WorldWideScience

Sample records for understanding midlatitude space

  1. Delayed storm-time increases in the whistler rate at mid-latitudes

    International Nuclear Information System (INIS)

    Andrews, M.K.

    1975-01-01

    The occurrence of whistlers during 105 magnetic storms in the period 1963 to 1968 is studied. Evidence that more whistlers occur during the storm recovery period is presented. Assuming that the increased whistler rate implies the presence of more ducts, similarities are noted between the storm-time duct population and the incidence of mid-latitude spread-F in both time and space. It is suggested that a fresh examination of the physical processes involved in spread-F may aid understanding of the formation of whistler ducts. (author)

  2. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Science.gov (United States)

    Smeaton, Craig; Austin, William E. N.; Davies, Althea L.; Baltzer, Agnes; Howe, John A.; Baxter, John M.

    2017-12-01

    Fjords are recognised as hotspots for the burial and long-term storage of carbon (C) and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  3. An introduction to mid-latitude ecotone: sustainability and environmental challenges

    Directory of Open Access Journals (Sweden)

    J. Moon

    2017-12-01

    Full Text Available The mid-latitude zone can be broadly defined as part of the hemisphere between 30°–60° latitude. This zone is home to over 50 % of the world population and encompasses about 36 countries throughout the principal region, which host most of the world’s development and poverty related problems. In reviewing some of the past and current major environmental challenges that parts of mid-latitudes are facing, this study sets the context by limiting the scope of mid-latitude region to that of Northern hemisphere, specifically between 30°–45° latitudes which is related to the warm temperate zone comprising the Mid-Latitude ecotone – a transition belt between the forest zone and southern dry land territories. The ongoing climate change reveals a substantial increase of temperature and simultaneous decrease in the amount of precipitation across vast continental regions in the mid-latitudes. According to climatic predictions, these tendencies will continue during the 21st century, which will likely increase the frequency and severity of droughts and water stress of vegetation. Along with climate change, ongoing land degradation and deforestation are observed in many regions of the mid-latitude region. For example, the Korean peninsula, which is divided into South and North Korea, is characterized by drastically different forest conditions. Deforestation in North Korea has been exacerbating at a noticeable pace due to excessive logging and human intervention. Such problems are not confined to Korean peninsula but are witnessed across vast regions of the mid-latitude region. Within this context – acquiring better understanding in the role of terrestrial ecosystems located at different latitudes is critical – for building resilience against the negative impact of climate change and for maintaining the stability of the environment and landscapes.

  4. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks

    Directory of Open Access Journals (Sweden)

    C. Smeaton

    2017-12-01

    Full Text Available Fjords are recognised as hotspots for the burial and long-term storage of carbon (C and potentially provide a significant climate regulation service over multiple timescales. Understanding the magnitude of marine sedimentary C stores and the processes which govern their development is fundamental to understanding the role of the coastal ocean in the global C cycle. In this study, we use the mid-latitude fjords of Scotland as a natural laboratory to further develop methods to quantify these marine sedimentary C stores on both the individual fjord and national scale. Targeted geophysical and geochemical analysis has allowed the quantification of sedimentary C stocks for a number of mid-latitude fjords and, coupled with upscaling techniques based on fjord classification, has generated the first full national sedimentary C inventory for a fjordic system. The sediments within these mid-latitude fjords hold 640.7 ± 46 Mt of C split between 295.6 ± 52 and 345.1 ± 39 Mt of organic and inorganic C, respectively. When compared, these marine mid-latitude sedimentary C stores are of similar magnitude to their terrestrial equivalents, with the exception of the Scottish peatlands, which hold significantly more C. However, when area-normalised comparisons are made, these mid-latitude fjords are significantly more effective as C stores than their terrestrial counterparts, including Scottish peatlands. The C held within Scotland's coastal marine sediments has been largely overlooked as a significant component of the nation's natural capital; such coastal C stores are likely to be key to understanding and constraining improved global C budgets.

  5. Seasonal ionospheric scintillation analysis during increasing solar activity at mid-latitude

    Science.gov (United States)

    Ahmed, Wasiu Akande; Wu, Falin; Agbaje, Ganiyu Ishola; Ednofri, Ednofri; Marlia, Dessi; Zhao, Yan

    2017-09-01

    Monitoring of ionospheric parameters (such as Total Electron Content and scintillation) is of great importance as it affects and contributes to the errors encountered by radio signals. It thus requires constant measurements to avoid disastrous situation for space agencies, parastatals and departments that employ GNSS applications in their daily operations. The research objective is to have a better understanding of the behaviour of ionospheric scintillation at midlatitude as it threatens the performances of satellite communication, navigation systems and military operations. This paper adopts seasonal ionospheric scintillation scenario. The mid-latitude investigation of ionospheric effect of scintillation was conducted during the increasing solar activity from 2011-2015. Ionospheric scintillation data were obtained from four ionospheric monitoring stations located at mid-latitude (i.e Shenzhen North Station, Beijing Changping North Station Branch, Beijing North Station and Beijing Miyun ground Station). The data was collected from January 2011 to December 2015. There were absence of data due to software problem or system failure at some locations. The scintillation phenomenon was computed using Global Ionospheric Scintillation and TEC Monitoring Model. There are four seasons which existed in China namely: Spring, Summer, Autumn and Winter. The relationship between TEC, amplitude and phase scintillation were observed for each of these seasons. The results indicated that the weak amplitude scintillation was observed as against phase scintillation which was high. Phase scintillation was gradually enhanced from 2011 to 2012 and later declined till 2014. TEC was also at peak around 00:00-10:00 UT (08:00-18:00 LT). The seasonal events temporal density characteristics comply with solar cycle prediction as such it ascended from 2011 to 2013 and then scintillation parameters declined significantly afterwards.

  6. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  7. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan

    Science.gov (United States)

    Yamamoto, M.

    2015-12-01

    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  8. Prominent Midlatitude Circulation Signature in High Asia's Surface Climate During Monsoon

    Science.gov (United States)

    Mölg, Thomas; Maussion, Fabien; Collier, Emily; Chiang, John C. H.; Scherer, Dieter

    2017-12-01

    High Asia has experienced strong environmental changes in recent decades, as evident in records of glaciers, lakes, tree rings, and vegetation. The multiscale understanding of the climatic drivers, however, is still incomplete. In particular, few systematic assessments have evaluated to what degree, if at all, the midlatitude westerly circulation modifies local surface climates in the reach of the Indian Summer Monsoon. This paper shows that a southward shift of the upper-tropospheric westerlies contributes significantly to climate variability in the core monsoon season (July-September) by two prominent dipole patterns at the surface: cooling in the west of High Asia contrasts with warming in the east, while moist anomalies in the east and northwest occur with drying along the southwestern margins. Circulation anomalies help to understand the dipoles and coincide with shifts in both the westerly wave train and the South Asian High, which imprint on air mass advection and local energy budgets. The relation of the variabilities to a well-established index of midlatitude climate dynamics allows future research on climate proxies to include a fresh hypothesis for the interpretation of environmental changes.

  9. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  10. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  11. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    Full Text Available Clouds play an important role in the climate system by reducing the amount of shortwave radiation reaching the surface and the amount of longwave radiation escaping to space. Accurate simulation of clouds in computer models remains elusive, however, pointing to a lack of understanding of the connection between large-scale dynamics and cloud properties. This study uses a k-means clustering algorithm to group 21 years of satellite cloud data over midlatitude oceans into seven clusters, and demonstrates that the cloud clusters are associated with distinct large-scale dynamical conditions. Three clusters correspond to low-level cloud regimes with different cloud fraction and cumuliform or stratiform characteristics, but all occur under large-scale descent and a relatively dry free troposphere. Three clusters correspond to vertically extensive cloud regimes with tops in the middle or upper troposphere, and they differ according to the strength of large-scale ascent and enhancement of tropospheric temperature and humidity. The final cluster is associated with a lower troposphere that is dry and an upper troposphere that is moist and experiencing weak ascent and horizontal moist advection.

    Since the present balance of reflection of shortwave and absorption of longwave radiation by clouds could change as the atmosphere warms from increasing anthropogenic greenhouse gases, we must also better understand how increasing temperature modifies cloud and radiative properties. We therefore undertake an observational analysis of how midlatitude oceanic clouds change with temperature when dynamical processes are held constant (i.e., partial derivative with respect to temperature. For each of the seven cloud regimes, we examine the difference in cloud and radiative properties between warm and cold subsets. To avoid misinterpreting a cloud response to large-scale dynamical forcing as a cloud response to temperature, we require horizontal and vertical

  12. Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States

    Science.gov (United States)

    Barbero, Renaud; Abatzoglou, John T.; Fowler, Hayley J.

    2018-02-01

    Midlatitude synoptic weather regimes account for a substantial portion of annual precipitation accumulation as well as multi-day precipitation extremes across parts of the United States (US). However, little attention has been devoted to understanding how synoptic-scale patterns contribute to hourly precipitation extremes. A majority of 1-h annual maximum precipitation (AMP) across the western US were found to be linked to two coherent midlatitude synoptic patterns: disturbances propagating along the jet stream, and cutoff upper-level lows. The influence of these two patterns on 1-h AMP varies geographically. Over 95% of 1-h AMP along the western coastal US were coincident with progressive midlatitude waves embedded within the jet stream, while over 30% of 1-h AMP across the interior western US were coincident with cutoff lows. Between 30-60% of 1-h AMP were coincident with the jet stream across the Ohio River Valley and southeastern US, whereas a a majority of 1-h AMP over the rest of central and eastern US were not found to be associated with either midlatitude synoptic features. Composite analyses for 1-h AMP days coincident to cutoff lows and jet stream show that an anomalous moisture flux and upper-level dynamics are responsible for initiating instability and setting up an environment conducive to 1-h AMP events. While hourly precipitation extremes are generally thought to be purely convective in nature, this study shows that large-scale dynamics and baroclinic disturbances may also contribute to precipitation extremes on sub-daily timescales.

  13. Midlatitude magnetometer chains during the IMS

    International Nuclear Information System (INIS)

    Mcpherron, R.L.

    1982-01-01

    The International Magnetospheric Study (IMS) is an international program to study global problems of magnetospheric dynamics. A key element of the U.S. participation in this program was the establishment of a ground magnetometer network. This network included a number of arrays at high and low latitudes. This report describes three chains established at midlatitudes, including the IMS Midlatitude Chain, the AFGL Magnetometer Network, and the Bell Lab Conjugate Array. Descriptions of the type of equipment, station locations, types of data display, and availability of data for each chain are presented in this report. A major problem of the data analysis phase of the IMS will be reducing selected subsets of these data to a common format. Currently, there are no plans to do this in a systematic manner

  14. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    Science.gov (United States)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2017-09-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  15. Traveling Ionospheric Disturbances Observed by Midlatitude SuperDARN Radars

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; West, M. L.; Bristow, W. A.

    2012-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min, and are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars since 1989, and are typically attributed to auroral sources and propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. North American radar data from November 2010 - November 2011 were searched for signatures of MSTIDs. Initial results suggest that MSTIDs are observed at high latitudes primarily in the fall/winter months, which is consistent with published results. This search also reveals that mid-latitude MSTIDs often appear concurrently with high-latitude MSTIDs and share similar wave parameters. During the fall/winter months, SuperDARN mid-latitude MSTIDs appear more often than high-latitude MSTIDs, likely due to calmer ionospheric conditions at mid-latitudes. In the springtime, SuperDARN-observed MSTIDs are less likely to be seen at high-latitudes, but still appear at mid-latitudes. Selected events are analyzed for wave parameters using the Multiple Signal Classification (MUSIC) technique.

  16. Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes

    Science.gov (United States)

    Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan

    2018-01-01

    The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.

  17. PCA and vTEC climatology at midnight over mid-latitude regions

    Science.gov (United States)

    Natali, M. P.; Meza, A.

    2017-12-01

    The effect of the thermospheric vertical neutral wind on vertical total electron content (vTEC) variations including longitudinal anomaly, remaining winter anomaly, mid-latitude summer night anomaly, and semiannual anomaly is studied at mid-latitude regions around zero magnetic declination at midnight during high solar activity. By using the principal component analysis (PCA) numerical technique, this work studies the spatial and temporal variations of the ionosphere at midnight over mid-latitude regions during 2000-2002. PCA is applied to a time series of global vTEC maps produced by the International Global Navigation Satellite System (GNSS) Service. Four regions were studied in particular, each located at mid-latitude and approximately centered at zero magnetic declination, with two in the northern hemisphere and two in southern hemisphere, and all are located near and far from geomagnetic poles in each case. This technique provides an effective method to analyze the main ionospheric variabilities at mid-latitudes. PCA is also applied to the vTEC computed using the International Reference Ionosphere (IRI) 2012 model, to analyze the capability of this model to represent ionospheric variabilities at mid-latitude. Also, the Horizontal Wind Model 2007 (HWM07) is used to improve our climatology interpretation, by analyzing the relationship between vTEC and thermospheric wind, both quantitatively and qualitatively. At midnight, the behavior of mean vTEC values strongly responds to vertical wind variation, experiencing a decrease of about 10-15% with the action of the positive vertical component of the field-aligned neutral wind lasting for 2 h in all regions except for Oceania. Notable results include: a significant increase toward higher latitudes during summer in the South America and Asia regions, associated with the mid-latitude summer night anomaly, and an increase toward higher latitudes in winter in the North America and Oceania regions, highlighting the

  18. Effects of Major Sudden Stratospheric Warmings Identified in Midlatitude Mesospheric Rayleigh-Scatter Lidar Temperatures

    Science.gov (United States)

    Sox, L.; Wickwar, V. B.; Fish, C. S.; Herron, J. P.

    2014-12-01

    Mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions. However, observations of these anomalies at midlatitudes are sparse. The very dense 11-year data set, collected between 1993-2004, with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), has been carefully examined for such anomalies. The temperatures derived from these data extend over the mesosphere, from 45 to 90 km. During this period extensive data were acquired during seven major SSW events. In this work we aim to determine the characteristics of the midlatitude mesospheric temperatures during these seven major SSWs. To do this, comparisons were made between the temperature profiles on individual nights before, during, and after the SSW events and the corresponding derived climatological temperature profiles (31-day by 11-year average) for those nights. A consistent disturbance pattern was observed in the mesospheric temperatures during these SSWs. A distinct shift from the nominal winter temperature pattern to a pattern more characteristic of summer temperatures was seen in the midlatitude mesosphere close to when the zonal winds in the polar stratosphere (at 10 hPa, 60° N) reversed from eastward to westward. This shift lasted for several days. This change in pattern included coolings in the upper mesosphere, comparable to those seen in the polar regions, and warmings in the lower mesosphere.

  19. Mid-latitude mesospheric clouds and their environment from SOFIE observations

    Science.gov (United States)

    Hervig, Mark E.; Gerding, Michael; Stevens, Michael H.; Stockwell, Robert; Bailey, Scott M.; Russell, James M.; Stober, Gunter

    2016-11-01

    Observations from the Solar Occultation For Ice Experiment (SOFIE) on the Aeronomy of Ice in the Mesosphere (AIM) satellite are used to examine noctilucent clouds (NLC) and their environment at middle latitudes ( 56°N and 52°S). Because SOFIE is uniquely capable of measuring NLC, water vapor, and temperature simultaneously, the local cloud environment can be specified to examine what controls their formation at mid-latitudes. Compared to higher latitudes, mid-latitude NLCs are less frequent and have lower ice mass density, by roughly a factor of five. Compared to higher latitudes at NLC heights, mid-latitude water vapor is only 12% lower while temperatures are more than 10 K higher. As a result the reduced NLC mass and frequency at mid-latitudes can be attributed primarily to temperature. Middle and high latitude NLCs contain a similar amount of meteoric smoke, which was not anticipated because smoke abundance increases towards the equator in summer. SOFIE indicates that mid-latitude NLCs may or may not be associated with supersaturation with respect to ice. It is speculated that this situation is due in part to SOFIE uncertainties related to the limb measurement geometry combined with the non-uniform nature of NLCs. SOFIE is compared with concurrent NLC, temperature, and wind observations from Kühlungsborn, Germany (54°N) during the 2015 summer. The results indicate good agreement in temperature and NLC occurrence frequency, backscatter, and height. SOFIE indicates that NLCs were less frequent over Europe during 2015 compared to other longitudes, in contrast to previous years at higher latitudes that showed no clear longitude dependence. Comparisons of SOFIE and the Solar Backscatter Ultraviolet (SBUV) indicate good agreement in average ice water column (IWC), although differences in occurrence frequency were often large.

  20. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  1. The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

    Science.gov (United States)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen

    2015-01-01

    The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.

  2. Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2012-12-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth’s geomagnetic filed by space weather, we use the international quiet days’ data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components’ quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation’s amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth’s atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

  3. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    Science.gov (United States)

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  4. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    Science.gov (United States)

    Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina

    2017-10-01

    The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  5. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mark P.; Petersen, Walt A.; Bansemer, Aaron; Bharadwaj, Nitin; Carey, Larry; Cecil, D. J.; Collis, Scott M.; Del Genio, Anthony D.; Dolan, Brenda A.; Gerlach, J.; Giangrande, Scott; Heymsfield, Andrew J.; Heymsfield, Gerald; Kollias, Pavlos; Lang, T. J.; Nesbitt, Steve W.; Neumann, Andrea; Poellot, M. R.; Rutledge, Steven A.; Schwaller, Mathew R.; Tokay, Ali; Williams, C. R.; Wolff, D. B.; Xie, Shaocheng; Zipser, Edward J.

    2016-10-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. Data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  6. A Psychosocial Approach to Understanding Underground Spaces

    Directory of Open Access Journals (Sweden)

    Eun H. Lee

    2017-03-01

    Full Text Available With a growing need for usable land in urban areas, subterranean development has been gaining attention. While construction of large underground complexes is not a new concept, our understanding of various socio-cultural aspects of staying underground is still at a premature stage. With projected emergence of underground built environments, future populations may spend much more of their working, transit, and recreational time in underground spaces. Therefore, it is essential to understand the challenges and advantages that such environments have to improve the future welfare of users of underground spaces. The current paper discusses various psycho-social aspects of underground spaces, the impact they can have on the culture shared among the occupants, and possible solutions to overcome some of these challenges.

  7. Arctic-midlatitude weather linkages in North America

    Science.gov (United States)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  8. Intensity fluctuations of mid-latitude background VLF-noises and the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Gorshkov, Yu.N.; Klejmenova, N.G.

    1986-01-01

    Influence of interplanetary magnetic field (IMF) sector structure polarity and also variations of solar wind velocity and density on the intensity of mid-latitude VLF background noises are studied. For analysis continuous observations of VLF radiations in Magadan Observatory (phi=53.7 deg, L=2.7) from November, 1972 to June, 1973 were used. It is shown that IMF sector sign has no sufficient effect on the level of mid-latitude VLF background noises at the frequences f < 4-5 kHz. In magnetoperturbed periods when IMF Bsub(z)-component was directed to the South and the Earth was in the region of high-speed plasma flux, in mid-latitudes abatement of intensity of VLF background noises was seen

  9. Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.

  10. Evaluating a Space-Based Indicator of Surface Ozone-NO x -VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends.

    Science.gov (United States)

    Jin, Xiaomeng; Fiore, Arlene M; Murray, Lee T; Valin, Lukas C; Lamsal, Lok N; Duncan, Bryan; Boersma, K Folkert; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S

    2017-10-16

    Determining effective strategies for mitigating surface ozone (O 3 ) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO 2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O 3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O 3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO 2 vertical profiles. We compare four combinations of two OMI HCHO and NO 2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO 2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O 3 air quality more now than it would have a decade ago.

