proposal is true, it should soon be possible to create an interactive system, Technology Assisted Reading Acquisition, to allow children to acquire literacy naturally.

  3. Scaffolding students' understanding of force in pulley systems

    Science.gov (United States)

    Rouinfar, Amy; Madsen, Adrian M.; Hoang, Tram Do Ngoc; Puntambekar, Sadhana; Rebello, N. Sanjay

    2013-01-01

    Recent research results have found that students using virtual manipulatives perform as well or better on measures of conceptual understanding than their peers who used physical equipment. We report on a study with students in a conceptual physics laboratory using either physical or virtual manipulatives to investigate forces in pulley systems. Written materials guided students through a sequence of activities designed to scaffold their understanding of force in pulley systems. The activity sequences facilitated students' sense making by requiring them to make and test predictions about various pulley systems by building and comparing different systems. We investigate the ways in which students discuss force while navigating the scaffolding activities and how these discussions compare between the physical and virtual treatments.

  4. Book review: Serendipity: An ecologist’s quest to understand nature

    Science.gov (United States)

    Ball, E. E.; Adams, D. M.; Dupuie, J. N.; Jones, M. M.; McGovern, P. G.; Ruden, R. M.; Schmidt, S.R.; Vaziri, G. J.; Eeling, J. S.; Kirk, B. D.; McCombs, A. L.; Rabinowitz, A. B.; Thompson, K. M.; Hudson, Z. J.; Klaver, Robert W.

    2017-01-01

    A common thought among graduate students is: “how do established scientists get where they are today?” In Serendipity: An Ecologist’s Quest to Understand Nature, James Estes offers a personal reflection on research experiences spanning his 50-year career, beginning as a Ph.D. student in 1970 and concluding with recognition as a member of the National Academy of Sciences in 2014. Estes chronologically outlines the foundational trophic cascade ecology research that he and colleagues conducted in the Aleutian Islands, examining key relationships among kelp forests, sea otters, sea urchins, and killer whales through anecdotal stories of achievement and challenge. Estes’ 3 main goals in writing this book are to: (1) recount what he had learned from 50 years of research;...

  5. Understanding complex systems: lessons from Auzoux's and von ...

    Indian Academy of Sciences (India)

    2009-12-09

    Dec 9, 2009 ... Animal and human anatomy is among the most complex systems known, and suitable teaching methods have been of great importance in the progress of knowledge. Examining the human body is part of the process by which medical students come to understand living forms. However, the need to ...

  6. Metabolic modeling to understand and redesign microbial systems

    NARCIS (Netherlands)

    Heck, van Ruben G.A.

    2017-01-01

    The goals of this thesis are to increase the understanding of microbial metabolism and to functionally (re-)design microbial systems using Genome- Scale Metabolic models (GSMs). GSMs are species-specific knowledge repositories that can be used to predict metabolic activities for wildtype and

  7. Virtual Solar System Project: Building Understanding through Model Building.

    Science.gov (United States)

    Barab, Sasha A.; Hay, Kenneth E.; Barnett, Michael; Keating, Thomas

    2000-01-01

    Describes an introductory astronomy course for undergraduate students in which students use three-dimensional (3-D) modeling tools to model the solar system and develop rich understandings of astronomical phenomena. Indicates that 3-D modeling can be used effectively in regular undergraduate university courses as a tool to develop understandings…

  8. Contribution to the meaning and understanding of anticipatory systems

    Science.gov (United States)

    Kljajić, Miroljub

    2001-06-01

    The present article discusses the cybernetic method in the modelling and understanding of complex systems from the epistemological, semantic as well as psychological point of view. Biological and organisational systems are the most important among complex systems. According to Rosen [1] anticipatory systems is another name for complex systems because, in a way, they function to anticipate the future state in order to preserve its structure and functioning. This paper demonstrates a strong analogy between Rosen's modified definition of anticipatory systems [2] and decision-making through simulation in organisational systems. The possible meaning of several models modified in the anticipatory mode will also be discussed as for example: a) The modified Verhaulst Model and its anticipatory modification in the case of the description of human behavior, b) The Prey-Predator Model, and c) The Evans Market Model under different conditions of the demand and supply function.

  9. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2015-01-01

    This book is a study of the interactions between different types of systems, their environment, and their subsystems.  The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life.  Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts.  The book includes many examples covering various types of systems.  The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.  ·         Shows how system knowledge may be applied in many different areas without the need for deep mathematical knowledge; ·         Demonstrates how to model and simulate s...

  10. Water: Challenges at the Intersection of Human and Natural Systems

    Energy Technology Data Exchange (ETDEWEB)

    Futrell, J.H.; Gephart, R. E.; Kabat-Lensch, E.; McKnight, D. M.; Pyrtle, A.; Schimel, J. P.; Smyth, R. L.; Skole, D. L. Wilson, J. L.; Gephart, J. M.

    2005-09-01

    There is a growing recognition about the critical role water plays in sustaining people and society. This workshop established dialog between disciplinary scientists and program managers from diverse backgrounds in order to share perspectives and broaden community understanding of ongoing fundamental and applied research on water as a complex environmental problem. Three major scientific themes emerged: (1) coupling of cycles and process, with emphasis on the role of interfaces; (2) coupling of human and natural systems across spatial and temporal scales; and (3) prediction in the face of uncertainty. In addition, the need for observation systems, sensors, and infrastructure; and the need for data management and synthesis were addressed. Current barriers to progress were noted as educational and institutional barriers and the integration of science and policy.

  11. Desicion Support System For Natural Hazards

    Science.gov (United States)

    Vyazilov, E.

    2009-04-01

    recommendations should be reasonable. To resolve the above problems or to make them less significant it is necessary to develop decision support systems (DSS). DMs need not tables with initial data, analytical, forecasting and climatic information, but messages containing warnings on critical value accidence, information on probability of hazards, information on potential losses, and information on hazardous impacts and recommendations on decision making. DSS can do the following: take into account impacts on specific points and on the total area under consideration; allow for the effects of the environment on economic entities (objects) in any geographical region to be analyzed; distinguish impacts and changes caused both by different phenomena and by their combination; signal when objects are or can be in adverse environmental conditions, e.g. in the area affected by fog, storm, tropical cyclone or in the area where the probability of hazardous ice events is very high, etc. The main component of DSS is a knowledge base based on the following concept: if we know environmental conditions it is possible to predict potential impacts on the economy; if we know impacts it is possible to give a set of recommendations on how to prevent (reduce) losses or how to use natural resources most efficiently. Decision making criteria are safety of people and property, reduction of losses, increase of profit, materials saving, etc. Knowledge base is a set of rules formulated in a formalized way using if, that, else. If "Water level in S.-Petersburg >150 cm" that "To give out warning information "Hazards for building on coastal river Neva is possible" and recommendations "The valuable goods carry out in second floor" else "To switch another rule". To have a knowledge base in place it is necessary to: develop tools of identifying and getting knowledge from experts; arrange the information flow from available information systems (operational data, analyses, forecasts, climatic information) through

  12. Gas exchange measurements in natural systems

    International Nuclear Information System (INIS)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes 14 C, 222 Rn and 3 He. The distribution of natural radiocarbon has yielded the average rate of CO 2 exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The 222 Rn to 226 Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess 3 He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with 226 Ra and 3 H in order to allow the use of the 222 Rn and 3 He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO 2 exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables

  13. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  14. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  15. Life and Understanding: The Origins of "Understanding" in Self-Organizing Nervous Systems.

    Science.gov (United States)

    Yufik, Yan M; Friston, Karl

    2016-01-01

    This article is motivated by a formulation of biotic self-organization in Friston (2013), where the emergence of "life" in coupled material entities (e.g., macromolecules) was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems constitute a Markov blanket ; separating the internal states of a system from its surrounding states. In this article, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik and Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of "objects"; i.e., quasi-stable (stimulus bound) feature groupings that are conserved over multiple presentations (e.g., the experience of perceiving "apple" can be interrupted and resumed many times). Monitoring the variations in such groups enables the apprehension of behavior; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, "understanding" involves self-directed composition and manipulation of the ensuing "mental models" that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behavior of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex (Georgopoulos et al

  16. Understanding earth system models: how Global Sensitivity Analysis can help

    Science.gov (United States)

    Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Computer models are an essential element of earth system sciences, underpinning our understanding of systems functioning and influencing the planning and management of socio-economic-environmental systems. Even when these models represent a relatively low number of physical processes and variables, earth system models can exhibit a complicated behaviour because of the high level of interactions between their simulated variables. As the level of these interactions increases, we quickly lose the ability to anticipate and interpret the model's behaviour and hence the opportunity to check whether the model gives the right response for the right reasons. Moreover, even if internally consistent, an earth system model will always produce uncertain predictions because it is often forced by uncertain inputs (due to measurement errors, pre-processing uncertainties, scarcity of measurements, etc.). Lack of transparency about the scope of validity, limitations and the main sources of uncertainty of earth system models can be a strong limitation to their effective use for both scientific and decision-making purposes. Global Sensitivity Analysis (GSA) is a set of statistical analysis techniques to investigate the complex behaviour of earth system models in a structured, transparent and comprehensive way. In this presentation, we will use a range of examples across earth system sciences (with a focus on hydrology) to demonstrate how GSA is a fundamental element in advancing the construction and use of earth system models, including: verifying the consistency of the model's behaviour with our conceptual understanding of the system functioning; identifying the main sources of output uncertainty so to focus efforts for uncertainty reduction; finding tipping points in forcing inputs that, if crossed, would bring the system to specific conditions we want to avoid.

  17. The Relationship between Biology Teachers' Understanding of the Nature of Science and the Understanding and Acceptance of the Theory of Evolution

    Science.gov (United States)

    Cofré, Hernán; Cuevas, Emilia; Becerra, Beatriz

    2017-01-01

    Despite the importance of the theory of evolution (TE) to scientific knowledge, a number of misconceptions continue to be found among biology teachers. In this context, the first objective of this study was to identify the impact of professional development programme (PDP) on teachers' understanding of nature of science (NOS) and evolution and on…

  18. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    Science.gov (United States)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  19. Role of systems pharmacology in understanding drug adverse events

    Science.gov (United States)

    Berger, Seth I.; Iyengar, Ravi

    2011-01-01

    Systems pharmacology involves the application of systems biology approaches, combining large-scale experimental studies with computational analyses, to the study of drugs, drug targets, and drug effects. Many of these initial studies have focused on identifying new drug targets, new uses of known drugs, and systems-level properties of existing drugs. This review focuses on systems pharmacology studies that aim to better understand drug side effects and adverse events. By studying the drugs in the context of cellular networks, these studies provide insights into adverse events caused by off-targets of drugs as well as adverse events-mediated complex network responses. This allows rapid identification of biomarkers for side effect susceptibility. In this way, systems pharmacology will lead to not only newer and more effective therapies, but safer medications with fewer side effects. PMID:20803507

  20. A Framework for Understanding Post-Merger Information Systems Integration

    DEFF Research Database (Denmark)

    Alaranta, Maria; Kautz, Karlheinz

    2012-01-01

    that researchers and managers of post-merger IS integration should pay particular attention to the IS and organizational merger contexts; the need to build relationships and collaboration between the merging parties; power struggles; and, perhaps most importantly, understanding and treating post......This paper develops a theoretical framework for the integration of information systems (IS) after a merger or an acquisition. The framework integrates three perspectives: a structuralist, an individualist, and an interactive process perspective to analyze and understand such integrations....... The framework is applied to a longitudinal case study of a manufacturing company that grew through an acquisition. The management decided to integrate the production control IS via tailoring a new system that blends together features of existing IS. The application of the framework in the case study confirms...

  1. Understanding stakeholder preferences for flood adaptation alternatives with natural capital implications

    Directory of Open Access Journals (Sweden)

    Jonathon R. Loos

    2016-09-01

    Full Text Available Inland flood risks are defined by a range of environmental and social factors, including land use and floodplain management. Shifting patterns of storm intensity and precipitation, attributed to climate change, are exacerbating flood risk in regions across North America. Strategies for adapting to growing flood risks and climate change must account for a community's specific vulnerabilities, and its local economic, environmental, and social conditions. Through a stakeholder-engaged methodology, we designed an interactive decision exercise to enable stakeholders to evaluate alternatives for addressing specific community flood vulnerabilities. We used a multicriteria framework to understand what drives stakeholder preferences for flood mitigation and adaptation alternatives, including ecosystem-based projects. Results indicated strong preferences for some ecosystem-based projects that utilize natural capital, generated a useful discussion on the role of individual values in driving decisions and a critique of local environmental and hazard planning procedure, and uncovered support for a river management alternative that had previously been considered socially infeasible. We conclude that a multicriteria decision framework may help ensure that the multiple benefit qualities of natural capital projects are considered by decision makers. Application of a utility function can demonstrate the role of individual decision-maker values in decision outcomes and help illustrate why one alternative may be a better choice than another. Although designing an efficient and accurate multicriteria exercise is quite challenging and often data intensive, we imagine that this method is applicable elsewhere. It may be especially suitable to group decisions that involve varying levels of expertise and competing values, as is often the case in planning for the ecological and human impacts of climate change.

  2. Community Resilience: Increasing Public Understanding of Risk and Vulnerability to Natural Hazards through Informal Education

    Science.gov (United States)

    Salna, E.

    2017-12-01

    The Extreme Events Institute's (EEI) International Hurricane Research Center (IHRC) at Florida International University (FIU) in Miami, Florida, as a NOAA Weather-Ready Nation Ambassador, is dedicated to make South Florida, Ready, Responsive and Resilient. IHRC with funding from the Florida Division of Emergency Management (FDEM) has developed several museum exhibits and events. This includes the hands-on FIU Wall of Wind exhibit for the National Building Museum in Washington, DC, the Frost Science Museum in Miami, Florida, and the Museum of Discovery and Science (MODS) in Fort Lauderdale, Florida. The exhibit teaches the public about hurricane wind engineering research, enhanced building codes, and the importance of protecting your home's windows and doors with code-approved shutters. In addition, IHRC and MODS facilitate Eye of the Storm, a free-of-charge, community event with interactive hurricane science, and preparedness activities, including the entertaining Owlie Skywarn live theater show and live air cannon missile impact demonstrations. This annual event includes many local, state and federal partners, including NOAA and NWS. The IHRC also developed the FIU Wall of Wind Mitigation Challenge. As the next generation of engineers to address natural hazards and extreme weather, this STEM education event features a competition between high school teams to develop innovative wind mitigation concepts and real-life human safety and property protection solutions. IHRC and MODS are also developing a new exhibit of a Hazard/Risk Equation that will "come to life," through virtual reality (VR) technology in a state-of-the art 7D theater. The exhibit will provide a better public understanding of how changes in exposures and vulnerabilities will determine whether a community experiences an emergency, disaster or catastrophe. It will raise public consciousness and drive home the point that communities need not passively accept natural hazard risks. Ultimately, if we raise

  3. Understanding Science: Frameworks for using stories to facilitate systems thinking

    Science.gov (United States)

    ElShafie, S. J.; Bean, J. R.

    2017-12-01

    Studies indicate that using a narrative structure for teaching and learning helps audiences to process and recall new information. Stories also help audiences retain specific information, such as character names or plot points, in the context of a broader narrative. Stories can therefore facilitate high-context systems learning in addition to low-context declarative learning. Here we incorporate a framework for science storytelling, which we use in communication workshops, with the Understanding Science framework developed by the UC Museum of Paleontology (UCMP) to explore the application of storytelling to systems thinking. We translate portions of the Understanding Science flowchart into narrative terms. Placed side by side, the two charts illustrate the parallels between the scientific process and the story development process. They offer a roadmap for developing stories about scientific studies and concepts. We also created a series of worksheets for use with the flowcharts. These new tools can generate stories from any perspective, including a scientist conducting a study; a character that plays a role in a larger system (e.g., foraminifera or a carbon atom); an entire system that interacts with other systems (e.g., the carbon cycle). We will discuss exemplar stories about climate change from each of these perspectives, which we are developing for workshops using content and storyboard models from the new UCMP website Understanding Global Change. This conceptual framework and toolkit will help instructors to develop stories about scientific concepts for use in a classroom setting. It will also help students to analyze stories presented in class, and to create their own stories about new concepts. This approach facilitates student metacognition of the learning process, and can also be used as a form of evaluation. We are testing this flowchart and its use in systems teaching with focus groups, in preparation for use in teacher professional development workshops.

  4. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    Science.gov (United States)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  5. Understanding of the management information system based on MVC pattern

    Science.gov (United States)

    Chen, Sida

    2018-04-01

    With the development of the society, people have come to realize the significance of information, not only linguistically but also in the written form. To build an effective and efficient working flow, a new subject called Management Information System (MIS) came up. MIS is an integrated discipline, which utilizes comprehensive and systematical methods to manage information, and it enhances the work efficiency through building structured information platform. This paper demonstrates the Management Information System from shallow too deep with the understanding of MVC pattern, including its basic structure and application with ASP.NET. Also some discussions about its features are made in the last section.

  6. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2017-01-01

    Systems are everywhere and we are surrounded by them. We are a complex amalgam of systems that enable us to interact with an endless array of external systems in our daily lives. They are electrical, mechanical, social, biological, and many other types that control our environment and our well-being. By appreciating how these systems function, will broaden our understanding of how our world works. Readers from a variety of disciplines will benefit from the knowledge of system behavior they will gain from this book and will be able to apply those principles in various contexts. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent based systems, optimization, and discrete events and procedures. The diverse range of examples provided in this book, will allow readers to: Apply system knowledge at work and in daily life without deep mathematical knowledge; Build models and simulate system behaviors on a personal computer; Opti...

  7. Note on the natural system of units

    Indian Academy of Sciences (India)

    express L, M and T and therefore all other physical magnitudes in terms of the primary ones. In this Note we take stand with the conventional choice of natural units, making a single change for GN (Newton's constant) so as to avoid the square roots in expressing length, mass and time. We analyse the new proposal in the ...

  8. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.

    Science.gov (United States)

    Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Xiao, Cheng-Liang; Zhao, Yu-Liang; Wei, Yue-Zhou; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-03-20

    Studying the bonding nature of uranyl ion and graphene oxide (GO) is very important for understanding the mechanism of the removal of uranium from radioactive wastewater with GO-based materials. We have optimized 22 complexes between uranyl ion and GO applying density functional theory (DFT) combined with quasi-relativistic small-core pseudopotentials. The studied oxygen-containing functional groups include hydroxyl, carboxyl, amido, and dimethylformamide. It is observed that the distances between uranium atoms and oxygen atoms of GO (U-OG) are shorter in the anionic GO complexes (uranyl/GO(-/2-)) compared to the neutral GO ones (uranyl/GO). The formation of hydrogen bonds in the uranyl/GO(-/2-) complexes can enhance the binding ability of anionic GO toward uranyl ions. Furthermore, the thermodynamic calculations show that the changes of the Gibbs free energies in solution are relatively more negative for complexation reactions concerning the hydroxyl and carboxyl functionalized anionic GO complexes. Therefore, both the geometries and thermodynamic energies indicate that the binding abilities of uranyl ions toward GO modified by hydroxyl and carboxyl groups are much stronger compared to those by amido and dimethylformamide groups. This study can provide insights for designing new nanomaterials that can efficiently remove radionuclides from radioactive wastewater.

  9. From the Horse's Mouth: Why scientists' views are crucial to nature of science understanding

    Science.gov (United States)

    Hodson, Derek; Wong, Siu Ling

    2014-11-01

    Written in response to criticism of our work by Fouad Abd-El-Khalick, this position paper reaffirms and reinforces our position about the need to broaden and enrich the scope of nature of science (NOS) oriented curricula by exposing students to the voices of practising scientists. While Abd-El-Khalick's motivation for promoting the so-called consensus view of NOS is rooted in issues of assessment (or 'benchmarking', as he calls it), we argue that the major reason for teaching about NOS is its contribution to what Shen calls civic and cultural scientific literacy. We are critical of the consensus view for its philosophical naivety, failure to reflect contemporary scientific practice and potential for confusing students, and we re-state our view that it is important to expose students to a diversity of practice among the sub-disciplines of science. We argue that richer NOS understanding and a more authentic view of scientific practice can be achieved through direct and indirect contact with scientists at the cutting edge of research and development, which we characterise as learning about scientists, learning from scientists and learning with scientists.

  10. Towards understanding the nature of conflict of interest and its application to the discipline of nursing.

    Science.gov (United States)

    Crigger, Nancy J

    2009-10-01

    Most incidences of dishonesty in research, financial investments that promote personal financial gain, and kickback scandals begin as conflicts of interest (COI). Research indicates that healthcare professionals who maintain COI relationships make less optimal and more expensive patient care choices. The discovery of COI relationships also negatively impact patient and public trust. Many disciplines are addressing this professional issue, but little work has been done towards understanding and applying this moral category within a nursing context. Do COIs occur in nursing and are they problematic? What are the morally appropriate responses to COI for our discipline and for individual practicing nurses? In this paper I examine the nature of 'conflict of interest' as a general ethical category, its characteristics and its application to our discipline. Conflict of interest is an odd moral category that may actually or potentially result in immoral decisions. The moral justification for COI is grounded prime facie by the moral value of respect for persons and principle of fidelity from which trust is developed and maintained. In review of the historical development, there appears to be consensus on some qualities of COI that are presented. I conclude that making judgements about COI are challenging and often difficult to determine from a nursing perspective. Improving nurses' and professional organizations' awareness of COI and sharpening our ability to respond appropriately when COI arise can reduce potential harm and promote trust in those whom we serve.

  11. Are there martial art styles that represent natural systems?

    Directory of Open Access Journals (Sweden)

    Joachim T. Haug

    2015-12-01

    Full Text Available For didactics, systematically structured teaching contents are desirable, and natural systems would be most comprehensible. We tested whether serrada-escrima styles (SES, a type of Filipino martial arts, represent a natural system. Natural systems are considered to have an inner coherence. This means that based on some elements of the system the other elements can be predicted, based on knowledge of the characteristics of the elements of the system. SES is a good candidate to test this hypothesis, as it embraces only a relatively small set of techniques. It appears that SES indeed represents a natural, coherent system with 12 elements that can be grouped into three also coherent sets, each with four techniques. One basic pre-assumption is necessary to make SES a natural system; this pre-assumption is derived from knowledge of medieval European sword fighting, more precisely Messerfechten. We furthermore discuss indications for the historic background of SES.

  12. Study on supporting system for operator's comprehensive understanding

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corp. has participated in the development of a system to support the process of operator's plant understanding by the use of information processing techniques such as artificial intelligence since 1994. Analysis and model formation of the process leading to operator's comprehensive understanding of plant (mental model) are undertaken attempting to determine the basic structure of the mental model available for the description of knowledge using the precedent survey and to observe how to utilize operator's own knowledge. After consideration of the way by which plant operators utilize their physical knowledges and the knowledges of physical observation in practice, a basic structure composed of 3 components a qualitative causal network, a hierarchical function model and 3 links joining the two was proposed for the mental model. A questionnaire survey on operator's statements was made and the contents were assigned in several categories for objective analysis. An unified form usable to make a data base was established. Further, we have a plan to develop the first proto-type system to promote operator's understanding by 1998. (M.N.)

  13. Method and system for natural gas utilization

    International Nuclear Information System (INIS)

    Halmoe, T.M.

    1995-01-01

    The invention relates to an method on reducing the emission of carbon oxides during methanol production. (a) A first part of the natural feeding gas is to be converted to synthesis gas consisting of CO, H 2 , CO 2 , H 2 O and non-converted natural gas. (b) A second part of the natural feeding gas is to be combusted for the generation of heat used in the conversion process by means of which the volumes of CO 2 and H 2 O are formed. (c) The synthesis gas from (a) is to be converted to a product gas flow consisting of methanol and non-converted synthesis gas. (d) The product gas flow from (c) is to be cooled, and methanol is to be separated. (e) A first part of the non-converted gas from the separation step (d) is to be combined with the synthesis gas from (a). (f) A second part of the non-converted gas from the separation step (d) together with CO 2 and H 2 O from step (b) is to be led to a shift reactor for making the equilibrium of CO, H 2 , CO, and H 2 O. (g) CO from step (f) is to be converted with methanol from step (d) for production of acetic acid. 1 fig

  14. Human Nature and its Implications for the Legal System | Obioha ...

    African Journals Online (AJOL)

    This paper examines the implications the various conceptions of human nature hold for the legal system. No doubt, there are various and conflicting theories of human nature such that the concept of human nature seems to have remained elusive and pervasive. Some conceive man as nothing but matter pure and simple; ...

  15. Systemic thinking fundamentals for understanding problems and messes

    CERN Document Server

    Hester, Patrick T

    2014-01-01

    Whether you’re an academic or a practitioner, a sociologist, a manager, or an engineer, one can benefit from learning to think systemically.  Problems (and messes) are everywhere and they’re getting more complicated every day.  How we think about these problems determines whether or not we’ll be successful in understanding and addressing them.  This book presents a novel way to think about problems (and messes) necessary to attack these always-present concerns.  The approach draws from disciplines as diverse as mathematics, biology, and psychology to provide a holistic method for dealing with problems that can be applied to any discipline. This book develops the systemic thinking paradigm, and introduces practical guidelines for the deployment of a systemic thinking approach.

  16. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms.

    Science.gov (United States)

    Park, Beom Gi; Kim, Minsuk; Kim, Joonwon; Yoo, Heewang; Kim, Byung-Gee

    2017-01-01

    Heterotrophic oleaginous microorganisms continue to draw interest as they can accumulate a large amount of lipids which is a promising feedstock for the production of biofuels and oleochemicals. Nutrient limitation, especially nitrogen limitation, is known to effectively trigger the lipid production in these microorganisms. For the aim of developing improved strains, the mechanisms behind the lipid production have been studied for a long time. Nowadays, system-level understanding of their metabolism and associated metabolic switches is attainable with modern systems biology tools. This work reviews the systems biology studies, based on (i) top-down, large-scale 'omics' tools, and (ii) bottom-up, mathematical modeling methods, on the heterotrophic oleaginous microorganisms with an emphasis on further application to metabolic engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. System Behaviour Charts Inform an Understanding of Biodiversity Recovery

    Directory of Open Access Journals (Sweden)

    Simon A. Black

    2015-01-01

    Full Text Available Practitioners working with species and ecosystem recovery typically deal with the complexity of, on one hand, lack of data or data uncertainties and, on the other hand, demand for critical decision-making and intervention. The control chart methods of commercial and industrial and environmental monitoring can complement an ecological understanding of wildlife systems including those situations which incorporate human activities and land use. Systems Behaviour Charts are based upon well-established control chart methods to provide conservation managers with an approach to using existing data and enable insight to aid timely planning of conservation interventions and also complement and stimulate research into wider scientific and ecological questions. When the approach is applied to existing data sets in well-known wildlife conservation cases, the subsequent Systems Behaviour Charts and associated analytical criteria demonstrate insights which would be helpful in averting problems associated with each case example.