  11. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  12. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    Directory of Open Access Journals (Sweden)

    A. Costa

    2017-10-01

    Full Text Available The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and −38 °C (273 to 235 K, where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener–Bergeron–Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener–Bergeron–Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at −5 to −10 °C (268 to 263 K and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  13. Midlatitude ice-rich ground on mars as a target in the search for evidence of life and for in situ resource utilization on human missions.

    Science.gov (United States)

    Heldmann, J L; Schurmeier, L; McKay, C; Davila, A; Stoker, C; Marinova, M; Wilhelm, M B

    2014-02-01

    Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars and is relevant for human exploration as a possible in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. In the present study, we review the evidence for midlatitude ground ice on Mars, discuss the possible explanations for its occurrence, and assess its potential habitability. During the course of study, we systematically analyzed remote-sensing data sets to determine whether a viable landing site exists in the northern midlatitudes to enable a robotic mission that conducts in situ characterization and searches for evidence of life in the ice. We classified each site according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. We found that a suitable landing site exists within Amazonis Planitia near ground ice that was recently excavated by a meteorite impact.

  14. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    Science.gov (United States)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  15. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2015-02-01

    Full Text Available By using the accelerometer measurements from CHAMP and GRACE satellites, the tidal signatures of the thermospheric mass density and zonal wind at midlatitudes have been analyzed in this study. The results show that the mass density and zonal wind at southern midlatitudes are dominated by a longitudinal wave-1 pattern. The most prominent tidal components in mass density and zonal wind are the diurnal tides D0 and DW2 and the semidiurnal tides SW1 and SW3. This is consistent with the tidal signatures in the F region electron density at midlatitudes as reported by Xiong and Lühr (2014. These same tidal components are observed both in the thermospheric and ionospheric quantities, supporting a mechanism that the non-migrating tides in the upper atmosphere are excited in situ by ion–neutral interactions at midlatitudes, consistent with the modeling results of Jones Jr. et al. (2013. We regard the thermospheric dynamics as the main driver for the electron density tidal structures. An example is the in-phase variation of D0 between electron density and mass density in both hemispheres. Further research including coupled atmospheric models is probably needed for explaining the similarities and differences between thermospheric and ionospheric tidal signals at midlatitudes.

  16. Tri-Space Framework for Understanding MNC Behaviour and Strategies

    DEFF Research Database (Denmark)

    Rana, Mohammad Bakhtiar

    2015-01-01

    This paper presents a framework called ‘Tri-Space’ that comprises three overlapping social spaces, indicating three different concepts: institution and business systems, civil society, and transnational communities. Tri-space framework broadens the horizon of understanding of how MNCs behave...

  17. Analysis of Mid-Latitude Plasma Density Irregularities in the Presence of Finite Larmor Radius Effects

    Science.gov (United States)

    Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.

    2017-12-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641

  18. Recent Basal Melting of a Mid-Latitude Glacier on Mars

    Science.gov (United States)

    Butcher, Frances E. G.; Balme, M. R.; Gallagher, C.; Arnold, N. S.; Conway, S. J.; Hagermann, A.; Lewis, S. R.

    2017-12-01

    Evidence for past basal melting of young (late Amazonian-aged), debris-covered glaciers in Mars' mid-latitudes is extremely rare. Thus, it is widely thought that these viscous flow features (VFFs) have been perennially frozen to their beds. We identify an instance of recent, localized wet-based mid-latitude glaciation, evidenced by a candidate esker emerging from a VFF in a tectonic rift in Tempe Terra. Eskers are sedimentary ridges deposited in ice-walled meltwater conduits and are indicative of glacial melting. We compare the candidate esker to terrestrial analogues, present a geomorphic map of landforms in the rift, and develop a landsystem model to explain their formation. We propose that the candidate esker formed during a transient phase of wet-based glaciation. We then consider the similarity between the geologic setting of the new candidate esker and that of the only other candidate esker to be identified in association with an existing mid-latitude VFF; both are within tectonic graben/rifts proximal to volcanic provinces. Finally, we calculate potential basal temperatures for a range of VFF thicknesses, driving stresses, mean annual surface temperatures, and geothermal heat fluxes, which unlike previous studies, include the possible role of internal strain heating. Strain heating can form an important additional heat source, especially in flow convergence zones, or where ice is warmer due to elevated surface temperatures or geothermal heat flux. Elevated geothermal heat flux within rifts, perhaps combined with locally-elevated strain heating, may have permitted wet-based glaciation during the late Amazonian, when cold climates precluded more extensive wet-based glaciation on Mars.

  19. Hydrological indications of aeolian salts in mid-latitude deserts of ...

    Indian Academy of Sciences (India)

    Hydrological indications of aeolian salts in mid-latitude deserts of northwestern China. B Q Zhu. Supplementary data. Figure S1. Photograph views of Quaternary and modern sediments of aeolian and lacustrine/fluvial facies that consisted of clay and sand/silt sand alternations in the Taklamakan and Badanjilin Deserts.

  20. Diagnosing sea ice from the north american multi model ensemble and implications on mid-latitude winter climate

    Science.gov (United States)

    Elders, Akiko; Pegion, Kathy

    2017-12-01

    Arctic sea ice plays an important role in the climate system, moderating the exchange of energy and moisture between the ocean and the atmosphere. An emerging area of research investigates how changes, particularly declines, in sea ice extent (SIE) impact climate in regions local to and remote from the Arctic. Therefore, both observations and model estimates of sea ice become important. This study investigates the skill of sea ice predictions from models participating in the North American Multi-Model Ensemble (NMME) project. Three of the models in this project provide sea-ice predictions. The ensemble average of these models is used to determine seasonal climate impacts on surface air temperature (SAT) and sea level pressure (SLP) in remote regions such as the mid-latitudes. It is found that declines in fall SIE are associated with cold temperatures in the mid-latitudes and pressure patterns across the Arctic and mid-latitudes similar to the negative phase of the Arctic Oscillation (AO). These findings are consistent with other studies that have investigated the relationship between declines in SIE and mid-latitude weather and climate. In an attempt to include additional NMME models for sea-ice predictions, a proxy for SIE is used to estimate ice extent in the remaining models, using sea surface temperature (SST). It is found that SST is a reasonable proxy for SIE estimation when compared to model SIE forecasts and observations. The proxy sea-ice estimates also show similar relationships to mid-latitude temperature and pressure as the actual sea-ice predictions.

  1. Habitable periglacial landscapes in martian mid-latitudes

    Science.gov (United States)

    Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.

    2012-05-01

    Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).

  2. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  3. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  4. Space, time and the limits of human understanding

    CERN Document Server

    Ghirardi, Giancarlo

    2017-01-01

    In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of spac...

  5. Statistical analysis of midlatitude spread F using multi-station digisonde observations

    Science.gov (United States)

    Bhaneja, P.; Earle, G. D.; Bullett, T. W.

    2018-01-01

    A comprehensive statistical study of midlatitude spread F (MSF) is presented for five midlatitude stations in the North American sector. These stations include Ramey AFB, Puerto Rico (18.5°N, 67.1°W, -14° declination angle), Wallops Island, Virginia (37.95°N, 75.5°W, -11° declination angle), Dyess, Texas (32.4°N, 99.8°W, 6.9° declination angle), Boulder, Colorado (40°N, 105.3°W, 10° declination angle), and Vandenberg AFB, California (34.8°N, 120.5°W, 13° declination angle). Pattern recognition algorithms are used to determine the presence of both range and frequency spread F. Data from 1996 to 2011 are analyzed, covering all of Solar Cycle 23 and the beginning of Solar Cycle 24. Variations with respect to season and solar activity are presented, including the effects of the extended minimum between cycles 23 and 24.

  6. Nightside Quiet-Time Mid-Latitude Ionospheric Convection and Its Connection to Penetration Electric Fields

    Science.gov (United States)

    Ruohoniemi, J. M.; Maimaiti, M.; Baker, J. B.; Ribeiro, A. J.

    2017-12-01

    Previous studies have shown that during quiet geomagnetic conditions F-region subauroral ionospheric plasma exhibits drifts of a few tens of m/s, predominantly in the westward direction. However, the exact driving mechanisms for this plasma motion are still not well understood. Recent expansion of SuperDARN radars into the mid-latitude region has provided new opportunities to study subauroral ionospheric convection over large areas and with greater spatial resolution and statistical significance than previously possible. Mid-latitude SuperDARN radars tend to observe subauroral ionospheric backscatter with low Doppler velocities on most geomagnetically quiet nights. In this study, we have used two years of data obtained from the six mid-latitude SuperDARN radars in the North American sector to derive a statistical model of quiet-time nightside mid-latitude plasma convection between 52°- 58° magnetic latitude. The model is organized in MLAT-MLT coordinates and has a spatial resolution of 1°x 7 min with each grid cell typically counting thousands of velocity measurements. Our results show that the flow is predominantly westward (20 - 60 m/s) and weakly northward (0 -20 m/s) near midnight but with a strong seasonal dependence such that the flows tend to be strongest and most spatially variable in winter. These statistical results are in good agreement with previously reported observations from ISR measurements but also show some interesting new features, one being a significant latitudinal variation of zonal flow velocity near midnight in winter. In this presentation, we describe the derivation of the nightside quite-time subauroral convection model, analyze its most prominent features, and discuss the results in terms of the Ionosphere-Thermosphere coupling and penetration electric fields.

  7. Observation of Intensified Lower Hybrid Noise in the Midlatitude Ionosphere

    Czech Academy of Sciences Publication Activity Database

    Parrot, M.; Santolík, Ondřej; Brochot, J.; Y.; Berthelier, J. J.

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1164-1165 ISSN 0093-3813 Grant - others:CNRS/DREI(FR) PICS Grant 3725 Institutional research plan: CEZ:AV0Z30420517 Keywords : lower hybrid frequency * midlatitude ionosphere * DEMETER spacecraft Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4553722

  8. It's the Physics: Organized Complexity in the Arctic/Midlatitude Weather Controversy

    Science.gov (United States)

    Overland, J. E.; Francis, J. A.; Wang, M.

    2017-12-01

    There is intense scientific and public interest in whether major Arctic changes can and will impact mid-latitude weather. Despite numerous workshops and a growing literature, convergence of understanding is lacking, with major objections about possible large impacts within the scientific community. Yet research on the Arctic as a new potential driver in improving subseasonal forecasting at midlatitudes remains a priority. A recent review laid part of the controversy on shortcomings in experimental design and ill-suited metrics, such as examining the influence of only sea-ice loss rather than overall Arctic temperature amplification, and/or calculating averages over large regions, long time periods, or many ensemble members that would tend to obscure event-like Arctic connections. The present analysis lays the difficulty at a deeper level owing to the inherently complex physics. Jet-stream dynamics and weather linkages on the scale of a week to months has characteristics of an organized complex system, with large-scale processes that operate in patterned, quasi-geostrophic ways but whose component feedbacks are continually changing. Arctic linkages may be state dependent, i.e., relationships may be more robust in one atmospheric wave pattern than another, generating intermittency. The observational network is insufficient to fully initialize such a system and the inherent noise obscures linkage signals, leading to an underdetermined problem; often more than one explanation can fit the data. Further, the problem may be computationally irreducible; the only way to know the result of these interactions is to trace out their path over time. Modeling is a suggested approach, but at present it is unclear whether previous model studies fully resolve anticipated complexity. The jet stream from autumn to early winter is characterized by non-linear interactions among enhanced atmospheric planetary waves, irregular transitions between the zonal and meridional flows, and the

  9. Tropical influence on boreal summer mid-latitude stationary waves

    Energy Technology Data Exchange (ETDEWEB)

    Douville, Herve [Meteo-France/CNRM-GAME, Toulouse (France); CNRM/GMGEC/VDR, Toulouse (France); Bielli, S.; Deque, M.; Tyteca, S.; Voldoire, A. [Meteo-France/CNRM-GAME, Toulouse (France); Cassou, C. [CNRS-Cerfacs, Toulouse (France); Hall, N.M.J. [CNES/LEGOS, Toulouse (France)

    2011-11-15

    While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model's mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves

  10. Upper-Level Waves of Synoptic Scale at Midlatitudes

    Science.gov (United States)

    Rivest, Chantal

    1990-01-01

    Upper-level waves of synoptic scale are important dynamical entities at midlatitudes. They often induce surface cyclogenesis (cf. Peterssen and Smebye, 1971), and their life duration is typically longer than time scales for disruption by the ambient shear (Sanders, 1988). The objectives of the present thesis are to explain the maintenance and genesis of upper-level synoptic-scale waves in the midlatitude flow. We develop an analytical model of waves on generalized Eady basic states that have uniform tropospheric and stratospheric potential vorticity, but allow for the decay of density with height. The Eady basic state represents the limiting case of infinite stratospheric stability and constant density. We find that the Eady normal mode characteristics hold in the presence of realistic tropopause and stratosphere. In particular, the basic states studied support at the synoptic scale upper-level normal modes. These modes provide simple models for the dynamics of upper-level synoptic-scale waves, as waves supported by the large latitudinal gradients of potential vorticity at the tropopause. In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-level normal mode solutions no longer exist, as was demonstrated in Green (1960). Disappearance of the normal mode solution when a parameter changes slightly represents a dilemma that we seek to understand. We examine what happens to the upper-level normal modes in the presence of tropospheric gradients of potential vorticity in a series of initial -value experiments. Our results show that the normal modes become slowly decaying quasi-modes. Mathematically the quasi-modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and their decay proceeds as the modes interfere with one another. We repeat these experiments in basic states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and similar results are obtained

  11. Spread-F occurrences and relationships with foF2 and h'F at low- and mid-latitudes in China

    Science.gov (United States)

    Wang, Ning; Guo, Lixin; Zhao, Zhenwei; Ding, Zonghua; Lin, Leke

    2018-04-01

    Ionospheric irregularities are an important phenomenon in scientific studies and applications of radio-wave propagation. Spread-F echoes in ionograms are a type of high-frequency band irregularities that include frequency spread-F (FSF), range spread-F (RSF), and mixed spread-F (MSF) events. In this study, we obtained spread-F data from four ionosondes at low- and mid-latitudes near the 120°E chain in China during the 23rd solar cycle. We used these data to investigate spread-F occurrence percentages and variations with local time, season, latitude, and solar activity. The four ionosondes were located at Haikou (HK) (20°N, 110.34°E), Guangzhou (GZ) (23.14°N, 113.36°E), Beijing (BJ) (40.11°N, 116.28°E), and Changchun (CC) (43.84°N, 125.28°E). We also present possible correlations between spread-Fs and other ionospheric parameters, such as the critical frequency of the F2-layer (foF2) and the virtual height of the bottom-side F-layer (h'F). In particular, we investigated the possible threshold of the foF2 affecting the FSF and the relationship between the h'F and the RSF. The main conclusions are as follows: (a) the FSF occurrence percentages were anti-correlated with solar activity at all four sites; meanwhile, RSF occurrence rates increased with the increase in solar activity at HK, but not at the other three sites; (b) FSF occurrence rates were larger at the mid-latitudes than expected, while FSFs occurred more often after midnight; (c) the highest FSF occurrence rates mostly appeared during the summer months, while RSFs occurred mostly in the equinoctial months of 2000-2002 at HK and GZ; (d) a lower foF2 was suitable for FSF events; nevertheless, h'F and RSF occurrences satisfied the parabolic relationship; (e) the foF2 thresholds for FSFs were 15, 14, 7.6, and 7.8 MHz at HK, GZ, BJ, and CC, respectively. The h'Fs occurring between 240 and 290 km were more favorable for RSF occurrences. These results are important for understanding ionospheric

  12. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    Science.gov (United States)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  13. Deep depletions of total electron content associated with severe mid-latitude gigahertz scintillations during geomagnetic storms

    International Nuclear Information System (INIS)

    Ogawa, T.; Kumagai, H.

    1985-01-01

    Using 136-MHz Faraday rotation data obtained at three closely spaced stations, we present evidence that severe nightime gigahertz scintillations, which appear rarely at mid-latitudes around Japan only during geomagnetic storm conditions, are closely associated with deep depletions of total electron content (TEC). The TEC depletions amount to 2--8 x 10 16 el/m 2 (10--30% of the background TEC), and their durations range from 10 min to 1 hour. These depletions move northeastward or eastward with velocities between 60 and 260 m/s. The depletions are probably not counterparts of the equatorial bubbles but seem to be formed in localized regions around Japan under complicated and peculiar ionospheric conditions. There is an indication that the oscillation of the F region caused by large-scale TID's propagating from north to south (approx.600 m/s) may initiate the generation of the depletion

  14. Necessity of Mutual Understandings in Supply Chain Management of Lithium-Ion Battery for Space Vehicle

    Science.gov (United States)

    Kiyokawa, T.; Nakajima, M.; Mori, Y.

    2012-01-01

    Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.

  15. Creating space plasma from the ground

    Science.gov (United States)

    Carlson, H. C.; Djuth, F. T.; Zhang, L. D.

    2017-01-01

    We have performed an experiment to compare as directly as realizable the ionization production rate by HF radio wave energy versus by solar EUV. We take advantage of the commonality that ionization production by both ground-based high-power HF radio waves and by solar EUV is driven by primary and secondary suprathermal electrons near and above 20 eV. Incoherent scatter radar (ISR) plasma-line amplitudes are used as a measure of suprathermal electron fluxes for ISR wavelengths near those for 430 MHz and are indeed a clean measure of such for those fluxes sufficiently weak to have negligible self-damping. We present data from an HF heating experiment on November 2015 at Arecibo, which even more directly confirm the only prior midlatitude estimate, of order 10% efficiency for conversion of HF energy to ionospheric ionization. We note the theoretical maximum possible is 1/3, while 1% or less reduces the question to near practical irrelevance. Our measurements explicitly confirm the prediction that radio-frequency production of artificial ionospheres can be practicable, even at midlatitudes. Furthermore, that this midlatitude efficiency is comparable to efficiencies measured at high latitudes (which include enhancements unique to high latitudes including magnetic zenith effect, gyrofrequency multiples, and double resonances) requires reexamination of current theoretical thinking about soft-electron acceleration processes in weakly magnetized plasmas. The implications are that electron acceleration by any of a variety of processes may be a fundamental underpinning to energy redistribution in space plasmas.

  16. The Occurrence of Small-scale Irregularities in the Mid-latitude Ionosphere from SuperDARN HF Radar Observations

    Science.gov (United States)

    Ruohoniemi, J. M.; Baker, J. B.; Maimaiti, M.; Oksavik, K.; Erickson, P. J.; Scales, W.; Eltrass, A.

    2017-12-01

    The mid-latitude radars of the SuperDARN network routinely observe backscatter from nighttime decameter-scale F region irregularities at latitudes well equatorward of the auroral boundary. This Sub-Auroral Ionospheric Scatter (SAIS) is strongly distinguished from auroral and SAPS backscatter by low Doppler velocities ( tens m/s) and stable, long-lived ( hours) occurrence in discrete events that are extended in both latitude and longitude. Statistical and event studies of SAIS with the SuperDARN radars indicate that the subauroral F region ionosphere is replete with irregularities during events, at least poleward of the 50° Λ horizon of the North American mid-latitude radars, and that radar observation of SAIS backscatter is then primarily limited by the magnetic aspect condition. Joint experiments with incoherent scatter radar have furnished sets of plasma measurements suitable for testing theories of plasma instability. Modeling work stimulated by the observations has explored the temperature-gradient instability (TGI) and the gradient drift instability (GDI) as possible sources of the irregularities. In this talk we review the findings on the occurrence of the SAIS category of mid-latitude F region irregularities, summarize the results of the modeling work, and discuss future research directions.