  18. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Understanding the behavior of floodplains as human-water systems

    Science.gov (United States)

    Di Baldassarre, G.; Brandimarte, L.

    2012-12-01

    Floodplains are among the most valuable ecosystems for supporting biodiversity and providing services to the environment. Moreover, they are home of approximately one-sixth of the world population as they offer favorable conditions for economic development. As a result, flood disasters currently affect more than 100 million people a year. Sadly, flood losses and fatalities are expected to increase further in many countries because of population growth as well as changes in land use and climate. Given the relevance of floodplain systems, a number of social scientists have examined how the frequency and severity of flooding often determine whether human development in floodplains is desirable or not. Meanwhile, many earth scientists have investigated the impact of human activities (e.g. land-use changes, urbanization, river training) on the frequency and magnitude of floods. In fact, as human activities change the frequency of flooding, the frequency of flooding affects human developments in floodplain areas. Yet, these dynamic interactions between floods and societies and the associated feedback mechanisms remain largely unexplored and poorly understood. As a result, we typically consider humans as external forcing (or boundary condition) without representing the feedback loops and our prediction of future trajectories are therefore extremely limited. This presentation shows a first attempt to understand the behavior of floodplains as coupled human-water systems. In particular, we analyzed a number of long time series of hydrological and population data in the Po River Basin (Italy) to explore the feedback mechanisms, reciprocal effects, surprises, and threshold mechanisms, taking place in floodplain systems. The outcomes of the study enable a better understanding of how the occurrences of floods shape human developments while, at the same time, human activities shape the magnitude and frequency of floods. The presentation also discusses the opportunities offered by

  20. Visualization and natural control systems for microscopy

    DEFF Research Database (Denmark)

    Taylor, Russell M.; Borland, David; Brooks, Frederick P.

    2005-01-01

    This chapter presents these microscope systems, along with brief descriptions of the science experiments driving the development of each system. Beginning with a discussion of the philosophy that has driven the Nanoscale Science Research Group (NSRG) and the methods used, the chapter describes th...

  1. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    Science.gov (United States)

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  2. Understanding social reproduction: The recursive nature of structure and agency within a science class

    Science.gov (United States)

    Seiler, Gale A.

    Schools and science classrooms within schools continue to contribute to social reproduction and to the disenfranchisement of inner city African American students though attempts have been made to remedy the situation through standards, high-stakes testing, and compensatory programs. Such reforms ignore the sociocultural, political, and economic contexts of the individual students in the schools they are impacting. They do not take into account the uniqueness and diversity of the learners in these settings and have not included the voices of the students. Another possibility was studied here; that of starting with the cultural capital of the learner rather than with external standards. In a non-required science course at a local high school two coteachers endeavored to enact a student-emergent curriculum as a way to foster student agency and to counteract the reproductive nature of schools. The class was examined as a field within multiple other fields. The dialectical relationship between structure and agency in the class was used to frame the analysis and the tension between them was examined at several levels through video and audio analysis. Structural and rational choice views of action were abandoned in favor of an understanding hinged upon strategies of action that actors construct from cultural toolkits in and through practice. In this setting the students and teachers co-constructed a class that can be described and characterized in certain ways yet contained many counter-examples and alternative characterizations. A continuum of successes and failures, agency and subjectivity can be found in the trends and counter-trends in the course. The contradictions were examined to portray the complexity of the interactions and the possibilities for agency within them.

  3. Spoken Language Understanding Systems for Extracting Semantic Information from Speech

    CERN Document Server

    Tur, Gokhan

    2011-01-01

    Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, usin

  4. Natural disasters and the gas pipeline system.

    Science.gov (United States)

    1996-11-01

    Episodic descriptions are provided of the effects of the Loma Prieta earthquake (1989) on the gas pipeline systems of Pacific Gas & Electric Company and the Cit of Palo Alto and of the Northridge earthquake (1994) on Southern California Gas' pipeline...

  5. Thermal analysis of a kitchen natural ventilation system with ...

    African Journals Online (AJOL)

    A numerical study was conducted to perform the design analysis of a novel kitchen natural ventilation system of Madirelo Hotel School. The analysis was performed by using Computational Fluid Dynamics to assess the performance of natural ventilation system. The design is expected to be energy efficient and cost effective ...

  6. The Importance of Ecology-Based Nature Education Project in Terms of Nature Integration and Understanding the Human-Ecosystem Relationship

    Science.gov (United States)

    Meydan, Ali

    2011-01-01

    The aim of this project is to define the importance of 12-day ecology-based education training upon integration with nature and understanding the human-ecosystem relationship. In accordance with this purpose, there has been collected some survey data interviewing with the participants of "Lake Beysehir National Park and Ecology-based Nature…

  7. Will smart surveillance systems listen, understand and speak Slovene?

    Directory of Open Access Journals (Sweden)

    Simon Dobrišek

    2013-12-01

    Full Text Available The paper deals with the spoken language technologies that could enable the so-called smart (intelligent surveillance systems to listen, understand and speak Slovenian in the near future. Advanced computational methods of artificial perception and pattern recognition enable such systems to be at least to some extent aware of the environment, the presence of people and other phenomena that could be subject to surveillance. Speech is one such phenomenon that has the potential to be a key source of information in certain security situations. Technologies that enable automatic speech and speaker recognition as well as their psychophysical state by computer analysis of acoustic speech signals provide an entirely new dimension to the development of smart surveillance systems. Automatic recognition of spoken threats, screaming and crying for help, as well as a suspicious psycho-physical state of a speaker provide such systems to some extent with intelligent behaviour. The paper investigates the current state of development of these technologies and the requirements and possibilities of these systems to be used for the Slovenian spoken language, as well as different possible security application scenarios. It also addresses the broader legal and ethical issues raised by the development and use of such technologies, especially as audio surveillance is one of the most sensitive issues of privacy protection.

  8. Creativity Understandings, Evolution: from Genius to Creative Systems

    Directory of Open Access Journals (Sweden)

    Jūratė Černevičiūtė

    2014-10-01

    Full Text Available The understanding of creativity in the social sciencies became more complex with the course of time. The concepts of creative individual, creative process and environment are discussed. Looking at the environment, distinction was made on three levels: macro, meso and micro. The impact of environments on creativity is analyzed, focusing attention on the collective creativity as the positive micro-environmental factor for innovations. Insights are gained about the tendency to move from an exclusive, elite, narrow concept of creativity, measured by the creation of products and their abundance, towards a broader, democratic concept of everyday creativity of the most people. The conclusion is that the creative industries of the exceptional creativity of genius or talent and mysticism are gradually transformed to broader creativity as the governed system, emphasizing creativity links with internal elements of the system and with the social context.

  9. LNG systems for natural gas propelled ships

    Science.gov (United States)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  10. Future systems for living with nature

    Directory of Open Access Journals (Sweden)

    Vesna Petrešin

    2000-01-01

    Full Text Available The architect Jan Kaplicky reached the recognition of his Future Systems and their visionary architectural, design and urban concepts only within the past decade. Their aesthetics, inspired by the latest air- and space technology and materials, has influenced the architectural form of the late 20th century. Future Systems have been dealing with dwelling in various media (earth, air, water, space and developing ideas about reshaping the city centres through their radical urbanism. The numerous flexible and mobile designs have proved to be astonishingly advanced through their ecologic and economic efficiency.

  11. Neurobiological approaches to a better understanding of human nature and human values

    Directory of Open Access Journals (Sweden)

    Gerald Hüther

    2006-04-01

    Full Text Available The most important finding made in the field of neurobiological research during the last decade is the discovery of the enormous experience-dependent plasticity of the human brain. The elaboration and stabilization of synaptic connectivity, and therefore, the complexity of neuronal networks in the higher brain centres depend to a far greater extent than previously believed on how – or rather, for which purpose – an individual uses his brain, the goals pursued, the experiences made in the course of his life, the models used for orientation, the values providing stability and eliciting a sense of commitment. The transmission and internalization of culture-specific abilities and of culture-specific values is achieved primarily during childhood by nonverbal communication (mirror neuron system, imitation learning as well as by implicit and explicit experiences (reward system, avoidance and reinforcement learning. Therefore the structural and functional organization of the human brain is crucially determined by social and cultural factors. Especially the frontal cortex with its highly complex neuronal networks involved in executive functions, evaluation an decision making must be conceptualized as a social, culturally shaped construct. The most important prerequisites for the transgenerational transmission of human values and their deep implementation into the higher frontocortical networks of the brains of subsequent generations are secure affectional relationships and a broad spectrum of different challenges. Only under such conditions, children are able to stabilize sufficiently complex networks and internal representations for metacognitive competences in their brains. This delicate process of experience-dependent organization of neuronal connectivity is seriously and often also persistently hampered or prematurely terminated by uncontrollable stress experiences. This danger ought be minimized by education programs aiming at the implementation

  12. Applied information system-based in enhancing students' understanding towards higher order thinking (HOTS)

    Science.gov (United States)

    Hua, Ang Kean; Ping, Owi Wei

    2017-05-01

    The application of information and communications technology (ICT) had become more important in our daily life, especially in educational field. Teachers are encouraged to use information system-based in teaching Mathematical courses. Higher Order Thinking Skills (HOTS) approach is unable to explain using chalk and talk methods. It needs students to analyze, evaluate, and create by their own natural abilities. The aim of this research study was to evaluate the effectiveness of the application information system-based in enhance the students understanding about HOTS question. Mixed-methods or quantitative and qualitative approach was applied in collecting data, which involve only the standard five students and the teachers in Sabak Bernam, Selangor. Pra-postests was held before and after using information system-based in teaching to evaluate the students' understanding. The result from post-test indicates significant improvement which proves that the use of information system based able to enhance students' understanding about HOTS question and solve it. There were several factor influenced the students such as students' attitude, teachers attraction, school facilities, and computer approach. Teachers play an important role in attracting students to learn. Therefore, the school should provide a conducive learning environment and good facilities for students to learn so that they are able to access more information and always exposed to new knowledge. As conclusion, information system-based are able to enhance students understanding the need of HOTS questions and solve it.

  13. Natural history of eukaryotic DNA methylation systems.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2011-01-01

    Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not

  14. Business Communication and the Natural Environment: Using Traditional and Contemporary Perspectives to Understand the Connections.

    Science.gov (United States)

    Bullis, Connie

    1997-01-01

    Argues that business communication scholarship has not attended to the natural environment. Notes that organizational scholarship has theorized business as it relates to the natural environment but has not thoroughly understood how communication functions in this relationship. Argues that business communication should adopt a Gaian perspective…

  15. Understanding the Trembles of Nature: How Do Disaster Experiences Shape Bank Risk Taking?

    NARCIS (Netherlands)

    Bos, Jaap; Li, Runliang

    2017-01-01

    This paper examines the impact of natural disaster experiences on banks’ business practices. Using earthquake and banking data for California, we find that banks that have had stronger earthquake experiences change their practices, both as a result of the natural disasters’ effects on local deposit

  16. Understanding Natural Sciences Education in a Reggio Emilia-Inspired Preschool

    Science.gov (United States)

    Inan, Hatice Zeynep; Trundle, Kathy Cabe; Kantor, Rebecca

    2010-01-01

    This ethnographic study explored aspects of how the natural sciences were represented in a Reggio Emilia-inspired laboratory preschool. The natural sciences as a discipline--a latecomer to preschool curricula--and the internationally known approach, Reggio Emilia, interested educators and researchers, but there was little research about science in…

  17. What Does "Natural Capital" Do? The Role of Metaphor in Economic Understanding of the Environment

    Science.gov (United States)

    Akerman, Maria

    2005-01-01

    At the time of its introduction at the end of the 1980s, the concept of natural capital represented new, more ecologically aware thinking in economics. As a symbol of novel thinking, the metaphor of natural capital stimulated a debate between different disciplinary traditions on the definitions of the concept and research priorities and methods.…

  18. Understanding the Heterogeneous Nature of Science: A Comprehensive Notion of PCK for Scientific Literacy

    Science.gov (United States)

    Van Dijk, Esther M.

    2014-01-01

    This paper is concerned with the conceptualization of pedagogical content knowledge (PCK) for teaching about the nature of science. In contrast to the view that science teachers need to develop a specific "PCK for nature of science," an alternative, more comprehensive notion of PCK for science teaching is suggested. The point of…

  19. Understanding the social acceptability of natural resource decisionmaking processes by using a knowledge base modeling approach.

    Science.gov (United States)

    Christina Kakoyannis; Bruce Shindler; George. Stankey

    2001-01-01

    Natural resource managers are being confronted with increasing conflict and litigation with those who find their management plans unacceptable. Compatible and sustainable management decisions necessitate that natural resource agencies generate plans that are not only biologically possible and economically feasible but also socially acceptable. Currently, however, we...

  20. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  1. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  2. Biochar as enhancement material in natural attenuation systems

    Science.gov (United States)

    Kirmizakis, P.; Doherty, R.; Mendonça, C. A.; Costeira, R.; Allen, C.; Kulakov, L.

    2017-12-01

    Bioelectrochemical systems (BESs) have gained increasingly popularity over the last years especially in monitoring and clean-up of contaminants. BES are systems that combine wastewater treatment with energy production and resource recovery by harness the electro-activity of microorganisms. BESs consist of two electrodes, an anode and a cathode, separated with a proton-exchange membrane and an external electrical circuit which permits the passage of electrons generated at the anode to the cathode. Here we present a speed up of this natural breakdown process by providing a place to capture the anaerobic contaminants onto Biochar which captures the contaminants and also acts like a high surface area electrode passing electrons to the aerobic environments. For the purpose of this project, identical graphite and Teflon cells were constructed to compare and determine whether a Biochar BES was more efficient than a standard BES and more efficient than Biochar as sorption agent. Current production monitoring used as a real-time view of the process. The Biochar BES out performed both the BES and the Biochar BES in reduction of contaminants across the board. Our results suggest that the maximum growth and electro-activity of the microbial community occurred in the Biochar BES. This is in agreement with microbial findings which suggests that Biochar BES has a less diverse population which is more focused towards degradation and electroactive activity. For further understanding of the results, further geochemical analysis performed to provide additional insight on the process. This works shows clearly the applicability and efficiency of biochar among other electrode and sorption materials and electrical monitoring is versatile experimental tool to the remediation process and can be used as a non-destructive way to indirectly reveal process leading in understanding basic fundamental physical behaviours under specific experimental conditions.

  3. Current understanding of interactions between nanoparticles and the immune system

    International Nuclear Information System (INIS)

    Dobrovolskaia, Marina A.; Shurin, Michael; Shvedova, Anna A.

    2016-01-01

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  4. Understanding multinational companies in public health systems, using a competitive advantage framework

    Science.gov (United States)

    2011-01-01

    Background This paper discusses the findings of a study which developed five case studies of five multinational health care companies involved in public health care systems. Strategies were analysed in terms of attitude to marketing, pricing and regulation. The company strategies have been subjected to an analysis using Porter's Five Forces, a business strategy framework, which is unusual in health policy studies. Methods This paper shows how analysing company strategy using a business tool can contribute to understanding the strategies of global capital in national health systems. It shows how social science methodologies can draw from business methods to explain company strategies. Results The five companies considered in this paper demonstrate that their strategies have many dimensions, which fit into Porter's Five Forces of comparative advantage. More importantly the Five Forces can be used to identify factors that influence company entry into public health care systems. Conclusions The process of examining the strategic objectives of five health care companies shows that a business tool can help to explain the actions and motives of health care companies towards public health care systems, and so contribute to a better understanding of the strategies of global capital in national health systems. Health service commissioners need to understand this dynamic process, which will evolve as the nature of public health care systems change. PMID:21722372

  5. Understanding multinational companies in public health systems, using a competitive advantage framework

    Directory of Open Access Journals (Sweden)

    Lethbridge Jane

    2011-07-01

    Full Text Available Abstract Background This paper discusses the findings of a study which developed five case studies of five multinational health care companies involved in public health care systems. Strategies were analysed in terms of attitude to marketing, pricing and regulation. The company strategies have been subjected to an analysis using Porter's Five Forces, a business strategy framework, which is unusual in health policy studies. Methods This paper shows how analysing company strategy using a business tool can contribute to understanding the strategies of global capital in national health systems. It shows how social science methodologies can draw from business methods to explain company strategies. Results The five companies considered in this paper demonstrate that their strategies have many dimensions, which fit into Porter's Five Forces of comparative advantage. More importantly the Five Forces can be used to identify factors that influence company entry into public health care systems. Conclusions The process of examining the strategic objectives of five health care companies shows that a business tool can help to explain the actions and motives of health care companies towards public health care systems, and so contribute to a better understanding of the strategies of global capital in national health systems. Health service commissioners need to understand this dynamic process, which will evolve as the nature of public health care systems change.

  6. Understanding multinational companies in public health systems, using a competitive advantage framework.

    Science.gov (United States)

    Lethbridge, Jane

    2011-07-01

    This paper discusses the findings of a study which developed five case studies of five multinational health care companies involved in public health care systems. Strategies were analysed in terms of attitude to marketing, pricing and regulation. The company strategies have been subjected to an analysis using Porter's Five Forces, a business strategy framework, which is unusual in health policy studies. This paper shows how analysing company strategy using a business tool can contribute to understanding the strategies of global capital in national health systems. It shows how social science methodologies can draw from business methods to explain company strategies. The five companies considered in this paper demonstrate that their strategies have many dimensions, which fit into Porter's Five Forces of comparative advantage. More importantly the Five Forces can be used to identify factors that influence company entry into public health care systems. The process of examining the strategic objectives of five health care companies shows that a business tool can help to explain the actions and motives of health care companies towards public health care systems, and so contribute to a better understanding of the strategies of global capital in national health systems. Health service commissioners need to understand this dynamic process, which will evolve as the nature of public health care systems change.

  7. The Impact of Designing and Evaluating Molecular Animations on How Well Middle School Students Understand the Particulate Nature of Matter

    Science.gov (United States)

    Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph S.

    2010-01-01

    In this study, we investigated whether the understanding of the particulate nature of matter by students was improved by allowing them to design and evaluate molecular animations of chemical phenomena. We developed Chemation, a learner-centered animation tool, to allow seventh-grade students to construct flipbook-like simple animations to show…

  8. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  9. Do Pre-Service Science Teachers Have Understanding of the Nature of Science?: Explicit-Reflective Approach

    Science.gov (United States)

    Örnek, Funda; Turkey, Kocaeli

    2014-01-01

    Current approaches in Science Education attempt to enable students to develop an understanding of the nature of science, develop fundamental scientific concepts, and develop the ability to structure, analyze, reason, and communicate effectively. Students pose, solve, and interpret scientific problems, and eventually set goals and regulate their…

  10. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    Science.gov (United States)

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  11. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-science Majors

    Science.gov (United States)

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-10-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at examining the correlation therein. Thirty-eight non-science majors, enrolled in a science course for non-specialists held in a local community college, evaluated three health news articles by rating the extent to which they agreed with the reported claims and providing as many justifications as possible. The majority of the participants were able to evaluate and justify their viewpoint from multiple perspectives. Students' evaluation was compared with their NOS conceptions, including the social and cultural embedded NOS, the tentative NOS, the peer review process and the community of practice. Results indicated that participants' understanding of the tentative NOS was significantly correlated with multiple perspective evaluation of science news reports of socioscientific nature (r = 0.434, p media of socioscientific nature. However, the null result for other target NOS aspects in this study suggested a lack of evidence to assume that understanding the social dimensions of science would have significant influence on the evaluation of science in the media. Future research on identifying the reasons for why and why not NOS understandings are applied in the evaluation will move this field forward.

  12. Local Conceptualisation of Nature, Forest Knowledge Systems and ...

    African Journals Online (AJOL)

    The results show that the concept of nature is well embedded in the social representation of the vital space of the people of the study area. Three forest management knowledge systems were derived from this concept of nature that combines the space, the time, the supernatural and the distance between forests and its ...

  13. Linking human and natural systems in the planning process

    Science.gov (United States)

    Susan I. Stewart; Miranda H. Mockrin; Roger B. Hammer

    2012-01-01

    Planning links human and natural systems in the urban-rural interface by engaging people in consideration of the future of natural resources. We review evolving ideas about what planning entails, who it involves, and what its outcomes should be. Sense of place, collaboration, emergent planning, and other new developments in planning are discussed. Smaller plans,...

  14. The South African national non-natural mortality surveillance system ...

    African Journals Online (AJOL)

    Background. While individual mortuaries have recorded data for non-natural deaths in time-limited studies, there have been no systematic efforts to draw forensic-medical services and state mortuaries into a nationwide fatal injury surveillance system. Beginning in June 1998, the National Non-Natural Mortality Surveillance ...

  15. Application of the SP theory of intelligence to the understanding of natural vision and the development of computer vision.

    Science.gov (United States)

    Wolff, J Gerard

    2014-01-01

    The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.

  16. Natural coordinates for a class of Benenti systems

    International Nuclear Information System (INIS)

    Blaszak, Maciej; Sergyeyev, Artur

    2007-01-01

    We present explicit formulas for the coordinates in which the Hamiltonians of the Benenti systems with flat metrics take natural form and the metrics in question are represented by constant diagonal matrices

  17. Natural coordinates for a class of Benenti systems

    Energy Technology Data Exchange (ETDEWEB)

    Blaszak, Maciej [Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)]. E-mail: blaszakm@amu.edu.pl; Sergyeyev, Artur [Silesian University in Opava, Mathematical Institute, Na Rybnicku 1, 746 01 Opava (Czech Republic)]. E-mail: artur.sergyeyev@math.slu.cz

    2007-05-21

    We present explicit formulas for the coordinates in which the Hamiltonians of the Benenti systems with flat metrics take natural form and the metrics in question are represented by constant diagonal matrices.

  18. Bringing together social-ecological system and territoire concepts to explore nature-society dynamics

    Directory of Open Access Journals (Sweden)

    Olivier Barreteau

    2016-12-01

    Full Text Available We examine two academic traditions that address the nature-society interface. These traditions are organized around two main concepts: social-ecological system and territoire. These traditions have grown independently and are rooted respectively in ecology and social geography. We show that they have much in common: Both come with a systemic view of the nature-society interface and have the intention of understanding better the relations between nature and society and improving their sustainability. However, they differ in how they deal with space and society. We foresee that the combination of both traditions could improve the understanding of these systems, their definition, and their evolution, and hence, the capacity to assess and manage their resilience.

  19. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  20. When nature's robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies.

    Science.gov (United States)

    Reisz, Julie A; Barrett, Alexander S; Nemkov, Travis; Hansen, Kirk C; D'Alessandro, Angelo

    2018-03-14

    Proteins have been historically regarded as "nature's robots": Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.

  1. Surmounting the Tower of Babel: Monolingual and bilingual 2-year-olds' understanding of the nature of foreign language words.

    Science.gov (United States)

    Byers-Heinlein, Krista; Chen, Ke Heng; Xu, Fei

    2014-03-01

    Languages function as independent and distinct conventional systems, and so each language uses different words to label the same objects. This study investigated whether 2-year-old children recognize that speakers of their native language and speakers of a foreign language do not share the same knowledge. Two groups of children unfamiliar with Mandarin were tested: monolingual English-learning children (n=24) and bilingual children learning English and another language (n=24). An English speaker taught children the novel label fep. On English mutual exclusivity trials, the speaker asked for the referent of a novel label (wug) in the presence of the fep and a novel object. Both monolingual and bilingual children disambiguated the reference of the novel word using a mutual exclusivity strategy, choosing the novel object rather than the fep. On similar trials with a Mandarin speaker, children were asked to find the referent of a novel Mandarin label kuò. Monolinguals again chose the novel object rather than the object with the English label fep, even though the Mandarin speaker had no access to conventional English words. Bilinguals did not respond systematically to the Mandarin speaker, suggesting that they had enhanced understanding of the Mandarin speaker's ignorance of English words. The results indicate that monolingual children initially expect words to be conventionally shared across all speakers-native and foreign. Early bilingual experience facilitates children's discovery of the nature of foreign language words. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Orion Versus Poseidon: Understanding How Nasa's Crewed Capsule Survives Nature's Fury

    Science.gov (United States)

    Barbre, Robert E., Jr.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-Earth orbit and is currently undergoing a series of tests including Exploration Flight Test (EFT)-1. This design must address the natural environment to which the capsule and launch vehicle are exposed during all mission phases. In addition, the design must, to the best extent possible, implement the same process and data to be utilized on launch day. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  3. Study of Natural Convection Passive Cooling System for Nuclear Reactors

    Science.gov (United States)

    Abdillah, Habibi; Saputra, Geby; Novitrian; Permana, Sidik

    2017-07-01

    Fukushima nuclear reactor accident occurred due to the reactor cooling pumps and followed by all emergencies cooling systems could not work. Therefore, the system which has a passive safety system that rely on natural laws such as natural convection passive cooling system. In natural convection, the cooling material can flow due to the different density of the material due to the temperature difference. To analyze such investigation, a simple apparatus was set up and explains the study of natural convection in a vertical closed-loop system. It was set up that, in the closed loop, there is a heater at the bottom which is representing heat source system from the reactor core and cooler at the top which is showing the cooling system performance in room temperature to make a temperature difference for convection process. The study aims to find some loop configurations and some natural convection performances that can produce an optimum flow of cooling process. The study was done and focused on experimental approach and simulation. The obtained results are showing and analyzing in temperature profile data and the speed of coolant flow at some point on the closed-loop system.

  4. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  5. The Integrated Information System for Natural Disaster Mitigation

    Directory of Open Access Journals (Sweden)

    Junxiu Wu

    2007-08-01

    Full Text Available Supported by the World Bank, the Integrated Information System for Natural Disaster Mitigation (ISNDM, including the operational service system and network telecommunication system, has been in development for three years in the Center of Disaster Reduction, Chinese Academy of Sciences, based on the platform of the GIS software Arcview. It has five main modules: disaster background information, socio- economic information, disaster-induced factors database, disaster scenarios database, and disaster assessment. ISNDM has several significant functions, which include information collection, information processing, data storage, and information distribution. It is a simple but comprehensive demonstration system for our national center for natural disaster reduction.

  6. Contributions of the US state park system to nature recreation.

    Science.gov (United States)

    Siikamäki, Juha

    2011-08-23

    Nature recreation in the United States concentrates in publicly provided natural areas. They are costly to establish and maintain, but their societal contributions are difficult to measure. Here, a unique approach is developed to quantifying nature recreation services generated by the US state park system. The assessment first uses data from five national surveys conducted between 1975 and 2007 to consistently measure the amount of time used for nature recreation. The surveys comprise two official federal surveys and their predecessors. Each survey was designed to elicit nationally representative, detailed data on how people divide their time into different activities. State-level data on time use for nature recreation were then matched with information on the availability of state parks and other potentially important drivers of recreation, so that statistical estimation methods for nonexperimental panel data (difference-in-differences) could be used to examine the net contribution of state parks to nature recreation. The results show that state parks have a robust positive effect on nature recreation. For example, the approximately 2 million acres of state parks established between 1975 and 2007 are estimated to contribute annually 600 million hours of nature recreation (2.7 h per capita, approximately 9% of all nature recreation). All state parks generate annually an estimated 2.2 billion hours of nature recreation (9.7 h per capita; approximately 33% of all nature recreation). Using conventional approaches to valuing time, the estimated time value of nature recreation services generated by the US state park system is approximately $14 billion annually.

  7. Understanding the Nature of Local-Global Interactions in Istanbul’s Retail Property Market

    Directory of Open Access Journals (Sweden)

    Fatih Eren

    2014-07-01

    Full Text Available Today, capital, people and information flows have increased more than ever before among different regions in the world. Every flow creates a different local-global interaction in its own social environment. One of social environments in which this kind of interactions occurs is property markets. There are some theories to explain the nature of local and global interactions in social sciences literature. However, the success of these theories in explaining the nature of local-global interactions in a property market became subject to a research very few. This research aims to make a contribution to this area. The study also intends to find general answers to some important questions emerge in the internationalization process of property markets. The study focuses on the three well-accepted interaction theories of social sciences, which are imperialism, globalisation and glocalisation. The validity of the assumptions of these theories in the case of Istanbul’s retail property market is questioned in this research. The emergence of social structures and the specific behaviours of these structures in local property markets may be understood better when true point of view is found out about interactions. A qualitative methodology is followed; interview and document analysis methods are used in the study. Findings show that the nature of local-global interactions experienced in Istanbul’s retail property market is very unique so it is not possible to explain this unique nature using the perspective of only one settled theory.

  8. Freezing Point of Milk: A Natural Way to Understand Colligative Properties

    Science.gov (United States)

    Novo, Mercedes; Reija, Belen; Al-Soufi, Wajih

    2007-01-01

    A laboratory experiment is presented in which the freezing point depression is analyzed using milk as solution. The nature of milk as a mixture of different solutes makes it a suitable probe to learn about colligative properties. The first part of the experiment illustrates the analytical use of freezing point measurements to control milk quality,…

  9. Influences of Teleological and Lamarckian Thinking on Student Understanding of Natural Selection

    Science.gov (United States)

    Stover, Shawn K.; Mabry, Michelle L.

    2007-01-01

    Previous research has demonstrated creationist, Lamarckian, and teleological reasoning in high school and college students. These lines of thinking conflict with the Darwinian notion of natural selection, which serves as the primary catalyst for biological evolution. The current study assessed evolutionary conceptions in non-science majors,…

  10. From landscapes to soundscapes: understanding and managing natural quiet in the national parks

    Science.gov (United States)

    Robert Manning; William Valliere; Jeffery Hallo; Peter Newman; Ericka Pilcher; Michael Savidge; Dan Dugan

    2007-01-01

    Research at Muir Woods Natural Monument suggests that soundscapes are an important component of parks and outdoor recreation, that human-caused noise is a potentially important indicator of quality for park soundscapes, and that visitors have normative standards for the maximum acceptable level of human-caused noise in parks. Formulating indicators and standards of...

  11. Developing Conceptual Understanding of Natural Selection: The Role of Interest, Efficacy, and Basic Prior Knowledge

    Science.gov (United States)

    Linnenbrink-Garcia, Lisa; Pugh, Kevin J.; Koskey, Kristin L. K.; Stewart, Victoria C.

    2012-01-01

    Changes in high school students' (n = 94) conceptions of natural selection were examined as a function of motivational beliefs (individual interest, academic self-efficacy), basic prior knowledge, and gender across three assessments (pre, post, follow-up). Results from variable-centered analyses suggested that these variables had relatively little…

  12. Understanding the Views of the Nature of Science of Undergraduate Science, Technology, Engineering, and Mathematics Students

    Science.gov (United States)

    Hypolite, Karen L.

    2012-01-01

    Much of the nature of science research has been focused on high school students. High school students are primarily the target of such research to aid and to guide them in making informed decisions about possible career choices in the sciences (Bell, Blair, Crawford, & Lederman, 2002). Moreover, during review of the literature, little to no…

  13. Changes in Pre-service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydın, A.

    2017-08-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science teachers studying in a state university in Turkey. The treatment group comprised 27 participants, and there were 29 participants in the comparison group. The comparison group participants were involved in a student-centred science-teaching process, and the participants of the treatment group were involved in explicit NOS and socioscientific argumentation processes. In the study, which lasted a total of 11 weeks, a NOS-as-argumentation questionnaire was administered to all the participants to determine their understanding of NOS at the beginning and end of the data collection process, and six random participants of the treatment group participated in semi-structured interview questions in order to further understand their views regarding NOS, science teaching and argumentation. Qualitative and quantitative data analysis revealed that the explicit NOS and socioscientific argumentation processes had a significant effect on pre-service science teachers' NOS understandings. Furthermore, NOS, argumentation and science teaching views of the participants in the treatment group showed a positive change. The results of this study are discussed in light of the related literature, and suggestions are made within the context of contribution to science-teaching literature, improvement of education quality and education of pre-service teachers.

  14. Toward mechanistic understanding of the relationship between the sound absorption and the natural and resonant frequencies of porous media.

    Science.gov (United States)

    Hasani Baferani, A; Ohadi, A R; Keshavarz, R

    2016-12-01

    In this paper, the natural and resonant frequencies of porous media are studied based on Biot's equations. The governing equations of porous media are analytically solved by using the recent developed potential function method. Based on the obtained results, the natural and resonant frequencies of the porous medium can be investigated. In this research, several foams with different acoustical and non-acoustical properties are considered and the natural and resonant frequencies are studied. In addition, for a better understanding of the natural and variation of resonant frequencies of the considered foams, various damping gains are defined and by changing them gradually, the variations of absorption coefficient and field variables are studied. The results show that the trends of absorption coefficient versus frequency for porous media can be predicted by considering the arrangement of structural and fluid natural frequencies. Also, around the structural natural frequencies two types of variations in absorption coefficient occur (i.e., maximum-minimum or maximum variations). Additionally, after computing the corresponding results of rigid frame and Biot's models it can be seen that the rigid frame theory cannot correctly predict the sound absorption coefficient in the vicinity of structural natural frequencies.

  15. Instruments of Inquiry: Understanding the Nature and Role of Design Tools

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2017-01-01

    Designers employ a range of tools in most design projects, yet there are few frameworks for understanding how and why they work. On the basis of a well-established school of thought, pragmatism, this paper contributes with a coherent conceptualisation of tools in design, which I label instruments...

  16. 21 Ideas: A 42-Year Search to Understand the Nature of Giftedness

    Science.gov (United States)

    Sternberg, Robert J.

    2018-01-01

    In this article, I describe the 21 ideas underlying a 42-year search to understand giftedness. I present the ideas roughly chronologically, in the order in which they arose, and discuss how in a career as in science, progress means supplementing or even superseding one idea with the next. In terms of the 21 ideas, I start with a discussion of how…

  17. Laboratory Activities to Support Student Understanding of the Molecular Mechanisms of Mutation & Natural Selection

    Science.gov (United States)

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important and challenging concept for students to understand. In a previous article, we provided some of the scientific background necessary to teach this topic. This article features a series of laboratory activities demonstrating that molecular events can alter the genomes of organisms. These activities are…

  18. Computational Strategies for a System-Level Understanding of Metabolism

    Science.gov (United States)

    Cazzaniga, Paolo; Damiani, Chiara; Besozzi, Daniela; Colombo, Riccardo; Nobile, Marco S.; Gaglio, Daniela; Pescini, Dario; Molinari, Sara; Mauri, Giancarlo; Alberghina, Lilia; Vanoni, Marco

    2014-01-01

    Cell metabolism is the biochemical machinery that provides energy and building blocks to sustain life. Understanding its fine regulation is of pivotal relevance in several fields, from metabolic engineering applications to the treatment of metabolic disorders and cancer. Sophisticated computational approaches are needed to unravel the complexity of metabolism. To this aim, a plethora of methods have been developed, yet it is generally hard to identify which computational strategy is most suited for the investigation of a specific aspect of metabolism. This review provides an up-to-date description of the computational methods available for the analysis of metabolic pathways, discussing their main advantages and drawbacks.  In particular, attention is devoted to the identification of the appropriate scale and level of accuracy in the reconstruction of metabolic networks, and to the inference of model structure and parameters, especially when dealing with a shortage of experimental measurements. The choice of the proper computational methods to derive in silico data is then addressed, including topological analyses, constraint-based modeling and simulation of the system dynamics. A description of some computational approaches to gain new biological knowledge or to formulate hypotheses is finally provided. PMID:25427076

  19. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  20. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    Science.gov (United States)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative

  1. Understanding the nature and threats of drug trafficking to national and regional security in West Africa

    Directory of Open Access Journals (Sweden)

    Kwesi Aning

    2014-02-01

    Full Text Available Several West African states are threatened by increasingly powerful transnational organised criminal networks. Yet, scholarly work on the nature, characteristics and strength of these groups and how their activities threaten states remains sparse, leading to misunderstandings and inadequate appreciation of the precise nature of the threats they pose to West Africa. This paper seeks to fill these lacunae in our knowledge. It focuses on the nexus between drugs, crime and terrorism. It argues that, the financial spin-offs from criminal activities contribute to the development of opportunistic relationships between criminals and extremist groups that threatens West Africa’s fragile states. The analyses are based on evidence from several West African states, but employ the ongoing crisis in the Sahel, particularly Mali, as an empirical case, to demonstrate how ‘profitable collusion’ among different actors permits hollow states to become edifices that allows corruption, criminality and impunity to flourish.

  2. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  3. Human Computer Collaboration at the Edge: Enhancing Collective Situation Understanding with Controlled Natural Language

    Science.gov (United States)

    2016-09-06

    has conceptually noted lim- itations of COPs [26]; our research empirically illustrates the tradeoffs with a COP even if all users have a shared goal...in group size and dynamics. To further assess the effects of a COP on information quality and quantity, we plan to run a conceptual replication of the...2] T. Kuhn, “A survey and classification of controlled natural languages,” Computational Linguistics , vol. 40, pp. 121–170, 2014. [3] E. Cambria

  4. Understanding ecosystem services adoption by natural resource managers and research ecologists

    Science.gov (United States)

    Engel, Daniel; Evans, Mary; Low, Bobbi S.; Schaeffer, Jeff

    2017-01-01

    The ecosystem services (ES) paradigm has gained much traction as a natural resource management approach due to its comprehensive nature and ability to provide quantitative tools to improve decision-making. However, it is still uncertain whether and how practitioners have adopted the ES paradigm into their work and how this aligns with resource management information needs. To address this, we surveyed natural resource managers within the Great Lakes region about their use of ES information in decision-making. We complemented our manager survey with in-depth interviews of a related population—research ecologists at the U.S. Geological Survey Great Lakes Science Center. In this study, managers and ecologists almost unanimously agreed that ES were appropriate to consider in resource management. We also found high congruence between managers and ecologists in the ES considered most relevant to their work, with provision of habitat, recreation and tourism, biological control, and primary production being the ES ranked highly by both groups. However, a disconnect arose when research ecologists deemed the information they provide regarding ES as adequate for management needs, but managers disagreed. Furthermore, managers reported that they would use economic information about ES if they had access to that information. We believe this data deficiency could represent a gap in scientific coverage by ecologists, but it may also simply reflect an underrepresentation of ecological economists who can translate ecological knowledge of ES providers into economic information that many managers desired.

  5. Research and Teaching: Factors Related to College Students' Understanding of the Nature of Science--Comparison of Science Majors and Nonscience Majors

    Science.gov (United States)

    Partin, Matthew L.; Underwood, Eileen M.; Worch, Eric A.

    2013-01-01

    To develop a more scientifically literate society, students need to understand the nature of science, which may be affected by controversial topics such as evolution. There are conflicting views among researchers concerning the relationships between understanding evolution, acceptance of evolution, and understanding of the nature of science. Four…

  6. Dialectical Reason and Necessary Conflict—Understanding and the Nature of Terror

    Directory of Open Access Journals (Sweden)

    Angelica Nuzzo

    2007-12-01

    Full Text Available Taking as point of departure Hegelrsquo;s early reflections on his historical present, this essay examines the relationship between dialectical reason and the activity of the understanding in generating contradiction. Dialecticmdash;as logic and methodmdash;is Hegelrsquo;s attempt at a philosophical comprehension of the conflicts and the deep changes of his contemporary world. This idea of dialectic as logic of historical transformation guides the development of consciousness in the emPhenomenology of Spirit/em. Since my claim is that the dialectic of consciousness and its capacity of overcoming contradiction are rooted in the historical situation of 1807, the question is raised of what would be the specific problems encountered by consciousness in our contemporary worldmdash;in 2007. What are the challenges posed by our globalized world to a phenomenology of contemporary spirit; and what is the role that contradiction and dialectic play in the understanding of our own historical present?

  7. Need of paleoclimatic reconstructions to understand natural and anthropogenic climatic hazards

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.

    in monsoon rainfall as her economy largely depends on rainfall. Such climatic events (floods, droughts etc.) and their effects on society were recorded right from early historic period. Such historical climatic records are mostly available in the inscriptions... of the fishes. which would in turn affect the economy of the country. Along the Indian coast line, no direct evidence is available to understand the migratory changes of fishes in the past. Quest for an additional tool to decipher such eventualities in the past...

  8. Benefit assessment of solar-augmented natural gas systems

    Science.gov (United States)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  9. Systemic Analysis of Sudden Natural Deaths at Braithwaite ...

    African Journals Online (AJOL)

    Peak age group was 30-39 years with 27.7%. Cardiovascular system pathologies were by far the commonest causes of death with 87.6%. The least cause of death was prematurity with 0.4%. Among the cardiovascular system pathologies, hypertensive heart disease was the commonest. All deathswere from natural causes.

  10. Natural Resources Information System for the State of Oklahoma

    International Nuclear Information System (INIS)

    Mankin, C.J.

    1992-01-01

    The objective of this research program was to continue developing, editing, maintaining, utilizing and making publicly available the Natural Resources Information System (NRIS) for the State of Oklahoma. The Oklahoma Geological Survey, working with Geological Information Systems at the University of Oklahoma's Sarkeys Energy Center, undertook to construct this information system in response to the need for a computerized, centrally located library containing accurate, detailed information on the state's natural resources. Particular emphasis during this phase of development was placed on computerizing information related to the energy needs of the nation, specifically oil and gas

  11. Design of natural user interface of indoor surveillance system

    Science.gov (United States)

    Jia, Lili; Liu, Dan; Jiang, Mu-Jin; Cao, Ning

    2015-03-01

    Conventional optical video surveillance systems usually just record what they view, but they can't make sense of what they are viewing. With lots of useless video information stored and transmitted, waste of memory space and increasing the bandwidth are produced every day. In order to reduce the overall cost of the system, and improve the application value of the monitoring system, we use the Kinect sensor with CMOS infrared sensor, as a supplement to the traditional video surveillance system, to establish the natural user interface system for indoor surveillance. In this paper, the architecture of the natural user interface system, complex background monitoring object separation, user behavior analysis algorithms are discussed. By the analysis of the monitoring object, instead of the command language grammar, when the monitored object need instant help, the system with the natural user interface sends help information. We introduce the method of combining the new system and traditional monitoring system. In conclusion, theoretical analysis and experimental results in this paper show that the proposed system is reasonable and efficient. It can satisfy the system requirements of non-contact, online, real time, higher precision and rapid speed to control the state of affairs at the scene.

  12. Understanding Social Conflicts Between Forestry and Nature Protection Sectors: Case Study Velebit Mountain

    Directory of Open Access Journals (Sweden)

    Konrad Kiš

    2010-12-01

    Full Text Available Background and Purpose: The last couple of decades brought significant changes in forest and nature protection policy worldwide. Rising environmental awareness, over-utilization of scarce natural resources and global climate change set high goals for the forest and nature protection policy makers. This paper is about a case study of relations among various stakeholders on Velebit Mountain, a coast-by mountain in Central Croatia. Velebit Mountain is both: a nature protection area and a forest exploitation site, which raises various conflicts between these two sectors and major stakeholders. Purpose of this research was to investigate the relations among various interest groups and coalition parties, their opinions, aspirations and interests and, especially, the way to resolve issues or manage conflicts. Material and Methods: This case-study research was conducted in form of interviews held with the representatives of each of the defined stakeholder groups within the target area, i.e. Velebit Mountain Nature Park. Interviews consisted of several groups of questions (introductory part, conflicts, conflict management and policy development, while stakeholder groups included "Croatian Forests ltd.", a state-owned company in charge of the management of state forests, Nature Park Velebit, National Park Paklenica, National Park "Northern Velebit", hunters' associations, private forest owners, fishermen associations, representatives of the local administration and mountaineers' associations. The questionnaire consisted of open-ended questions regarding various issues divided into these four groups. The data was analyzed by using the NVivo qualitative data analysis software. Theoretical framework used in this research was Walker and Daniels' Social Conflict Theory (1997, p.13 which describes types of conflicts, ways to address them and typical sources of occurring conflicts. Results and Conclusion: The results showed which the most salient conflict

  13. Towards Understanding Artifacts in the Clumped Isotope System

    Science.gov (United States)

    Swart, P. K.; Staudigel, P. T.; Murray, S.

    2015-12-01

    The clumped isotope system in carbonates (Δ47) relies on the extraction of CO2 from the carbonate minerals using phosphoric acid. Despite the fact that this method dates back to the original stable isotopic work in the 1950s, there are significant aspects of the fractionation of the 18O/16O (and by inference the ratio of mass 47 to 44) which are not understood. We believe that subtle variations in the isotopic fractionation as a function of temperature, acid density (and acid preparation method), and extraction line design cause variation between the clumped isotope data produced by different laboratories. One of the most obvious of these is difference in reaction temperatures. While most laboratories employ temperatures of between 75 and 90oC, the original method employed a temperature of 25oC. Although various estimate of the difference in fractionation of Δ47 between 25 and 90oC have been made, we have measured significantly different values for dolomites compared to published data. In order to understand this we have performed experiments in sealed Pyrex vessels to measure the exchange between CO2 and 103% phosphoric acid. We have determined there to be significant and measurable changes in the Δ47 of CO2 when exposed to phosphoric acid. This exchange is a function of temperature, time, acid strength, and the surface area of the acid exposed to the CO2. We postulate that, perhaps as a result of the lower reaction rate of dolomite, compared to calcite, that there is greater opportunity for CO2 to exchange with the phosphoric acid as bubbles of CO2 are retained within the acid for longer periods of time. Such a mechanism would predict that well-ordered dolomites will have different fractionation compared to protodolomite. Similar differences might account for different fractionation for other carbonate minerals.

  14. Novel food packaging systems with natural antimicrobial agents.

    Science.gov (United States)

    Irkin, Reyhan; Esmer, Ozlem Kizilirmak

    2015-10-01

    A new type of packaging that combines food packaging materials with antimicrobial substances to control microbial surface contamination of foods to enhance product microbial safety and to extend shelf-life is attracting interest in the packaging industry. Several antimicrobial compounds can be combined with different types of packaging materials. But in recent years, since consumer demand for natural food ingredients has increased because of safety and availability, these natural compounds are beginning to replace the chemical additives in foods and are perceived to be safer and claimed to alleviate safety concerns. Recent research studies are mainly focused on the application of natural antimicrobials in food packaging system. Biologically derived compounds like bacteriocins, phytochemicals, enzymes can be used in antimicrobial food packaging. The aim of this review is to give an overview of most important knowledge about application of natural antimicrobial packagings with model food systems and their antimicrobial effects on food products.

  15. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  16. A database prototype has been developed to help understand costs in photovoltaic systems

    International Nuclear Information System (INIS)

    Moorw, Larry M.

    2000-01-01

    High photovoltaic (PV) system costs hinder market growth. An approach to studying these costs has been developed using a database containing system, component and maintenance information. This data, which is both technical and non-technical in nature, is to be used to identify trends related to costs. A pilot database exists at this time and work is continuing. The results of this work may be used by the data owners to improve their operations with the goal of sharing non-attributable information with the public and industry at large. The published objectives of the DOE PV program are to accelerate the development of PV as a national and global energy option, as well as ensure US technology and global market leadership. The approach to supporting these objectives is to understand what drives costs in PV applications. This paper and poster session describe work-in-progress in the form of a database that will help identify costs in PV systems. In an effort to address DOE's Five-Year PV Milestones, a program was established in the summer of 1999 to study system costs in three PV applications--solar home lighting, water pumping, and grid-tied systems. This work began with a RFQ requesting data from these types of systems. Creating a partnership with industry and other system organizations such as Non-Government Organizations (NGOs) was the approach chosen to maintain a close time to the systems in the field. Nine participants were selected as partners, who provided data on their systems. Two activities are emphasized in this work. For the first, an iterative approach of developing baseline reliability and costs information with the participants was taken. This effort led to identifying typical components in these systems as well as the specific data (metrics) that would be needed in any analysis used to understand total systems costs

  17. On the way to understanding the time phenomenon the constructions of time in natural science

    CERN Document Server

    Time is considered as an independent entity which cannot be reduced to the concept of matter, space or field. The point of discussion is the "time flow" conception of N A Kozyrev (1908-1983), an outstanding Russian astronomer and natural scientist. In addition to a review of the experimental studies of "the active properties of time", by both Kozyrev and modern scientists, the reader will find different interpretations of Kozyrev's views and some developments of his ideas in the fields of geophysics, astrophysics, general relativity and theoretical mechanics.

  18. Natural Language Assistant: A Dialog System for Online Product Recommendation

    OpenAIRE

    Chai, Joyce; Horvath, Veronika; Nicolov, Nicolas; Stys, Margo; Kambhatla, Nanda; Zadrozny, Wlodek; Melville, Prem

    2002-01-01

    With the emergence of electronic-commerce systems, successful information access on electroniccommerce web sites becomes essential. Menu-driven navigation and keyword search currently provided by most commercial sites have considerable limitations because they tend to overwhelm and frustrate users with lengthy, rigid, and ineffective interactions. To provide an efficient solution for information access, we have built the NATURAL language ASSISTANT (NLA), a web-based natural language dialog sy...

  19. Neither nature nor environment: Systemic operationalism and ecologism

    International Nuclear Information System (INIS)

    Gomez E, Luis F

    2009-01-01

    Nature is a complex concept that some critics have found as one of the roots of the current crisis of orthodox modernity. Because of this, we think ecologism should develop a theory where it does not play a pivotal role. Here, we propose systemic operationalism as a theoretical basis for ecologism since it seems to meet this requirement without having to replace it with terms such as environment which appears to keep some of the problems critics see in the concept of nature.

  20. A Large-Telescope Natural Guide Star AO System

    Science.gov (United States)

    Redding, David; Milman, Mark; Needels, Laura

    1994-01-01

    None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.

  1. Probing The Structure North China To Better Understand Its Evolution, Natural Resources, And Seismic Hazards (Invited)

    Science.gov (United States)

    Keller, G. R.; Gao, R.; Qu, G.; Li, Q.; Liu, M.

    2010-12-01

    Recently, North China has been the target of a vast array of geoscience investigations that have advanced our understanding of the region. One major effort that has targeted the area is SinoProbe, which is China's ambitious national joint earth science research project that was established to develop a comprehensive understanding of the deep interior beneath the Chinese continent via a broad range of investigations that include deep drilling and geological and geophysical studies along continental-scale transects. As one of the eight major programs within SinoProbe, SinoProbe-02 (Seismic Observations) initiated a large-scale controlled-source seismic experiment in North China under the leadership of the Chinese Academy of Geological Sciences (CAGS) of the Ministry of Land and Resources (MLR) in cooperation with the University of Oklahoma and University of Missouri-Columbia in the U. S. This experiment was conducted in December of 2009 and consisted of three coordinated seismic recording activities along a profile that extended for over 400km from near Beijing northwestward to the Mongolian border. Near Beijing, the profile began near the eastern edge of the Western Block of the North China Precambrian craton, crossed this feature to the Solonker suture zone, and ended in the Central Asian orogenic belt (CAOB). The CAOB is one of the world's most prominent sites of the formation juvenile Phanerozoic crust. In January of 2010, a different effort led by the Chinese Earthquake administration was undertaken in cooperation with the same US universities. This effort targeted the Tangshan area where a devastating earthquake killed at least 250,000 people in 1976. In this seismic experiment, an innovative 3-D survey was undertaken across a 40km x 40km region centered on the city of Tangshan by deploying Texan instruments along a web of profiles with shotpoints at their intersections. This experiment targeted the middle and upper crust. A deep seismic reflection profile was

  2. ′Tigers are Our Brothers′: Understanding Human-Nature Relations in the Mishmi Hills, Northeast India

    Directory of Open Access Journals (Sweden)

    Ambika Aiyadurai

    2016-01-01

    Full Text Available Human-nature relations are diverse, multifaceted and often contradictory, especially the relationships with animals. Mishmi people living on the Sino-India border claim tigers to be their brothers and take credit for tiger protection as they observe taboos against hunting tigers. Drawing on this notion of relatedness with tigers, local residents of the Dibang Valley question the governments' recent plans to declare the Dibang Wildlife Sanctuary into Dibang Tiger Reserve and its scientific surveys of tigers and habitat mapping. This paper highlights how Mishmi people relate to tigers and how their understanding of tigers is in contest with versions of state and science, as national property or endangered species. Using in-depth interviews and participant observations in the Dibang Valley, I provide an ethnographic analysis of how different ideas of nature are played out by different actors in Arunachal Pradesh, Northeast India. Tiger conservation projects bring these conflicting versions of nature together, creating unexpected encounters between Mishmi, state and scientists. This paper aims to contribute to the understanding of changing notions of nature in the age of globalisation and an increasingly interconnected world.

  3. Evolutionary theories of aging. 1. The need to understand the process of natural selection.

    Science.gov (United States)

    Keller, L; Genoud, M

    1999-01-01

    In a Forum article Le Bourg (1998) criticized recent tests of evolutionary theories of aging and suggested alternative explanations for the long lifespan of ant queens and the positive relationship between body size and lifespan in mammals. Moreover, he attempts to criticize evolutionary theories of aging by showing that explanations other than evolutionary theories of aging probably account for the variation in human lifespan across countries. Here we show that the arguments of Le Bourg suffer several problems. First, many of the arguments reveal a misunderstanding of the process of natural selection. Second, some of the arguments reflect a lack of knowledge of evolutionary theories of aging (e.g. pre-reproductive mortality is not predicted to influence lifespan of organisms contrary to what is claimed). Finally, his final example on lifespan in humans simply is a straw-man because serious evolutionary biologists are well aware of the importance of confounding variables and would certainly not make the type of conclusion suggested by Le Bourg. Although a critical discussion of evolutionary theories of aging is welcome, we believe that the alternative explanations proposed by Le Bourg are implausible and reflect a misunderstanding of the process of natural selection. Copyright 1999 S. Karger AG, Basel

  4. Present status of understanding on the G6PD deficiency and natural selection

    Directory of Open Access Journals (Sweden)

    Tripathy V

    2007-01-01

    Full Text Available G6PD deficiency is a common hemolytic genetic disorder, particularly in the areas endemic to malaria. Individuals are generally asymptomatic and hemolytic anemia occurs when some anti-malarial drugs or other oxidizing chemicals are administered. It has been proposed that G6PD deficiency provides protection against malaria. Maintaining of G6PD deficient alleles at polymorphic proportions is complicated because of the X-linked nature of G6PD deficiency. A comprehensive review of the literature on the hypothesis of malarial protection and the nature of the selection is being presented. Most of the epidemiological, in vitro and in vivo studies report selection for G6PD deficiency. Analysis of the G6PD gene also reveals that G6PD-deficient alleles show some signatures of selection. However, the question of how this polymorphism is being maintained remains unresolved because the selection/fitness coefficients for the different genotypes in the two sexes have not been established. Prevalence of G6PD deficiency in Indian caste and tribal populations and the different variants reported has also been reviewed.