  17. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  18. Midlatitude Ice-Rich Ground on Mars: An Important Target for Science and In Situ Resource Utilization on Human Missions

    Science.gov (United States)

    Stoker, Carol; Heldmann, Jennifer

    2015-01-01

    The region of ROI is characterized by proven presence of near surface ground ice and numerous periglacial features. Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars, the impact that changes in insolation produced by variations in Mars’ orbital parameters has on the regions climate, and could provide human exploration with a reliable and plentiful in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. Heldmann et al. (2014) studied locations on Mars in the Amazonis Planitia region where near surface ground ice was exposed by new impact craters (Byrne et al. 2009). The study examined whether sites in this region were suitable for human exploration including reviewing the evidence for midlatitude ground ice, discussing the possible explanations for its occurrence, assessing its potential habitability for modern life, and evaluating the resource potential. They systematically analyzed remote-sensing data sets to identify a viable landing site. Five sites where ground ice was exposed were examined with HiRise imaging and were classified according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. A suitable landing site was found having ground ice at only 0.15m depth, and no landing site hazards within a 25 km landing ellipse. This paper presents results of that study and examines the relevance of this ROI to the workshop goals.

  19. Precursory enhancement of EIA in the morning sector: Contribution from mid-latitude large earthquakes in the north-east Asian region

    Science.gov (United States)

    Ryu, Kwangsun; Oyama, Koh-Ichiro; Bankov, Ludmil; Chen, Chia-Hung; Devi, Minakshi; Liu, Huixin; Liu, Jann-Yenq

    2016-01-01

    To investigate whether the link between seismic activity and EIA (equatorial ionization anomaly) enhancement is valid for mid-latitude seismic activity, DEMETER observations around seven large earthquakes in the north-east Asian region were fully analyzed (M ⩾ 6.8). In addition, statistical analysis was performed for 35 large earthquakes (M ⩾ 6.0) that occurred during the DEMETER observation period. The results suggest that mid-latitude earthquakes do contribute to EIA enhancement, represented as normalized equatorial Ne , and that ionospheric change precedes seismic events, as has been reported in previous studies. According to statistical studies, the normalized equatorial density enhancement is sensitive and proportional to both the magnitude and the hypocenter depth of an earthquake. The mechanisms that can explain the contribution of mid-latitude seismic activity to EIA variation are briefly discussed based on current explanations of the geochemical and ionospheric processes involved in lithosphere-ionosphere interaction.

  20. Modelling of the electron density height profiles in the mid-latitude ionospheric D-region

    Directory of Open Access Journals (Sweden)

    P. Y. Mukhtarov

    1996-06-01

    Full Text Available A new mid-latitude D-region (50-105 km model of the electron density is presented obtained on the basis of a full wave theory and by a trial-and-error inversion method. Daytime (at different solar zenith angles absorption measurements by A3-technique made in Bulgaria yielded data with the aid of which the seasonal and diurnal courses of the Ne(h-profiles were derived. Special attention is drawn to the event diurnal asymmetry, or uneven formation of the ionosphere as a function of insulation. The latter is probably connected with the influence of the diurnal fluctuations in the local temperature on the chemistry involved in the electron loss rate, as well as the diurnal variations of the main ionizing agent (NO in the D-region. That is why the Ne(h-profiles in the midlatitude D-region are modelled separately for morning and afternoon hours.

  1. MANGO Imager Network Observations of Geomagnetic Storm Impact on Midlatitude 630 nm Airglow Emissions

    Science.gov (United States)

    Kendall, E. A.; Bhatt, A.

    2017-12-01

    The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.

  2. Height and critical frequency variations of the sporadic-E layer at midlatitudes

    Czech Academy of Sciences Publication Activity Database

    Šauli, Petra; Bourdillon, A.

    2008-01-01

    Roč. 70, č. 15 (2008), s. 1904-1910 ISSN 1364-6826 R&D Projects: GA AV ČR IAA300420704 Grant - others:European Union(XE) COST 296 Institutional research plan: CEZ:AV0Z30420517 Keywords : Sporadic E * Planetary waves * Tidal waves * Mid-latitude ionosphere * Wavelet transform Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.667, year: 2008

  3. The sub-auroral electric field as observed by DMSP and the new SuperDARN mid-latitude radars

    Science.gov (United States)

    Talaat, E. R.; Sotirelis, T.; Hairston, M. R.; Ruohoniemi, J. M.; Greenwald, R. A.; Lester, M.

    2008-12-01

    In this paper we present analyses of the sub-auroral electric field environment as observed from both space and ground. We discuss the dependency of the configuration and strength of the sub-auroral electric field on IMF and geomagnetic activity, longitudinal, seasonal, and solar cycle variability. Primarily, e use ~20 years of electric field measurement dataset derived from the suite of DMSP ion drift meters. A major component of our analysis is correctly specifying the aurora boundary, as the behavior and magnitude of these fields will be drastically different away from the high-conductance auroral oval. As such, we use the coincident particle flux measurements from the DMSP SSJ4 monitors. We also present the solar minimum observations of the sub-auroral flow newly available from the mid-latitude SuperDARN radars at Wallops and Blackstone in Virginia. Preliminary comparisons between these flows and the DMSP climatology are discussed.

  4. Mathematical Model of the Public Understanding of Space Science

    Science.gov (United States)

    Prisniakov, V.; Prisniakova, L.

    The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space

  5. More evidence for a planetary wave link with midlatitude E region coherent backscatter and sporadic E layers

    Directory of Open Access Journals (Sweden)

    K. Schlegel

    Full Text Available Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.Key words: Ionosphere (ionosphere irregularities; mid-latitude ionosphere – Meteorology and atmospheric dynamics (waves and tides

  6. Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach

    Science.gov (United States)

    Bailey, Rachel L.; Halbedl, Thomas S.; Schattauer, Ingrid; Römer, Alexander; Achleitner, Georg; Beggan, Ciaran D.; Wesztergom, Viktor; Egli, Ramon; Leonhardt, Roman

    2017-06-01

    Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east-west direction.

  7. The Understanding and Emotion Caused by an Architect-Built Space Using Music

    Directory of Open Access Journals (Sweden)

    Davod Baradaran Tavakoli

    2017-02-01

    Full Text Available Music and architecture are two of the effective components of the lives of human beings which are especially important. However, the link between these two components and their impacts on the understanding of the audience are some of the issues which have not been focused on. This bond is caused by a mutual space. A space which can either be created by a work of architecture or a piece of music. Despite of the previous studies that focused on investigating the different aspects of these two forms of art that link them together, this paper aims to discover and understand the perceptual – emotional relationship between music and architecture further than the preliminary principles that link them. It also aims to find an answer to this question: how can a relationship be established between various linking aspects of these two arts that would be understandable for their audiences? The present study is an analytical – descriptive research that relies on library studies and uses a logical argument in order to analyze, interpret and compare the relationship between music and architecture and its impact on the understanding of the audience. Accordingly, after reviewing the research literature and stating the concept of space in architecture and music, the linking aspects of these two forms of art have been comparatively analyzed. According to the conclusion of results, by taking into consideration various frequencies and generation of a variety of geometrical orders in each frequency, the more intense music is the more complex its spatial impact will be on the feeling and understanding of the audience.

  8. Mid-latitude Narrowband Stimulated Electromagnetic Emissions (NSEE): New Observations and Modeling

    Science.gov (United States)

    Nossa, E.; Mahmoudian, A.; Isham, B.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2017-12-01

    High power electromagnetic waves (EM) transmitted from the ground interact with the local plasma in the ionosphere and can produce Stimulated Electromagnetic Emissions (SEE) through the parametric decay instability (PDI). The classical SEE features known as wideband SEE (WSEE) with frequency offset of 1 kHz up to 100 kHz have been observed and studied in detail in the 1980s and 1990s. A new era of ionospheric remote sensing techniques was begun after the recent update of the HF transmitter at the HAARP. Sideband emissions of unprecedented strength have been reported during recent campaigns at HAARP, reaching up to 10 dB relative to the reflected pump wave which are by far the strongest spectral features of secondary radiation that have been reported. These emissions known as narrowband SEE (NSEE) are shifted by only up to a few tens of Hertz from radio-waves transmitted at several megahertz. One of these new NSEE features are emission lines within 100 Hz of the pump frequency and are produced through magnetized stimulated Brillouin scatter (MSBS) process. Stimulated Brillouin Scatter (SBS) is a strong SEE mode involving a direct parametric decay of the pump wave into an electrostatic wave (ES) and a secondary EM wave that sometimes could be stronger than the HF pump. SBS has been studied in laboratory plasma experiments by the interaction of high power lasers with plasmas. The SBS instability in magnetized ionospheric plasma was observed for the first time at HAARP in 2010. Our recent work at HAARP has shown that MSBS emission lines can be used to asses electron temperature in the heated region, ion mass spectrometry, determine minor ion species and their densities in the ionosphere, study the physics associated with electron acceleration and artificial airglow. Here, we present new observations of narrowband SEE (NSEE) features at the new mid-latitude heating facility at Arecibo. This includes the direct mode conversion of pump wave through MSBS process. Collected

  9. Response of equatorial, low- and mid-latitude F-region in the American sector during the intense geomagnetic storm on 24-25 October 2011

    Science.gov (United States)

    de Jesus, R.; Sahai, Y.; Fagundes, P. R.; de Abreu, A. J.; Brunini, C.; Gende, M.; Bittencourt, J. A.; Abalde, J. R.; Pillat, V. G.

    2013-07-01

    In this paper, we present and discuss the response of the ionospheric F-region in the American sector during the intense geomagnetic storm which occurred on 24-25 October 2011. In this investigation ionospheric sounding data obtained of 23, 24, 25, and 26 October 2011 at Puerto Rico (United States), Jicamarca (Peru), Palmas, São José dos Campos (Brazil), and Port Stanley, are presented. Also, the GPS observations obtained at 12 stations in the equatorial, low-, mid- and high-mid-latitude regions in the American sector are presented. During the fast decrease of Dst (about ˜54 nT/h between 23:00 and 01:00 UT) on the night of 24-25 October (main phase), there is a prompt penetration of electric field of magnetospheric origin resulting an unusual uplifting of the F region at equatorial stations. On the night of 24-25 October 2011 (recovery phase) equatorial, low- and mid-latitude stations show h'F variations much larger than the average variations possibly associated with traveling ionospheric disturbances (TIDs) caused by Joule heating at high latitudes. The foF2 variations at mid-latitude stations and the GPS-VTEC observations at mid- and low-latitude stations show a positive ionospheric storm on the night of 24-25 October, possibly due to changes in the large-scale wind circulation. The foF2 observations at mid-latitude station and the GPS-VTEC observations at mid- and high-mid-latitude stations show a negative ionospheric storm on the night of 24-25 October, probably associated with an increase in the density of molecular nitrogen. During the daytime on 25 October, the variations in foF2 at mid-latitude stations show large negative ionospheric storm, possibly due to changes in the O/N2 ratio. On the night of 24-25, ionospheric plasma bubbles (equatorial irregularities that extended to the low- and mid-latitude regions) are observed at equatorial, low- and mid-latitude stations. Also, on the night of 25-26, ionospheric plasma bubbles are observed at equatorial

  10. Disneyization: A framework for understanding illicit drug use in bounded play spaces.

    Science.gov (United States)

    Turner, Tim

    2018-05-17

    This paper combines evidence from an ethnographic study of illicit drug use amongst tourists in Ibiza with Bryman's (2004) theoretical model of Disneyization. The principal aim was to construct a new conceptual framework that may help scholars, practitioners and policy makers make sense of dynamic patterns of illegal drug use across bounded play spaces such as tourist resorts, music festivals and nightclubs. Ethnographic fieldwork employing a grounded theory design was undertaken over three summers in tourist locations on the Balearic island of Ibiza, including nightclubs, bars, cafes, beaches, airports and hotels. Field notes from participant observation were supplemented with data from semi-structured interviews (n = 56) and secondary sources gathered from tourist marketing. The framework of Disneyization has been discussed in terms of 5 constructs: theming, hybrid consumption, branding, performative labour and atmospheres; each having a specific role in relation to understanding illicit drug use in bounded play spaces. Thus: Theming sets the stage, by physically and symbolically demarcating space with indelible themes of hedonism that open up the possibility of illicit drug use. Hybrid-consumption blurs the distinction between legal and illegal forms of intoxication, making the trading and consumption of illegal drugs appear like a natural feature of the consumer space. Branding demonstrates how participants construct intricate hierarchies of taste and credibility related to drug of choice. Performative labour re-enforces hybrid consumption, with participants working in the bounded play spaces of Ibiza immersed within the illicit drug market. Atmospheres represents the alchemic synergy of bounded play space and is important to understanding illicit drug use as a sensorial, deeply immersive but transitory experience. This research offers Disneyization as a new conceptual framework for making sense of deeply complex spatial, socio-cultural, psychological and

  11. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    Science.gov (United States)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; hide

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  12. The importance of resolution on the response of mid-latitude transients to enhanced CO2

    International Nuclear Information System (INIS)

    Senior, C.A.

    1994-01-01

    The impact of global warming on the activity of the mid-latitude transients is not well understood. Work with simple models suggests that there will be two competing effects on transient activity. Firstly, there will be a reduction in the baroclinicity due to a smaller pole-equator temperature gradient and secondly there will be increased moisture availability in a warmer atmosphere. A comparison of the mid-latitude transients from two versions of the Hadley Centre for Climate Prediction and Research GCM run at different resolutions is presented and the importance of resolution on the simulation of the high and low frequency variability is discussed. At higher resolution, one of the largest responses of the model to a doubling of atmospheric CO 2 is an enhancement of the westerly flow in the North Atlantic, but this is much reduced at lower resolution. Consistency is sort between changes in the time mean flow and the transient behavior

  13. Multi-layer structure of mid-latitude sporadic-E observed during the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    T. Ono

    2005-10-01

    Full Text Available In the mid-latitude ionospheric region, sporadic-E layers (Es layers have often been observed, revealing multiple layers. The Es layers observed during the SEEK-2 rocket campaign showed double electron density peaks; namely, there are stable lower peaks and relatively unstable upper peaks. We examined the effects of wind shear and the electric fields on the generation of the multiple layer structure, in comparison with the electron density profile, the neutral wind, and the DC electric field observed by the S310 rocket experiments. The results showed that the neutral wind shear is mainly responsible for the generation of the lower layer, while the DC electric field makes a significant contribution to the formation of the upper layer. The difference between the lower and upper layers was also explained by the enhanced AC electric field observed at about 103–105 km altitude. The external DC electric field intensity is expected to be ~5 mV/m, which is enough to contribute to generate the Es layers in the ionosphere. Keywords. Ionosphere (Electric fields; Ionospheric irregularities, Mid-latitude ionosphere

  14. Stochastic excitation of low frequency variability in the midlatitude atmosphere

    International Nuclear Information System (INIS)

    Ioannou, P.J.; Farrell, B.F.

    1994-01-01

    Spectral analysis of the transient geopotential variance of the midlatitude atmosphere reveals a sharp peak in the wavenumber-period spectra concentrated at large scales (zonal wave numbers m 10 days). This is surprising because conventional baroclinic instability calculations predict a broad maximum of the variance at synoptic scale (8 < m < 12) with associated period of a few days. In this work we review the method for calculating the maintained variance and associated fluxes and then discuss some results pertaining to the interpretation of the EOF's which arise from the stochastic dynamics of non-normal dynamical systems

  15. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment

    OpenAIRE

    Ribeiro, Gerson Luiz Ulema; Jacob, Helder B.

    2016-01-01

    ABSTRACT Introduction: Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages...

  16. The cloud radiative feedback of a midlatitude squall line system and implication for climate study

    International Nuclear Information System (INIS)

    Chin, H.N.S.

    1992-01-01

    The main objectives of this study are (1) to study the impact of longwave and shortwave radiation on the thermodynamic and kinematic structure of a midlatitude squall line; and (2) to explore the influence of specifically including the ice phase in the cloud-radiation feedback mechanism for climate models

  17. Numerical simulation of mid-latitude ionospheric E-region based on SEEK and SEEK-2 observations

    Directory of Open Access Journals (Sweden)

    T. Yokoyama

    2005-10-01

    Full Text Available Observational campaigns of the mid-latitude ionospheric E-region with sounding rockets and ground-based instruments were conducted in 1996 (SEEK and 2002 (SEEK-2. Both of them were successfully conducted to bring important findings about the mid-latitude E-region and quasi-periodic (QP VHF radar echoes. The observational results in the SEEK and the SEEK-2 are compared with numerical simulations and discussed in this paper. While sporadic-E (Es-layers are actually formed by the observed neutral wind, it is difficult for the constant wind shear to produce the sharp Es-layer gradient. However, once they are formed in the lower E-region, they cannot easily be dissipated by the simple diffusive motion. The polarization electric field, calculated under the condition at the rocket launch time, shows similar amplitude and structure to the measurement around the Es-layer altitude. The structure of the plasma density and the electric field above the Es-layer observed in the SEEK-2 showed a wave-like pattern up to an altitude of 150 km. Considering a mapping of the polarization electric field generated within the Es-layers, gravity waves are the possible source of the wave-like structure of the measured electric fields and sub-peaks of the electron density above the main Es-layers. Fluctuation of the measured magnetic field is reproduced by Hall or field-aligned current driven by the polarization electric field. The current theoretical models for QP echoes and the polarization electric field are basically verified by the discussion in this paper. Keywords. Ionospheric irregularities – Mid-latitude ionosphere – Numerical simulation studies

  18. Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site

    Science.gov (United States)

    Schmitter, E. D.

    2013-04-01

    Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.

  19. Understanding the Dynamics of EngagingIinteraction in Public Spaces

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Dindler, Christian; Halskov, Kim

    We present an analysis of three interactive installations in public spaces, in terms of their support of engagement as an evolving process. In particular, we focus on how engagement unfolds as a dynamic process that may be understood in terms of evolving relations between cultural, physical......, content-related, and social elements of interactive environments. These elements are explored through the literature on engagement with interaction design, and it is argued that, although valuable contributions have been made towards understanding engagement with interactive environments, the ways...

  20. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    Science.gov (United States)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  1. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    Energy Technology Data Exchange (ETDEWEB)

    Chetelat, John, E-mail: john.chetelat@ec.gc.c [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Amyot, Marc; Garcia, Edenise [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2011-01-15

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  2. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    International Nuclear Information System (INIS)

    Chetelat, John; Amyot, Marc; Garcia, Edenise

    2011-01-01

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  3. Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime

    Science.gov (United States)

    Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina

    2016-04-01

    The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud

  4. The 'Blue-Shift' in midlatitude dynamics in a Changing Climate

    Science.gov (United States)

    Carvalho, L. V.

    2013-12-01

    Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with

  5. Midlatitude atmospheric circulation responses under 1.5 and 2.0 °C warming and implications for regional impacts

    Science.gov (United States)

    Li, Camille; Michel, Clio; Seland Graff, Lise; Bethke, Ingo; Zappa, Giuseppe; Bracegirdle, Thomas J.; Fischer, Erich; Harvey, Ben J.; Iversen, Trond; King, Martin P.; Krishnan, Harinarayan; Lierhammer, Ludwig; Mitchell, Daniel; Scinocca, John; Shiogama, Hideo; Stone, Dáithí A.; Wettstein, Justin J.

    2018-04-01

    This study investigates the global response of the midlatitude atmospheric circulation to 1.5 and 2.0 °C of warming using the HAPPI (Half a degree Additional warming, Prognosis and Projected Impacts) ensemble, with a focus on the winter season. Characterising and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks, and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, in western Europe, and on the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2 °C warmer world, with exceptionally dry decades becoming 5 times more likely.