  5. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  6. UNDERSTANDING THAI CULTURE AND ITS IMPACT ON REQUIREMENTS ENGINEERING PROCESS MANAGEMENT DURING INFORMATION SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Theerasak Thanasankit

    2002-01-01

    Full Text Available This paper explores the impact of Thai culture on managing the decision making process in requirements engineering and contribution a better understand of its influence on the management of requirements engineering process. The paper illustrates the interaction of technology and culture and shows that rather than technology changing culture, culture can change the way technology is used. Thai culture is naturally inherent in Thai daily life and Thais bring that into their work practices. The concepts of power and uncertainty in Thai culture contribute toward hierarchical forms of communication and decision making process in Thailand, especially during requirements engineering, where information systems requirements need to be established for further development. The research shows that the decision making process in Thailand tends to take a much longer time, as every stage during requirements engineering needs to be reported to management for final decisions. The tall structure of Thai organisations also contributes to a bureaucratic, elongated decision-making process during information systems development. Understanding the influence of Thai culture on requirements engineering and information systems development will assist multinational information systems consulting organisations to select, adapt, better manage, or change requirements engineering process and information systems developments methodologies to work best with Thai organisations.

  7. Developing a Frame of Reference for understanding configuration systems

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Edwards, Kasper

    2008-01-01

    This paper uses the theory of technical systems to develop a frame of reference of product configuration systems. Following a definition of the configuration task, product model and product configuration system the theory of technical systems are presented. Configuration systems are then related...

  8. Quantifying Urban Texture in Nairobi, Kenya and its Implications for Understanding Natural Hazard Impact

    Science.gov (United States)

    Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.

    2016-04-01

    The configuration of infrastructure networks such as roads, drainage and power lines can both affect and be affected by natural hazards such as earthquakes, intense rain, wildfires and extreme temperatures. In this paper, we present and compare two methods to quantify urban topology on approximate scales of 0.0005 km2 to 10 km2 and create classifications of different 'urban textures' that relate to risk of natural hazard impact in an area. The methods we use focus on applicability in urban developing country settings, where access to high resolution and high quality data may be difficult. We use the city of Nairobi, Kenya to trial these methods. Nairobi has a population >3 million, and is a mix of informal settlements, residential and commercial development. The city and its immediate surroundings are subject to a variety of natural hazards such as floods, landslides, fires, drought, hail, heavy wind and extreme temperatures; all of these hazards can occur singly, but also have the potential for one to trigger another, thus providing a 'cascade' of hazards, or for two of the hazards to occur spatially and temporally near each other and interact. We use two measures of urban texture: (i) Street block textures, (ii) Google Earth land cover textures. Street block textures builds on the methodology of Louf and Barthelemy (2014) and uses Open Street Map data to analyse the shape, size, complexity and pattern of individual blocks of land created by fully enclosed loops of the major and minor road network of Nairobi. We find >4000 of these blocks ranging in size from approximately 0.0005 km2 to 10 km2, with approximately 5 classifications of urban texture. Google Earth land cover texture is a visual classification of homogeneous parcels of land performed in Google Earth using high-resolution airborne imagery and a qualitative criteria for each land cover type. Using the Google Earth land cover texture method, we identify >40 'urban textures' based on visual

  9. Using Scaling to Understand, Model and Predict Global Scale Anthropogenic and Natural Climate Change

    Science.gov (United States)

    Lovejoy, S.; del Rio Amador, L.

    2014-12-01

    The atmosphere is variable over twenty orders of magnitude in time (≈10-3 to 1017 s) and almost all of the variance is in the spectral "background" which we show can be divided into five scaling regimes: weather, macroweather, climate, macroclimate and megaclimate. We illustrate this with instrumental and paleo data. Based the signs of the fluctuation exponent H, we argue that while the weather is "what you get" (H>0: fluctuations increasing with scale), that it is macroweather (Hbackground as close to white noise and focuses on quasi-periodic variability assumes a spectrum that is in error by a factor of a quadrillion (≈ 1015). Using this scaling framework, we can quantify the natural variability, distinguish it from anthropogenic variability, test various statistical hypotheses and make stochastic climate forecasts. For example, we estimate the probability that the warming is simply a giant century long natural fluctuation is less than 1%, most likely less than 0.1% and estimate return periods for natural warming events of different strengths and durations, including the slow down ("pause") in the warming since 1998. The return period for the pause was found to be 20-50 years i.e. not very unusual; however it immediately follows a 6 year "pre-pause" warming event of almost the same magnitude with a similar return period (30 - 40 years). To improve on these unconditional estimates, we can use scaling models to exploit the long range memory of the climate process to make accurate stochastic forecasts of the climate including the pause. We illustrate stochastic forecasts on monthly and annual scale series of global and northern hemisphere surface temperatures. We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow: for example, using hindcasts we find that at 10 year forecast horizons we can still explain ≈ 15% of the anomaly variance. These scaling hindcasts have comparable - or smaller - RMS errors than existing GCM

  10. Natural computing for mechanical systems research: A tutorial overview

    Science.gov (United States)

    Worden, Keith; Staszewski, Wieslaw J.; Hensman, James J.

    2011-01-01

    A great many computational algorithms developed over the past half-century have been motivated or suggested by biological systems or processes, the most well-known being the artificial neural networks. These algorithms are commonly grouped together under the terms soft or natural computing. A property shared by most natural computing algorithms is that they allow exploration of, or learning from, data. This property has proved extremely valuable in the solution of many diverse problems in science and engineering. The current paper is intended as a tutorial overview of the basic theory of some of the most common methods of natural computing as they are applied in the context of mechanical systems research. The application of some of the main algorithms is illustrated using case studies. The paper also attempts to give some indication as to which of the algorithms emerging now from the machine learning community are likely to be important for mechanical systems research in the future.

  11. The divergence and natural selection of autocatalytic primordial metabolic systems.

    Science.gov (United States)

    Marakushev, Sergey A; Belonogova, Ol'ga V

    2013-06-01

    The diversity of the central metabolism of modern organisms is caused by the existence of a few metabolic modules, combination of which produces multiple metabolic pathways. This paper analyzes biomimetically reconstructed coupled autocatalytic cycles as the basis of ancestral metabolic systems. The mechanism for natural selection and evolution in autocatalytic chemical systems may be affected by natural homeostatic parameters such as ambient chemical potentials, temperature, and pressure. Competition between separate parts of an autocatalytic network with positive-plus-negative feedback resulted in the formation of primordial autotrophic, mixotrophic, and heterotrophic metabolic systems. This work examined the last common ancestor of a set of coupled metabolic cycles in a population of protocells. Physical-chemical properties of these cycles determined the main principles of natural selection for the ancestral Bacteria and Archaea taxa.

  12. The Divergence and Natural Selection of Autocatalytic Primordial Metabolic Systems

    Science.gov (United States)

    Marakushev, Sergey A.; Belonogova, Ol'ga V.

    2013-06-01

    The diversity of the central metabolism of modern organisms is caused by the existence of a few metabolic modules, combination of which produces multiple metabolic pathways. This paper analyzes biomimetically reconstructed coupled autocatalytic cycles as the basis of ancestral metabolic systems. The mechanism for natural selection and evolution in autocatalytic chemical systems may be affected by natural homeostatic parameters such as ambient chemical potentials, temperature, and pressure. Competition between separate parts of an autocatalytic network with positive-plus-negative feedback resulted in the formation of primordial autotrophic, mixotrophic, and heterotrophic metabolic systems. This work examined the last common ancestor of a set of coupled metabolic cycles in a population of protocells. Physical-chemical properties of these cycles determined the main principles of natural selection for the ancestral Bacteria and Archaea taxa.

  13. Understanding the earth systems of Malawi: Ecological sustainability, culture, and place-based education

    Science.gov (United States)

    Glasson, George E.; Frykholm, Jeffrey A.; Mhango, Ndalapa A.; Phiri, Absalom D.

    2006-07-01

    The purpose of this 2-year study was to investigate Malawian teacher educators' perspectives and dispositions toward teaching about ecological sustainability issues in Malawi, a developing country in sub-Sahara Africa. This study was embedded in a larger theoretical framework of investigating earth systems science through the understanding of nature-knowledge-culture systems from local, place-based perspectives. Specifically, we were interested in learning more about eco-justice issues that are related to environmental degradation in Malawi and the potential role of inquiry-oriented pedagogies in addressing these issues. In a science methods course, the African educators' views on deforestation and teaching about ecological sustainability were explored within the context of the local environment and culture. Teachers participated in inquiry pedagogies designed to promote the sharing of perspectives related to the connections between culture and ecological degradation. Strategies encouraging dialogue and reflection included role-playing, class discussions, curriculum development activities, teaching experiences with children, and field trips to a nature preserve. Data were analyzed from postcolonial and critical pedagogy of place theoretical perspectives to better understand the hybridization of viewpoints influenced by both Western and indigenous science and the political hegemonies that impact sustainable living in Malawi. Findings suggested that the colonial legacy of Malawi continues to impact the ecological sustainability issue of deforestation. Inquiry-oriented pedagogies and connections to indigenous science were embraced by the Malawian educators as a means to involve children in investigation, decision making, and ownership of critical environmental issues.

  14. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  15. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    International Nuclear Information System (INIS)

    Chuanqiang, Zhou; Xiangxiang, Gong; Jie, Han

    2016-01-01

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure and function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution

  16. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chuanqiang, Zhou [Testing Center, Yangzhou University, No. 48 Wenhui East Road, Yangzhou (China); Xiangxiang, Gong [Testing Center, Yangzhou University, No. 48 Wenhui East Road, Yangzhou (China); School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou (China); Jie, Han [School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou (China)

    2016-03-07

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure and function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.

  17. Animal density and track counts: understanding the nature of observations based on animal movements.

    Directory of Open Access Journals (Sweden)

    Derek Keeping

    Full Text Available Counting animals to estimate their population sizes is often essential for their management and conservation. Since practitioners frequently rely on indirect observations of animals, it is important to better understand the relationship between such indirect indices and animal abundance. The Formozov-Malyshev-Pereleshin (FMP formula provides a theoretical foundation for understanding the relationship between animal track counts and the true density of species. Although this analytical method potentially has universal applicability wherever animals are readily detectable by their tracks, it has long been unique to Russia and remains widely underappreciated. In this paper, we provide a test of the FMP formula by isolating the influence of animal travel path tortuosity (i.e., convolutedness on track counts. We employed simulations using virtual and empirical data, in addition to a field test comparing FMP estimates with independent estimates from line transect distance sampling. We verify that track counts (total intersections between animals and transects are determined entirely by density and daily movement distances. Hence, the FMP estimator is theoretically robust against potential biases from specific shapes or patterns of animal movement paths if transects are randomly situated with respect to those movements (i.e., the transects do not influence animals' movements. However, detectability (the detection probability of individual animals is not determined simply by daily travel distance but also by tortuosity, so ensuring that all intersections with transects are counted regardless of the number of individual animals that made them becomes critical for an accurate density estimate. Additionally, although tortuosity has no bearing on mean track encounter rates, it does affect encounter rate variance and therefore estimate precision. We discuss how these fundamental principles made explicit by the FMP formula have widespread implications for

  18. Biological Principles and Threshold Concepts for Understanding Natural Selection. Implications for Developing Visualizations as a Pedagogic Tool

    Science.gov (United States)

    Tibell, Lena A. E.; Harms, Ute

    2017-11-01

    Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students' scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.

  19. Understanding fluid transport through the multiscale pore network of a natural shale

    Directory of Open Access Journals (Sweden)

    Davy Catherine A.

    2017-01-01

    Full Text Available The pore structure of a natural shale is obtained by three imaging means. Micro-tomography results are extended to provide the spatial arrangement of the minerals and pores present at a voxel size of 700 nm (the macroscopic scale. FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm; a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Transmission Electron Microscopy (TEM is used to visualize the pore space with a typical pixel size of less than 1 nm and a porosity ranging from 0.12 to 0.25. On this scale, in the absence of 3D images, the pore structure is reconstructed by using a classical technique, which is based on truncated Gaussian fields. Permeability calculations are performed with the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach on the bigger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the nanoscale pore structure on the overall permeability is similar to that of the mesoscale. Complementarily, the macroscopic permeability is measured on a centimetric sample with a neutral fluid (ethanol. The upscaled permeability on the macroscopic scale is in good agreement with the experimental results.

  20. Understanding the life cycle surface land requirements of natural gas-fired electricity

    Science.gov (United States)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  1. Understanding Public Support for Indigenous Natural Resource Management in Northern Australia

    Directory of Open Access Journals (Sweden)

    Kerstin K. Zander

    2013-03-01

    Full Text Available Increased interest in indigenous-led natural resource management (NRM on traditionally owned land in northern Australia has raised important questions in relation to policies that compensate indigenous Australians for providing environmental services. A choice experiment survey was mailed out to respondents across the whole of Australia to assess if and to what extent Australian people think that society benefits from these services and how much they would pay for them. More than half the respondents would in principle support indigenous NRM in northern Australia, with a high willingness to pay for carbon, biodiversity, and recreational services. Social aspects of indigenous NRM, however, were not valued by the society, emphasizing the need for awareness raising and clarifications of benefits that indigenous people gain while carrying out land management on their traditional country. Any marketing campaign should take into account preference variation across Australian society, which this research shows is substantial, particularly between people from the north and those from the south. People from the south were more likely to support indigenous NRM, a significant finding for campaigns targeting potential donors.

  2. Natural Communication with Computers. Volume 1. Speech Understanding Research at BBN

    Science.gov (United States)

    1974-12-01

    Volume I Our first attempt at this mode of system design consisted of several steps: (a) constructing a er* de mechanical word matching... uso of robust, detectable contextual information. 2. Reliable Boundary Confidences The confidence associated with each boundary reflects, to some...three parts - a set of phoneme cluster definitions ^which are used to describe segments), the rule, and its predicate. The notation for expressing

  3. Considering Hans-Georg Gadamer's philosophical hermeneutics as a referent for student understanding of nature-of-science concepts

    Science.gov (United States)

    Rashford, Jared M.

    The purpose of this study is to examine philosophical hermeneutics as a referent for student understanding of Nature-of-Science (NOS) concepts. Rather than focus on a prescriptive set of canons used in addressing NOS pedagogy in K-12 schools, this study seeks to explicate a descriptive set of principles based on Hans-Georg Gadamer's theory of interpretation that has the potential for developing dispositions necessary for understanding. Central among these are the concepts of fore-structure, prejudice, temporal distance, and history of effect, all of which constitute part of the whole of the hermeneutic circle as envisaged by Gadamer. As such, Gadamer's hermeneutics is contrasted with Cartesian epistemology and its primacy of method, the Enlightenment's prejudice against prejudice, the modernist/progressive tendency to consider all situations as problems to be solved by relegating all forms of knowledge to techne, and the subjective nature of interpretation inherent in a hermeneutics of suspicion. The implication of such a conceptual analysis for NOS pedagogy is that student understanding is considered not so much as a cognitive outcome dependent on a series of mental functions but rather as an ontological characteristic of Dasein (being-human) that situates learning in the interchange between interpreter and text. In addition, the philosophical foundations implicit in addressing student understanding of NOS found in many curricular reform efforts and pedagogical practices in science education are questioned. Gadamer's hermeneutics affords science education a viable philosophical framework within which to consider student understanding of the development of scientific knowledge and the scientific enterprise.

  4. Catastrophes in nature and society mathematical modeling of complex systems

    CERN Document Server

    Khlebopros, Rem G; Fet, Abram I

    2007-01-01

    Many people are concerned about crises leading to disasters in nature, in social and economic life. The book offers a popular account of the causative mechanisms of critical states and breakdown in a broad range of natural and cultural systems - which obey the same laws - and thus makes the reader aware of the origin of catastrophic events and the ways to avoid and mitigate their negative consequences. The authors apply a single mathematical approach to investigate the revolt of cancer cells that destroy living organisms and population outbreaks that upset natural ecosystems, the balance between biosphere and global climate interfered lately by industry, the driving mechanisms of market and related economic and social phenomena, as well as the electoral system the proper use of which is an arduous accomplishment of democracy.

  5. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  6. Leveraging natural dynamical structures to explore multi-body systems

    Science.gov (United States)

    Bosanac, Natasha

    Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.

  7. Case studies of scenario analysis for adaptive management of natural resource and infrastructure systems

    DEFF Research Database (Denmark)

    Hamilton, M.C.; Thekdi, S.A.; Jenicek, E.M.

    2013-01-01

    Management of natural resources and infrastructure systems for sustainability is complicated by uncertainties in the human and natural environment. Moreover, decisions are further complicated by contradictory views, values, and concerns that are rarely made explicit. Scenario analysis can play...... a major role in addressing the challenges of sustainability management, especially the core question of how to scan the future in a structured, integrated, participatory, and policy-relevant manner. In a context of systems engineering, scenario analysis can provide an integrated and timely understanding...... of emergent conditions and help to avoid regret and belated action. The purpose of this paper is to present several case studies in natural resources and infrastructure systems management where scenario analysis has been used to aide decision making under uncertainty. The case studies include several resource...

  8. Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach

    Science.gov (United States)

    Ecohydrological connectivity is a system-level property that results from the linkages in the networks of water transport through ecosystems, by which feedback effects and other emergent system behaviors may be generated. We created a systems dynamic model that represents primary ecohydrological net...

  9. Foundation of a Knowledge Representation System for Image Understanding.

    Science.gov (United States)

    1980-10-01

    the tasks of the system is also basic in systems that use complete indexing, or Conniver, or Lisp. Systems like KRL [11], on the other hand, have a...Winograd, T., "An Overview of KRL , a Knowledge Representation Language," Cogn. Science, pp. 13-45, 1977. [12] Zadeh, L.A., "PRUF - A Memory

  10. Understanding and Improving the Performance Consistency of Distributed Computing Systems

    NARCIS (Netherlands)

    Yigitbasi, M.N.

    2012-01-01

    With the increasing adoption of distributed systems in both academia and industry, and with the increasing computational and storage requirements of distributed applications, users inevitably demand more from these systems. Moreover, users also depend on these systems for latency and throughput

  11. Corruption in Russia - Historic Legacy and Systemic Nature

    OpenAIRE

    Schulze, Günther G.; Zakharov, Nikita

    2018-01-01

    This paper argues that corruption in Russia is systemic in nature. Low wage levels of public officials provide strong incentives to engage in corruption. As corruption is illegal, corrupt officials can be exposed any time, which enforces loyalty towards the powers that be; thus corruption is a method of governance. We trace the systemic corruption back to the Mongolian empire and demonstrate its persistence to the current regime. We show the geographic distribution of contemporary corruption ...

  12. Darboux polynomials and first integrals of natural polynomial Hamiltonian systems

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J.; Przybylska, Maria

    2004-01-01

    We show that for a natural polynomial Hamiltonian system the existence of a single Darboux polynomial (a partial polynomial first integral) is equivalent to the existence of an additional first integral functionally independent with the Hamiltonian function. Moreover, we show that, in a case when the degree of potential is odd, the system does not admit any proper Darboux polynomial, i.e., the only Darboux polynomials are first integrals

  13. A system for tritium analysis in natural water

    International Nuclear Information System (INIS)

    Mozeto, A.A.

    1977-01-01

    A method for the analysis, by scintillation counting, of tritium in natural water enriched electrolytically, is presented. The characteristics of the proposed system are indicated by experimental parameters, and by the performance obtained in the analysis of rain and under ground waters. An evaluation of the precison and reproducibility of the measurements is also made [pt

  14. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  15. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  16. Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management

    International Nuclear Information System (INIS)

    Wolery, T.W.; Sutton, M.

    2011-01-01

    Thermodynamic data are essential for understanding and evaluating geochemical processes, as by speciation-solubility calculations, reaction-path modeling, or reactive transport simulation. These data are required to evaluate both equilibrium states and the kinetic approach to such states (via the affinity term or its equivalent in commonly used rate laws). These types of calculations and the data needed to carry them out are a central feature of geochemistry in many applications, including water-rock interactions in natural systems at low and high temperatures. Such calculations are also made in engineering studies, for example studies of interactions involving man-made materials such as metal alloys and concrete. They are used in a fairly broad spectrum of repository studies where interactions take place among water, rock, and man-made materials (e.g., usage on YMP and WIPP). Waste form degradation, engineered barrier system performance, and near-field and far-field transport typically incorporate some level of thermodynamic modeling, requiring the relevant supporting data. Typical applications of thermodynamic modeling involve calculations of aqueous speciation (which is of great importance in the case of most radionuclides), solubilities of minerals and related solids, solubilities of gases, and stability relations among the various possible phases that might be present in a chemical system at a given temperature and pressure. If a phase can have a variable chemical composition, then a common calculational task is to determine that composition. Thermodynamic modeling also encompasses ion exchange and surface complexation processes. Any and all of these processes may be important in a geochemical process or reactive transport calculation. Such calculations are generally carried out using computer codes. For geochemical modeling calculations, codes such as EQ3/6 and PHREEQC, are commonly used. These codes typically provide 'full service' geochemistry, meaning that

  17. Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T W; Sutton, M

    2011-09-19

    Thermodynamic data are essential for understanding and evaluating geochemical processes, as by speciation-solubility calculations, reaction-path modeling, or reactive transport simulation. These data are required to evaluate both equilibrium states and the kinetic approach to such states (via the affinity term or its equivalent in commonly used rate laws). These types of calculations and the data needed to carry them out are a central feature of geochemistry in many applications, including water-rock interactions in natural systems at low and high temperatures. Such calculations are also made in engineering studies, for example studies of interactions involving man-made materials such as metal alloys and concrete. They are used in a fairly broad spectrum of repository studies where interactions take place among water, rock, and man-made materials (e.g., usage on YMP and WIPP). Waste form degradation, engineered barrier system performance, and near-field and far-field transport typically incorporate some level of thermodynamic modeling, requiring the relevant supporting data. Typical applications of thermodynamic modeling involve calculations of aqueous speciation (which is of great importance in the case of most radionuclides), solubilities of minerals and related solids, solubilities of gases, and stability relations among the various possible phases that might be present in a chemical system at a given temperature and pressure. If a phase can have a variable chemical composition, then a common calculational task is to determine that composition. Thermodynamic modeling also encompasses ion exchange and surface complexation processes. Any and all of these processes may be important in a geochemical process or reactive transport calculation. Such calculations are generally carried out using computer codes. For geochemical modeling calculations, codes such as EQ3/6 and PHREEQC, are commonly used. These codes typically provide 'full service' geochemistry

  18. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  19. Including natural systems into the system engineering process: benefits to spaceflight and beyond

    Science.gov (United States)

    Studor, George

    2014-03-01

    How did we get to the point where we don't have time to be inspired by the wonders of Nature? Our office walls, homes and city streets are so plain that even when we do escape to a retreat with nature all around us, we may be blind to its magnificence. Yet there are many who have applied what can be known of natural systems (NS) to create practical solutions, but often definite applications for them are lacking. Mimicry of natural systems is not only more possible than ever before, but the education and research programs in many major universities are churning out graduates with a real appreciation for Nature's complex integrated systems. What if these skills and perspectives were employed in the teams of systems engineers and the technology developers that support them to help the teams think "outside-the-box" of manmade inventions? If systems engineers (SE) and technology developers regularly asked the question, "what can we learn from Nature that will help us?" as a part of their processes, they would discover another set of potential solutions. Biomimicry and knowledge of natural systems is exploding. What does this mean for systems engineering and technology? Some disciplines such as robotics and medical devices must consider nature constantly. Perhaps it's time for all technology developers and systems engineers to perceive natural systems experts as potential providers of the technologies they need.

  20. Understanding nature's particle accelerators using high energy gamma-ray survey instruments

    Science.gov (United States)

    Abeysekara, Anushka Udara

    Nature's particle accelerators, such as Pulsars, Pulsar Wind Nebulae, Active Galactic Nuclei and Supernova Remnants accelerate charged particles to very high energies that then produce high energy photons. The particle acceleration mechanisms and the high energy photon emission mechanisms are poorly understood phenomena. These mechanisms can be understood either by studying individual sources in detail or, alternatively, using the collective properties of a sample of sources. Recent development of GeV survey instruments, such as Fermi-LAT, and TeV survey instruments, such as Milagro, provides a large sample of high energy gamma-ray flux measurements from galactic and extra-galactic sources. In this thesis I provide constraints on GeV and TeV radiation mechanisms using the X-ray-TeV correlations and GeV-TeV correlations. My data sample was obtained from three targeted searches for extragalactic sources and two targeted search for galactic sources, using the existing Milagro sky maps. The first extragalactic candidate list consists of Fermi-LAT GeV extragalactic sources, and the second extragalactic candidate list consists of TeVCat extragalactic sources that have been detected by Imaging Atmospheric Cerenkov Telescopes (IACTs). In both extragalactic candidate lists Markarian 421 was the only source detected by Milagro. A comparison between the Markarian 421 time-averaged flux, measured by Milagro, and the flux measurements of transient states, measured by IACTs, is discussed. The third extragalactic candidate list is a list of potential TeV emitting BL Lac candidates that was synthesized using X-ray observations of BL Lac objects and a Synchrotron Self-Compton model. Milagro's sensitivity was not sufficient to detect any of those candidates. However, the 95% confidence flux upper limits of those sources were above the predicted flux. Therefore, these results provide evidence to conclude that the Synchrotron Self-Compton model for BL Lac objects is still a viable

  1. Brief Communication: Understanding disasters and early-warning systems

    Science.gov (United States)

    Castaños, H.; Lomnitz, C.

    2014-12-01

    This paper discusses some methodological questions on understanding disasters. Destructive earthquakes continue to claim thousands of lives. Tsunamis may be caused by recoil of the upper plate. Darwin's twin-epicenter hypothesis is applied to a theory of tsunamis. The ergodicity hypothesis may help to estimate the return periods of extremely rare events. A social science outline on the causation of the Tôhoku nuclear disaster is provided.

  2. Understanding Enterprise Systems' Impact(s) on Business Relationships

    Science.gov (United States)

    Ekman, Peter; Thilenius, Peter

    Enterprise systems (ESs), i.e. standardized applications supplied from software vendors such as SAP or Oracle, have been extensively employed by companies during the last decade. Today all Fortune 500 companies have, or are in the process of installing, this kind of information system (Seddon et al. 2003). A wide-spread denotation for these applications is enterprise resource planning (ERP) systems. But the broad utilization use of these software packages in business is rendering this labelling too narrow (Davenport 2000).