  6. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  7. Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report - Extended Summary

    Science.gov (United States)

    2009-01-01

    The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D

  8. NEREUS- Network of European Regions Using Space - an initiative of regions to spread the use and understanding of space technologies across Europe

    Science.gov (United States)

    Ayazi, Roya

    2013-04-01

    NEREUS- Network of European Regions Using Space - an initiative of regions to spread the use and understanding of space technologies across Europe (Roya Ayazi, Secretary General NEREUS nereus.bruxelles@euroinbox.com) NEREUS currently unites 25 European regions and 39 Associate Members with the common objective to spread the use and understanding of space technologies across Europe for the benefit of regions and their citizens. As voice of European Regions, NEREUS serves as an advocate for the regions in matters of space uses and also as a direct channel to the regional users of space technologies (such as local authorities, SMEs, universities and research institutes and citizens). EO/GMES, Global Satellite Navigation and Telecommunication are identified by the NEREUS Political Charta as core areas of cooperation. NEREUS holds the view that broad societal awareness and involvement is vital to fully exploit Euope's space systems. Understanding the potentials of Copernicus and EGNOS/Galileo is in the first place an essential step for the development of the downstream sector. Therefore NEREUS makes special efforts to contribute with numerous network activities to communicate and promote the added value of space uses for public policies but also as valuable new business opportunities. In economic terms space uses are suited to stimulate economic growth and innovation dynamics at regional level. The network community produced several illustrative communication tools (publications, video, web-based tools, mobile NEREUS-exhibition) portraying examples how regions already use space systems and the concrete benefits for the citizens. Most of the NEREUS-publications and video are online: www.nereus-regions.eu. Pooling a considerable wealth of capabilities and expertise, the network offers its members a dynamic platform to collaborate and share experiences and knowledge inter regionally. But these tools were not only the outcome of an intensive regional collaboration but

  9. New Particle Formation in the Mid-Latitude Upper Troposphere

    Science.gov (United States)

    Axisa, Duncan

    Primary aerosol production due to new particle formation (NPF) in the upper troposphere and the impact that this might have on cloud condensation nuclei (CCN) concentration can be of sufficient magnitude to contribute to the uncertainty in radiative forcing. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Therefore, new particle formation must be accurately defined, parametrized and accounted for in models. This research involved the deployment of instruments, data analysis and interpretation of particle formation events during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) campaign. The approach combined field measurements and observations with extensive data analysis and modeling to study the process of new particle formation and growth to CCN active sizes. Simultaneous measurements of O3, CO, ultrafine aerosol particles and surface area from a high-altitude research aircraft were used to study tropospheric-stratospheric mixing as well as the frequency and location of NPF. It was found that the upper troposphere was an active region in the production of new particles by gas-to-particle conversion, that nucleation was triggered by convective clouds and mixing processes, and that NPF occurred in regions with high relative humidity and low surface area. In certain cases, mesoscale and synoptic features enhanced mixing and facilitated the formation of new particles in the northern mid-latitudes. A modeling study of particle growth and CCN formation was done based on measured aerosol size distributions and modeled growth. The results indicate that when SO2 is of sufficient concentration NPF is a significant source of potential CCN in the upper troposphere. In conditions where convective cloud outflow eject high concentrations of SO2, a large number of new particles can form especially in the instance when the preexisting surface area is low. The fast growth of nucleated clusters produces a

  10. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    1995-06-01

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  11. Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    Directory of Open Access Journals (Sweden)

    P. Keckhut

    Full Text Available Temperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N, and on wind data series over Volgograd (49°N, respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible.

  12. Multi-disciplinary techniques for understanding time-varying space-based imagery

    Science.gov (United States)

    Casasent, D.; Sanderson, A.; Kanade, T.

    1984-06-01

    A multidisciplinary program for space-based image processing is reported. This project combines optical and digital processing techniques and pattern recognition, image understanding and artificial intelligence methodologies. Time change image processing was recognized as the key issue to be addressed. Three time change scenarios were defined based on the frame rate of the data change. This report details the recent research on: various statistical and deterministic image features, recognition of sub-pixel targets in time varying imagery, and 3-D object modeling and recognition.

  13. A comparison of the relative locations of the mid-latitude electron density trough and the scintillation boundary

    International Nuclear Information System (INIS)

    Tulunay, Y.K.; Demir, O.; Tauriainen, A.

    1976-01-01

    The mid-latitude electron density trough position and the scintillation boundary have been compared for magnetically quiet periods by using the data returned by Ariel 3 and Explorer 22 satellites. The scintillation boundary is found southward of the trough during daytime, but at night the positions are reversed. (author)

  14. Volcanic terrain and the possible periglacial formation of "excess ice" at the mid-latitudes of Utopia Planitia, Mars

    Science.gov (United States)

    Soare, R. J.; Horgan, B.; Conway, S. J.; Souness, C.; El-Maarry, M. R.

    2015-08-01

    At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of

  15. Trapped waves on the mid-latitude β-plane

    Science.gov (United States)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  16. Low and Mid-Latitude Ionospheric Irregularities Studies Using TEC and Radio Scintillation Data from the CITRIS Radio Beacon Receiver in Low-Earth-Orbit

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.

    2009-12-01

    Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35° inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.

  17. Impacts of microphysics, radiation and environmental winds in mid-latitude and tropical squall-line systems, and their climatic implications

    International Nuclear Information System (INIS)

    Chin, Hung-Neng.

    1994-08-01

    Cloud-radiation feedback has been identified as the most important factor limiting general circulation models (GCMS) to further progress in climate change research (Cess et al., 1989). It is also regarded as a major uncertainty in estimating the impact of greenhouse gases on climate simulations. As a result, many GCMs showed high sensitivity to the treatment of clouds and cloud radiative properties. Therefore, a better understanding of cloud-radiation feedback on the large-scale environment is absolutely essential to improve the representation of cloud processes in GCMS. To this end, a cloud model with enhanced model physics is used to study the impact of cloud-radiation interactions on mesoscale convective systems (MCSs). Case studies representing a variety of convective systems are important to generalize the overall effects of anvil clouds on the large-scale environment. Our primary interesting is limited to the MCSs in an environment with substantial wind shear, such as squall-line systems, because they have longer lifetime and wider coverage to impact the earth radiation budget and climate. The objective of this study is to investigate the impacts of microphysics, radiation and environmental winds on mid-latitude continental and tropical oceanic squall-line systems. Comparisons between these two systems are presented. Recent studies indicated that the vertical shear of the environmental wind plays an important role in the formation of the anvil cloud through the tilting of MCSS. However, this process has not been represented in GCMS. A detailed investigation on the formation of anvil clouds and their relationship to cumulus portions of MCSs would help develop a better cloud parameterization for use in GCMS. Two important issues are addressed through these comparisons. First, what factors cause the differences between mid-latitude and tropical anvil clouds? Second, do these differences have climatic implications to improve our climate forecasting ability?

  18. Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude

    Directory of Open Access Journals (Sweden)

    Cholho Song

    2017-08-01

    Full Text Available To implement appropriate land management strategies, it is essential to identify past and current land cover and land use conditions. In addition, an assessment of land development phases (LDPs in a human-dominated landscape coupled with an analysis of the water-food-ecosystem (WFE nexus can deepen our understanding of sustainable land management. In this study, we proposed the concept of land development phases (LDPs by forest and GDP changes using previously-applied theoretical and empirical approaches. The positive relationship between GDP growth and forest stock changes was used to analyze the timing of forest stock changes as five-year averages, which were aggregated over 20 years to classify LDPs. In addition, forest area changes compared with GDP and GDP per capita changes were analyzed to identify LDPs. Based on two conceptual approaches, we suggested global land into three LDPs: degradation, restoration and sustainability. Using this approach, most of Europe, North America and northeast Asia were classified as sustainability phases, while Africa and Central Asia in the Mid-Latitude region appeared to have degradation or restoration phases. The LDPs described could be improved with further incorporation of solid data analysis and clear standards, but even at this stage, these LDP classifications suggest points for implementing appropriate land management. In addition, indices from comparative analysis of the LDPs with the WFE nexus can be connected with socio-economic global indices, such as the Global Hunger Index, the Food Production Index and the Climate Change Performance Index. The LDPs have the potential to facilitate appropriate land management strategies through integrating WFE nexus and ecosystem services; we propose future research that uses this integration for the Mid-Latitude region and worldwide.

  19. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment.

    Science.gov (United States)

    Ribeiro, Gerson Luiz Ulema; Jacob, Helder B

    2016-01-01

    Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts.

  20. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Gerson Luiz Ulema Ribeiro

    2016-04-01

    Full Text Available ABSTRACT Introduction: Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. Objective: This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts.

  1. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  2. Diagnosis of the Tropical Moisture Exports to the Mid-Latitudes and the Role of Atmospheric Steering in the Extreme Precipitation

    Directory of Open Access Journals (Sweden)

    Mengqian Lu

    2017-12-01

    Full Text Available Three river basins, i.e., the Yangtze river, the Mississippi river and the Loire river, were presented as case studies to explore the association among atmospheric circulations, moisture exports and extreme precipitations in the mid-latitudes. The major moisture source regions in the tropics for the three river basins are first identified using the Tropical Moisture Exports (TMEs dataset. The space-time characteristics of their respective moisture sources are presented. Then, the trajectory curve clustering analysis is applied to the TMEs tracks originating from the identified source regions during each basin’s peak TMEs activity and flood seasons. Our results show that the moisture tracks for each basin can be categorized into 3 or 4 clusters with distinct spatial trajectory features. Our further analysis on these clustered trajectories reveals that the contributions of moisture release from different clusters are associated with their trajectory features and travel speeds. In order to understand the role of associated atmospheric steering, daily composites of the geopotential heights anomalies and the vertical integral of moisture flux anomalies from 7 days ahead to the extreme precipitation days (top 5% are examined. The evolutions of the atmospheric circulation patterns and the moisture fluxes are both consistent with the TMEs tracks that contribute more moisture releases to the study regions. The findings imply that atmospheric steering plays an important role in the moisture transport and release, especially for the extreme precipitations. We also find that the association between TMEs moisture release and precipitation is nonlinear. The extreme precipitation is associated with high TMEs moisture release for all of the three study regions.

  3. Global 3-D modeling of atmospheric ozone in the free troposphere and the stratosphere with emphasis on midlatitude regions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, G.; Tie, X.; Walters, S.

    1999-03-01

    The authors have used several global chemical/transport models (1) to study the contribution of various physical, chemical, and dynamical processes to the budget of mid-latitude ozone in the stratosphere and troposphere; (2) to analyze the potential mechanisms which are responsible for the observed ozone perturbations at mid-latitudes of the lower stratosphere and in the upper troposphere; (3) to calculate potential changes in atmospheric ozone response to anthropogenic changes (e.g., emission of industrially manufactured CFCs, CO, and NO{sub x}) and to natural perturbations (e.g., volcanic eruptions and biomass burning); and (4) to estimate the impact of these changes on the radiative forcing to the climate system and on the level of UV-B radiation at the surface.

  4. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  5. Mid-latitude continental temperatures through the early Eocene in western Europe

    Science.gov (United States)

    Inglis, Gordon N.; Collinson, Margaret E.; Riegel, Walter; Wilde, Volker; Farnsworth, Alexander; Lunt, Daniel J.; Valdes, Paul; Robson, Brittany E.; Scott, Andrew C.; Lenz, Olaf K.; Naafs, B. David A.; Pancost, Richard D.

    2017-02-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are increasingly used to reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, the application of this proxy in coal deposits is limited and brGDGTs have only been detected in immature coals (i.e. lignites). Using samples recovered from Schöningen, Germany (∼48°N palaeolatitude), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of early Eocene lignites and associated interbeds. BrGDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences between lignites - representing peat-forming environments - and siliciclastic nearshore marine interbed depositional environments. Using the most recent brGDGT temperature calibration (MATmr) developed for soils, we generate the first continental temperature record from central-western continental Europe through the early Eocene. Lignite-derived MAAT estimates range from 23 to 26 °C while those derived from the nearshore marine interbeds exceed 20 °C. These estimates are consistent with other mid-latitude environments and model simulations, indicating enhanced mid-latitude, early Eocene warmth. In the basal part of the section studied, warming is recorded in both the lignites (∼2 °C) and nearshore marine interbeds (∼2-3 °C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this long-term warming trend is relatively well established in the marine realm, it has rarely been shown in terrestrial settings. Using a suite of model simulations we show that the magnitude of warming at Schöningen is broadly consistent with a doubling of CO2, in agreement with late Paleocene and early Eocene pCO2 estimates.

  6. Butterflies, Black swans and Dragon kings: How to use the Dynamical Systems Theory to build a "zoology" of mid-latitude circulation atmospheric extremes?

    Science.gov (United States)

    Faranda, D.; Yiou, P.; Alvarez-Castro, M. C. M.

    2015-12-01

    A combination of dynamical systems and statistical techniques allows for a robust assessment of the dynamical properties of the mid-latitude atmospheric circulation. Extremes at different spatial and time scales are not only associated to exceptionally intense weather structures (e.g. extra-tropical cyclones) but also to rapid changes of circulation regimes (thunderstorms, supercells) or the extreme persistence of weather structure (heat waves, cold spells). We will show how the dynamical systems theory of recurrence combined to the extreme value theory can take into account the spatial and temporal dependence structure of the mid-latitude circulation structures and provide information on the statistics of extreme events.

  7. Studies of midlatitude mesospheric temperature variability and its relationship to gravity waves, tides, and planetary waves

    Science.gov (United States)

    Beissner, Kenneth C.

    1997-10-01

    Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the

  8. Vodcasting Space Weather

    Science.gov (United States)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  9. The health status of adolescents living at mid-latitude or in the European North in relation to anthropogenic pollution

    Directory of Open Access Journals (Sweden)

    D. A. Kuznetsova

    2016-01-01

    Full Text Available The distribution of health groups among 14-year-old adolescents (n = 707 living since birth under the conditions of mid-latitudes (the towns of Kirov and Yaransk and in the European North (the town of Ukhta and the settlement of Sedyu was compared to determine the impact of anthropogenic pollution at different latitudes on this indicator. It was shown that the conditions of the European North in the absence of anthropogenic pollution failed to affect the number of 14-year-old boys and girls having health groups I, II, III, IV, and V. Anthropogenic pollution was found to decline the number of health group I adolescents living in the European North, without influencing this indicator in those dwelling at mid-latitudes, but, in spite of the latitude of their residence, to increase that of persons with health group II, without having an impact on the number of persons with health groups III, IV, and V.

  10. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    Directory of Open Access Journals (Sweden)

    K. C. Wells

    2012-07-01

    Full Text Available Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1–2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2 provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.

  11. Changes on Mid-Latitude Cyclones due to Global Warming Simulated by a Global 20-km-mesh Atmospheric Model

    Science.gov (United States)

    Miyamoto, K.

    2005-12-01

    I investigate how the intensity and the activity of mid-latitude cyclones change as a result of global warming, based on a time-slice experiment with a super-high resolution Atmospheric General Circulation Model (20-km mesh TL959L60 MRI/JMA AGCM). The model was developed by the RR2002 project "Development of Super High Resolution Global and Regional Climate Models" funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In this context, I use a 10-year control simulation with the climatological SST and a 10-year time-slice global warming simulation using the SST anomalies derived from the SRES A1B scenario run with the MRI-CGCM2.3 (T42L30 atmosphere, 0.5-2.0 x 2.5 L23 ocean) corresponding to the end of the 21st century. I have analyzed the sea-level pressure field and the kinetic energy field of the wind at the 500 hPa pressure level associated with mid-latitude transients from October through April. According to a comparison of 10-day average fields between present and future in the North Pacific, some statistically significant changes are found in a warmer climate for the both of sea-level pressure and the kinetic energy fields. In particular, from late winter through early spring, the sea-level pressure decreases on many parts of the whole Pacific. The kinetic energy of the wind becomes higher on center of the basin. Therefore, I suppose the Aleutian Low is likely to settle in longer by about one month than the present. Hereafter, I plan to investigate what kind of phenomena may accompany the changes on mid-latitude transients.

  12. Movements of the mid-latitude ionospheric trough

    International Nuclear Information System (INIS)

    Rodger, A.S.; Pinnock, M.

    1982-01-01

    A new method for monitoring the position and movement of large ionospheric structures is described. The technique uses data from an ionosonde nominally operating at vertical incidence, but relies on there being present a significant gradient in electron concentration. The position and dynamics of the poleward edge of the mid-latitude trough over Halley Bay, Antarctica (L = 4.2) is investigated using this method. Analyses show that the trough moves rapidly equatorward over Halley Bay in the early evening hours, during geomagnetically active periods. For magnetically quiet periods, the trough is not observed till after midnight, when its equatorward motion is comparatively slow. These results showed marked differences from those predicted from published empirical relationships describing variations in trough position with time, particularly before midnight. Changes in the position of the plasma pause with time, determined from two theoretical models and from observations are compared with these results for the trough. Also, one case study is presented in which there is determination of the positions of both the trough and the plasmapause over a 7 h period. Similarities and differences in their relative positions and movements of the two features are identified and their possible causes are briefly discussed. (author)

  13. Understanding the biosphere from space: Strategies to exploit remote sensing data

    Science.gov (United States)

    Verstraete, Michel M.; Pinty, Bernard; Myneni, Ranga

    1994-01-01

    The quantitative interpretation of satellite observations requires the use of mathematical tools to extract the desired information on terrestrial environments from the radiation data collected in space. A whole range of approaches can be pursued, from the development of models capable of explaining the nature of the physical signal being measured and of characterizing the state of the system under observation, to the empirical correlations between the variables of interest and the space measurements. The premises and implications of these approaches are outlined, paying special attention to the mathematical and numerical requirements. The role and specific applications of empirical bidirectional reflectance models is also discussed, even though these models do not contribute to the understanding of the theory of radiation transfer or to the assessment of the variables of interest. The advantages and drawbacks of these various approaches and the research priorities for the next few years are discussed in the context of the planned availability of new sensors.

  14. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    Science.gov (United States)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  15. Midlatitude atmospheric circulation responses under 1.5 and 2.0 °C warming and implications for regional impacts

    Directory of Open Access Journals (Sweden)

    C. Li

    2018-04-01

    Full Text Available This study investigates the global response of the midlatitude atmospheric circulation to 1.5 and 2.0 °C of warming using the HAPPI (Half a degree Additional warming, Prognosis and Projected Impacts ensemble, with a focus on the winter season. Characterising and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC. The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks, and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, in western Europe, and on the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2 °C warmer world, with exceptionally dry decades becoming 5 times more likely.

  16. A Mid-Latitude Skywave Propagation Experiment: Overview and Results

    Science.gov (United States)

    Munton, D. C.; Calfas, R. S.; Gaussiran, T., II; Rainwater, D.; Flesichmann, A. M.; Schofield, J. R.

    2016-12-01

    We will describe a mid-latitude HF skywave propagation experiment conducted during 19-27 January, 2014. There were two primary goals to the experiment. First, we wanted to build an understanding of the impact that medium scale traveling ionospheric disturbances have on the angles of arrival of the HF signals. The second goal was to provide a diverse data set that could serve as a baseline for propagation model development and evaluation. We structured individual tests during the experiment to increase the knowledge of temporal and spatial length scales of various ionospheric features. The experiment was conducted during both day and night periods and spanned a wide range of ionospheric states. We conducted the experiment at White Sands Missile Range, New Mexico and in the surrounding area. As part of the experiment, we deployed a number of active HF transmitters, and an array of dipole antennas to provide angle of arrival measurements. We also deployed a smaller array of more novel compact electro-magnetic vector sensors (EMVSs). Other instrumentation specific to the remote sensing of the ionosphere included digisondes, GNSS receivers, beacon satellite receivers, and optical instruments. We will provide a complete description of the experiment configuration and the data products.Finally, we will provide a discussion of experimental results, focusing on ionospheric conditions during the angle-of-arrival determinations, and the impact ionospheric disturbances can have on these measurements. We use the angle-of-arrival determinations to estimate TID properties, including velocity and direction.This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via US Navy Contract N00024-07-D-6200. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements

  17. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites

    Science.gov (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.