  3. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Buendia, L.V.; Neue, H.U.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  4. Intelligent network video understanding modern video surveillance systems

    CERN Document Server

    Nilsson, Fredrik

    2008-01-01

    Offering ready access to the security industry's cutting-edge digital future, Intelligent Network Video provides the first complete reference for all those involved with developing, implementing, and maintaining the latest surveillance systems. Pioneering expert Fredrik Nilsson explains how IP-based video surveillance systems provide better image quality, and a more scalable and flexible system at lower cost. A complete and practical reference for all those in the field, this volume:Describes all components relevant to modern IP video surveillance systemsProvides in-depth information about ima

  5. Understanding Cooperative Learning in Context-aware Recommender Systems

    DEFF Research Database (Denmark)

    Jiang, Na; Tan, Chee-Wee; Wang, Weiquan

    2017-01-01

    Context-Aware Recommender Systems (CARSs) are becoming commonplace. Yet, there is a paucity of studies that investigates how such systems could affect usage behavior from a user-system interaction perspective. Building on the Social Interdependence Theory (SIT), we construct a research model...... of users’ promotive interaction with CARSs, which in turn, dictates the performance of such recommender systems. Furthermore, we introduce scrutability features as design interventions that can be harnessed by developers to mitigate the impact of users’ promotive interaction on the performance of CARSs....

  6. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  7. Sign language: its history and contribution to the understanding of the biological nature of language.

    Science.gov (United States)

    Ruben, Robert J

    2005-05-01

    The development of conceptualization of a biological basis of language during the 20th century has come about, in part, through the appreciation of the central nervous system's ability to utilize varied sensory inputs, and particularly vision, to develop language. Sign language has been a part of the linguistic experience from prehistory to the present day. Data suggest that human language may have originated as a visual language and became primarily auditory with the later development of our voice/speech tract. Sign language may be categorized into two types. The first is used by individuals who have auditory/oral language and the signs are used for special situations, such as communication in a monastery in which there is a vow of silence. The second is used by those who do not have access to auditory/oral language, namely the deaf. The history of the two forms of sign language and the development of the concept of the biological basis of language are reviewed from the fourth century BC to the present day. Sign languages of the deaf have been recognized since at least the fourth century BC. The codification of a monastic sign language occurred in the seventh to eighth centuries AD. Probable synergy between the two forms of sign language occurred in the 16th century. Among other developments, the Abbey de L'Epée introduced, in the 18th century, an oral syntax, French, into a sign language based upon indigenous signs of the deaf and newly created signs. During the 19th century, the concept of a "critical" period for the acquisition of language developed; this was an important stimulus for the exploration of the biological basis of language. The introduction of techniques, e.g. evoked potentials and functional MRI, during the 20th century allowed study of the brain functions associated with language.

  8. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  9. Understanding the Modularity of Socio-technical Production Systems

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff

    , material and process aspects, the modularity of a socio-technical system can be understood as an entanglement of product, process, organizational and institutional modularity dimension. The developed theoretical framework is used for analyzing the modularity of three different production systems the pre-modern......, modern and post-modern construction practices....

  10. Understanding ERP system implementation in a hospital by analysing stakeholders

    NARCIS (Netherlands)

    Boonstra, A.; Govers, M.

    Implementing enterprise resource planning (ERP) systems requires significant organisational, as well as technical, changes. These will affect stakeholders with varying perspectives and interests in the system. This is particularly the case in health care, as a feature of this sector is that

  11. Deliverability on the interstate natural gas pipeline system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  12. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  13. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition.

    Science.gov (United States)

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial

  14. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  15. MBO works for managers who understand, apply system.

    Science.gov (United States)

    McConkey, D D

    1979-09-01

    Where MBO has suceeded, managers thoroughly understood, planned, and adapted the system to their organization's needs. Informed managers in nonprofit organizations can avoid the common mistakes made in business and industry in the 25 years since MBO was first adopted.

  16. Understanding Information Systems Integration Deficiencies in Mergers and Acquisitions

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kettinger, William J.

    2017-01-01

    Information systems (IS) integration is a critical challenge for value-creating mergers and acquisitions. Appropriate design and implementation of IS integration is typically a precondition for enabling a majority of the anticipated business benefits of a combined organization. Often...

  17. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  18. Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics

    Directory of Open Access Journals (Sweden)

    Alicia Tenza

    2017-06-01

    Full Text Available Collapse of social-ecological systems (SESs is a common process in human history. Depletion of natural resources, scarcity of human capital, or both, is/are common pathways toward collapse. We use the system dynamics approach to better understand specific problems of small-scale, long-lived SESs. We present a qualitative (or conceptual model using the conceptualization process of the system dynamics approach to study the dynamics of an oasis in Mexico that has witnessed a dramatic transition to decline in recent decades. We used indepth interviews, participant observation, expert opinions, and official statistical data sets to define the boundaries, and structure in a causal loop diagram of our studied system. We described historical trends and showed the reference mode for the main system variables (observed data, and analyzed the expected system behavior according to the system structure. We identified the main drivers that changed the system structure, as well as structural changes, and the effects of these changes on the dynamics, resilience, and vulnerability of this SES. We found that the tendency of this SES toward collapse was triggered by exogenous factors (growth of modern agriculture in nearby valleys, and socio-political relocation, and was maintained by an endogenous structure. These structural changes weakened the resilience of this SES. One of these changes resulted in a long-term maladaptation of the SES, which increased its vulnerability to frequent system disturbances (hurricanes and droughts. The conceptual model developed provides an in-depth qualitative description of the system, with an important amount of qualitative and quantitative information, to establish the structural hypothesis of the observed behavior. Using this qualitative model, the next research steps are to develop a quantitative model to test the qualitative theories, and to explore future scenarios of system resilience for decision-making processes to

  19. Conflicting Epistemologies and Inference in Coupled Human and Natural Systems

    Science.gov (United States)

    Garcia, M. E.

    2017-12-01

    Last year, I presented a model that projects per capita water consumption based on changes in price, population, building codes, and water stress salience. This model applied methods from hydrological science and engineering to relationships both within and beyond their traditional scope. Epistemologically, the development of mathematical models of natural or engineered systems is objectivist while research examining relationships between observations, perceptions and action is commonly constructivist or subjectivist. Drawing on multiple epistemologies is common in, and perhaps central to, the growing fields of coupled human and natural systems, and socio-hydrology. Critically, these philosophical perspectives vary in their view of the nature of the system as mechanistic, adaptive or constructed, and the split between aleatory and epistemic uncertainty. Interdisciplinary research is commonly cited as a way to address the critical and domain crossing challenge of sustainability as synthesis across perspectives can offer a more comprehensive view of system dynamics. However, combining methods and concepts from multiple ontologies and epistemologies can introduce contradictions into the logic of inference. These contractions challenge the evaluation of research products and the implications for practical application of research findings are not fully understood. Reflections on the evaluation, application, and generalization of the water consumption model described above are used to ground these broader questions and offer thoughts on the way forward.

  20. Changes in Pre-Service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydin, A.

    2017-01-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science…

  1. Environment between System and Nature: Alan Sonfist and the Art of the Cybernetic Environment

    Directory of Open Access Journals (Sweden)

    Etienne Benson

    2014-09-01

    Full Text Available This paper examines the role of systems thinking in environmental(ist art and activism through a close reading and contextualization of Army Ants: Patterns and Structures (1972, an installation by Alan Sonfist, one of the leading figures in U.S. land art and environmental art of the 1960s and 1970s. It challenges a commonly held retrospective understanding of "environmental art" as being inherently about bringing nature into art (or into the gallery by showing how important systems thinking, which blurred the natural-cultural divide, was to Sonfist and other artists of the time. It suggests that these two understandings of the environment -- one focused on nature, the other on systems -- were both allied and in tension, and that the unexpected technical problems faced by Army Ants can be attributed at least in part to a failure to acknowledge those tensions. Similarly, the paper suggests, the legacy of glossing over these different understandings of the environment has been at the root of broader conceptual problems with environmental art and activism.

  2. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  3. Emergent Properties in Natural and Artificial Dynamical Systems

    CERN Document Server

    Aziz-Alaoui, M.A

    2006-01-01

    An important part of the science of complexity is the study of emergent properties arising through dynamical processes in various types of natural and artificial systems. This is the aim of this book, which is the outcome of a discussion meeting within the first European conference on complex systems. It presents multidisciplinary approaches for getting representations of complex systems and using different methods to extract emergent structures. This carefully edited book studies emergent features such as self organization, synchronization, opening on stability and robustness properties. Invariant techniques are presented which can express global emergent properties in dynamical and in temporal evolution systems. This book demonstrates how artificial systems such as a distributed platform can be used for simulation used to search emergent placement during simulation execution.

  4. On the Nature of the Hagedorn Transition in NCOS Systems

    CERN Document Server

    Barbón, José L F

    2001-01-01

    We extend the study of the nature of the Hagedorn transition in NCOS systems in various dimensions. The canonical analysis results in a microscopic ionization picture of a bound state system in which the Hagedorn transition is postponed till irrelevancy. A microcanonical analysis leads to a limiting Hagedorn behaviour dominated by highly excited, long open strings. The study of the full phase diagram of the NCOS system using the AdS/CFT correspondence suggests that the microscopic ionization picture is the correct one. We discuss some refinements of the ionization mechanism for $d>2$ NCOS systems, including the formation of a temperature-dependent barrier for the process. Some possible consequences of this behaviour, including a potential puzzle for $d=5$, are discussed. Phase diagrams of a regularized form of NCOS systems are introduced and do accomodate a phase of long open strings which disappears in the strict NCOS limit.

  5. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  6. Understanding Hawking radiation in the framework of open quantum systems

    International Nuclear Information System (INIS)

    Yu Hongwei; Zhang Jialin

    2008-01-01

    We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh and Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems

  7. Monitoring water distribution systems: understanding and managing sensor networks

    Directory of Open Access Journals (Sweden)

    D. D. Ediriweera

    2010-09-01

    Full Text Available Sensor networks are currently being trialed by the water distribution industry for monitoring complex distribution infrastructure. The paper presents an investigation in to the architecture and performance of a sensor system deployed for monitoring such a distribution network. The study reveals lapses in systems design and management, resulting in a fifth of the data being either missing or erroneous. Findings identify the importance of undertaking in-depth consideration of all aspects of a large sensor system with access to either expertise on every detail, or to reference manuals capable of transferring the knowledge to non-specialists. First steps towards defining a set of such guidelines are presented here, with supporting evidence.

  8. A Framework for Identifying and Understanding Enterprise Systems Benefits

    DEFF Research Database (Denmark)

    Schubert, Petra; Williams, Susan P.

    2011-01-01

    Purpose – Identifying the benefits arising from implementations of enterprise systems and realizing business value remains a significant challenge for both research and industry. This paper aims to consolidate previous work. It presents a framework for investigating enterprise systems benefits...... and business change, which addresses the identified limitations of previous research and provides a more detailed analysis of benefits and their contextual variation. Design/methodology/approach – Drawing on data gathered from 31 real-world organizations (case studies) of differing size, maturity, and industry...

  9. The Cultural Argument for Understanding Nature of Science. A Chance to Reflect on Similarities and Differences Between Science and Humanities

    Science.gov (United States)

    Reiners, Christiane S.; Bliersbach, Markus; Marniok, Karl

    2017-07-01

    Understanding Nature of Science (NOS) is a central component of scientific literacy, which is agreed upon internationally, and consequently has been a major educational goal for many years all over the globe. In order to justify the promotion of an adequate understanding of NOS, educators have developed several arguments, among them the cultural argument. But what is behind this argument? In order to answer this question, C. P. Snow's vision of two cultures was used as a starting point. In his famous Rede Lecture from 1959, he complained about a wide gap between the arts and humanities on the one hand and sciences on the other hand. While the representatives of the humanities refer to themselves as real intellectuals, the scientists felt rather ignored as a culture, despite the fact that their achievements had been so important for Western society. Thus, Snow argued that as these intellectual cultures were completely different from each other, a mutual understanding was impossible. The first European Regional IHPST Conference took up the cultural view on science again. Thus, the topic of the conference "Science as Culture in the European Context" encouraged us to look at the two cultures and to figure out possibilities to bridge the gap between them in chemistry teacher education. For this reason, we put together three studies—one theoretical and two independent research projects (one dealing with creativity in science, the other with scientific laws and theories) which contribute to our main research field (promoting an understanding of NOS)—in order to address the cultural argument for understanding science from an educational point of view. Among the consented tenets of what understanding NOS implies in an educational context, there are aspects which are associated mainly with the humanities, like the tentativeness of knowledge, creativity, and social tradition, whereas others seem to have a domain-specific meaning, like empirical evidence, theories and laws

  10. Understanding natural capital

    Science.gov (United States)

    Stallard, Robert F.; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella

    2015-01-01

    This chapter serves to introduce the geophysics of Neotropical steeplands. Topics are covered in a general manner with hyperlinks to active research and monitoring sites (such as the National Hurricane Center and US Geological Survey publication). Topics covered include ‘tropical climate and weather,’ ‘climate variations and trends,’ Neotropical ‘geology, and soils,’ ‘hillslopes and erosion,’ ‘lakes and reservoirs,’ and ‘effects of land cover on water quality and quantity.’ Obviously, this is a lot of information to cover in a short chapter, hence the use of hyperlinks. The last theme ‘effects of land cover on water quality and quantity’ is covered by case studies, in all of which I have been centrally involved. These studies were chosen because they are among the few studies with sufficient data of high enough quality to reach definitive conclusions.

  11. Understanding and Advancing Campus Sustainability Using a Systems Framework

    Science.gov (United States)

    Posner, Stephen M.; Stuart, Ralph

    2013-01-01

    Purpose: University campuses behave as complex systems, and sustainability in higher education is best seen as an emergent quality that arises from interactions both within an institution and between the institution and the environmental and social contexts in which it operates. A framework for strategically prioritizing campus sustainability work…

  12. Matrix Models – An Approach to Understand Complex Systems

    Indian Academy of Sciences (India)

    Matrices with random matrix elements appear to have applications in physics, mathematics, bi- ology, telecommunications, etc. In fact, experi- mental data of many complex systems, such as the spacing distribution of energy level spectra of heavy nuclei, and the distribution of the non- real zeros of the Riemann zeta function ...

  13. Model systems for understanding absorption tuning by opsin proteins

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brøndsted

    2009-01-01

    This tutorial review reports on model systems that have been synthesised and investigated for elucidating how opsin proteins tune the absorption of the protonated retinal Schiff base chromophore. In particular, the importance of the counteranion is highlighted. In addition, the review advocates...

  14. Family Counseling Interventions: Understanding Family Systems and the Referral Process.

    Science.gov (United States)

    McWhirter, Ellen Hawley; And Others

    1993-01-01

    This article describes concepts underlying the idea of the "family as a system"; compares and contrasts four approaches to family therapy (those of Virginia Satir, Jay Haley, Murray Bowen, and Salvador Minuchin); and offers suggestions to teachers referring parents for family counseling. (DB)

  15. Understanding regional metabolism for a sustainable development of urban systems.

    Science.gov (United States)

    Baccini, P

    1996-06-01

    Cities are the most complex forms of settlements which man has built in the course of his cultural development. Their "metabolism" is connected with the world economy and is run mainly by fossil energy carriers. Up to now there are no validated models for the evaluation of a sustainable development of urban regions.The guidelines for a "sustainable development" suggest the reduction of resource consumption. The article is concerned with the problem of how the "sustainable-development concept" can be transformed from a global to a regional scale. In urban settlements the strategy of final storage should be applied. By this, the subsystem waste management can be transformed within 10 to 15 years to a "sustainable status".With regard to the system "agronomy", the article concludes that agriculture in urban systems should focus on food production instead of promoting reduction of food production in favour of energy plants, which is not a suitable strategy.The main problems are the energy carriers. Transformation to a "sustainble status" is only possible by a reconstruction of the urban system, i.e. of buildings and the transportation network. The rate determining step in achieving such a status is the change in the fabric of buildings and in the type of transportation networks. The reconstruction of an urban system needs, mainly for economical reasons, a time period of two generations.

  16. Using control systems analysis and design concepts to understand ...

    African Journals Online (AJOL)

    Results from related clinical trials are cited through out this paper in order to demonstrate how control theoretic and clinical studies can complement each other. Keywords: HIV/AIDS mathematical models, control systems analysis, controllability, identifiability, structured treatment interruptions, biomedical engineering.

  17. Exploiting Lexical Regularities in Designing Natural Language Systems.

    Science.gov (United States)

    1988-04-01

    ELEMENT. PROJECT. TASKN Artificial Inteligence Laboratory A1A4WR NTumet 0) 545 Technology Square Cambridge, MA 02139 Ln *t- CONTROLLING OFFICE NAME AND...RO-RI95 922 EXPLOITING LEXICAL REGULARITIES IN DESIGNING NATURAL 1/1 LANGUAGE SYSTENS(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE...oes.ary and ftdou.Ip hr Nl wow" L,2This paper presents the lexical component of the START Question Answering system developed at the MIT Artificial

  18. For Nature: Deep Greening World-Systems Analysis for the 21st Century

    Directory of Open Access Journals (Sweden)

    Sing S. Chew

    2015-08-01

    Full Text Available From its conception the world-systems perspective has been preoccupied with the study of long term global transformations (see for ex., Frank 1968, 1979; Wallerstein 1974; Amin 1974; Wolf, 1982; Chase-Dunn 1989; Chase-Dunn and Hall 1992; Kaplan 1978.2. To this extent, the various structural relationships, trends, and cycles of the world system have been identified to explain the processes of global transformation. The varied attempts to pinpoint and analyze these relations, trends, and cycles have been within the context of connections between humans, classes, status groups, industries, regions, and states in the world economy. From an ecological point of view (ontologically and epistemologically, such a manner of understanding change is quite anthropocentric, as global transformation necessitates a changing relationship with Nature. In an era of increasing global concern and awareness of the finite nature of natural resources and the growing realization of the contemporary losses in plant and animal species and the continued susceptibility of the human species to climatological changes and diseases despite various scientific and technological advances, we need to consider that besides social relations and structures, the basis of human reproduction includes our relationships with the non-human world (ecology. World-systems /world system analyses need to move beyond deciphering the processes of global change only through the social (anthropocentric dimension of the relations underlining these processes. Keeping to just the social relations/structures of the reproduction of the system limits the range of explanations we can provide for global transformation, and also restricts the dimensions whereby the basis for these changes can be explored. This paper is an attempt to introduce the other basic dimension (our relations with Nature into the overall equation of world-systems/world system analyses for our understanding of global change. Ultimately

  19. Environmental and natural resource implications of sustainable urban infrastructure systems

    Science.gov (United States)

    Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Kaviti Musango, Josephine

    2017-12-01

    As cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%-116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of

  20. GeoCEGAS: natural gas distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Lorena C.J. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil); Targa, Fernando O. [Gestao Empresarial e Informatica Ltda. (GEMPI), Sao Paulo, SP (Brazil)

    2009-07-01

    This Technical Paper approach the conception, architecture, design, construction, and implementation of GeoCEGAS, a spatially enabled corporate management information system, oriented to store and provide Web access, to information associated with the natural gas distribution network, owned by CEGAS. This paper reports business processes, business entities and business intelligence approached on the project, as well as an overview of system architecture, applications, and technology used on the implementation of GeoCEGAS. Finally, is presented an introduction to the work methodology used, as well a synopsis of benefits achievements. (author)

  1. Escherichia coli is naturally transformable in a novel transformation system.

    Science.gov (United States)

    Sun, Dongchang; Zhang, Yanmei; Mei, Yunjun; Jiang, Hui; Xie, Zhixiong; Liu, Huihui; Chen, Xiangdong; Shen, Ping

    2006-12-01

    A novel transformation system, in which neither a nonphysiological concentration of Ca2+ and temperature shifts nor electronic shocks were required, was developed to determine whether Escherichia coli is naturally transformable. In the new protocol, E. coli was cultured normally to the stationary phase and then cultured statically at 37 degrees C in Luria-Bertani broth. After static culture, transformation occurred in bacteria spread on Luria-Bertani plates. The protein synthesis inhibitor chloramphenicol inhibited this transformation process. The need for protein synthesis in plated bacteria suggests that the transformation of E. coli in this new system is regulated physiologically.

  2. Understanding recurrent crime as system-immanent collective behavior.

    Directory of Open Access Journals (Sweden)

    Matjaž Perc

    Full Text Available Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between "criminals", "inspectors", and "ordinary people" as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies.

  3. Understanding Beam Alignment in a Coherent Lidar System

    Science.gov (United States)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  4. Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil--challenges to understanding.

    Science.gov (United States)

    Laturnus, Frank; Fahimi, Isabelle; Gryndler, Milan; Hartmann, Anton; Heal, Mathew R; Matucha, Miroslav; Schöler, Heinz Friedrich; Schroll, Reiner; Svensson, Teresia

    2005-07-01

    The anthropogenic environmental emissions of chloroacetic acids and volatile organochlorines have been under scrutiny in recent years because the two compound groups are suspected to contribute to forest dieback and stratospheric ozone destruction, respectively. The two organochlorine groups are linked because the atmospheric photochemical oxidation of some volatile organochlorine compounds is one source of phytotoxic chloroacetic acids in the environment. Moreover, both groups are produced in higher amounts by natural chlorination of organic matter, e.g. by soil microorganisms, marine macroalgae and salt lake bacteria, and show similar metabolism pathways. Elucidating the origin and fate of these organohalogens is necessary to implement actions to counteract environmental problems caused by these compounds. While the anthropogenic sources of chloroacetic acids and volatile organochlorines are relatively well-known and within human control, knowledge of relevant natural processes is scarce and fragmented. This article reviews current knowledge on natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soils, with particular emphasis on processes in the rhizosphere, and discusses future studies necessary to understand the role of forest soils in the formation and degradation of these compounds. Reviewing the present knowledge of the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil has revealed gaps in knowledge regarding the actual mechanisms behind these processes. In particular, there remains insufficient quantification of reliable budgets and rates of formation and degradation of chloroacetic acids and volatile organochlorines in forest soil (both biotic and abiotic processes) to evaluate the strength of forest ecosystems regarding the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale

  5. Natural selection and self-organization in complex adaptive systems.

    Science.gov (United States)

    Di Bernardo, Mirko

    2010-01-01

    The central theme of this work is self-organization "interpreted" both from the point of view of theoretical biology, and from a philosophical point of view. By analysing, on the one hand, those which are now considered--not only in the field of physics--some of the most important discoveries, that is complex systems and deterministic chaos and, on the other hand, the new frontiers of systemic biology, this work highlights how large thermodynamic systems which are open can spontaneously stay in an orderly regime. Such systems can represent the natural source of the order required for a stable self-organization, for homoeostasis and for hereditary variations. The order, emerging in enormous randomly interconnected nets of binary variables, is almost certainly only the precursor of similar orders emerging in all the varieties of complex systems. Hence, this work, by finding new foundations for the order pervading the living world, advances the daring hypothesis according to which Darwinian natural selection is not the only source of order in the biosphere. Thus, the article, by examining the passage from Prigogine's dissipative structures theory to the contemporary theory of biological complexity, highlights the development of a coherent and continuous line of research which is set to individuate the general principles marking the profound reality of that mysterious self-organization characterizing the complexity of life.

  6. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  7. Observing Coaching and Reflecting: A Multi-modal Natural Language-based Dialogue System in a Learning Context

    NARCIS (Netherlands)

    Van Helvert, Joy; Van Rosmalen, Peter; Börner, Dirk; Petukhova, Volha; Alexandersson, Jan

    2016-01-01

    The Metalogue project aims to develop a multi-modal, multi-party dialogue system with metacognitive abilities that will advance our understanding of natural conversational human-machine interaction and dialogue interfaces. This paper introduces the vision for the system and discusses its application

  8. Natural language processing in biomedicine: a unified system architecture overview.

    Science.gov (United States)

    Doan, Son; Conway, Mike; Phuong, Tu Minh; Ohno-Machado, Lucila

    2014-01-01

    In contemporary electronic medical records much of the clinically important data-signs and symptoms, symptom severity, disease status, etc.-are not provided in structured data fields but rather are encoded in clinician-generated narrative text. Natural language processing (NLP) provides a means of unlocking this important data source for applications in clinical decision support, quality assurance, and public health. This chapter provides an overview of representative NLP systems in biomedicine based on a unified architectural view. A general architecture in an NLP system consists of two main components: background knowledge that includes biomedical knowledge resources and a framework that integrates NLP tools to process text. Systems differ in both components, which we review briefly. Additionally, the challenge facing current research efforts in biomedical NLP includes the paucity of large, publicly available annotated corpora, although initiatives that facilitate data sharing, system evaluation, and collaborative work between researchers in clinical NLP are starting to emerge.

  9. Atomism and holism in the understanding of society and social systems

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2008-07-01

    Full Text Available Throughout its history, reflection on human society has been torn apart by the opposing views of atomism and holism. Traditional societies, the city state of ancient Greece as well as the medieval perfect society apparently resemble a whole with its parts. Early modernity continued this holistic inclination for a while, but soon reverted to atomistic theories of the (hypothetical social contract. Modern humanism dominated the subsequent views articulated in terms of the dialectical tension between nature and freedom (science ideal and personality ideal – including mechanistic and vitalistic approaches as well as the more recent acknowledgment of irreducibly complex systems (Behe, 2003. In Wiener’s (1954; 1956 “technologicism” human responsibility and freedom are sacrificed. An alternative view is advanced in terms of the normativity of societal life as well as its many-sidedness. It is shown that theories of social systems increasingly tend to explore avenues transcending the limitations of the atomistic additive approach and the boundary-leveling whole-parts scheme entailed in social systems theory. This development is used as a starting point for the classification of social interaction and for underscoring the scope of the principle of sphere-sovereignty for a multidisciplinary understanding of social systems.

  10. Experience-Dependent Brain Development as a Key to Understanding the Language System.

    Science.gov (United States)

    Westermann, Gert

    2016-04-01

    An influential view of the nature of the language system is that of an evolved biological system in which a set of rules is combined with a lexicon that contains the words of the language together with a representation of their context. Alternative views, usually based on connectionist modeling, attempt to explain the structure of language on the basis of complex associative processes. Here, I put forward a third view that stresses experience-dependent structural development of the brain circuits supporting language as a core principle of the organization of the language system. In this view, embodied in a recent neuroconstructivist neural network of past tense development and processing, initial domain-general predispositions enable the development of functionally specialized brain structures through interactions between experience-dependent brain development and statistical learning in a structured environment. Together, these processes shape a biological adult language system that appears to separate into distinct mechanism for processing rules and exceptions, whereas in reality those subsystems co-develop and interact closely. This view puts experience-dependent brain development in response to a specific language environment at the heart of understanding not only language development but adult language processing as well. Copyright © 2016 Cognitive Science Society, Inc.