    2018-04-01

    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  18. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  19. Lightning NOx influence on large-scale NOy and O3 plumes observed over the northern mid-latitudes

    Directory of Open Access Journals (Sweden)

    Alicia Gressent

    2014-11-01

    Full Text Available This paper describes the NOy plumes originating from lightning emissions based on 4 yr (2001–2005 of MOZAIC measurements in the upper troposphere of the northern mid-latitudes, together with ground- and space-based observations of lightning flashes and clouds. This analysis is primarily for the North Atlantic region where the MOZAIC flights are the most frequent and for which the measurements are well representative in space and time. The study investigates the influence of lightning NOx (LNOx emissions on large-scale (300–2000 km plumes (LSPs of NOy. One hundred and twenty seven LSPs (6% of the total MOZAIC NOy dataset have been attributed to LNOx emissions. Most of these LSPs were recorded over North America and the Atlantic mainly in spring and summer during the maximum lightning activity occurrence. The majority of the LSPs (74% is related to warm conveyor belts and extra-tropical cyclones originating from North America and entering the intercontinental transport pathway between North America and Europe, leading to a negative (positive west to east NOy (O3 zonal gradient with −0.4 (+18 ppbv difference during spring and −0.6 (+14 ppbv difference in summer. The NOy zonal gradient can correspond to the mixing of the plume with the background air. On the other hand, the O3 gradient is associated with both mixing of background air and with photochemical production during transport. Such transatlantic LSPs may have a potential impact on the European pollution. The remaining sampled LSPs are related to mesoscale convection over Western Europe and the Mediterranean Sea (18% and to tropical convection (8%.

  20. Examining the controlling factors on Southern Ocean clouds and their radiative effects in the context of midlatitude weather systems

    Science.gov (United States)

    Kelleher, M. K.; Grise, K. M.

    2017-12-01

    Clouds and their associated radiative effects are one of the largest sources of uncertainty in the present generation of global climate models. One region where model biases are especially large is over the Southern Ocean, where many models systematically underestimate the climatological shortwave cloud radiative effects (CRE) and/or misrepresent the relationship between shortwave CRE and atmospheric dynamics. Previous research has shown that two "cloud controlling factors", estimated inversion strength (EIS) and mid-tropospheric vertical velocity, are helpful in explaining the relationship between CRE and atmospheric dynamics on monthly timescales. For example, when the Southern Hemisphere midlatitude jet shifts poleward on monthly timescales, the high clouds and their associated longwave CRE shift poleward with the jet, consistent with a poleward shift of the storm track and the attendant vertical velocity anomalies. However, the observed changes in shortwave CRE with a poleward jet shift are small due to a trade-off between the competing effects of opposing EIS and vertical velocity anomalies. This study extends these previous findings to examine the relationship between Southern Ocean cloud controlling factors and CRE on daily timescales. On a daily timescale, the relationship of EIS and vertical velocity with CRE is more complex, due in part to the presence of transient weather systems. Composites of EIS, vertical velocity, longwave CRE, and shortwave CRE around extratropical cyclones and anticyclones are constructed to examine how the CRE anomalies vary in different sectors of midlatitude weather systems and the role that EIS and vertical velocity play in determining those anomalies. The relationships between the cloud controlling factors and CRE on daily timescales provide key insight into the underlying physical processes responsible for the relationships between midlatitude cloud controlling factors and CRE previously documented on monthly timescales.

  1. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    Science.gov (United States)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  2. A Regional GPS Receiver Network For Monitoring Mid-latitude Total Electron Content During Storms

    Science.gov (United States)

    Vernon, A.; Cander, Lj. R.

    A regional GPS receiver network has been used for monitoring mid-latitude total elec- tron content (TEC) during ionospheric storms at the current solar maximum. Differ- ent individual storms were examined to study how the temporal patterns of changes develop and how they are related to solar and geomagnetic activity for parameter de- scriptive of plasmaspheric-ionospheric ionisation. Use is then made of computer con- touring techniques to produce snapshot maps of TEC for different study cases. Com- parisons with the local ionosonde data at different phases of the storms enable the storm developments to be studied in detail.

  3. A Constraint-Based Understanding of Design Spaces

    DEFF Research Database (Denmark)

    Biskjaer, Michael Mose; Dalsgaard, Peter; Halskov, Kim

    2014-01-01

    space schema, can identify the properties of the prospective product that s/he can form. Through a case study, we show how design space schemas can support designers in various ways, including gaining an overview of the design process, documenting it, reflecting on it, and developing design concepts...

  4. Traveling with blindness: A qualitative space-time approach to understanding visual impairment and urban mobility.

    Science.gov (United States)

    Wong, Sandy

    2018-01-01

    This paper draws from Hägerstrand's space-time framework to generate new insights on the everyday mobilities of individuals with visual impairments in the San Francisco Bay Area. While existing research on visual impairment and mobility emphasizes individual physical limitations resulting from vision loss or inaccessible public spaces, this article highlights and bridges both the behavioral and social processes that influence individual mobility. A qualitative analysis of sit-down and mobile interview data reveals that the space-time constraints of people with visual impairments are closely linked to their access to transportation, assistive technologies, and mobile devices. The findings deepen our understandings of the relationship between health and mobility, and present intervention opportunities for improving the quality of life for people with visual impairment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2011-11-01

    Full Text Available Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004–2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  6. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    Science.gov (United States)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4

  7. A mechanism of midlatitude noontime foE long-term variations inferred from European observations

    Science.gov (United States)

    Mikhailov, A. V.; Perrone, L.; Nusinov, A. A.

    2017-04-01

    Manually scaled June noontime monthly median foE values at three European stations Rome, Juliusruh, and Slough/Chilton were used to understand the mechanism of foE long-term variations. The 11 year running mean smoothed foE manifests long-term (for some solar cycles) variations with the rising phase at the end of 1960-1985 and the falling phase after 1985. A close relationship (even in details) between (foEave)11y and (R12)11y variations with the correlation coefficient of 0.996 (absolutely significant according to Fisher F criterion) suggests that the Sun is the source of these (foEave)11y long-term variations. After removing solar activity long-term variations the residual (foEave)11y trend is very small ( 0.029% per decade) being absolutely insignificant. This means that all (foEave)11y variations are removed with one solar activity index, (R12)11y, i.e., this means that long-term variations are fully controlled by solar activity. Theory of midlatitude daytime E region tells us that long-term variations of solar EUV in two lines λ = 977 Å (CIII) and λ = 1025.7 Å (HLyβ) and X-ray radiation with λ foE long-term variations have a natural (not anthropogenic) origin related to long-term variations of solar activity. No peculiarities in relation with the last deep solar minimum in 2008-2009 have been revealed.

  8. Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density

    Science.gov (United States)

    Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.

    2016-12-01

    Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.

  9. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics

    Science.gov (United States)

    Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick

    2017-05-01

    We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.

  10. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  11. Cluster observations of mid-latitude hiss near the plasmapause

    Directory of Open Access Journals (Sweden)

    A. Masson

    2004-07-01

    Full Text Available In the vicinity of the plasmapause, around the geomagnetic equator, the four Cluster satellites often observe banded hiss-like electromagnetic emissions (BHE; below the electron gyrofrequency but above the lower hybrid resonance, from 2kHz to 10kHz. We show that below 4kHz, these waves propagate in the whistler mode. Using the first year of scientific operations of WHISPER, STAFF and WBD wave experiments on Cluster, we have identified the following properties of the BHE waves: (i their location is strongly correlated with the position of the plasmapause, (ii no MLT dependence has been found, (iii their spectral width is generally 1 to 2kHz, and (iv the central frequency of their emission band varies from 2kHz to 10kHz. All these features suggest that BHE are in fact mid-latitude hiss emissions (MLH. Moreover, the central frequency was found to be correlated with the Kp index. This suggests either that these banded emissions are generated in a given f/fce range, or that there is a Kp dependent Doppler shift between the satellites and a possible moving source of the MLH.

  12. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  13. Understanding the distribution of activities of urban dwellers using the Space Time Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan; Ahas, Rein

    2012-01-01

    Urban geographers study the development of cities, and seek to understand the fac-tors that influence human movements over space and time. New communication tech-nologies are significantly impacting these studies, especially in field of data collec-tion. The use case presented here is based...... with a typical temporal nature: ‘Is there a difference in distribution of activi-ties between weekdays and weekends?’ and ‘Are there differences during the day?’ To answer these questions a visual problem solving approach was followed where different graphic representations of the data were used. The choice...... of the maps and diagrams is based on the questions to be answered, for instance a map for the domi-nant where-questions, and the Space Time Cube (STC) for the dominant when-questions. All graphics were integrated in a single multiple coordinated view envi-ronment which allows one to see the impact...

  14. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes

    Science.gov (United States)

    Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.

    2018-05-01

    Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.

  15. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models

    Science.gov (United States)

    Li, D.

    2017-12-01

    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  16. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    factor alone implying at least some shared underlying mechanisms. Thus, both ground based and spaceflight research utilizing model organisms provide the opportunity to better understand environmental factors and biological mechanisms that contribute to human health and survival in space.

  17. Taking Poseidon's Measure from Space: Advances in our Understanding of the Ocean

    Science.gov (United States)

    Avery, S. K.

    2017-12-01

    In many ways the ocean defines our planet and makes it livable. It provides marine resources and ecosystem services that are critical to a sustainable society. Today we understand that there is a growing need to predict, manage, and adapt to changes on our planet - changes that occur not only in the atmosphere but also in the ocean. Over the last 40 years remarkable advances in measuring key ocean quantities have been made - through the development of new satellite technologies and successful missions as well as through in-situ observing systems enabled by advances in robotics, communications, navigation, and sensors. Ocean science (and atmospheric science) is a science of numbers, imaging, and numerical models. Predictability of the ocean is tied to the scale of variability in space and time. Satellite observations have spectacularly showed us the incredible structure and variability of the ocean. It has been the combination of satellites and in-situ sensors that have allowed us to advance understanding and prediction. This presentation will highlight some of the key scientific advances that have been enabled by satellites.

  18. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    Science.gov (United States)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  19. Does the bipolar seesaw extend to the terrestrial southern mid-latitudes?

    Science.gov (United States)

    Newnham, Rewi M.; Vandergoes, Marcus J.; Sikes, Elisabeth; Carter, Lionel; Wilmshurst, Janet M.; Lowe, David J.; McGlone, Matt S.; Sandiford, Anna

    2012-03-01

    High precision comparison of Greenland and Antarctic ice cores, suggesting a pervasive antiphased temperature relationship between the polar hemispheres during the last glaciation, lends strong support to the bipolar seesaw model (EPICA, 2006). The extent to which reorganisation of ocean-heat transport during abrupt climate change events affected the southern mid-latitudes remains unclear, however, owing to a paucity of well-dated records with robust climate proxies, variability between some records, and varying interpretations of their significance. Here we present temperature reconstructions for three key pollen records recognised by the NZ-INTIMATE (NZ-I) group which, along with the preliminary NZ-I climate event stratigraphy (Alloway et al., 2007) and published marine records, are compared with polar ice core records for the interval 30-10 cal. ka. We focus on key events within the context of Dansgard Oeschger cycles 4-1 and The Antarctic Cold Reversal/Younger Dryas intervals. The New Zealand records are broadly consistent with an extended bipolar seesaw whereby the oceanic southern mid-latitudes are warmed at times of MOC weakening or cessation in the North Atlantic, and vice versa. Variability between records indicate that other factors must be involved, however, and nor do these records refute alternative models that predict an antiphased inter-hemispheric pattern. Nevertheless an extended bipolar model may explain an early onset of LGM conditions in New Zealand and elsewhere in the Southern Hemisphere at a time when interstadials GI3 and GI4 kept Greenland warm. Similar inter-hemispheric dynamics have been invoked to explain an earlier termination of the LGM in Antarctica than in Greenland (Wolff et al., 2009) which is also evident in the New Zealand records. A prominent mid-LGM interstadial complex observed in several New Zealand records, connected by tephrochronology may represent another antiphased event although stronger chronological control is needed

  20. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  1. Wind structure during mid-latitude storms and its application in Wind Energy

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolanos, Rodolfo

    2015-01-01

    in Denmark. The extreme wind and wave conditions in the coastal area for wind energy application are important but have rarely been studied in the literature. Our experiments are done to the Danish coasts where the mid-latitude depression systems are causes of the extreme wind and wave conditions....... The numerical modeling is done through an atmosphere-wave coupled system, where the atmospheric model is the Weather Research and Forecasting (WRF) model and the wave model is the Simulating WAves Nearshore (SWAN) model. Measurements from offshore stations, Horns Rev and the FINO platform, as well as satellite...... and the modeling will be presented. Here the “key” is referring both to the application of wind energy and the wind-wave coupling system. The various parameterization of the interface parameter for the atmospheric and wave modeling, the roughness length, has been examined. Data analysis reveals the importance...

  2. Occupational Space Medicine

    Science.gov (United States)

    Tarver, William J.

    2012-01-01

    Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.

  3. Schools as Racial Spaces: Understanding and Resisting Structural Racism

    Science.gov (United States)

    Blaisdell, Benjamin

    2016-01-01

    Analyzing schools as racial spaces can help researchers examine the role of teachers in the perpetuation of structural racism in schools. Based on ethnographic and autoethnographic work, this article offers examples of schools as racial spaces, spaces where whiteness controlled access. It also highlights four teachers who pursued racial equity in…

  4. Understanding Interorganizational Learning Based on Social Spaces and Learning Episodes

    Directory of Open Access Journals (Sweden)

    Anelise Rebelato Mozzato

    2014-07-01

    Full Text Available Different organizational settings have been gaining ground in the world economy, resulting in a proliferation of different forms of strategic alliances that translate into a growth in the number of organizations that have started to deal with interorganizational relationships with different actors. These circumstances reinforce Crossan, Lane, White and Djurfeldt (1995 and Crossan, Mauer and White (2011 in exploring what authors refer to as the fourth, interorganizational, level of learning. These authors, amongst others, suggest that the process of interorganizational learning (IOL warrants investigation, as its scope of analysis needs widening and deepening. Therefore, this theoretical essay is an attempt to understand IOL as a dynamic process found in interorganizational cooperative relationships that can take place in different structured and unstructured social spaces and that can generate learning episodes. According to this view, IOL is understood as part of an organizational learning continuum and is analyzed within the framework of practical rationality in an approach that is less cognitive and more social-behavioral.

  5. The mid-latitude ionosphere under quiet geomagnetic conditions: propagation analysis of SuperDARN radar observations from large ionospheric perturbations

    OpenAIRE

    De Larquier, Sebastien

    2013-01-01

    The Earth's ionosphere is a dynamic environment strongly coupled to the neutral atmosphere, magnetosphere and solar activity. In the context of this research, we restrict our interest to the mid-latitude (a.k.a., sub-auroral) ionosphere during quiet geomagnetic conditions. The Super Dual Auroral Radar Network (SuperDARN) is composed of more than 30 low-power High Frequency (HF, from 8-18 MHz) Doppler radars covering the sub-auroral, auroral and polar ionosphere in both hemispheres. SuperDARN ...

  6. Characterization of Nightside Mid-latitude Irregularities Observed with the Blackstone SuperDARN Radar

    Science.gov (United States)

    Ruohoniemi, J. M.; Ribeiro, A. J.; Baker, J. B.; Greenwald, R. A.; Newell, P. T.

    2009-12-01

    The new mid-latitude SuperDARN radars at Wallops Island and Blackstone observe strong coherent backscattering on an almost nightly basis from latitudes that appear to be subauroral. One study has demonstrated an excellent correlation with the occurrence of density and temperature gradients within the ionospheric projection of the plasmapause (Greenwald et al., Geophys. Res. Lett. [2006]). We have processed all the data collected with the Blackstone radar since its inception in February 2008 for a characterization of the occurrence and properties of ‘plasmapause’ scatter. We have determined the local time and Kp dependencies of the activity and the relation of the spatial distribution of the irregularities to magnetospheric boundaries and ionospheric density gradients. We establish that the irregularities are a feature of the quiet-time subauroral ionosphere and provide a valuable diagnostic of the electric fields in the inner magnetosphere.

  7. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    Science.gov (United States)

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  8. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  9. Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2

    Science.gov (United States)

    Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.

    2017-12-01

    Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that

  10. Understanding Media Architecture (Better): One Space, Three Cases

    DEFF Research Database (Denmark)

    Brynskov, Martin; Dalsgaard, Peter; Halskov, Kim

    2013-01-01

    Our group has worked within the field of interactive urban lighting design and media architecture since 2007. In this position paper we outline a presentation where we compare three installations that were created in the period 2008 to 2012 in the same central, public space in a city. By comparin...... and contrasting these three cases in the same space, we get a multi-faceted view on that particular context for media architecture. But we also get the opportunity to reflect on some more general concepts regarding the use of interactive urban lighting design.......Our group has worked within the field of interactive urban lighting design and media architecture since 2007. In this position paper we outline a presentation where we compare three installations that were created in the period 2008 to 2012 in the same central, public space in a city. By comparing...

  11. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    Science.gov (United States)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; hide

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of

  12. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  13. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic -lacustrine deposits, southern Bogda Mountains, NW China - A terrestrfluvialial paleoclimatic record of mid-latitude NE Pangea

    Science.gov (United States)

    Yang, W.; Feng, Q.; Liu, Yajing; Tabor, N.; Miggins, D.; Crowley, J.L.; Lin, J.; Thomas, S.

    2010-01-01

    Two uppermost Carboniferous–Lower Triassic fluvial–lacustrine sections in the Tarlong–Taodonggou half-graben, southern Bogda Mountains, NW China, comprise a 1834 m-thick, relatively complete sedimentary and paleoclimatic record of the east coast of mid-latitude NE Pangea. Depositional environmental interpretations identified three orders (high, intermediate, and low) of sedimentary cycles. High-order cycles (HCs) have five basic types, including fluvial cycles recording repetitive changes of erosion and deposition and lacustrine cycles recording repetitive environmental changes associated with lake expansion and contraction. HCs are grouped into intermediate-order cycles (ICs) on the basis of systematic changes of thickness, type, and component lithofacies of HCs. Nine low-order cycles (LCs) are demarcated by graben-wide surfaces across which significant long-term environmental changes occurred. A preliminary cyclostratigraphic framework provides a foundation for future studies of terrestrial climate, tectonics, and paleontology in mid-latitude NE Pangea.Climate variabilities at the intra-HC, HC, IC, and LC scales were interpreted from sedimentary and paleosol evidence. Four prominent climatic shifts are present: 1) from the humid–subhumid to highly-variable subhumid–semiarid conditions at the beginning of Sakamarian; 2) from highly-variable subhumid–semiarid to humid–subhumid conditions across the Artinskian-Capitanian unconformity; 3) from humid–subhumid to highly-variable subhumid–semiarid conditions at early Induan; and 4) from the highly-variable subhumid–semiarid to humid–subhumid conditions across the Olenekian-Anisian unconformity. The stable humid–subhumid condition from Lopingian to early Induan implies that paleoclimate change may not have been the cause of the end-Permian terrestrial mass extinction. A close documentation of the pace and timing of the extinction and exploration of other causes are needed. In addition, the

  14. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    Science.gov (United States)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  15. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    Science.gov (United States)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; hide

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  16. Nuclear Reactors for Space Power, Understanding the Atom Series.

    Science.gov (United States)

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  17. Seasat microwave wind and rain observations in severe tropical and midlatitude marine storms

    Science.gov (United States)

    Black, P. G.; Hawkins, J. D.; Gentry, R. C.; Cardone, V. J.