  11. Towards an understanding of the origin of the Solar system

    Science.gov (United States)

    Griv, Evgeny

    Kant (1755) and Laplace (1796) built own hypothesis on the idea of Sun and planets forming from a scattering substance in space. It is well-known the main difficult of the Kant-Laplace hypothesis consists in appearance of angular momentum exploring. Attempts to find a plausible naturalistic explanation of the origin of the solar system in the framework of Safronov's (1969) hypothesis of accretion began about 50 years ago but have not yet been quantitatively successful. Accordingly, planets formed by accretion of solid particles, with or without the presence of gas during the later stages of planetary formation. The main problem is the timescale, which is comparable to or longer than estimates of the lifetime of planet-forming disks. In this work the position is adopted that involve a simultaneous formation of the Sun and the rest of the solar system through a gravitational instability in early solar nebula. In our model, planetary formation is thought to start with inelastically colliding gaseous and dust particles settling to the central plane of this rotating nebula to form a thin layer around the plane. On attaining a certain critical thickness small in comparison with the outer radius of the system, as a result of a local gravitational collapse the nebula disintegrated into the central body ("protosun") and a number of separate protoplanets. The massive gas and dust solar nebula of solar composition is considered, and the gasdynamic theory is used to study the gravitational instability in its protoplanetary disk. The implications for the origin of the solar system are discussed. It is suggested that the large part of the initial mass of protoplanets of the Earth's group was blown away due to intensive thermal emission of the early Sun. Such a point of view is not unnatural since the planets of the Earth's type consist mainly of elements with a high melting temperature and are almost lacking light elements. By adding to the present masses of the terrestrial

  12. Managing Computer Systems Development: Understanding the Human and Technological Imperatives.

    Science.gov (United States)

    1985-06-01

    tjq~ 2hancze, John-Wiley and sons, Inc 9B 12. Beckhard ~ Richard and Harris, Reuben Top 13. DeMarco, T., Sjruj~ed An 1 s is and L.in 150 14. Dickover...information system development. Beckhard and Harris [Ref. 12: pp. 16-19] identify two essential conditions for any change effort to be effectively managed...February 19814. 10. Nolan, Richard Lo, "Controlling the Costs of Data Services," j&KjX Bisinoss Reviews July-August 1977. 11. Tichy, NoelrM : ia~gn

  13. Mediterranean savanna system: understanding and modeling of olive orchard.

    Science.gov (United States)

    Brilli, Lorenzo; Moriondo, Marco; Bindi, Marco

    2013-04-01

    Nowadays most of the studies on C and N exchange were focused on forest ecosystems and crop systems, while only few studies have been focused on so called "savanna systems". They are long-term agro-ecosystems (fruit trees, grapevines and olive trees, etc.) usually characterized by two different layers (ground vegetation and trees). Generally, there is a lack of knowledge about these systems due to their intrinsic structural complexity (different eco-physiological characteristics so as agricultural practices). However, given their long-term carbon storage capacity, these systems can play a fundamental role in terms of global C cycle. Among all of them, the role that olive trees can play in C sequestration should not be neglected, especially in Mediterranean areas where they typify the rural landscape and are widely cultivated (Loumou and Giourga, 2003). It is therefore fundamental modelling the C-fluxes exchanges coming from these systems through a tool able to well reproduce these dynamics in one of the most exposed areas to the risk of climate change (IPCC, 2007). In this work, 2 years of Net CO2 Ecosystem Exchange (NEE) measures from eddy covariance were used to test the biogeochemistry model DayCent. The study was conducted in a rain-fed olive orchard situated in Follonica, South Tuscany, Italy (42 ° 55'N, 10 ° 45'E), in an agricultural area near the coast. The instrumentation for flux measurement was placed 1.9 m above the canopy top (6.5 m from the ground) so that the footprint area, expressed as the area containing 90% of the observed flux, was almost entirely contained within the olive orchard limits (Brilli et al., in press). Ancillary slow sensors have included soil temperature profiles, global radiation, air temperature and humidity, rain gauge. Fluxes of sensible heat, latent heat, momentum and CO2 as well as ancillary data were derived at half-hourly time resolution. Specific soil (texture, current and historical land use and vegetation cover) and

  14. A common type system for clinical natural language processing

    Directory of Open Access Journals (Sweden)

    Wu Stephen T

    2013-01-01

    Full Text Available Abstract Background One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. Results We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs, thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System versions 2.0 and later. Conclusions We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types.

  15. A common type system for clinical natural language processing.

    Science.gov (United States)

    Wu, Stephen T; Kaggal, Vinod C; Dligach, Dmitriy; Masanz, James J; Chen, Pei; Becker, Lee; Chapman, Wendy W; Savova, Guergana K; Liu, Hongfang; Chute, Christopher G

    2013-01-03

    One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types.

  16. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    Science.gov (United States)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  17. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    Science.gov (United States)

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  18. Quantifying 'causality' in complex systems: understanding transfer entropy.

    Directory of Open Access Journals (Sweden)

    Fatimah Abdul Razak

    Full Text Available 'Causal' direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of 'causal' direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets.

  19. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  20. Understanding Magmatic Plumbing System Dynamics at Fernandina Island, Galapagos

    Science.gov (United States)

    Varga, K. C.; McGuire, M.; Geist, D.; Harpp, K. S.

    2015-12-01

    Fernandina is the most active Galápagos volcano, and is located closest to the seismically defined hotspot. Allan and Simkin (2000) observed that the subaerial edifice is constructed of homogeneous basalts (Mg# = 49 ± 2) with highly variable plagioclase phenocryst contents and sparse olivine. Geist et al. (2006) proposed a magmatic plumbing system in which the volcano is supplied by interconnected sills, the shallowest of which is density-stratified: olivine and pyroxene are concentrated at greater depths, whereas less dense plagioclase mush is higher in the sill. Consequently, olivine-rich lava erupts laterally during submarine events, but plagioclase-rich lava supplies subaerial vents. To test this hypothesis, we examine lavas erupted in 1995, 2005, and 2009. These SW flank eruptions emerged alternatively from en echelon radial fissures on the lower flanks and circumferential fissures near the caldera rim. The 1995 radial fissure unzipped downslope and then formed a cone 4 km from the coast, sending flows to the ocean. In 2005, circumferential fissures erupted five flows south of the 1995 fissure. As in 1995, the 2009 fissures opened down the SW flank before focusing to a cone near the 1995 vents, producing 6 km-long flows that also reached the ocean. By correlating plagioclase crystal size distribution and morphologies with single event chronological sequences, we examine Fernandina's magmatic plumbing system. Modal plagioclase in 1995 lava decreases (20% to <5%) throughout the middle eruptive phase. Early 2005 samples are nearly aphyric (Chadwick et al., 2010), with 1-2% plagioclase. The 2009 eruption has reduced plagioclase, similar to mid-1995 samples. Preliminary observations suggest that less plagioclase-rich mush is being flushed out during early-to-medial event sequences, whereas plag phenocrysts are transported more during later phases. Plausible plumbing dynamics suggest a zone of plagioclase-rich mush that is eroded and incorporated into radial

  1. Yellowstone wolves and the forces that structure natural systems.

    Directory of Open Access Journals (Sweden)

    Andy P Dobson

    2014-12-01

    Full Text Available Since their introduction in 1995 and 1996, wolves have had effects on Yellowstone that ripple across the entire structure of the food web that defines biodiversity in the Northern Rockies ecosystem. Ecological interpretations of the wolves have generated a significant amount of debate about the relative strength of top-down versus bottom-up forces in determining herbivore and vegetation abundance in Yellowstone. Debates such as this are central to the resolution of broader debates about the role of natural enemies and climate as forces that structure food webs and modify ecosystem function. Ecologists need to significantly raise the profile of these discussions; understanding the forces that structure food webs and determine species abundance and the supply of ecosystem services is one of the central scientific questions for this century; its complexity will require new minds, new mathematics, and significant, consistent funding.

  2. A system dynamics approach to understanding the One Health concept.

    Directory of Open Access Journals (Sweden)

    Tai Xie

    Full Text Available There have been many terms used to describe the One Health concept, including movement, strategy, framework, agenda, approach, among others. However, the inter-relationships of the disciplines engaged in the One Health concept have not been well described. To identify and better elucidate the internal feedback mechanisms of One Health, we employed a system dynamics approach. First, a systematic literature review was conducted via searches in PubMed, Web of Knowledge, and ProQuest with the search terms: 'One Health' and (concept* or approach*. In addition, we used the HistCite® tool to add significant articles on One Health to the library. Then, of the 2368 articles identified, 19 were selected for evaluating the inter-relationships of disciplines engaged in One Health. Herein, we report a visually rich, theoretical model regarding interactions of various disciplines and complex problem descriptors engaged in One Health problem solving. This report provides a conceptual framework for future descriptions of the interdisciplinary engagements involved in One Health.

  3. A dynamical system perspective to understanding badminton singles game play.

    Science.gov (United States)

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A data management system to enable urgent natural disaster computing

    Science.gov (United States)

    Leong, Siew Hoon; Kranzlmüller, Dieter; Frank, Anton

    2014-05-01

    Civil protection, in particular natural disaster management, is very important to most nations and civilians in the world. When disasters like flash floods, earthquakes and tsunamis are expected or have taken place, it is of utmost importance to make timely decisions for managing the affected areas and reduce casualties. Computer simulations can generate information and provide predictions to facilitate this decision making process. Getting the data to the required resources is a critical requirement to enable the timely computation of the predictions. An urgent data management system to support natural disaster computing is thus necessary to effectively carry out data activities within a stipulated deadline. Since the trigger of a natural disaster is usually unpredictable, it is not always possible to prepare required resources well in advance. As such, an urgent data management system for natural disaster computing has to be able to work with any type of resources. Additional requirements include the need to manage deadlines and huge volume of data, fault tolerance, reliable, flexibility to changes, ease of usage, etc. The proposed data management platform includes a service manager to provide a uniform and extensible interface for the supported data protocols, a configuration manager to check and retrieve configurations of available resources, a scheduler manager to ensure that the deadlines can be met, a fault tolerance manager to increase the reliability of the platform and a data manager to initiate and perform the data activities. These managers will enable the selection of the most appropriate resource, transfer protocol, etc. such that the hard deadline of an urgent computation can be met for a particular urgent activity, e.g. data staging or computation. We associated 2 types of deadlines [2] with an urgent computing system. Soft-hard deadline: Missing a soft-firm deadline will render the computation less useful resulting in a cost that can have severe

  5. Evaluation of system codes for analyzing naturally circulating gas loop

    International Nuclear Information System (INIS)

    Lee, Jeong Ik; No, Hee Cheon; Hejzlar, Pavel

    2009-01-01

    Steady-state natural circulation data obtained in a 7 m-tall experimental loop with carbon dioxide and nitrogen are presented in this paper. The loop was originally designed to encompass operating range of a prototype gas-cooled fast reactor passive decay heat removal system, but the results and conclusions are applicable to any natural circulation loop operating in regimes having buoyancy and acceleration parameters within the ranges validated in this loop. Natural circulation steady-state data are compared to numerical predictions by two system analysis codes: GAMMA and RELAP5-3D. GAMMA is a computational tool for predicting various transients which can potentially occur in a gas-cooled reactor. The code has a capability of analyzing multi-dimensional multi-component mixtures and includes models for friction, heat transfer, chemical reaction, and multi-component molecular diffusion. Natural circulation data with two gases show that the loop operates in the deteriorated turbulent heat transfer (DTHT) regime which exhibits substantially reduced heat transfer coefficients compared to the forced turbulent flow. The GAMMA code with an original heat transfer package predicted conservative results in terms of peak wall temperature. However, the estimated peak location did not successfully match the data. Even though GAMMA's original heat transfer package included mixed-convection regime, which is a part of the DTHT regime, the results showed that the original heat transfer package could not reproduce the data with sufficient accuracy. After implementing a recently developed correlation and corresponding heat transfer regime map into GAMMA to cover the whole range of the DTHT regime, we obtained better agreement with the data. RELAP5-3D results are discussed in parallel.

  6. Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs: contributions to understanding snakebite envenomings and their treatment.

    Science.gov (United States)

    Lomonte, Bruno; León, Guillermo; Angulo, Yamileth; Rucavado, Alexandra; Núñez, Vitelbina

    2009-12-01

    Interest in studies on the neutralization of snake venoms and toxins by diverse types of inhibitors is two-fold. From an applied perspective, results enclose the potential to be translated into useful therapeutic products or procedures, to benefit patients suffering from envenomings. From a basic point of view, on the other hand, neutralizing agents may be used as powerful dissecting tools to determine the relative role of toxins within the context of the overall pathology induced by a venom, or to increase our understanding on the molecular mechanisms by which toxins exert their harmful actions upon particular targets. The venom of the snake Bothrops asper has been the subject of a number of experimental studies addressing its neutralization by antibodies, as well as by non-immunologic inhibitors, including natural products derived from plants or animals, or synthetic drugs. As summarized in the present review, neutralization studies on this venom and some of its isolated toxins have contributed to a better understanding of envenomings by this species, and their treatment. In addition, such studies have provided valuable knowledge on the mechanisms of action and the relative functional importance of particular toxins of this venom, especially in the case of its myotoxic phospholipases A(2) and hemorrhagic metalloproteinases.

  7. An Assessment of Students' Understanding of Ecosystem Concepts: Conflating Ecological Systems and Cycles

    Science.gov (United States)

    Jordan, Rebecca; Gray, Steven; Demeter, Marylee; Lui, Lei; Hmelo-Silver, Cindy E.

    2009-01-01

    Teaching ecological concepts in schools is important in promoting natural science and environmental education for young learners. Developing educational programs is difficult, however, because of complicated ecological processes operating on multiple levels, the unlimited nature of potential system interactions (given the openness of systems), and…

  8. Dealing with natural hazards in the Barcelonnette region - a multi-disciplinary collaboration from understanding to management

    Science.gov (United States)

    Kappes, Melanie; Frigerio, Simone; Luna, Byron Quan; Traveletti, Julien; Spickermann, Anke; Krzeminska, Dominika; Angignard, Marjory

    2010-05-01

    The Barcelonnette area, part of the Ubaye-Valley in the South French Alps, is highly exposed to natural hazard (mudslides, debris flows, torrential floods, river floods, avalanches and rockfalls); La Valette, Poche, Super-Sauze, Faucon are examples of well-known risk settings studied by scientists for several decades. In the framework of the Mountain Risks network, young researchers are working on different steps and aspects of the protection of the communities. It requires the collaboration of experts from different disciplines assembling the "living with risk" chain that has to cover the identification of the hazard, the risk assessment, risk management and the socio-economic and political decision-making. On the example of the Barcelonnette region, this work demonstrates such a multi-disciplinary cooperation within the Mountain Risks project. Starting with a multi-hazard analysis on a medium-scale level (1:10.000-1:50.000) for an overview over the hotspots in the basin a link is established to the local level analyses going into more detail. To forecast potential landslides in black marls and to assess the risk it is important to know the mechanisms leading to failure and the mechanisms determining subsequent movement. With respect to the Super-Sauze and La Valette mudslides detailed monitoring of hydrological features (i.e. high resolution temperature observations, large and medium scale infiltration experiments), displacement monitoring for short and long term kinematics analysis (i.e. image correlation technique applied on terrestrial oblique optical image, aerial and terrestrial laser scanning survey, differential global positioning system), small-scale testing in the laboratory (i.e. standard geotechnical, flume and centrifuge tests) and numerical modelling are performed to understand the mechanisms that might trigger and control the landslide. Integration and interpretation of these multi-source data allow to constrain conceptual models which are essential

  9. The natural defense system and the normative self model.

    Science.gov (United States)

    Kourilsky, Philippe

    2016-01-01

    Infectious agents are not the only agressors, and the immune system is not the sole defender of the organism. In an enlarged perspective, the 'normative self model' postulates that a 'natural defense system' protects man and other complex organisms against the environmental and internal hazards of life, including infections and cancers. It involves multiple error detection and correction mechanisms that confer robustness to the body at all levels of its organization. According to the model, the self relies on a set of physiological norms, and NONself (meaning : Non Obedient to the Norms of the self) is anything 'off-norms'. The natural defense system comprises a set of 'civil defenses' (to which all cells in organs and tissues contribute), and a 'professional army ', made of a smaller set of mobile cells. Mobile and non mobile cells differ in their tuning abilities. Tuning extends the recognition capabilities of NONself by the mobile cells, which increase their defensive function. To prevent them to drift, which would compromise self/NONself discrimination, the more plastic mobile cells need to periodically refer to the more stable non mobile cells to keep within physiological standards.

  10. Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia.

    Science.gov (United States)

    O'Gorman, Eoin J; Benstead, Jonathan P; Cross, Wyatt F; Friberg, Nikolai; Hood, James M; Johnson, Philip W; Sigurdsson, Bjarni D; Woodward, Guy

    2014-11-01

    Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming. © 2014 John Wiley & Sons Ltd.

  11. Top 40 questions in coupled human and natural systems (CHANS research

    Directory of Open Access Journals (Sweden)

    Daniel Boyd. Kramer

    2017-06-01

    Full Text Available Understanding and managing coupled human and natural systems (CHANS is a central challenge of the 21st century, but more focus is needed to pursue the most important questions within this vast field given limited research capacity and funding. We present 40 important questions for CHANS research, identified through a two-part crowdsourcing exercise within the CHANS community. We solicited members of the International Network of Research on Coupled Human and Natural Systems (CHANS-Net to submit up to three questions that they considered transformative, receiving 540 questions from 207 respondents. After editing for clarity and consistency, we asked the network's members to each evaluate a random subset of 20 questions in importance on a scale from 1 (least important to 7 (extremely important. Questions on land use and agriculture topped the list, with a median importance ranking of 5.7, followed by questions of scale, climate change and energy, sustainability and development, adaptation and resilience, in addition to seven other categories. We identified 40 questions with a median importance of 6.0 or above, which we highlight as the current view of researchers active in the field as research questions to pursue in order to maximize impact on understanding and managing coupled human and natural systems for achieving sustainable development goals and addressing emerging global challenges.

  12. Representativeness assessment of research natural areas on National Forest System lands in Idaho

    Science.gov (United States)

    Steven K. Rust

    2000-01-01

    A representativeness assessment of National Forest System (NFS) Research Natural Areas in Idaho summarizes information on the status of the natural area network and priorities for identification of new Research Natural Areas. Natural distribution and abundance of plant associations is compared to the representation of plant associations within natural areas. Natural...

  13. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  14. Using a complex adaptive system lens to understand family caregiving experiences navigating the stroke rehabilitation system.

    Science.gov (United States)

    Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey

    2016-10-01

    Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.

  15. Technical description of the Swedish natural gas distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ronny [KM Miljoeteknik AB (Sweden)

    1997-06-01

    This description of the Swedish distribution network has been produced to provide information for distribution companies, trade organisations, etc., who have an interest in getting a clear understanding of the technical design and standards, technical directives, etc., which have served as guidance in the development. The technical description covers the piping system from a measuring and regulating station (MR station) up to the consumer`s substation, however, only sections with a maximum operating pressure of 4 bar. By way of introduction, the description contains introductory information on supply channels, consumption patterns and the principal design of the high pressure network in Sweden 10 refs, 10 figs, 1 tab

  16. Natural Preconditioning and Iterative Methods for Saddle Point Systems

    KAUST Repository

    Pestana, Jennifer

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness - in terms of rapidity of convergence - is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends.

  17. A transportable system of models for natural resource damage assessment

    International Nuclear Information System (INIS)

    Reed, M.; French, D.

    1992-01-01

    A system of computer models has been developed for assessment of natural resource economic damages resulting from spills of oil and hazardous materials in marine and fresh water environments. Under USA federal legislation, the results of the model system are presumed correct in damage litigation proceedings. The model can address a wide range of spatial and temporal scales. The equations describing the motion of both pollutants and biota are solved in three dimensions. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic user interface provides easy control of the system in addition to the ability to display elements of the underlying geographical information system data base. The model is implemented on a personal computer and on a UNIX workstation. The structure of the system is such that transport to new geographic regions can be accomplished relatively easily, requiring only the development of the appropriate physical, toxicological, biological, and economic data sets. Applications are currently in progress for USA inland and coastal waters, the Adriatic Sea, the Strait of Sicily, the Gulf of Suez, and the Baltic Sea. 4 refs., 2 figs

  18. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai

    2001-04-03

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of carbon capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for carbon management analysis.

  19. El Paso natural gas nearing completion of system's largest expansion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    El Paso Natural Gas Co.'s largest expansion program in its 64-year history will be completed along its northern system this spring or early summer. According to the company, the three-tiered, $241.5 million expansion program will increase El Paso's gas-transport capacity by 835 MMcfd to 2.5 bcfd of conventional and coal-seam gas from the San Juan basin in northwestern New Mexico. That's enough natural gas, says the company, to supply the needs of a city of more than 800,000 residents. This paper reports that the expansion involves the San Juan Triangle system, the company's northern main line, and the Permian-San Juan crossover line. The company also filed with the Federal Energy Regulatory Commission (FERC) in October 1991 to construct a new $15.2 million compressor station, Rio Vista, south of Bloomfield, N.M. The station would be used to move additional gas to the main line

  20. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions about Using History of Science to Teach NOS

    Science.gov (United States)

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-01-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing…

  1. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    Bergese, Franco

    2004-01-01

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  2. The systemic nature of mustard lung: Comparison with COPD patients

    Directory of Open Access Journals (Sweden)

    Shahriary Alireza

    2017-11-01

    Full Text Available Sulphur mustard (SM is a powerful blister-causing alkylating chemical warfare agent used by Iraqi forces against Iran. One of the known complications of mustard gas inhalation is mustard lung which is discussed as a phenotype of chronic obstructive pulmonary disease (COPD. In this complication, there are clinical symptoms close to COPD with common etiologies, such as in smokers. Based on information gradually obtained by conducting the studies on mustard lung patients, systemic symptoms along with pulmonary disorders have attracted the attention of researchers. Changes in serum levels of inflammatory markers, such as C-reactive protein (CRP, tumor necrosis factor alpha (TNF-α, nuclear factor κB (NF-κB, matrix metalloproteinases (MMPs, interleukin (IL, chemokines, selectins, immunoglobulins, and signs of imbalance in oxidant-antioxidant system at serum level, present the systemic changes in these patients. In addition to these, reports of extra-pulmonary complications, such as osteoporosis and cardiovascular disease are also presented. In this study, the chance of developing the systemic nature of this lung disease have been followed on using the comparative study of changes in the mentioned markers in mustard lung and COPD patients at stable phases and the mechanisms of pathogenesis and phenomena, such as airway remodeling in these patients.

  3. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  4. Forests and Phenology: Designing the Early Warning System to Understand Forest Change

    Science.gov (United States)

    Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.

    2010-12-01

    Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology

  5. Organic materials in planetary and protoplanetary systems: nature or nurture?

    Science.gov (United States)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well

  6. Guiding climate change adaptation within vulnerable natural resource management systems.

    Science.gov (United States)

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  7. From Global Sustainability to Inclusive Education: Understanding urban children's ideas about the food system

    Science.gov (United States)

    Calabrese Barton, Angela; Koch, Pamela D.; Contento, Isobel R.; Hagiwara, Sumi

    2005-08-01

    The purpose of this paper is to report our findings from a qualitative study intended to develop our understandings of: what high-poverty urban children understand and believe about food and food systems; and how such children transform and use that knowledge in their everyday lives (i.e. how do they express their scientific literacies including content understandings, process understandings, habits of mind in these content areas). This qualitative study is part of a larger study focused on understanding and developing science and nutritional literacies among high-poverty urban fourth-grade through sixth-grade students and their teachers and caregivers.

  8. The development of a natural gas transportation logistics management system

    International Nuclear Information System (INIS)

    Pereira dos Santos, Sidney; Eugenio Leal, Jose; Oliveira, Fabricio

    2011-01-01

    Efficient management of the natural gas business chain - based on pipeline transmission networks and taking into consideration the interaction among the main players (e.g., shippers, suppliers, transmission companies and local distribution companies) - requires the use of decision-making support systems. These support systems maximise resources and mitigate contingencies due to gas supply shortfalls, operational contingencies from scheduled and non-scheduled equipment outages and market demand shortfalls. This study presents a practical use for technologies, such as a thermohydraulic simulation of gas flow through pipelines, a Monte Carlo simulation for compressor station availability studies, an economic risk evaluation related to potential revenue losses and contractual penalties and linear programming for the maximisation of income and the minimisation of contractual penalties. The proposed system allows the optimum availability level to be defined and maintained by the Transporter (by installing reserve capacity) to mitigate losses related to revenue and contractual penalties. It also economically identifies, quantifies and justifies the installation of stand-by compressor units that can mitigate the Transporter's exposure to losses caused by capacity shortfalls as a consequence of scheduled and non-scheduled outages. - Highlights: → We present a DSS to help the decision on investments on spare compressor units of pipelines systems. → The system may be applied to new or existing projects. → The system is able to estimate the revenue losses and the contractual penalties. → An economical evaluation shows the NPV for each configuration of spare units. → The method was applied to the case study of the Bolivia-Brazil gas pipeline.

  9. Understanding the Nature of Science Through a Critical and Reflective Analysis of the Controversy Between Pasteur and Liebig on Fermentation

    Science.gov (United States)

    García-Carmona, Antonio; Acevedo-Díaz, José Antonio

    2017-03-01

    This article presents a qualitative study, descriptive-interpretive in profile, of the effectiveness in learning about the nature of science (NOS) of an activity relating to the historical controversy between Pasteur and Liebig on fermentation. The activity was implemented during a course for pre-service secondary science teachers (PSSTs) specializing in physics and chemistry. The approach was explicit and reflective. Three research questions were posed: (1) What conceptions of NOS do the PSSTs show after a first reflective reading of the historical controversy?, (2) What role is played by the PSSTs' whole class critical discussion of their first reflections on the aspects of NOS dealt with in the controversy?, and (3) What changes are there in the PSSTs' conceptions of NOS after concluding the activity? The data for analysis was extracted from the PSSTs' group reports submitted at the end of the activity and the audio-recorded information from the whole class discussion. A rubric was prepared to assess this data by a process of inter-rater analysis. The results showed overall improvement in understanding the aspects of NOS involved, with there being a significant evolution in some cases (e.g., conception of scientific theory) and moderate in others (e.g., differences in scientific interpretations of the same phenomenon). This reveals that the activity has an educational utility for the education of PSSTs in NOS issues. The article concludes with an indication of some educational implications of the experience.

  10. Extending topological surgery to natural processes and dynamical systems.

    Directory of Open Access Journals (Sweden)

    Stathis Antoniou

    Full Text Available Topological surgery is a mathematical technique used for creating new manifolds out of known ones. We observe that it occurs in natural phenomena where a sphere of dimension 0 or 1 is selected, forces are applied and the manifold in which they occur changes type. For example, 1-dimensional surgery happens during chromosomal crossover, DNA recombination and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in the formation of tornadoes, in the phenomenon of Falaco solitons, in drop coalescence and in the cell mitosis. Inspired by such phenomena, we introduce new theoretical concepts which enhance topological surgery with the observed forces and dynamics. To do this, we first extend the formal definition to a continuous process caused by local forces. Next, for modeling phenomena which do not happen on arcs or surfaces but are 2-dimensional or 3-dimensional, we fill in the interior space by defining the notion of solid topological surgery. We further introduce the notion of embedded surgery in S3 for modeling phenomena which involve more intrinsically the ambient space, such as the appearance of knotting in DNA and phenomena where the causes and effect of the process lies beyond the initial manifold, such as the formation of black holes. Finally, we connect these new theoretical concepts with a dynamical system and we present it as a model for both 2-dimensional 0-surgery and natural phenomena exhibiting a 'hole drilling' behavior. We hope that through this study, topology and dynamics of many natural phenomena, as well as topological surgery itself, will be better understood.

  11. The Relationship between Understanding of the Nature of Science and Practice: The influence of teachers' beliefs about education, teaching and learning

    Science.gov (United States)

    Waters-Adams, Stephen

    2006-06-01

    This paper reports the relationship between four English primary teachers’ understanding of the nature of science and their practice. Action research was included as a major part of the research design in order to explore the dialectical interplay between various factors at work in the teachers’ practice. The influences of both tacit and espoused understandings of the nature of science were considered alongside the teachers’ beliefs about education, teaching, and learning. These beliefs were found to be the determining factor in the teachers’ decisions about classroom strategies. In arguing for a dialectical perspective on teachers’ practice, the research suggests that teachers’ espoused understanding of the nature of science may also be at least partially formed by the influence of these beliefs, raising the possibility that influence may run from teaching to theoretical understanding and not the other way round.

  12. The Episodic Nature of Experience: A Dynamical Systems Analysis.

    Science.gov (United States)

    Sreekumar, Vishnu; Dennis, Simon; Doxas, Isidoros

    2017-07-01

    Context is an important construct in many domains of cognition, including learning, memory, and emotion. We used dynamical systems methods to demonstrate the episodic nature of experience by showing a natural separation between the scales over which within-context and between-context relationships operate. To do this, we represented an individual's emails extending over about 5 years in a high-dimensional semantic space and computed the dimensionalities of the subspaces occupied by these emails. Personal discourse has a two-scaled geometry with smaller within-context dimensionalities than between-context dimensionalities. Prior studies have shown that reading experience (Doxas, Dennis, & Oliver, 2010) and visual experience (Sreekumar, Dennis, Doxas, Zhuang, & Belkin, 2014) have a similar two-scaled structure. Furthermore, the recurrence plot of the emails revealed that experience is predictable and hierarchical, supporting the constructs of some influential theories of memory. The results demonstrate that experience is not scale-free and provide an important target for accounts of how experience shapes cognition. Copyright © 2016 Cognitive Science Society, Inc.

  13. Markerless client-server augmented reality system with natural features

    Science.gov (United States)

    Ning, Shuangning; Sang, Xinzhu; Chen, Duo

    2017-10-01

    A markerless client-server augmented reality system is presented. In this research, the more extensive and mature virtual reality head-mounted display is adopted to assist the implementation of augmented reality. The viewer is provided an image in front of their eyes with the head-mounted display. The front-facing camera is used to capture video signals into the workstation. The generated virtual scene is merged with the outside world information received from the camera. The integrated video is sent to the helmet display system. The distinguishing feature and novelty is to realize the augmented reality with natural features instead of marker, which address the limitations of the marker, such as only black and white, the inapplicability of different environment conditions, and particularly cannot work when the marker is partially blocked. Further, 3D stereoscopic perception of virtual animation model is achieved. The high-speed and stable socket native communication method is adopted for transmission of the key video stream data, which can reduce the calculation burden of the system.

  14. Thermal dimensioning of wet natural draft cooling systems

    International Nuclear Information System (INIS)

    Bourillot, Claudine.

    1975-01-01

    The conventional models of calculating wet natural draft cooling systems include two different parts. First, the thermal calculation of the dispersion is made either with an ''exact'' method of separating convection and evaporation phenomena and taking account for the steam in exces in the saturated air, or with a ''simplified'' method considering the heat transfer in the whole as resulting of a difference in enthalpies. (The latter is the Merkel theory). Secondly, the draft equation is solved for calculating air flow rate. Values of the mass transfer coefficients and pressure drops of the dispersion being needed for the computation, test bench measurements are made by the designers. As for counter-current cooling systems the models of the dispersion calculation are one-dimensional models not allowing the radial flow and air temperature distributions to be simulated; exchanges inside the rain zone are also neglected. As for crossed-current cooling systems the flow geometry entails a more complicated two-dimensional model to be used for the dispersion. In both cases, the dependence on meteorological factors such as wind, height gradients of temperature, or sunny features are disregarded [fr

  15. Nature-aligned approaches to form students’ system motivation

    Directory of Open Access Journals (Sweden)

    Marina V. Ulyanova

    2017-01-01

    Full Text Available Sustainable development of the society involves the transition of the society from the current evolutional stage to a higher stage without revolutionary destruction of the existing frames of society. An individual, playing a prominent role in human history from time to time, is able to provide for the evolution of consciousness of the whole community, appearing on the top of the evolutional cone in the moment of passing of the system to the qualitatively new stage of its development. Only an integral individual, a person-creator possessing a high potential of harmony is able to accomplish such transition. The golden proportion of the social structure of the society implies a certain correlation of ontological categories of people, having personality orientation that characterizes them as a creator, consumer or destroyer. The modern approaches to education involve motivating a human being to self-improvement all his/her lifelong. The question is that, how much pedagogical systems correspond to the laws of harmony, which provide formation of social strata golden proportion structure considered not from the perspective of class position, but from the perspective of creative personality orientation. The analysis of the existing educational approaches showed, that the best indices satisfying the set social problem belong to noospheric pedagogics, based on nature-aligned methodology of teaching academic disciplines. It is built on principles of health protection and health development, intellectual potential, system motivation of an individual to self-perfection. Nature-aligned educational methodology is personality oriented and enables the student to accomplish object-subject transformation in the process of education, as a result of which, following the receipt of special educational knowledge, abilities and skills, he/she gets common educational abilities and skills, on the basis of which the processes of self-actualization, self

  16. High School Students' Understanding of Change over Time and System Complexity: A Focus on the Cryosphere

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Guthrie, C.

    2010-12-01

    Most students have difficulty articulating processes that are key for Earth’s changes and may have limited ability to understand Earth system science and think across spatial and temporal dimensions. The cryosphere, a complex and dynamic Earth system that exhibits change over time (e.g., seasonal, yearly, decadal, and millennial), can be difficult for students to reason about. The presented research assesses the effectiveness of the project developed on-line modules on high school students’ cryosphere content knowledge and skill development, including their: (1) conceptual understanding of ice, thermodynamics, climate, changes in ice cover over time, Earth system interactions, and complexity, and (2) use and interpretation of data and graphs about the cryosphere. Pre- and post- student assessments, classroom observations, and teacher interviews were collected from four high school classrooms in Texas to determine the effectiveness of the Earthlabs cryosphere modules in reaching the specified learning goals. Preliminary analysis of pre-and post-test data revealed a number of interesting changes where students displayed an increase in their awareness of the cryosphere, increase in confidence about cryosphere knowledge, and an increase in their ability to read and interpret graphs. Furthermore, classroom observations made for 25 minutes during a class period illustrated that for over 84% of the class period the students were engaged with the Earthlabs materials and spent the majority (>50%) of their time either discussing (31%) or working on the on-line Earthlabs cryosphere materials (29%). Finally, forty-five minute individual telephone interviews conducted with the four implementing cryosphere teachers revealed that teachers overwhelmingly reflected that the materials supported students’ ability to learn about the (i) nature and importance of the cryosphere, (ii) manipulation, analysis, interpretation of data, (iii) physical changes over multiple time scales

  17. Status of the IAEA coordinated research project on natural circulation phenomena, modelling, and reliability of passive systems that utilize natural circulation

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.; Cleveland, J.; Aksan, N.

    2004-01-01

    The International Atomic Energy Agency (IAEA) has established a Coordinated Research Project (CRP) titled ''Natural Circulation Phenomena, Modelling and Reliability of Passive Safety Systems that Utilize Natural Circulation. '' This work has been organized within the framework of the IAEA Department of Nuclear Energy's Technical Working Groups for Advanced Technologies for Light Water Reactors and Heavy Water Reactors (the TWG-LWR and the TWG-HWR). This CRP is part of IAEA's effort to foster international collaborations that strive to improve the economic performance of future water-cooled nuclear power plants while meeting stringent safety requirements. Thus far, IAEA has established 12 research agreements with organizations from industrialized Member States and 3 research contracts with organizations from developing Member States. The objective of the CRP is to enhance our understanding of natural circulation phenomena in water-cooled reactors and passive safety systems. The CRP participants are particularly interested in establishing a natural circulation and passive safety system thermal hydraulic database that can be used to benchmark computer codes for advanced reactor systems design and safety analysis. An important aspect of this CRP relates to developing methodologies to assess the reliability of passive safety systems in advanced reactor designs. This paper describes the motivation and objectives of the CRP, the research plan, and the role of each of the participating organizations. (author)

  18. Thai student existing understanding about the solar system model and the motion of the stars

    Science.gov (United States)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  19. Destructive Interactions Between Mitigation Strategies and the Causes of Unexpected Failures in Natural Hazard Mitigation Systems

    Science.gov (United States)

    Day, S. J.; Fearnley, C. J.

    2013-12-01

    Large investments in the mitigation of natural hazards, using a variety of technology-based mitigation strategies, have proven to be surprisingly ineffective in some recent natural disasters. These failures reveal a need for a systematic classification of mitigation strategies; an understanding of the scientific uncertainties that affect the effectiveness of such strategies; and an understanding of how the different types of strategy within an overall mitigation system interact destructively to reduce the effectiveness of the overall mitigation system. We classify mitigation strategies into permanent, responsive and anticipatory. Permanent mitigation strategies such as flood and tsunami defenses or land use restrictions, are both costly and 'brittle': when they malfunction they can increase mortality. Such strategies critically depend on the accuracy of the estimates of expected hazard intensity in the hazard assessments that underpin their design. Responsive mitigation strategies such as tsunami and lahar warning systems rely on capacities to detect and quantify the hazard source events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Self-warning and voluntary evacuation is also usually a responsive mitigation strategy. Uncertainty in the nature and magnitude of the detected hazard source event is often the key scientific obstacle to responsive mitigation; public understanding of both the hazard and the warnings, to enable decision making, can also be a critical obstacle. Anticipatory mitigation strategies use interpretation of precursors to hazard source events and are used widely in mitigation of volcanic hazards. Their critical limitations are due to uncertainties in time, space and magnitude relationships between precursors and hazard events. Examples of destructive interaction between different mitigation strategies are provided by the Tohoku 2011 earthquake and tsunami; recent earthquakes that have impacted

  20. Using 238U/235U ratios to understand the formation and oxidation of reduced uranium solids in naturally reduced zones

    Science.gov (United States)

    Jemison, N.; Johnson, T. M.; Druhan, J. L.; Davis, J. A.

    2016-12-01

    Uranium occurs in groundwater primarily as soluble and mobile U(VI), which can be reduced to immobile U(IV), often observed in sediments as uraninite. Numerous U(VI)-contaminated sites, such as the DOE field site in Rifle, CO, contain naturally reduced zones (NRZ's) that have relatively high concentrations of organic matter. Reduction of heavy metals occurs within NRZ's, producing elevated concentrations of iron sulfides and U(IV). Slow, natural oxidation of U(IV) from NRZ's may prolong U(VI) contamination of groundwater. The reduction of U(VI) produces U(IV) with a higher 238U/235U ratio. Samples from two NRZ sediment cores recovered from the Rifle site revealed that the outer fringes of the NRZ contain U(IV) with a high 238U/235U ratio, while lower values are observed in the center . We suggest that as aqueous U(VI) was reduced in the NRZ, it was driven to lower 238U/235U values, such that U(IV) formed in the core of the NRZ reflects a lower 238U/235U. Two oxidation experiments were conducted by injecting groundwater containing between 14.9 and 21.2 mg/L dissolved O2 as an oxidant into the NRZ. The oxidation of U(IV) from this NRZ increased aqueous U(VI) concentrations and caused a shift to higher 238U/235U in groundwater as U(IV) was oxidized primarily on the outer fringes of the NRZ. In total these observations suggest that the stability of solid phase uranium is governed by coupled reaction and transport processes. To better understand various reactive transport scenarios we developed a model for the formation and oxidation of NRZ's utilizing the reactive transport software CrunchTope. These simulations suggest that the development of isotopically heterogeneous U(IV) within NRZ's is largely controlled by permeability of the NRZ and the U(VI) reduction rate. Oxidation of U(IV) from the NRZ's is constrained by the oxidation rate of U(IV) as well as iron sulfides, which can prevent oxidation of U(IV) by scavenging dissolved oxygen.

  1. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins

    Directory of Open Access Journals (Sweden)

    Kevin D. Kohl

    2016-07-01

    Full Text Available The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, nongastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host’s ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that

  2. Rangelands, pastoralists and governments: interlinked systems of people and nature.

    Science.gov (United States)

    Walker, Brian H; Janssen, Marco A

    2002-05-29

    We analyse commercially operated rangelands as coupled systems of people and nature. The biophysical components include: (i) the reduction and recovery of potential primary production, reflected as changes in grass production per unit of rainfall; (ii) changes in woody plants dependent on the grazing and fire regimes; and (iii) livestock and wool dynamics influenced by season, condition of the rangeland and numbers of wild and feral animals. The social components include the managers, who vary with regard to a range of cognitive abilities and lifestyle choices, and the regulators who vary in regard to policy goals. We compare agent-based and optimization models of a rangeland system. The agent-based model leads to recognition that policies select for certain management practices by creating a template that governs the trajectories of the behaviour of individuals, learning, and overall system dynamics. Conservative regulations reduce short-term loss in production but also restrict learning. A free-market environment leads to severe degradation but the surviving pastoralists perform well under subsequent variable conditions. The challenge for policy makers is to balance the needs for learning and for preventing excessive degradation. A genetic algorithm model optimizing for net discounted income and based on a population of management solutions (stocking rate, how much to suppress fire, etc.) indicates that robust solutions lead to a loss of about 40% compared with solutions where the sequence of rainfall was known in advance: this is a similar figure to that obtained from the agent-based model. We conclude that, on the basis of Levin's three criteria, rangelands with their livestock and human managers do constitute complex adaptive systems. If this is so, then command-and-control approaches to rangeland policy and management are bound to fail.

  3. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  4. Natural Resource Information System. Volume 2: System operating procedures and instructions

    Science.gov (United States)

    1972-01-01

    A total computer software system description is provided for the prototype Natural Resource Information System designed to store, process, and display data of maximum usefulness to land management decision making. Program modules are described, as are the computer file design, file updating methods, digitizing process, and paper tape conversion to magnetic tape. Operating instructions for the system, data output, printed output, and graphic output are also discussed.

  5. Applications of Geographical Information Systems in Understanding Spatial Distribution of Asthma

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rob

    2003-01-01

    Full Text Available Geographical Information Systems (GIS are becoming useful tools in making strategic decisions when-ever data are found to have spatial distribution. Federal, state, and local governments are using GIS for assessment and planning in such areas as housing, healthcare, land use, natural resources, environmental monitoring and transportation. Companies are also using it to expand and consolidate existing businesses, perform market analysis, and to find optimum delivery routes. In this paper, we illustrate the usefulness of GIS in the analysis and presentation of spatially distributed asthma prevalence among school children (13-17 years in the New York City area. To the best of our knowledge, this is the first presentation of asthma survey results distributed over the zip codes of a large city. Preliminary results show good correlation between asthma and poverty. They also correlate well with the spatial distribution of asthma hospitalization data. Results reveal an overall asthma prevalence of ~ 16% as compared to the national average of ~12% for a similar age group (5-17 years. When comparing asthma rates among the predominant racial groups of the city - Blacks and Hispanics are found to have a higher prevalence than Whites or Asians. The inner-city population shows a significantly higher asthma prevalence than those in the suburbs. This study shows our understanding of asthma prevalence in a dimension that could not have been possible prior to the availability of GIS. The results will help us making further decisions in planning for asthma research.

  6. Applying a complex adaptive system's understanding of health to primary care [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Johannes Bircher

    2016-09-01

    Full Text Available This paper explores the diagnostic and therapeutic potential of a new concept of health. Investigations into the nature of health have led to a new definition that explains health as a complex adaptive system (CAS and is based on five components (a-e. Humans like all biological creatures must satisfactorily respond to (a the demands of life. For this purpose they need (b a biologically given potential (BGP and (c a personally acquired potential (PAP. These properties of individuals are embedded within (d social and (e environmental determinants of health. Between these five components of health there are 10 complex interactions that justify viewing health as a CAS. In each patient, the current state of health as a CAS evolved from the past, will move forward to a new future, and has to be analyzed and treated as an autonomous whole. A diagnostic procedure is suggested as follows: together with the patient, the five components and 10 complex interactions are assessed. This may help patients to better understand their situations and to recognize possible next steps that may be useful in order to evolve toward better health by themselves. In this process mutual trust in the patient-physician interaction is critical. The described approach offers new possibilities for helping patients improve their health prospects.

  7. Understanding the System You Are in Is Key to Improving It.

    Science.gov (United States)

    Plsek, Paul

    2017-01-01

    Front-line ownership (FLO) is an approach to change that is consistent with what we know about complex adaptive systems (CAS), such as a healthcare organization. Traditional change approaches can fail because they are based in the "organization as a machine" metaphor of traditional, scientific management. Both metaphors have their application. It depends on how closely the work naturally resembles a predictable machine. Often, the drive for detailed standardization is a misguided effort to make a human CAS behave more like a machine, so that our traditional approaches to change will work. FLO is a more appropriate tool in a CAS, where shared agreement at the level of a few simple rules (minimum specifications) and allowing flexibility for adaptation within local context is more appropriate than detailed standardization. Because humans in a CAS maintain some control over their discretionary effort, change advocates desiring sustainable change must work with stakeholders to co-create cases for change that resonate with the values of those being asked to change. FLO facilitates the emergence of this level of understanding of shared values.

  8. Terrestrial ecological systems and natural communities of Nebraska

    Data.gov (United States)

    Department of the Interior — Over two decades ago, The Nature Conservancy (TNC) and state natural heritage programs developed the “coarse filter/fine filter” approach to preserving biological...

  9. Understanding the Relative Influence of Anthropogenic Versus Natural Nitrogen on Biogeochemical Processes in the Southern California Bight

    Science.gov (United States)

    McLaughlin, K.; Howard, M. D.; Beck, C. D. A.; Emler, L.; Nezlin, N. P.; Sutula, M.

    2016-02-01

    Nitrogen (N) pollution is considered to be one of the most significant consequences of human-accelerated global change on coastal oceans (Howarth and Marino 2006). In the southern California Bight, wastewater effluent represents 92% of total terrestrial N loading and these loads are equivalent to the "background" N flux from upwelling (Howard et al. 2014). In this study, we attempt to quantify the relative influence of the two dominant nitrogen sources to the Bight (wastewater effluent and upwelled nitrogen) on biogeochemical processes linked to dissolved oxygen, pH and algal blooms. We will compare the sources and fate of nitrogen in an effluent impacted region (offshore of Los Angeles and Orange Counties) to minimally-impacted regions both along the coastline (offshore of Northern San Diego County) and two offshore stations. Key rates of nitrogen and carbon cycling are measured, including primary production and respiration, nitrogen uptake by primary producers, and nitrification. Stable isotope tracer techniques have also been applied to determine the relative influence of effluent versus upwelled nitrogen on biological communities and concentrations. Data generated from this study will be used to validate calculated rate constants used in oceanographic models of ecological response from natural and anthropogenic nutrient inputs in the Bight. These models will be used to estimate the extent to which anthropogenic nutrients are affecting primary production, acidification and hypoxia, as well as which regions are most at risk. They will also be used to analyze management scenarios to understand the effects of anthropogenic nutrient load reductions relative to climate change scenarios.

  10. A review of natural aerosol interactions and feedbacks within the Earth system

    Directory of Open Access Journals (Sweden)

    K. S. Carslaw

    2010-02-01

    Full Text Available The natural environment is a major source of atmospheric aerosols, including dust, secondary organic material from terrestrial biogenic emissions, carbonaceous particles from wildfires, and sulphate from marine phytoplankton dimethyl sulphide emissions. These aerosols also have a significant effect on many components of the Earth system such as the atmospheric radiative balance and photosynthetically available radiation entering the biosphere, the supply of nutrients to the ocean, and the albedo of snow and ice. The physical and biological systems that produce these aerosols can be highly susceptible to modification due to climate change so there is the potential for important climate feedbacks. We review the impact of these natural systems on atmospheric aerosol based on observations and models, including the potential for long term changes in emissions and the feedbacks on climate. The number of drivers of change is very large and the various systems are strongly coupled. There have therefore been very few studies that integrate the various effects to estimate climate feedback factors. Nevertheless, available observations and model studies suggest that the regional radiative perturbations are potentially several Watts per square metre due to changes in these natural aerosol emissions in a future climate. Taking into account only the direct radiative effect of changes in the atmospheric burden of natural aerosols, and neglecting potentially large effects on other parts of the Earth system, a global mean radiative perturbation approaching 1 W m−2 is possible by the end of the century. The level of scientific understanding of the climate drivers, interactions and impacts is very low.

  11. Politics of Natural Resource Management and Accountable Systems ...

    African Journals Online (AJOL)

    The political behaviour of public institutions exhibited in the management of critical natural resources influences the nature of service delivery. In particular, the character of such public organizations as regulators of natural resources, like water, impacts not only on what such management bodies do and their functionality, ...

  12. Using system dynamics modeling to understand the impact of social change initiatives.

    Science.gov (United States)

    Hirsch, Gary B; Levine, Ralph; Miller, Robin Lin

    2007-06-01

    Community psychologists have a long history of interest in understanding social systems and how to bring about enduring positive change in these systems. However, the methods that community psychologists use to anticipate and evaluate the changes that result from system change efforts are less well developed. In the current paper, we introduce readers to system dynamics modeling, an action research approach to studying complex systems and the consequences of system change. We illustrate this approach by describing a system dynamics model of educational reform. We provide readers with an introduction to system dynamics modeling, as well as describe the strengths and limitations of the approach for application to community psychology.

  13. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  14. Understanding the barriers to physician error reporting and disclosure: a systemic approach to a systemic problem.

    Science.gov (United States)

    Perez, Bianca; Knych, Stephen A; Weaver, Sallie J; Liberman, Aaron; Abel, Eileen M; Oetjen, Dawn; Wan, Thomas T H

    2014-03-01

    The issues of medical errors and medical malpractice have stimulated significant interest in establishing transparency in health care, in other words, ensuring that medical professionals formally report medical errors and disclose related outcomes to patients and families. However, research has amply shown that transparency is not a universal practice among physicians. A review of the literature was carried out using the search terms "transparency," "patient safety," "disclosure," "medical error," "error reporting," "medical malpractice," "doctor-patient relationship," and "physician" to find articles describing physician barriers to transparency. The current literature underscores that a complex Web of factors influence physician reluctance to engage in transparency. Specifically, 4 domains of barriers emerged from this analysis: intrapersonal, interpersonal, institutional, and societal. Transparency initiatives will require vigorous, interdisciplinary efforts to address the systemic and pervasive nature of the problem. Several ethical and social-psychological barriers suggest that medical schools and hospitals should collaborate to establish continuity in education and ensure that knowledge acquired in early education is transferred into long-term learning. At the institutional level, practical and cultural barriers suggest the creation of supportive learning environments and private discussion forums where physicians can seek moral support in the aftermath of an error. To overcome resistance to culture transformation, incremental change should be considered, for example, replacing arcane transparency policies and complex reporting mechanisms with clear, user-friendly guidelines.

  15. Logistical management system for natural gas distribution; Sistema de gestao logistica para a distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Joao Bosco F.; Nobre Junior, Ernesto F.; Praca, Eduardo R. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transportes e Desenvolvimento

    2004-07-01

    The Brazilian Federal Government has the very purpose of increasing the participation of the Natural Gas in the primary energy internal supply from 7,5% nowadays to about 12% till 2010. However, for that, it is necessary to eliminate the great impedance represented by the restricted accessibility to the product, due to the high distribution costs involved. So, there is an urgent need for availability of technologies to help natural gas distribution systems. This paper proposes an innovative logistics-based approach on the subject of the natural gas distribution, through a computational tool (GASLOG System) to be applied in the North and Northeastern urban and country areas of Brazil, with initial case study in the city of Fortaleza. In its conception, the GASLOG System focuses on the point-of-view of everyone of the actors involved with the natural gas distribution process trying to respond their particular necessities in the sector. (author)

  16. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    Science.gov (United States)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  17. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... AGENCY 40 CFR Parts 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY..., 2010 EPA promulgated Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule... outlined for calculating greenhouse gas emissions for the petroleum and natural gas systems source category...

  18. Understanding XPO1 target networks using systems biology and mathematical modeling.

    Science.gov (United States)

    Muqbil, Irfana; Kauffman, Michael; Shacham, Sharon; Mohammad, Ramzi M; Azmi, Asfar S

    2014-01-01

    The nuclear transport protein Exportin 1 (XPO1), also called chromosome region maintenance 1 (CRM1), is over-expressed 2- 4 fold in cancer. XPO1 is one of seven nuclear exporter proteins, and is solely responsible for the transport of the major tumor suppressor proteins (TSPs) from the nucleus to the cytoplasm. XPO1 exports any protein that carries a leucine-rich, hydrophobic nuclear export sequence (NES). A number of inhibitors have been discovered that block XPO1 function and thereby restore TSPs to the nucleus of both malignant and normal cells. However, natural product, irreversible XPO1 antagonists such as leptomycin B (LMB) have proven toxic in both preclinical models and in the clinic. Recently, orally bioavailable, drug-like small molecule, potent and selective inhibitors of XPO1 mediated nuclear export ("SINE") have been designed and are undergoing clinical evaluations in both humans and canines with cancer. The breadth of clinical applicability and long-term viability of an XPO1 inhibition strategy requires a deeper evaluation of the consequence of global re-organization of proteins in cancer and normal cells. Unfortunately, most of the studies on XPO1 inhibitors have focused on evaluating a limited number of TSPs or other proteins. Because XPO1 carries ~220 mammalian proteins out of the nucleus, such reductionism has not permitted a global understanding of cellular behavior upon drug-induced disruption of XPO1 function. The consequence of XPO1 inhibition requires holistic investigations that consider the entire set of XPO1 targets and their respective pathways modulated without losing key details. Systems biology is one such holistic approach that can be applied to understand XPO1 regulated proteins along with the downstream players involved. This review provides comprehensive evaluations of the different computational tools that can be utilized in the better understanding of XPO1 and its target. We anticipate that such holistic approaches can allow for

  19. Understanding the natural and social factors behind regional longevity in Guangxi, China—Is centenarian ratio a good enough indicator for assessing the longevity level?