    1985-01-01

    Initial results of studies concerning Seasat measurements in and around tropical and severe midlatitude cyclones over the open ocean are presented, together with an assessment of their accuracy and usefulness. Complementary measurements of surface wind speed and direction, rainfall rate, and the sea surface temperature obtained with the Seasat-A Satellite Scatterometer (SASS), the Scanning Multichannel Microwave Radiometer (SMMR), and the Seasat SAR are analyzed. The Seasat data for the Hurrricanes Fico, Ella, and Greta and the QE II storm are compared with data obtained from aircraft, buoys, and ships. It is shown that the SASS-derived wind speeds are accurate to within 10 percent, and the directions are accurate to within 20 percent. In general, the SASS estimates tend to measure light winds too high and intense winds too low. The errors of the SMMR-derived measurements of the winds in hurricanes tend to be higher than those of the SASS-derived measurements.

  18. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  19. A numerical study of ionospheric profiles for mid-latitudes

    Directory of Open Access Journals (Sweden)

    S.-R. Zhang

    1995-05-01

    Full Text Available This paper presents a numerical model and results for the mid-latitude ionospheric profile below the peak of the F2-layer. The basis of the model is the solving of equations for four ionic species O+, NO+, O+2 and N+2, as well as the meta-stable O+(2D and O+(2P. Diffusion and wind-induced drifts and 21 photo-chemical reactions are also taken into account. Neutral atmospheric density and temperature are derived from the MSIS86 model and solar extreme ultraviolate irradiance from the EUV91 model. In an effort to obtain a more realistic ionospheric profile, the key point at foF2 and hmF2 is fitted from the simulation to observations. The model also utilizes the vertical drifts derived from ionosonde data with the help of the Servo model. It is shown that the ionospheric height of peak can be reproduced more accurately under the derived vertical drifts from the Servo theory than with the HWM90 model. Results from the simulation are given for Wuchang (30.5°N, 114.4°E and Wakkanai (45.6°N, 141.7°E, showing the profile changes with season and solar activity, and the E-F valley structure (the depth and the width. This simulation also reveals the importance of meta-stable ions and dynamical transport processes on the formation of the F1-ledge and F1-F2 valley.

  20. A Gigantic Jet Observed Over an Mesoscale Convective System in Midlatitude Region

    Science.gov (United States)

    Yang, Jing; Sato, Mitsuteru; Liu, Ningyu; Lu, Gaopeng; Wang, Yu; Wang, Zhichao

    2018-01-01

    Gigantic jets (GJs) are mostly observed over summer tropical or tropical-like thunderstorms. This study reports observation of a GJ over a mesoscale convective system (MCS) in the midlatitude region in eastern China. The GJ is observed over a relatively weak radar reflectivity region ahead of the leading line, and the maximum radar echo top along the GJ azimuth was lower than the tropopause in the same region, significantly different from past studies that indicate summer GJs are usually associated with convective surges or overshooting tops. Also different from most of previous observations showing GJ-producing summer thunderstorms only produced GJ type of transient luminous events during their life cycles, two sprites were also captured in a time window of 15 min containing the GJ, indicating that the MCS provides favorable conditions not only for the GJ but also for the sprites. The balloon-borne soundings of the MCS show that there were large wind shears in the middle and upper levels of the thundercloud, which may have played important roles for the GJ production.

  1. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  2. Electron density and plasma waves in mid-latitude sporadic-E layer observed during the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    M. Wakabayashi

    2005-10-01

    Full Text Available The SEEK-2 campaign was carried out over Kyushu Island in Japan on 3 August 2002, by using the two sounding rockets of S310-31 and S310-32. This campaign was planned to elucidate generation mechanisms of Quasi-Periodic Echoes (QPEs associated with mid-latitude sporadic-E (Es layers. Electron number densities were successfully measured in the Es layers by using the impedance probe on board two rockets. The plasma waves in the VLF and ELF ranges were also observed on board the S310-32 rocket. Results of electron density measurement showed that there were one or two major peaks in the Es layers along the rockets' trajectories near the altitude of about 10km. There were some smaller peaks associated with the main Es layers in the altitude range from 90 to 120 km. These density peaks were distributed in a very large extent during the SEEK-2 campaign. The Es layer structure is also measured by using the Fixed Bias Probe (FBP, which has a high spatial resolution of several meters (the impedance probe has an altitude resolution of about 400 m. The comparison with the total electron content (TEC measured by the Dual Band Beacon revealed that the Es layer was also modulated in the horizontal direction with the scale size of 30–40 km. It was shown that the QP echoes observed by the ground-based coherent radar come from the major density peak of the Es layer. The plasma wave instrument detected the enhancement of VLF and ELF plasma waves associated with the operation of the TMA release, and also with the passage of the Es layers. Keywords. Ionosphere (Ionospheric irregularities; Midlatitude ionosphere; Plasma temeperature and density

  3. Understanding the Primary School Students' Van Hiele Levels of Geometry Thinking in Learning Shapes and Spaces: A Q-Methodology

    Science.gov (United States)

    Hock, Tan Tong; Tarmizi, Rohani Ahmad; Yunus, Aida Suraya Md.; Ayub, Ahmad Fauzi

    2015-01-01

    This study was conducted using a new hybrid method of research which combined qualitative and quantitative designs to investigate the viewpoints of primary school students' conceptual understanding in learning geometry from the aspect of shapes and spaces according to van Hiele theory. Q-methodology is used in this research to find out what…

  4. Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37° N, 3° W)

    Science.gov (United States)

    García-Comas, Maya; José López-González, María; González-Galindo, Francisco; de la Rosa, José Luis; López-Puertas, Manuel; Shepherd, Marianna G.; Shepherd, Gordon G.

    2017-10-01

    The mesospheric OH layer varies on several timescales, primarily driven by variations in atomic oxygen, temperature, density and transport (advection). Vibrationally excited OH airglow intensity, rotational temperature and altitude are closely interrelated and thus accompany each other through these changes. A correct interpretation of the OH layer variability from airglow measurements requires the study of the three variables simultaneously. Ground-based instruments measure excited OH intensities and temperatures with high temporal resolution, but they do not generally observe altitude directly. Information on the layer height is crucial in order to identify the sources of its variability and the causes of discrepancies in measurements and models. We have used SABER space-based 2002-2015 data to infer an empirical function for predicting the altitude of the layer at midlatitudes from ground-based measurements of OH intensity and rotational temperature. In the course of the analysis, we found that the SABER altitude (weighted by the OH volume emission rate) at midlatitudes decreases at a rate of 40 m decade-1, accompanying an increase of 0.7 % decade-1 in OH intensity and a decrease of 0.6 K decade-1 in OH equivalent temperature. SABER OH altitude barely changes with the solar cycle, whereas OH intensity and temperature vary by 7.8 % per 100 s.f.u. and 3.9 K per 100 s.f.u., respectively. For application of the empirical function to Sierra Nevada Observatory SATI data, we have calculated OH intensity and temperature SATI-to-SABER transfer functions, which point to relative instrumental drifts of -1.3 % yr-1 and 0.8 K yr-1, respectively, and a temperature bias of 5.6 K. The SATI predicted altitude using the empirical function shows significant short-term variability caused by overlapping waves, which often produce changes of more than 3-4 km in a few hours, going along with 100 % and 40 K changes in intensity and temperature, respectively. SATI OH layer wave effects

  5. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  6. Changing Places, Changing Spaces? Towards Understanding Teacher Education through Space-Time Frameworks

    Science.gov (United States)

    Murray, Jean

    2012-01-01

    This article draws together theoretical ideas from studies of space/spatiality and the history of teacher education. These ideas form a theoretical framework through which to analyse the findings from a small-scale ethnographic study of the geographical relocations made by two university schools of education in England. Data collection instruments…

  7. Rapid Water Transport by Long-Lasting Modon Eddy Pairs in the Southern Midlatitude Oceans

    Science.gov (United States)

    Hughes, Chris W.; Miller, Peter I.

    2017-12-01

    Water in the ocean is generally carried with the mean flow, mixed by eddies, or transported westward by coherent eddies at speeds close to the long baroclinic Rossby wave speed. Modons (dipole eddy pairs) are a theoretically predicted exception to this behavior, which can carry water to the east or west at speeds much larger than the Rossby wave speed, leading to unusual transports of heat, nutrients, and carbon. We provide the first observational evidence of such rapidly moving modons propagating over large distances. These modons are found in the midlatitude oceans around Australia, with one also seen in the South Atlantic west of the Agulhas region. They can travel at more than 10 times the Rossby wave speed of 1-2 cm s-1 and typically persist for about 6 months carrying their unusual water mass properties with them, before splitting into individual vortices, which can persist for many months longer.

  8. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France.

    Science.gov (United States)

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J J; Pagé, Christian; De Baets, Sarah; Quine, Timothy A

    2016-11-03

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO 2 emissions will be crucial to prevent further loss of carbon from our soils.

  9. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    Science.gov (United States)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  10. Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…

  11. Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes

    Science.gov (United States)

    Parrish, D. D.; Lamarque, J.-F.; Naik, V.; Horowitz, L.; Shindell, D. T.; Staehelin, J.; Derwent, R.; Cooper, O. R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.-E.; Steinbacher, M.; Fröhlich, M.

    2014-05-01

    Two recent papers have quantified long-term ozone (O3) changes observed at northern midlatitude sites that are believed to represent baseline (here understood as representative of continental to hemispheric scales) conditions. Three chemistry-climate models (NCAR CAM-chem, GFDL-CM3, and GISS-E2-R) have calculated retrospective tropospheric O3 concentrations as part of the Atmospheric Chemistry and Climate Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 model intercomparisons. We present an approach for quantitative comparisons of model results with measurements for seasonally averaged O3 concentrations. There is considerable qualitative agreement between the measurements and the models, but there are also substantial and consistent quantitative disagreements. Most notably, models (1) overestimate absolute O3 mixing ratios, on average by 5 to 17 ppbv in the year 2000, (2) capture only 50% of O3 changes observed over the past five to six decades, and little of observed seasonal differences, and (3) capture 25 to 45% of the rate of change of the long-term changes. These disagreements are significant enough to indicate that only limited confidence can be placed on estimates of present-day radiative forcing of tropospheric O3 derived from modeled historic concentration changes and on predicted future O3 concentrations. Evidently our understanding of tropospheric O3, or the incorporation of chemistry and transport processes into current chemical climate models, is incomplete. Modeled O3 trends approximately parallel estimated trends in anthropogenic emissions of NOx, an important O3 precursor, while measured O3 changes increase more rapidly than these emission estimates.

  12. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  13. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    Science.gov (United States)

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  14. The transient behavior of whole-canopy fluxes during dynamic light conditions for midlatitude and tropical forests

    Science.gov (United States)

    Fitzjarrald, D. R.; Kivalov, S. N.

    2017-12-01

    Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.

  15. Creative Literacy: A New Space of Pedagogical Understanding

    Science.gov (United States)

    Hrenko, Kelly A.; Stairs, Andrea J.

    2012-01-01

    This research has begun to examine how teachers in Maine meaningfully infuse art and Native American epistemologies through visual arts and writing across curricula to enhance student learning and engagement. Teachers explored a perceived new space of pedagogical possibility within visual arts and American Indian curricula as cross-disciplinary…

  16. The Flexible Fabric of Space

    Science.gov (United States)

    VanNorsdall, Erin Leigh

    2015-08-01

    This poster will clearly illustrate my understanding of how the fabric of space behaves. The poster will be on a large trampoline with a heavy bowling ball in the center. The observer will be able to clearly understand the much more complicated property of how an object in space, such as a star, literally bends the fabric of the space around as a result of its density. This will also help to explain, in very simple terms, how space-time is bendable, and therefore, travel in space can be as well.

  17. Understanding the microscopic moisture migration in pore space using DEM simulation

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2015-04-01

    Full Text Available The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggering of and damages by liquefaction. The influence of pore fluid migration during earthquake has been demonstrated from recent model experiments and field case studies. Most of the current liquefaction assessment models are based on testing of isotropic liquefiable materials. However the recent New Zealand earthquake shows much severer damages than those predicted by existing models. A fundamental cause has been contributed to the embedded layers of low permeability silts. The existence of these silt layers inhibits water migration under seismic loads, which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories. This study intends to understand the process of moisture migration in the pore space of sand using discrete element method (DEM simulation. Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant confining pressure and axial loading. The porosity distribution was monitored during the axial loading process. The spatial distribution of porosity change was determined, which had a direct relationship with the distribution of excess pore water pressure. The non-uniform distribution of excess pore water pressure causes moisture migration. From this, the migration of pore water during the loading process can be estimated. The results of DEM simulation show a few important observations: (1 External forces are mainly carried and transmitted by the particle chains of the soil sample; (2 Porosity distribution during loading is not uniform due to non-homogeneous soil fabric (i.e. the initial particle arrangement and existence of particle chains; (3 Excess pore water pressure develops differently at different loading stages. At the early stage of loading, zones with a high initial porosity feature higher

  18. Longitudinal effect in the night-time mid-latitude ionosphere according to the Interkosmos-19 data

    International Nuclear Information System (INIS)

    Deminov, M.G.; Karpachev, A.T.

    1988-01-01

    Longitudinal effects in the night-time mid-latitude external ionosphere for summer and winter conditions of the high solar activity period are analysed. The high amplitude of longitudinal changes of the external ionosphere, including changes of the height (upto 150 km) and the concentration (7-8 times) of the F2-layer maximum, is shown to be provided under winter mid-night-time conditions with high values of the zone component of the wind velocity and strong latitude gradients and with longitudinal changes of the meridional projection of the wind velocity. N changes with the longitude before the Sun setting, when the zone component of the wind velocity is maximum, made the main contribution in summer to longitudinal changes of the electron concentration of the N night ionosphere. The wind velocity phase shift during the season lleads to the fact that the maximum amplitude of N longitudinal changes is observed till midnight in summer and after midnight in winter

  19. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    Science.gov (United States)

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  20. Theory and observations of the low- and mid-latitude ionosphere

    International Nuclear Information System (INIS)

    Chandler, M.O.

    1982-01-01

    Measured and calculated values of electron concentration, electron temperature and ion temperature in the low- and mid-latitude ionosphere are presented and discussed. The existence of horizontal, spatial gradients in electron temperature on 13 September 1980 above Arecibo, Puerto Rico is shown. The gradients were northward with maximum values of about 1.5 km -1 . The ionosphere model presented by Young et al. (1979) was tested by comparison with another theoretical model and with observations. The tests show that the model values of electron concentration are in agreement with the observations, but that the model electron temperatures are too low. An increase in the model electron heating rate by a factor of 1.5 to 4 is shown to result in better agreement. The suggestion is made that the photoelectron transport equations are incorrect in calculating the photoelectron flux at low energies. The possibility of an error in the electron cooling rate due to interactions with positive ions could not be ruled out. The model is used to explain the observed electron temperature gradients. By assuming the existence of a poleward meridional neutral wind with a poleward velocity gradient, it is shown that the resulting change in the height of the F-region causes differences in electron temperature such as those observed at Arecibo on 13 September 1980. Comparisons of simultaneous measurements from the Arecibo and Millstone Hill observatories are presented. These observations show that significant differences existed in the electron temperature as a function of latitude on 27 June 1981

  1. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  2. A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar

    Science.gov (United States)

    Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Clausen, L. B. N.; Greenwald, R. A.; Lester, M.

    2012-02-01

    The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars that monitor plasma dynamics in the ionosphere. In recent years, SuperDARN has expanded to midlatitudes in order to provide enhanced coverage during geomagnetically active periods. A new type of backscatter from F region plasma irregularities with low Doppler velocity has been frequently observed on the nightside during quiescent conditions. Using three years of data from the Blackstone, VA radar, we have implemented a method for extracting this new type of backscatter from routine observations. We have statistically characterized the occurrence properties of the Sub Auroral Ionospheric Scatter (SAIS) events, including the latitudinal relationships to the equatorward edge of the auroral oval and the ionospheric projection of the plasmapause. We find that the backscatter is confined to local night, occurs on ≈70% of nights, is fixed in geomagnetic latitude, and is equatorward of both the auroral region and the plasmapause boundary. We conclude that SAIS irregularities are observed within a range of latitudes that is conjugate to the inner magnetosphere (plasmasphere).

  3. Isometries on Banach spaces function spaces

    CERN Document Server

    Fleming, Richard J

    2002-01-01

    Fundamental to the study of any mathematical structure is an understanding of its symmetries. In the class of Banach spaces, this leads naturally to a study of isometries-the linear transformations that preserve distances. In his foundational treatise, Banach showed that every linear isometry on the space of continuous functions on a compact metric space must transform a continuous function x into a continuous function y satisfying y(t) = h(t)x(p(t)), where p is a homeomorphism and |h| is identically one.Isometries on Banach Spaces: Function Spaces is the first of two planned volumes that survey investigations of Banach-space isometries. This volume emphasizes the characterization of isometries and focuses on establishing the type of explicit, canonical form given above in a variety of settings. After an introductory discussion of isometries in general, four chapters are devoted to describing the isometries on classical function spaces. The final chapter explores isometries on Banach algebras.This treatment p...

  4. Cosmic rays linked to rapid mid-latitude cloud changes

    Directory of Open Access Journals (Sweden)

    B. A. Laken

    2010-11-01

    Full Text Available The effect of the Galactic Cosmic Ray (GCR flux on Earth's climate is highly uncertain. Using a novel sampling approach based around observing periods of significant cloud changes, a statistically robust relationship is identified between short-term GCR flux changes and the most rapid mid-latitude (60°–30° N/S cloud decreases operating over daily timescales; this signal is verified in surface level air temperature (SLAT reanalysis data. A General Circulation Model (GCM experiment is used to test the causal relationship of the observed cloud changes to the detected SLAT anomalies. Results indicate that the anomalous cloud changes were responsible for producing the observed SLAT changes, implying that if there is a causal relationship between significant decreases in the rate of GCR flux (~0.79 GU, where GU denotes a change of 1% of the 11-year solar cycle amplitude in four days and decreases in cloud cover (~1.9 CU, where CU denotes a change of 1% cloud cover in four days, an increase in SLAT (~0.05 KU, where KU denotes a temperature change of 1 K in four days can be expected. The influence of GCRs is clearly distinguishable from changes in solar irradiance and the interplanetary magnetic field. However, the results of the GCM experiment are found to be somewhat limited by the ability of the model to successfully reproduce observed cloud cover. These results provide perhaps the most compelling evidence presented thus far of a GCR-climate relationship. From this analysis we conclude that a GCR-climate relationship is governed by both short-term GCR changes and internal atmospheric precursor conditions.

  5. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    Science.gov (United States)

    Hartley, Dana

    1998-01-01

    associated solely with vortex PV anomalies are derived and their impact on the stratospheric subtropical circulation is evaluated. Combined PV inversion and Contour Advection (CA) calculations indicate that transient large scale disturbances of the polar vortex do have a far reaching impact that extends beyond the midlatitude surf zone all the way to the subtropics. This vortex influence is clearly non-local so that even simple wave 2 distortions that leave the vortex well confined within the midlatitudes are observed to excite subtropical waves. Treating subtropical PV as active tracers also showed that upon entrainment, these large scale tongues of low PV air also influenced the dynamics of their own poleward migration.

  6. Which Space? Whose Space? An Experience in Involving Students and Teachers in Space Design

    Science.gov (United States)

    Casanova, Diogo; Di Napoli, Roberto; Leijon, Marie

    2018-01-01

    To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the…

  7. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    Science.gov (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  8. Bisexual Safe Space(s) on the Internet: Analysis of an Online Forum for Bisexuals

    NARCIS (Netherlands)

    Maliepaard, E.M.

    2017-01-01

    Discussions on bisexual safe space(s) and online bisexual spaces are limited. This paper explores the potential of an online forum for bisexuals, their partners, and people who are interested in bisexuality to function as an online safe space. To understand whether the analysed forum is successful

  9. Beryllium-7 in near-surface atmospheric aerosols in mid-latitude (40 deg N) city Beijing, China

    International Nuclear Information System (INIS)

    Keyan Tan; Yongliang Yang; Xiaohua Zhu; Shu Chen; Xingchun Jiao; Nan Gai; Yi Huang

    2013-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been used to measure the activity of 7 Be in near-surface atmospheric aerosols at sampling frequency of 3 days week for 1 year from August 2009 to July 2010 at Beijing in the mid-latitude region of East Asia monsoon. The measurements indicate that the average concentration of 7 Be was 8.39 ± 0.49 mBq m -3 , which was significantly higher than values reported for other cities in the East Asia monsoon region and in the world during the same period. The maximum and minimum of the weekly means of 7 Be concentration were observed in September and May, respectively. The 7 Be concentrations varied in accordance with the monsoon phases. Low but frequent wet precipitation may have caused lower 7 Be observed in July when southeasterly was prevailing. Higher seasonal mean of 7 Be concentrations in autumn could be attributed to the abnormal atmospheric circulation in autumn 2009. (author)

  10. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  11. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  12. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes

    Science.gov (United States)

    Lejeune, Quentin; Davin, Edouard L.; Gudmundsson, Lukas; Winckler, Johannes; Seneviratne, Sonia I.

    2018-05-01

    The effects of past land-cover changes on climate are disputed1-3. Previous modelling studies have generally concluded that the biogeophysical effects of historical deforestation led to an annual mean cooling in the northern mid-latitudes3,4, in line with the albedo-induced negative radiative forcing from land-cover changes since pre-industrial time reported in the most recent Intergovernmental Panel on Climate Change report5. However, further observational and modelling studies have highlighted strong seasonal and diurnal contrasts in the temperature response to deforestation6-10. Here, we show that historical deforestation has led to a substantial local warming of hot days over the northern mid-latitudes—a finding that contrasts with most previous model results11,12. Based on observation-constrained state-of-the-art climate-model experiments, we estimate that moderate reductions in tree cover in these regions have contributed at least one-third of the local present-day warming of the hottest day of the year since pre-industrial time, and were responsible for most of this warming before 1980. These results emphasize that land-cover changes need to be considered when studying past and future changes in heat extremes, and highlight a potentially overlooked co-benefit of forest-based carbon mitigation through local biogeophysical mechanisms.

  13. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    Science.gov (United States)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  14. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    Science.gov (United States)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  15. On the Use of Hedonic Price Indices to Understand Ecosystem Service Provision from Urban Green Space in Five Latin American Megacities

    Directory of Open Access Journals (Sweden)

    Ursula Loret de Mola

    2017-12-01

    Full Text Available Latin American (LA megacities are facing enormous challenges to provide welfare to millions of people who live in them. High rates of urbanization and limited administrative capacity of LA cities to plan and control urban growth have led to a critical deficit of urban green space, and therefore, to sub-optimal outcomes in terms of urban sustainability. This study seeks to assess the possibility of using real estate prices to provide an estimate of the monetary value of the ecosystem services provided by urban green space across five Latin American megacities: Bogota, Buenos Aires, Lima, Mexico City and Santiago de Chile. Using Google Earth images to quantify urban green space and multiple regression analysis, we evaluated the impact of urban green space, crime rates, business density and population density on real estate prices across the five mentioned megacities. In addition, for a subset of the data (Lima and Buenos Aires we analyzed the effects of landscape ecology variables (green space patch size, connectivity, etc. on real estate prices to provide a first insight into how the ecological attributes of urban green space can determine the level of ecosystem service provision in different urban contexts in Latin America. The results show a strong positive relationship between the presence of urban green space and real estate prices. Green space explains 52% of the variability in real estate prices across the five studied megacities. Population density, business density and crime had only minor impacts on real estate prices. Our analysis of the landscape ecology variables in Lima and Buenos Aires also show that the relationship between green space and price is context-specific, which indicates that further research is needed to better understand when and where ecological attributes of green space affect real estate prices so that managers of urban green space in LA cities can optimize ecological configuration to maximize ecosystem service

  16. Understanding Urban Green Space as a Health Resource: A Qualitative Comparison of Visit Motivation and Derived Effects among Park Users in Sheffield, UK

    Directory of Open Access Journals (Sweden)

    Kevin J. Gaston

    2013-01-01

    Full Text Available With increasing interest in the use of urban green space to promote human health, there is a need to understand the extent to which park users conceptualize these places as a resource for health and well-being. This study sought to examine park users’ own reasons for and benefits from green space usage and compare these with concepts and constructs in existing person-environment-health theories and models of health. Conducted in 13 public green spaces in Sheffield, UK, we undertook a qualitative content analysis of 312 park users’ responses to open-ended interview questions and identified a breadth, depth and salience of visit motivators and derived effects. Findings highlight a discrepancy between reasons for visiting and derived effects from the use of urban green space. Motivations emphasized walking, green space qualities, and children. Derived effects highlighted relaxation, positive emotions within the self and towards the place, and spiritual well-being. We generate a taxonomy of motivations and derived effects that could facilitate operationalization within empirical research and articulate a conceptual framework linking motivators to outcomes for investigating green space as a resource for human health and well-being.

  17. Understanding urban green space as a health resource: a qualitative comparison of visit motivation and derived effects among park users in Sheffield, UK.

    Science.gov (United States)

    Irvine, Katherine N; Warber, Sara L; Devine-Wright, Patrick; Gaston, Kevin J

    2013-01-22

    With increasing interest in the use of urban green space to promote human health, there is a need to understand the extent to which park users conceptualize these places as a resource for health and well-being. This study sought to examine park users' own reasons for and benefits from green space usage and compare these with concepts and constructs in existing person-environment-health theories and models of health. Conducted in 13 public green spaces in Sheffield, UK, we undertook a qualitative content analysis of 312 park users' responses to open-ended interview questions and identified a breadth, depth and salience of visit motivators and derived effects. Findings highlight a discrepancy between reasons for visiting and derived effects from the use of urban green space. Motivations emphasized walking, green space qualities, and children. Derived effects highlighted relaxation, positive emotions within the self and towards the place, and spiritual well-being. We generate a taxonomy of motivations and derived effects that could facilitate operationalization within empirical research and articulate a conceptual framework linking motivators to outcomes for investigating green space as a resource for human health and well-being.

  18. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  19. China’s strategy in space

    CERN Document Server

    Solomone, Stacey

    2013-01-01

    This book addresses why China is going into space and provides up- to-date information on all aspects of the Chinese Space Program in terms of launch vehicles, launch sites and infrastructure, crew vehicles for space exploration, satellite applications and scientific exploration capabilities. Beyond mere capabilities, it is important to understand how Chinese aerospace leaders think, how they make decisions, and what their ultimate goal is during their space endeavors. What are Chinese intentions in space? To what extent does culture and ethics influence Chinese strategic decision-making within the highest levels of the aerospace industrial complex? This book examines these questions and offers four potential scenarios on where the Chinese space program is headed based on this new perspective of understanding China’s space goals. This book is not only required reading for policy makers and military leaders in the US government, but also for the general population, students, and professionals interested in t...

  20. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    Perhaps one of the greatest gifts that has been given to the people of the world in the last few hundred years has been an emerging sense of the place of our planet and its inhabitants within the context of the vast universe. Our knowledge of the rest of the universe has not come quickly, nor was the process of attaining it only recently begun; however, the unprecedented acceleration of that process has benefitted from a fundamental new aspect of our species that has only manifested itself in the last 30 years or so, the ability to travel in space. Before the space age, the Universe was studied only through observations from the Earth. All that has changed with the beginning of the space age. Machines built by humans have flown to all but one of the nine planets that revolve around our Sun, have ventured billions of miles from the Earth and looked back, and have landed on three other worlds. Spacecraft in orbit around the Earth have viewed the sky at a vast number of electromagnetic wavelengths, detecting the shape of the galaxy and the universe, and even measuring the remnants of the universe's beginning. Human explorers have ventured forth, first for short stays in orbit, then, later, walking upon the Moon and living for long periods in space. As they did so, billions of people on the Earth came to view the Earth in a fundamentally different way, not just as the familiar day to- day backdrop for their lives, but as a small oasis suspended in the night sky above an alien landscape. It is this new view of the Earth that is the true gift of space exploration. Space exploration has at once given us a new perspective on the value of our world, and a new perspective from which to understand how it operates. It has shown us that the Earth is by far the most precious place in the solar system in terms of supporting human life, while revealing that other destinations may still be compelling. The exploration of space has at once become a challenge for humanity to overcome

  1. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  2. Laboratory Investigation of Space and Planetary Dust Grains

    Science.gov (United States)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  3. Northern hemisphere mid-latitude geomagnetic anomaly revealed from Levantine Archaeomagnetic Compilation (LAC).

    Science.gov (United States)

    Shaar, R.; Tauxe, L.; Agnon, A.; Ben-Yosef, E.; Hassul, E.

    2015-12-01

    The rich archaeological heritage of Israel and nearby Levantine countries provides a unique opportunity for archaeomagnetic investigation in high resolution. Here we present a summary of our ongoing effort to reconstruct geomagnetic variations of the past several millennia in the Levant at decadal to millennial resolution. This effort at the Southern Levant, namely the "Levantine Archaeomagnetic Compilation" (LAC), presently consists of data from over 650 well-dated archaeological objects including pottery, slag, ovens, and furnaces. In this talk we review the methodological challenges in achieving a robust master secular variation curve with realistic error estimations from a large number of different datasets. We present the current status of the compilation, including the southern and western Levant LAC data (Israel, Cyprus, and Jordan) and other published north-eastern Levant data (Syria and southern Turkey), and outline the main findings emerging from these data. The main feature apparent from the new compilation is an extraordinary intensity high that developed over the Levant region during the first two millennia BCE. The climax of this event is a double peak intensity maximum starting at ca. 1000 BCE and ending at ca. 735 BCE, accompanied with at least two events of geomagnetic spikes. Paleomagnetic directions from this period demonstrate anomalies of up to 20 degrees far from the averaged GAD field. This leads us to postulate that the maximum in the intensity is a manifestation of an intense mid-latitude local positive geomagnetic anomaly that persisted for over two centuries.

  4. Creating a Space for Creativity

    DEFF Research Database (Denmark)

    Bøjer, Bodil

    2017-01-01

    and creativity. But the relational dependence between the physical space, pedagogics and organisation is widely overlooked when designing these new learning environments as a new spatial design in itself is expected to change the way we teach and learn. Simply changing the space is not enough (Imms & Byers, 2017......) and the intentions of the space can only be fully realised if the inhabitants of the schools completely understand and support the pedagogical principles informing the provision of these spaces (Burke, 2016). This is why three things should be aligned in order for an ILE to work intendedly: creative teaching (the...... teacher), space (the designer) and organisation (management). With my research, I would like to contribute to the understanding of the relationship between the physical learning environment and creative learning processes and the potential of the space as a tool to stimulate creativity. In my poster...

  5. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  6. Models of Learning Space: Integrating Research on Space, Place and Learning in Higher Education

    Science.gov (United States)

    Ellis, R. A.; Goodyear, P.

    2016-01-01

    Learning space research is a relatively new field of study that seeks to inform the design, evaluation and management of learning spaces. This paper reviews a dispersed and fragmented literature relevant to understanding connections between university learning spaces and student learning activities. From this review, the paper distils a number of…

  7. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    Science.gov (United States)

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  8. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  9. Understanding Mechanical Design with Respect to Manufacturability

    Science.gov (United States)

    Mondell, Skyler

    2010-01-01

    At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.

  10. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    Directory of Open Access Journals (Sweden)

    D. T. McCoy

    2018-04-01

    Full Text Available Aerosol–cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol–cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC. Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP. When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6–8.3 Wm−2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  11. Collocated ionosonde and dense GPS/GLONASS network measurements of midlatitude MSTIDs

    Science.gov (United States)

    Sherstyukov, R. O.; Akchurin, A. D.; Sherstyukov, O. N.

    2018-04-01

    To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.

  12. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  13. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS TWP-ICE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  14. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS LPVEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  15. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS C3VP V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  16. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  17. Can we detect oceanic biodiversity hotspots from space?

    Science.gov (United States)

    De Monte, Silvia; Soccodato, Alice; Alvain, Séverine; d'Ovidio, Francesco

    2013-10-01

    Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.

  18. Tropospheric mid-latitude geopotential wave characteristics associated with strong wind events in the North Atlantic/European region

    Science.gov (United States)

    Wild, Simon; Simmonds, Ian; Leckebusch, Gregor C.

    2015-04-01

    The variability of strong synoptic scale wind events in the mid-latitudes have long been linked to baroclinic wave activity in the mid troposphere. Previous studies have also shown that greater amplitudes of planetary waves in the mid troposphere are likely to increase the occurrence of regional extremes in temperature and precipitation. In this study we examine whether characteristics of planetary and synoptic mid-latitude waves show systematic anomalies in the North Atlantic/ European region which can be related to the occurrence of a strong surface wind event. We will mainly focus on two questions: 1) Do amplitudes for waves with different wave lengths show a systematic anomaly when a strong wind event occurs? 2) Can phases of the individual wave components be detected that favour strong wind events? In order to decompose the mid-tropospheric flow into longitudinal waves we employ the fast Fourier transform to the meridional mean of the geopotential height in 500hPa between 35° and 60°N for i) the entire latitude belt and ii) for a North Atlantic/European sector (36°W to 36°E). Our definition of strong wind events is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. First results using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM) for the 50 most intense strong wind systems with respect to the SSI reveal a greater amplitude for all investigated wave numbers. Especially waves with wave lengths below 2000km show an increase of about 25% of the daily standard deviation on average. The distribution of wave phases for the different wave numbers with respect to the location of a strong wind event shows a less homogenous picture. There is however a high proportion of events that can be associated with phases around 3π/4 and 5π/4 of waves with lengths of around 6000km, equivalent to wave number 5 on a planetary scale

  19. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  20. Assessing Space Weather Applications and Understanding: IMF Bz at L1

    Science.gov (United States)

    Riley, P.; Savani, N.; Mays, M. L.; Austin, H. J.

    2017-12-01

    The CCMC - International (CCMC-I) is designed as a self-organizing informal forum for facilitating novel global initiatives on space weather research, development, forecasting and education. Here we capitalize on CCMC'AGUs experience in providing highly utilized web-based services, leadership and trusted relationships with space weather model developers. One of the CCMC-I initiatives is the International Forum for Space Weather Capabilities Assessment. As part of this initiative, within the solar and heliosphere domain, we focus our community discussion on forecasting the magnetic structure of interplanetary CMEs and the ambient solar wind. During the International CCMC-LWS Working Meeting in April 2017 the group instigated open communication to agree upon a standardized process by which all current and future models can be compared under an unbiased test. In this poster, we present our initial findings how we expect different models will move forward with validating and forecasting the magnetic vectors of the solar wind at L1. We also present a new IMF Bz Score-board which will be used to assist in the transitioning of research models into more operational settings.

  1. Reconnection in space plasma

    International Nuclear Information System (INIS)

    Terasawa, T.

    1984-01-01

    One of the outstanding problems in space physics is to understand the physical mechanism which governs energy conversion process from magnetic to particle energies, a typical one being the reconnection mechanism. As a possible candidate process of the magnetic reconnection in space, tearing mode instability has been considered. In this paper are discussed selected topics related to the understanding of the tearing mode instability; the effect of the boundary condition, the resonant particle and current filamentation effects, vorticity excitation, and the Hall current effect. 31 refs, 12 figs

  2. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  3. Characteristics of mid-latitude planetary waves in the lower atmosphere derived from radiosonde data

    Directory of Open Access Journals (Sweden)

    R. Wang

    2012-10-01

    Full Text Available The activities of mid-latitude planetary waves (PWs in the troposphere and lower stratosphere (TLS are presented by using the radiosonde data from 2000 to 2004 over four American stations (Miramar Nas, 32.9° N, 117.2° W; Santa Teresa, 31.9° N, 106.7° W; Fort Worth, 32.8° N, 97.3° W; and Birmingham, 33.1° N, 86.7° W and one Chinese station (Wuhan, 30.5° N, 114.4° E. Statistically, strong PWs mainly appear around subtropical jet stream in the troposphere and lower stratosphere. In the troposphere, the activities of the mid-latitude PWs are strong around the centre of the subtropical jet stream in winter and become small near the tropopause, which indicates that the subtropical jet stream may strengthen the propagation of PWs or even be one of the PW excitation sources. Among the three disturbance components of temperature, zonal and meridional winds, PWs at Wuhan are stronger in the temperature component, but weaker in the zonal wind component than at the other four American stations. While in the meridional wind component, the strengths of PW spectral amplitudes at the four American stations decrease from west to east, and their amplitudes are all larger than that of Wuhan. However, the PWs are much weaker in the stratosphere and only the lower frequency parts remain. The amplitudes of the PWs in the stratosphere increase with height and are strong in winter with the zonal wind component being the strongest. Using the refractive index, we found that whether the PWs could propagate upward to the stratosphere depends on the thickness of the tropopause reflection layer. In the case study of the 2000/2001 winter, it is observed that the quasi 16-day wave in the troposphere is a quasi standing wave in the vertical direction and propagates upward slowly with vertical wavelength greater than 24 km in the meridional component. It propagates eastward with the zonal numbers between 5 and 8, and the quasi 16-day wave at Wuhan is probably the same

  4. Space weather and HF propagation along different paths of the Russian chirp sounders network

    Science.gov (United States)

    Kurkin, V. I.; Litovkin, G. I.; Matyushonok, S. M.; Vertogradov, G. G.; Ivanov, V. A.; Poddelsky, I. N.; Rozanov, S. V.; Uryadov, V. P.

    This paper presents experimental data obtained on long paths (from 2200 km to 5700 km range) of Russian frequency modulated continues wave (chirp) sounders network for the period from 1998 to 2003. Four transmitters (near Magadan, Khabarovsk, Irkutsk, Norilsk) and four receivers (near Irkutsk, Yoshkar-Ola, Nizhny Novgorod, Rostov-on-Don) were combined into single network to investigate a influence of geomagnetic storms and substorms on HF propagation in Asian region of Russia. In this region the geographic latitudes are in greatest excess of magnetic latitudes. As a consequence, elements of the large-scale structure, such as the main ionospheric trough, and the zone of auroral ionization, are produced in the ionosphere at the background of a low electron ionization. Coordinated experiments were carried out using 3-day Solar-Geophysical activity forecast presented by NOAA Space Environment Center in Internet. Sounding operations were conducted in the frequency band 4 -- 30 MHz on a round-the-clock basis at 15-min intervals. Oblique-incidence sounding (OIS) ionograms were recorded during 5-7 days every season for some years. The comparison between experimental data and simulation of OIS ionograms using International Reference Ionospheric model (IRI-2001) allowed to estimate the forecast of HF propagation errors both under quiet condition and during geomagnetic disturbances. Strong deviations from median values of maximum observed frequencies on mid-latitude paths in daytime present a real challenge to ionospheric forecast. Subauroral and mid-latitude chirp-sounding paths run, respectively, near the northward and southward walls of the main ionospheric trough. This make sit possible to study the dynamics of the trough's boundaries under different geophysical conditions and assess the influence of ionization gradients and small-scale turbulence on HF signal characteristics. The signals off-great circle propagation were registered over a wide frequency range and for

  5. Recent increased warming of the Alaskan marine Arctic due to midlatitude linkages

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Ballinger, Thomas J.