    Science.gov (United States)

    Deng, Q.; Wei, Y.; Zhao, Y.

    2017-12-01

    Despite a number of longevity indicators having been used in previous longevity studies, few studies have critically evaluated whether these indicators are suitable. In addition, an increasing number of studies have attempted to determine the influence of socio-economic and natural factors on regional longevity, but only certain factors were considered. The present study bridges this gap by determining the relationship between the seven longevity indicators and selecting 24 natural and socio-economic indicators in the 91 selected counties and districts in Guangxi, China. The seven longevity indicators here refer to Centenarian ratio, Longevity index, Longevity level, Aging tendency, 80+ ratio, 90+ ratio and 95+ ratio. Natural indicators in this study mainly refer to climatic ones. Socio-economic indicators can be categorized into those related to economic, education, local infrastructure, and health care facilities. These data were mainly drawn from the Meteorological Data Sharing Service System and Guangxi's sixth population census. Stepwise regression analysis has been used as the primary research method to determine the relationship between the longevity indicators and the natural, social, and economic indicators. The results show that the climate factors regarding atmospheric pressure, humidity, and rainfall are the most significant contributors to the longevity of the 60- to 90-year-old elderly in Guangxi, while the difference of mean annual temperature could have negative impacts. Also, the natural and socioeconomic factors that impact the extremely old population (those over 95 years old) in Guangxi are still not clear. This study reveals that the longevity index and longevity level are useful supplementary indexes to the centenarian ratio for assessing the regional longevity as they could help reflect the regional longevity regarding the proportion of young-old and old-old population and not just limit to those over 100 years old. The elderly (those from 60

  20. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    Science.gov (United States)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  1. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    Science.gov (United States)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  2. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe

    Science.gov (United States)

    Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert

    2017-08-01

    Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% yr-1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms

  3. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  4. Understanding the links between ecosystem health and social system well-being: an annotated bibliography.

    Science.gov (United States)

    Dawn M. Elmer; Harriet H. Christensen; Ellen M. Donoghue; [Compilers].

    2002-01-01

    This bibliography focuses on the links between social system well-being and ecosystem health. It is intended for public land managers and scientists and students of social and natural sciences. Multidisciplinary science that addresses the interconnections between the social system and the ecosystem is presented. Some of the themes and strategies presented are policy...

  5. A counter system for natural C14 measurement

    International Nuclear Information System (INIS)

    Oona, H.; Fan, C.Y.

    1977-01-01

    Two proportional counters made of plastic scintillator were constructed for measuring the C14 contents in dated tree rings. One is for background and the other for specimen. CH 4 at 1 atm pressure was used as the counter gas; each counter has an active volume approximately 5.5 l. The wall, being a scintillator, serves as a 4π anti-coincidence shell for rejection of natural radioactivity in the material housing the proportional counter and penetrating cosmic ray muons. The outputs of the proportional counters which are in anticoincidence with the scintillation counter were recorded in a pulse height analyzer. After background subtraction, it yields the beta-decay spectrum of carbon-14 in the methane filled proportional counter. Simultaneously, the outputs which are in coincidence with the scintillation counter were also recorded as a monitor of the operational characteristics of the detector systems. The problems inherent with pulse height analyzers and the use of scintillators are discussed and evaluated. (Auth.)

  6. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    Energy Technology Data Exchange (ETDEWEB)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  7. Natural frequency extraction of a beam-moving mass system with periodic passages using its pseudo-natural frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Esmaeil; Keshmiri, Mehdi [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-15

    Wind turbines, helicopters, and turbo-machineries' rotary motion, along with a variety of nonlinear structures linearized with their periodic limit cycles, may all contain time-periodic terms in their equations of motion even if the equations remain linear. The purpose of this study is to model these systems into a beam-moving mass system. Natural frequencies of the beam are calculated using past work in which pseudo-natural frequencies of a beam-moving mass system were extracted, followed by the homotopy perturbation method. The findings of this study are valuable to the industry, and they decrease error margin in resonance range assessment. This approach indicates that for beam-moving mass systems, extraction of natural frequencies that ignore the moving mass effect can lead to inaccurate results, whereas only a limited amount of physical data are needed obtain accurate calculations. Furthermore, this study used homotopy perturbation for operational modal analysis purposes and not for solving nonlinear equations.

  8. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  9. Information and entropy theory for the sustainability of coupled human and natural systems

    Directory of Open Access Journals (Sweden)

    Audrey L. Mayer

    2014-09-01

    Full Text Available For coupled human and natural systems (CHANS, sustainability can be defined operationally as a feasible, desirable set of flows (material, currency, information, energy, individuals, etc. that can be maintained despite internal changes and changes in the environment. Sustainable development can be defined as the process by which CHANS can be moved toward sustainability. Specific indicators that give insight into the structure and behavior of feedbacks in CHANS are of particular interest because they would aid in the sustainable management of these systems through an understanding of the structures that govern system behavior. However, the use of specific feedbacks as monitoring tools is rare, possibly because of uncertainties regarding the nature of their dynamics and the diversity of types of feedbacks encountered in these systems. An information theory perspective may help to rectify this situation, as evidenced by recent research in sustainability science that supports the use of unit-free measures such as Shannon entropy and Fisher information to aggregate disparate indicators. These measures have been used for spatial and temporal datasets to monitor progress toward sustainability targets. Here, we provide a review of information theory and a theoretical framework for studying the dynamics of feedbacks in CHANS. We propose a combination of information-based indices that might productively inform our sustainability goals, particularly when related to key feedbacks in CHANS.

  10. On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems

    Science.gov (United States)

    In this paper, we review the role of patterns to improve our understanding of water, mass and energy exchange processes in soil-vegetation-atmosphere systems. We explore the main mechanisms that lead to the formation of patterns in these systems and discuss different approaches to characterizing and...

  11. Children's and Adolescents' Thoughts on Pollution: Cognitive Abilities Required to Understand Environmental Systems

    Science.gov (United States)

    Rodríguez, Manuel; Kohen, Raquel; Delval, Juan

    2015-01-01

    Pollution phenomena are complex systems in which different parts are integrated by means of causal and temporal relationships. To understand pollution, children must develop some cognitive abilities related to system thinking and temporal and causal inferential reasoning. These cognitive abilities constrain and guide how children understand…

  12. Understanding the Composition Dependence of the Fragility of AgI-Ag2O-MxOy Glassy Systems

    International Nuclear Information System (INIS)

    Aniya, M

    2011-01-01

    It has been reported that the fragility in the AgI-Ag 2 O-M x O y (M = B, Ge, P, Mo) system is determined by Ag 2 O-M x O y and does not depend on the amount of AgI. This is an interesting result and provides a hint to understand the nature of the glassy state of these materials. However, the origin of such behavior has not been sufficiently discussed. In the present report a model for the above behavior is presented. According to the model, the behavior arises from the solid like nature of the network formed by Ag 2 O-M x O y and the liquid like AgI which flow between the networks. The model is consistent with the structural model of superionic glasses proposed previously.

  13. Understandings of the 'natural' body: a comparison of the views of users and providers of emergency contraception.

    Science.gov (United States)

    Keogh, L A

    2005-01-01

    'Natural' is a pervasive discourse with mixed meanings in contemporary society. I was interested in how users and providers of emergency contraception conceptualised the 'natural' body in contraceptive decision making. Thirty-two users and 19 providers of emergency contraception from three sites in metropolitan Melbourne were interviewed, or participated in focus groups, about emergency contraceptive use, contraceptive decision making and perceptions of risk. The qualitative data were transcribed and coded to identify the key ways that both users and providers perceived the 'natural' body. Providers and users adopted different frameworks for interpreting the discourse of the 'natural' body. Thirteen of the 32 users identified the 'natural' body as a factor in their decision making. They identified a 'natural' body as a body experiencing no interruption with ovulation, and/or free from unwanted side effects. Six of the 13 women who discussed the 'natural' body used a contraceptive that allowed them to preserve their natural body (e.g. condoms). The remaining seven women identified it as an ideal that they could not achieve. Providers in general discredited the idea of a 'natural' body and instead conceptualised contraceptive decision making as a 'simple' risk-benefit analysis. The differences between the two groups can be understood in a number of different ways. The important conclusion however, is that the different perspectives present a potential barrier to effective communication in the contraceptive consultation, and may be able to be resolved through the development of an embodied risk-benefit analysis that may be meaningful to both groups.

  14. Systems Education for a Sustainable Planet: Preparing Children for Natural Disasters

    Directory of Open Access Journals (Sweden)

    Kevin R. Ronan

    2014-01-01

    Full Text Available This paper first reviews research linked to the United Nations International Strategy for Disaster Reduction focusing on “child-centred disaster risk reduction” (CC-DRR, highlighting systemic aspects of disaster prevention and preparedness educational programming to date. However, it is also pointed out that education evaluated to date largely assumes a linear, mechanistic approach to preparedness and related resiliency outcomes. Thus, the main thrust of this paper is to elucidate means by which hazards and disaster preparedness education programs for children can shift to systems-based models, those that incorporate both systemic epistemologies but also more systems-based, and interconnected, curricula. This includes curricula that help children connect the physical world and science with the social world and human factors. It also includes the more systemic idea that natural hazards are but one example of a larger category of problems in life related to risk and uncertainty. Thus, a main aim of a systems educational approach is to help children equip themselves with knowledge, skills, motivation and confidence that they can increasingly manage a range of risks in life. This includes an increasing understanding of the added value that can be gained from approaching problems with systemic tools, including producing increasingly effective and sustainable solutions to what public policy refers to as wicked problems.

  15. Silver nanoparticles delivery system based on natural rubber latex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder Jose, E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo/FFCLRP-DF (Brazil); Kinoshita, Angela [Universidade do Sagrado Coracao (Brazil); Ramos, Ana Paula [Universidade de Sao Paulo/FFCLRP-DQ (Brazil); Baffa, Oswaldo [Universidade de Sao Paulo/FFCLRP-DF (Brazil)

    2013-04-15

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ({approx}0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are

  16. Silver nanoparticles delivery system based on natural rubber latex membranes

    Science.gov (United States)

    Guidelli, Éder José; Kinoshita, Angela; Ramos, Ana Paula; Baffa, Oswaldo

    2013-04-01

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ( 0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.

  17. Weather impacts on natural, social and economic systems. German report

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, M.; Gerlinger, K.; Herrmann, N.; Klein, R.J.T.; Schneider, M.; Sterr, H.; Schellnhuber, H.J.

    2000-05-01

    The EU project Weather Impacts on Natural, Social and Economic Systems (WISE) has analysed impacts of current climate variability to evaluate the sensitivity of today's society to extreme weather. Unlike studies of anticipated impacts of climate change, WISE did not rely on scenarios and projections, but on existing and newly collected data. The research involved (i) the statistical modelling of meteorological and sectoral time series, aimed at quantifying the impacts of changing weather variables on sector output, (ii) a population survey, aimed at investigating public perception of and behavioural response to unusually hot and dry summers and mild winters, and (iii) a management survey, aimed at obtaining insight into managers' awareness and perception of the importance of extreme weather on their operations. The three activities revealed a wealth of data and information, providing relevant insights into Germany's sensitivity to and perception of extreme weather events. Sectors that were analysed included agriculture, outdoor fire, water supply, human health, electricity and gas consumption and tourism. It appears from the statistical modelling that extreme weather can have impressive impacts on all sectors, especially when expressed in monetary terms. However, weather variability is generally considered a manageable risk, to which sectors in Germany appear reasonably well-adapted. The population and management surveys reveal both positive and negative impacts of extreme weather. People generally respond to these impacts by adjusting their activities. The utilities (electricity, gas and water) indicate that they are robsut to the current level of weather variability and do not consider climate change an important threat to their operations. The tourism sector experiences impacts but typically takes a reactive approach to adaptation, although it is also developing weather-insensitive products. (orig.)

  18. Understanding the Organization of Public Health Delivery Systems: An Empirical Typology

    OpenAIRE

    Mays, Glen P; Scutchfield, F Douglas; Bhandari, Michelyn W; Smith, Sharla A

    2010-01-01

    Context: Policy discussions about improving the U.S. health care system increasingly recognize the need to strengthen its capacities for delivering public health services. A better understanding of how public health delivery systems are organized across the United States is critical to improvement. To facilitate the development of such evidence, this article presents an empirical method of classifying and comparing public health delivery systems based on key elements of their organizational s...

  19. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics

    DEFF Research Database (Denmark)

    Louveau, Antoine; Plog, Benjamin A; Antila, Salli

    2017-01-01

    to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege...... and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems....

  20. Modeling the Interrelationships among Pre-Service Science Teachers' Understanding and Acceptance of Evolution, Their Views on Nature of Science and Self-Efficacy Beliefs regarding Teaching Evolution

    Science.gov (United States)

    Akyol, Gulsum; Tekkaya, Ceren; Sungur, Semra; Traynor, Anne

    2012-01-01

    This study proposed a path model of relationships among understanding and acceptance of evolution, views on nature of science, and self-efficacy beliefs regarding teaching evolution. A total of 415 pre-service science teachers completed a series of self-report instruments for the specified purpose. After the estimation of scale scores using…

  1. Functions of flavonoids in the central nervous system: Astrocytes as targets for natural compounds.

    Science.gov (United States)

    Matias, Isadora; Buosi, Andrea Schmidt; Gomes, Flávia Carvalho Alcantara

    2016-05-01

    In the last decade, there have been major advances in the understanding of the role of glial cells as key elements in the formation, maintenance and refinement of synapses. Recently, the discovery of natural compounds capable of modulating nervous system function has revealed new perspectives on the restoration of the injured brain. Among these compounds, flavonoids stand out as molecules easily obtainable in the diet that have remarkable effects on cognitive performance and behavior. Nevertheless, little is known about the cellular and molecular mechanisms underlying the actions of flavonoids in the nervous system. The present review presents recent advances in the effects of natural compounds, particularly flavonoids, in the nervous system. We shed light on astrocytes as targets of flavonoids and discuss how this interaction might contribute to the effects of flavonoids on neuronal survival, differentiation and function. Finally, we discuss how the effects of flavonoids on astrocytes might contribute to the development of alternative therapeutic approaches to the treatment of neural diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. STEPS IN UNDERSTANDING THE ROLE OF INSTABILITY UPON URBAN TERITORRIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Andrei SCHVAB

    2015-12-01

    Full Text Available Instability is an omnipresent process that creates the conditions for adaptation and change. A territorial system cannot develop without instability. A high degree of system instability points out an acute structural and functional disorder. The present study proposes a method to measure system instability through economic structural and functional changes inside urban territorial systems. The analysis is done by quantifying the changes and transfers in internal economic hierarchies. System instability shows the role that the system plays in its environment and consequently the measures that can be taken to amplify or hinder (depending on the desired outcome that role. The conceptual framework captures the adaptive processes associated with system instability and both structural and functional changes are evidenced. The non-linear processes were analysed for the urban territorial system of Baia Mare (Romania underlining their role in the city’s adaptation to the changing of its environment. The proposed method starts from the assumption that internal systemic hierarchy is a very stable parameter of state. If the system is unstable, significant changes of the internal hierarchy will happen, and this will be reflected in a strong structural and functional shift. Measuring system instability helps better understanding the impact that change and adaptation have over the territorial system and its environment. Understanding these processes may offer policy makers the evidence they need to take actions in a conscious manner.

  3. Understanding the interaction between henipaviruses and their natural host, fruit bats: Paving the way toward control of highly lethal infection in humans.

    Science.gov (United States)

    Enchéry, François; Horvat, Branka

    2017-03-04

    Hendra virus and Nipah virus (NiV) are highly pathogenic zoonotic paramyxoviruses, from henipavirus genus, that have emerged in late 1990s in Australia and South-East Asia, respectively. Since their initial identification, numerous outbreaks have been reported, affecting both domestic animals and humans, and multiple rounds of person-to-person NiV transmission were observed. Widely distributed fruit bats from Pteropodidae family were found to be henipavirus natural reservoir. Numerous studies have reported henipavirus seropositivity in pteropid bats, including bats in Africa, thus expanding notably the geographic distribution of these viruses. Interestingly, henipavirus infection in bats seems to be asymptomatic, in contrast to severe disease induced in numerous other mammals. Unique among the mammals by their ability to fly, these intriguing animals are natural reservoir for many other emerging and remerging viruses highly pathogenic for humans. This feature, combined with absence of clinical symptoms, has attracted the interest of scientific community to virus-bat interactions. Therefore, several bat genomes were sequenced and particularities of the bat immune system have been intensively analyzed during the last decade to understand their coexistence with viruses in the absence of disease. The peculiarities in inflammasome activation, a constitutive expression of interferon alpha, and some differences in adaptive immunity have been recently reported in fruit bats. Studies on virus-bat interactions have thus emerged as an exciting novel area of research that should shed new light on the mechanisms that regulate viral infection and may allow development of novel therapeutic approaches to control this highly lethal emerging infectious disease in humans.

  4. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  5. The Enigmatic but Unique Nature of the Israeli Legal System ...

    African Journals Online (AJOL)

    In this respect, Israel may have contributed much to the reinvigoration of the modern comparative law agenda, and it may continue to do so in the future, as the system is not one of legal stasis (a mixed system) but one of legal kinesis (a mixing system). Keywords: Israeli legal system, Israeli Supreme Court, legal systemics, ...

  6. Did natural selection make the Dutch taller? A cautionary note on the importance of quantification in understanding evolution.

    Science.gov (United States)

    Tarka, Maja; Bolstad, Geir H; Wacker, Sebastian; Räsänen, Katja; Hansen, Thomas F; Pélabon, Christophe

    2015-12-01

    One of the main achievements of the modern synthesis is a rigorous mathematical theory for evolution by natural selection. Combining this theory with statistical models makes it possible to estimate the relevant parameters so as to quantify selection and evolution in nature. Although quantification is a sign of a mature science, statistical models are unfortunately often interpreted independently of the motivating mathematical theory. Without a link to theory, numerical results do not represent proper quantifications, because they lack the connections that designate their biological meaning. Here, we want to raise awareness and exemplify this problem by examining a recent study on natural selection in a contemporary human population. Stulp et al. (2015) concluded that natural selection may partly explain the increasing stature of the Dutch population. This conclusion was based on a qualitative assessment of the presence of selection on height. Here, we provide a quantitative interpretation of these results using standard evolutionary theory to show that natural selection has had a minuscule effect. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. The Foundation Role for Theories of Agency in Understanding Information Systems Design

    Directory of Open Access Journals (Sweden)

    Robert Johnston

    2002-11-01

    Full Text Available In this paper we argue that theories of agency form a foundation upon which we can build a deeper understanding of information systems design. We do so by firstly recognising that information systems are part of purposeful sociotechnical systems and that consequently theories of agency may help in understanding them. We then present two alternative theories of agency (deliberative and situational, mainly drawn from the robotics and artificial intelligence disciplines, and in doing so, we note that existing information system design methods and ontological studies of those methods implicitly adhere to the deliberative theory of agency. We also note that while there are advantages in specific circumstances from utilising the situated theory of agency in designing complex systems, because of their differing ontological commitments, such systems would be difficult to analyse and evaluate using ontologies currently used in information systems. We then provide evidence that such situational information systems can indeed exist, by giving a specific example (the Kanban system, which has emerged from manufacturing practice. We conclude that information systems are likely to benefit from creating design approaches supporting the production of situational systems.

  8. Localization in Naturally Deformed Systems - the Default State?

    Science.gov (United States)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting

  9. The Nature and Assessment of Systemic Risk in Terms of Liquidity of the Banking System

    Directory of Open Access Journals (Sweden)

    Lavreniuk Vladyslav V.

    2016-11-01

    Full Text Available The aim of the article is to determine the nature of systemic risk as a threat to the financial stability of the banking system and develop analytical tools to assess its impact on the banking system in terms of its liquidity. To solve the tasks assigned, there used general scientific and specific methods, such as: logical and dialectical method, mathematical and graphical one. Based on the generalization, analysis and comparison of different interpretations, there clarified the concept of «systemic risk» as a risk generated by financial institutions or individual sectors through the implementation of the mechanism of risk transmission, achieving significant scale of distribution and adversely affecting the stability of the financial system and the real sector of economy. There identified key aspects of systemic risk: a systemic risk is not a sum of all individual risks of financial institutions; b spreads through the channels of interconnectedness between financial institutions; c is a result of accumulated structural imbalances; d affects the stability of the financial/banking system, public confidence and the real sector of economy. Analytical tools for estimation of the bank’s contribution to the systemic liquidity risk on the basis of which it is determined that the first place in terms of the effect on the aggregate systemic risk of liquidity of the Ukrainian banking system is occupied by banks of Group I, the second place — by Privatbank, the third, fourth, fifth places — by banks in Group II — Oschadbank, Ukreximbank. It is found that it is systemically important state-owned banks that have a significant impact on systemic liquidity risk. It is determined that the probability of default of a leading systemically important bank could result in considerable cumulative losses for the entire banking system and real economy. The prospects of further research are the development of tools for systemic risk assessment with respect to

  10. Understanding the dynamics of sustainable social-ecological systems: human behavior, institutions, and regulatory feedback networks.

    Science.gov (United States)

    Anderies, John M

    2015-02-01

    I present a general mathematical modeling framework that can provide a foundation for the study of sustainability in social- ecological systems (SESs). Using basic principles from feedback control and a sequence of specific models from bioeconomics and economic growth, I outline several mathematical and empirical challenges associated with the study of sustainability of SESs. These challenges are categorized into three classes: (1) the social choice of performance measures, (2) uncertainty, and (3) collective action. Finally, I present some opportunities for combining stylized dynamical systems models with empirical data on human behavior and biophysical systems to address practical challenges for the design of effective governance regimes (policy feedbacks) for highly uncertain natural resource systems.

  11. Estimating the influence of natural hazards on pipeline risk and system reliability

    Energy Technology Data Exchange (ETDEWEB)

    Porter, M.; Logue, C.; Savigny, W.; Esford, F.; Bruce, I. [BGC Engineering Inc., Vancouver, BC (Canada)

    2004-07-01

    The techniques for understanding pipeline hazard exposure were discussed along with methods to estimate pipeline risk and reliability. Although natural hazards, such as ground movement, are not a major contributor to pipeline failures compared to other causes such as third party damage, corrosion and material defects, the risk posed by geohazards is proportionally quite significant. In cases where difficult ground conditions have not been properly accounted for in pipeline design, construction, and operation, geohazards may have an overriding influence on pipeline risk and reliability. The many natural hazards that can threaten the safe and efficient operation of pipelines can be divided into 3 broad groups, namely geotechnical, hydrotechnical and tectonic hazards. This paper addressed the issue of of why the relative significance of natural hazards is often underestimated by the pipeline industry, with reference to published western European and U.S. incident data. Geohazards can cause pipeline failures, with consequences ranging from injury, death, environmental impact, property damage, and lengthy service disruption. This paper introduced a framework for estimating the influence of geohazards on pipeline risk and system reliability. 14 refs., 1 tab., 6 figs.

  12. Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciatio...

  13. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  14. The paths of mortality: how understanding the biology of aging can help explain systems behavior of single cells.

    Science.gov (United States)

    Crane, Matthew M; Kaeberlein, Matt

    2018-04-01

    Aging is a fundamental aspect of life, yet also one of the most confounding. In individual cells, aging results in a progressive decline which affects all organelles and reduces a cell's ability to maintain homeostasis. Because of the interconnected nature of cellular systems, the failure of even a single organelle can have cascading effects. We are just beginning to understand the dramatic physiological changes that occur during aging. Because most aging research has focused on population dynamics, or differences between wild-type and mutant populations, single-cell behavior has been largely overlooked. An open question is whether aging cells are defined by predictable sequences of physiological changes, or whether they proceed along divergent aging trajectories defined by whichever system begins to fail first. Can aging be best characterized by a cell-cycle like model with stereotyped states all cells progress through, or a Waddington landscape with divergent trajectories? Here we present work on understanding the changing physiological states of aging cells, why it will impact systems and synthetic biologists, and how the systems community can contribute significantly to the study of aging.

  15. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  16. Understanding Kendal aquifer system: a baseline analysis for sustainable water management proposal

    Science.gov (United States)

    Lukman, A.; Aryanto, M. D.; Pramudito, A.; Andhika, A.; Irawan, D. E.

    2017-07-01

    North coast of Java has been grown as the center of economic activities and major connectivity hub for Sumatra and Bali. Sustainable water management must support such role. One of the basis is to understand the baseline of groundwater occurrences and potential. However the complex alluvium aquiver system has not been well-understood. A geoelectric measurements were performed to determine which rock layer has a good potential as groundwater aquifers in the northern coast of Kaliwungu Regency, Kendal District, Central Java province. Total of 10 vertical electrical sounding (VES) points has been performed, using a Schlumberger configuration with the current electrode spacing (AB/2) varies between 200 - 300 m and the potential difference electrode spacing (MN/2) varies between 0.5 to 20 m with depths target ranging between 150 - 200 m. Geoelectrical data processing is done using Ip2win software which generates resistivity value, thickness and depth of subsurface rock layers. Based on the correlation between resistivity value with regional geology, hydrogeology and local well data, we identify three aquifer layers. The first layer is silty clay with resistivity values vary between 0 - 10 ohm.m, then the second layer is tuffaceous claystone with resistivity value between 10 - 60 ohm.m. Both layers serve as impermeable layer. The third layer is sandy tuff with resistivity value between 60 - 100 ohm.m which serves as a confined aquifer layer located at 70 - 100 m below surface. Its thickness is vary between 70 to 110 m. The aquifer layer is a mixing of volcanic and alluvium sediment, which is a member of Damar Formation. The stratification of the aquifer system may change in short distance and depth. This natural setting prevent us to make a long continuous correlation between layers. Aquifer discharge is estimated between 5 - 71 L/s with the potential deep well locations lies in the west and southeast part of the study area. These hydrogeological settings should be used

  17. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  18. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    Science.gov (United States)

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  19. Integrated systems understanding using bayesian networks: measuring the effectiveness of a weapon system

    CSIR Research Space (South Africa)

    de Waal, A

    2006-02-27

    Full Text Available Self-Guided weapon system. The results indicate that the method integrates and quantifies links between sub-systems to an extent where questions asked by the end-user can be answered in a quantitative manner...

  20. Mandatory Climate Change Discussions in Online Classrooms: Promoting Students' Climate Literacy and Understanding of the Nature of Science

    Science.gov (United States)

    Clary, Renee M.; Wandersee, James H.

    2012-01-01

    Graduate students entered our online classrooms with robust, but nonscientific, opinions on climate change. To expose students to critical analysis of media and emphasize the nature of science, we required them to access scientific reports and participate in mandatory peer discussions. An introductory survey probed incoming knowledge and opinions,…