    2018-01-01

    Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008-13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north-south thermal barrier. This front separates the southeastern Bering Sea temperatures from Arctic air masses. Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate, reaching a change of +4°C by 2040 relative to the 1981-2010 mean. Offshore at 74°N, climate models project the open water duration season to increase from a current average of three months to five months by 2040. These rates are occasionally enhanced by midlatitude connections. Beginning in August 2014, additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska, especially in winter 2015-16. While global warming and equatorial teleconnections are implicated in North Pacific SSTs, the ending of the 2014-16 North Pacific warm event demonstrates the importance of internal, chaotic atmospheric natural variability on weather conditions in any given year. Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss, with occasional North Pacific support, are projected to continue to propagate through the marine ecosystem in the foreseeable future. The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.

  6. Big data for space situation awareness

    Science.gov (United States)

    Blasch, Erik; Pugh, Mark; Sheaff, Carolyn; Raquepas, Joe; Rocci, Peter

    2017-05-01

    Recent advances in big data (BD) have focused research on the volume, velocity, veracity, and variety of data. These developments enable new opportunities in information management, visualization, machine learning, and information fusion that have potential implications for space situational awareness (SSA). In this paper, we explore some of these BD trends as applicable for SSA towards enhancing the space operating picture. The BD developments could increase in measures of performance and measures of effectiveness for future management of the space environment. The global SSA influences include resident space object (RSO) tracking and characterization, cyber protection, remote sensing, and information management. The local satellite awareness can benefit from space weather, health monitoring, and spectrum management for situation space understanding. One area in big data of importance to SSA is value - getting the correct data/information at the right time, which corresponds to SSA visualization for the operator. A SSA big data example is presented supporting disaster relief for space situation awareness, assessment, and understanding.

  7. Spaces of care in the third sector: understanding the effects of professionalization.

    Science.gov (United States)

    Carey, Gemma; Braunack-Mayer, Annette; Barraket, Jo

    2009-11-01

    Increasingly the health and welfare needs of individuals and communities are being met by third sector, or not-for-profit, organizations. Since the 1980s third sector organizations have been subject to significant, sector-wide changes, such as the development of contractual funding and an increasing need to collaborate with governments and other sectors. In particular, the processes of 'professionalization' and 'bureaucratization' have received significant attention and are now well documented in third sector literature. These processes are often understood to create barriers between organizations and their community groups and neutralize alternative forms of service provision. In this article we provide a case study of an Australian third sector organization undergoing professionalization. The case study draws on ethnographic and qualitative interviews with staff and volunteers at a health-based third sector organization involved in service provision to marginalized community groups. We examine how professionalization alters organizational spaces and dynamics and conclude that professionalized third sector spaces may still be 'community' spaces where individuals may give and receive care and services. Moreover, we suggest that these community spaces hold potential for resisting the neutralizing effects of contracting.

  8. A simple climatology of westerly jet streams in global reanalysis datasets part 1: mid-latitude upper tropospheric jets

    Science.gov (United States)

    Rikus, Lawrie

    2018-04-01

    A simple closed contour object identification scheme has been applied to the zonal mean monthly mean zonal wind fields from nine global reanalysis data sets for 31 years of the satellite era (1979-2009) to identify objects corresponding to westerly jet streams. The results cluster naturally into six individual jet streams but only the mid-latitude upper-tropospheric jets are considered here. The time series of the jet properties from all reanalyses are decomposed into seasonal means and anomalies, and correlations between variables are evaluated, with the aim of identifying robust features which can form the basis of evaluation metrics for climate model simulations of the twentieth century. There is substantial agreement between all the reanalyses for all jet properties although there are some systematic differences with particular data sets. Some of the results from the object identification applied to the reanalyses are used in a simple example of a model evaluation score for the zonal mean jet seasonal cycle.

  9. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  10. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  11. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  12. Winnicott and Arendt: bridging potential and political spaces.

    Science.gov (United States)

    LaMothe, Ryan

    2014-04-01

    In this article, the author seeks to bridge analytic theory, which is used as an interpretive framework to understand patients' psychic lives, and political philosophy, which accounts for individuals living a life in common as citizens. Specifically, I address how we can understand the relation between the psychosocial space of a parent(s) and child interaction, which becomes part of the child's psychic life, and the political space between and within citizens. The underlying claim is that there is a correlation between political space and the space between parent and child. I use an emended version of Donald Winnicott's concept of potential space and political philosopher Hannah Arendt's notion of the space of appearances to suggest connections between the consulting room and political space.

  13. The cosmic statements in the Holy Quran as introduction to the public understanding of space science in the Islamic countries

    Science.gov (United States)

    Mosalam Shaltout, M. A.

    The Holy Quran contains more than 800 cosmic statements speak about: sun, moon, planets, stars, Sirius, zodiac, day, night, twilights, position of stars, navigation, blue sky, night sky, dawn, noon, sunrise and sunset, eclipses, lunar months, release to the sky, landing to the earth, and so on. Due to the new discoveries in the 19th and 20th centuries in astronomy and space sciences, some of the Arabian-Islamic scientists and astronomers wished to find the significance of the cosmic statements in the Holy Quran on the light of these new discoveries. This current started at the end of the 19th century, and was growing through the 20th century. Hundreds of the articles published in the Daily news, and in the Weekly, Monthly, Quarterly, Annually Journals. Also, tens of the books published for different authors, from different Arabian and Islamic countries about the significance of the cosmic statements in the Holy Quran on the light of modern astronomy and Space sciences. Also, Radio and TV play an important role in this field, specially after the releasing of the Human kind to the space in the second half of the 20th century. This activity led to construct the International Commission on Scientific Signs in the Holy Quran and the Sunnah, which follow to the Muslim World League in Makkah Al-Mukarramah in Saudi Arabia. Where, there is a Quarterly Journal for this purpose, and periodic International conference for the same purpose, the seventh conference was held in February 2004. This paper speak about the activity of the different Arabian-Islamic Scientists and Astronomers in the field of interpretations of the cosmic statements in the Holy Quran on the light of modern astronomy and space science, and their role of increasing the public understanding of space science in the Arabian and Islamic countries.

  14. GPM GROUND VALIDATION COMPOSITE SATELLITE OVERPASSES MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Composite Satellite Overpasses MC3E dataset provides satellite overpasses from the AQUA satellite during the Midlatitude Continental...

  15. Quantifying space, understanding minds: A visual summary approach

    Directory of Open Access Journals (Sweden)

    Mark Simpson

    2017-06-01

    Full Text Available This paper presents an illustrated, validated taxonomy of research that compares spatial measures to human behavior. Spatial measures quantify the spatial characteristics of environments, such as the centrality of intersections in a street network or the accessibility of a room in a building from all the other rooms. While spatial measures have been of interest to spatial sciences, they are also of importance in the behavioral sciences for use in modeling human behavior. A high correlation between values for spatial measures and specific behaviors can provide insights into an environment's legibility, and contribute to a deeper understanding of human spatial cognition. Research in this area takes place in several domains, which makes a full understanding of existing literature difficult. To address this challenge, we adopt a visual summary approach. Literature is analyzed, and recurring topics are identified and validated with independent inter-rater agreement tasks in order to create a robust taxonomy for spatial measures and human behavior. The taxonomy is then illustrated with a visual representation that allows for at-a-glance visual access to the content of individual research papers in a corpus. A public web interface has been created that allows interested researchers to add to the database and create visual summaries for their research papers using our taxonomy.

  16. Air mass origins and troposphere-to-stratosphere exchange associated with mid-latitude cyclogenesis and tropopause folding inferred from Be-7 measurements

    Science.gov (United States)

    Kritz, Mark A.; Rosner, Stefan W.; Danielsen, Edwin F.; Selkirk, Henry B.

    1991-01-01

    The 1984 extratropical mission of NASA's Stratosphere-Troposphere Exchange Project (STEP) studied cross-jet transport in regions of cyclogenesis and tropopause folding. Correlations of Be-7, ozone, water vapor, and potential vorticity measured on a NASA U-2 research aircraft flying in high shear regions above the jet core are indicative of mixing between the cyclonic and the anticyclonic sides of the jet and are consistent with the hypothesis that small-scale entrainments of upper tropospheric air into the lower stratosphere during cyclogenesis are important in maintaining the vertical gradients of Be-7, ozone, water vapor and other trace constituents in the lower few kilometers of the midlatitude stratosphere. Correlations between Be-7, and ozone suggest a lower tropical stratospheric origin for the ozone-poor lamina observed above the jet core.

  17. Understanding policy research in liminal spaces: Think tank responses to diverging principles of legitimacy.

    Science.gov (United States)

    McLevey, John

    2015-04-01

    Research on scientific, social scientific, and technical knowledge is increasingly focused on changes in institutionalized fields, such as the commercialization of university-based knowledge. Much less is known about how organizations produce and promote knowledge in the 'thick boundaries' between fields. In this article, I draw on 53 semi-structured interviews with Canadian think-tank executives, researchers, research fellows, and communication officers to understand how think-tank knowledge work is linked to the liminal spaces between institutionalized fields. First, although think-tank knowledge work has a broadly utilitarian epistemic culture, there are important differences between organizations that see intellectual simplicity and political consistency as the most important marker of credibility, versus those that emphasize inconsistency. A second major difference is between think tanks that argue for the separation of research and communication strategies and those that conflate them from beginning to end, arguably subordinating research to demands from more powerful fields. Finally, think tanks display different degrees of instrumentalism toward the public sphere, with some seeking publicity as an end in itself and others using it as a means to influence elite or public opinion. Together, we can see these differences as responses to diverging principles of legitimacy.

  18. Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Science.gov (United States)

    Logan, Timothy; Dong, Xiquan; Xi, Baike

    2018-02-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration ( N CCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient ( σ sp) values less than 20 Mm-1 and N CCN values less than 100 cm-3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation ( R) among aerosol loading ( σ sp moisture via the Gulf of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.

  19. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    Science.gov (United States)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  20. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape.

    Science.gov (United States)

    Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2003-04-01

    Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the

  1. Space for action: How practitioners influence environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kågström, Mari, E-mail: mari.kagstrom@slu.se [Department of Urban and Rural Development, Swedish University of Agricultural Sciences (Sweden); Richardson, Tim, E-mail: tim.richardson@nmbu.no [Department of Landscape Architecture and Spatial Planning, Norwegian University of Life Sciences, Frederik A Dahls vei 15, KA-bygningen, Ås (Norway)

    2015-09-15

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges.

  2. Space for action: How practitioners influence environmental assessment

    International Nuclear Information System (INIS)

    Kågström, Mari; Richardson, Tim

    2015-01-01

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges

  3. Paradigm shift regarding the transversalis fascia, preperitoneal space, and Retzius' space.

    Science.gov (United States)

    Asakage, N

    2018-06-01

    There has been confusion in the anatomical recognition when performing inguinal hernia operations in Japan. From now on, a paradigm shift from the concept of two-dimensional layer structure to the three-dimensional space recognition is necessary to promote an understanding of anatomy. Along with the formation of the abdominal wall, the extraperitoneal space is formed by the transversalis fascia and preperitoneal space. The transversalis fascia is a somatic vascular fascia originating from an arteriovenous fascia. It is a dense areolar tissue layer at the outermost of the extraperitoneal space that runs under the diaphragm and widely lines the body wall muscle. The umbilical funiculus is taken into the abdominal wall and transformed into the preperitoneal space that is a local three-dimensional cavity enveloping preperitoneal fasciae composed of the renal fascia, vesicohypogastric fascia, and testiculoeferential fascia. The Retzius' space is an artificial cavity formed at the boundary between the transversalis fascia and preperitoneal space. In the underlay mesh repair, the mesh expands in the range spanning across the Retzius' space and preperitoneal space.

  4. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  5. Media Spaces, Places and Palpable Technologies

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten

    2006-01-01

    of these prototypes form what can be termed as media spaces - but rise questions to the traditional understanding of the media space concept - since the emergency response media spaces are not ‘set up' in predefined physical settings, do allow use of a range of (not necessarily predefined) media, and the people...

  6. Atmospheric circulation changes and neoglacial conditions in the Southern Hemisphere mid-latitudes: insights from PMIP2 simulations at 6 kyr

    Science.gov (United States)

    Rojas, Maisa; Moreno, Patricio I.

    2011-07-01

    Glacial geologic studies in the Southern Hemisphere (SH) mid-latitudes (40-54°S) indicate renewed glacial activity in southern South America (Patagonia) and New Zealand's (NZ) South Island starting at ˜7 kyr, the so-called neoglaciation. Available data indicate that neoglacial advances in these regions occurred during a rising trend in atmospheric CO2 and CH4 concentrations, lower-than-present but increasing summer insolation and seasonality contrasts. In this paper we examine the climatological context in which neoglaciations occurred through analysis of the complete Paleoclimate Modelling Inter-comparison Project (PMIP2) database of simulations at 6 kyr for the SH. We observe that the amplitude of the annual insolation cycle in the SH did not change significantly at 6 kyr compared to the pre-industrial values, the largest difference occurring in autumn (MAM, negative anomalies) and spring (SON, positive anomalies). The simulated changes in temperatures over the SH respond to the insolation changes, with a 1-2 month delay over the oceans. This results in a reduced amplitude of the annual cycle of temperature and precipitation over most continental regions, except over Patagonia and NZ, that show a slight increase. In contrast, large-scale circulation features, such as the low and upper level winds and the subtropical anticyclones show an amplified annual cycle, as a direct response to the increased/decreased insolation during the transitional seasons SON/MAM. In the annual mean, there is a small but consistent equatorward shift of the latitude of maximum wind speed of 1-3° over the entire SH, which results in a small increase of wind speed over the South Pacific and Atlantic Oceans north of ˜50°S and a widespread decline south of 50°S. PMIP2 simulations for 6 kyr, indicate that in the annual mean, the SH mid-latitudes were colder, wetter and with stronger winds north of about 50°S. These conditions are consistent with the observed neoglacial advances in the

  7. Atmospheric circulation changes and neoglacial conditions in the Southern Hemisphere mid-latitudes: insights from PMIP2 simulations at 6 kyr

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Maisa [University of Chile, Department of Geophysics, Santiago (Chile); Moreno, Patricio I. [University of Chile, Department of Ecology, Santiago (Chile)

    2011-07-15

    Glacial geologic studies in the Southern Hemisphere (SH) mid-latitudes (40-54 S) indicate renewed glacial activity in southern South America (Patagonia) and New Zealand's (NZ) South Island starting at {proportional_to}7 kyr, the so-called neoglaciation. Available data indicate that neoglacial advances in these regions occurred during a rising trend in atmospheric CO{sub 2} and CH{sub 4} concentrations, lower-than-present but increasing summer insolation and seasonality contrasts. In this paper we examine the climatological context in which neoglaciations occurred through analysis of the complete Paleoclimate Modelling Inter-comparison Project (PMIP2) database of simulations at 6 kyr for the SH. We observe that the amplitude of the annual insolation cycle in the SH did not change significantly at 6 kyr compared to the pre-industrial values, the largest difference occurring in autumn (MAM, negative anomalies) and spring (SON, positive anomalies). The simulated changes in temperatures over the SH respond to the insolation changes, with a 1-2 month delay over the oceans. This results in a reduced amplitude of the annual cycle of temperature and precipitation over most continental regions, except over Patagonia and NZ, that show a slight increase. In contrast, large-scale circulation features, such as the low and upper level winds and the subtropical anticyclones show an amplified annual cycle, as a direct response to the increased/decreased insolation during the transitional seasons SON/MAM. In the annual mean, there is a small but consistent equatorward shift of the latitude of maximum wind speed of 1-3 over the entire SH, which results in a small increase of wind speed over the South Pacific and Atlantic Oceans north of {proportional_to}50 S and a widespread decline south of 50 S. PMIP2 simulations for 6 kyr, indicate that in the annual mean, the SH mid-latitudes were colder, wetter and with stronger winds north of about 50 S. These conditions are consistent

  8. Evidence for long-lived polar vortex air in the mid-latitude summer stratosphere from in situ laser diode CH4 and H2O measurements

    Directory of Open Access Journals (Sweden)

    G. Durry

    2005-01-01

    Full Text Available A balloon borne diode laser spectrometer was launched in southern France in June 2000 to yield in situ stratospheric CH4 and H2O measurements. In the altitude region ranging from 20km to 25km, striking large spatial structures were observed in the vertical concentration profiles of both species. We suggest these patterns are due to the presence of long-lived remnants of the wintertime polar vortex in the mid-latitude summer stratosphere. To support this interpretation, a high resolution advection model for potential vorticity is used to investigate the evolution of the Arctic vortex after its breakdown phase in spring 2000.

  9. High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000

    Directory of Open Access Journals (Sweden)

    E. Merzlyakov

    2004-03-01

    Full Text Available Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E, Esrange (68°N, 21°E, Castle Eaton (UK (53°N, 2°W, and Obninsk (55°N, 37°E during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205, we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47–48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher zonal wave-number components increase (decrease with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47–48h and the 9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave with S=1, possibly arising from

  10. Midlatitude D region variations measured from broadband radio atmospherics

    Science.gov (United States)

    Han, Feng

    The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local

  11. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  12. Researching Children's Understanding of Safety: An Auto-Driven Visual Approach

    Science.gov (United States)

    Agbenyega, Joseph S.

    2011-01-01

    Safe learning spaces allow children to explore their environment in an open and inquiring way, whereas unsafe spaces constrain, frustrate and disengage children from experiencing the fullness of their learning spaces. This study explores how children make sense of safe and unsafe learning spaces, and how this understanding affects the ways they…

  13. Recent Stirling engine loss - understanding results

    International Nuclear Information System (INIS)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-01-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed

  14. Northern and Mid-Latitude Soil Database, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The U.S. Department of Agriculture, Agriculture and Agri-Food Canada, the Russian Academy of Agricultural Sciences, the University of Copenhagen Institute...

  15. Institutional patterns in the Austrian space sector

    Science.gov (United States)

    Wong, Annie; Burg, Elco van; Giannopapa, Christina

    2018-01-01

    This paper employs the institutional logics perspective to understand how space policies and regulations influences entrepreneurship and innovation. We conducted interviews with entrepreneurs, ESA policy makers and governmental representatives in Austria and identified six prevailing institutional practices: geographical return, the SME-initiatives, the national support pattern, the size pattern, the consortium pattern and the experience pattern. Together, these patterns make up the semi-governmental logic of the space sector. We find that space actors adhere to these patterns to earn legitimacy, which is a condition for support and access to resources. This study adds to our understanding in the consequences of policies and contributes to the design of new space policies and programmes.

  16. Solar Cycle variations of ƒoF2 from IGY to 1990

    Directory of Open Access Journals (Sweden)

    M. K. Goel

    Full Text Available Noontime monthly median values of F2-layer critical frequency foF2 (m for some ionospheric stations representing low- and mid-latitudes are examined for their dependence on solar activity for the years 1957 (IGY to 1990. This is the period for which ionospheric data in digital form is available in two CD-ROMs at the World Data Center, Boulder. It is observed that at mid-latitudes, foF2 (m shows nearly a linear relationship with R12 (the 12-month running average of the Zurich sunspot number, though this relation is nonlinear for low-latitudes. These results indicate some departures from the existing information often used in theoretical and applied areas of space research.Key words. Ionosphere (equatorial ionosphere; mid-latitude ionosphere; modelling and forecasting

  17. GPM GROUND VALIDATION NCAR CLOUD MICROPHYSICS PARTICLE PROBES MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Cloud Microphysics Particle Probes MC3E dataset was collected during the Midlatitude Continental Convective Clouds Experiment (MC3E),...

  18. GPM GROUND VALIDATION OKLAHOMA CLIMATOLOGICAL SURVEY MESONET MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Oklahoma Climatological Survey Mesonet MC3E data were collected during the Midlatitude Continental Convective Clouds Experiment (MC3E) in...

  19. Assessing and evaluating urban VOC emissions in mid-latitude megacities from intensive observations in Paris and Los Angeles

    Science.gov (United States)

    Borbon, A.; Gilman, J. B.; Kuster, W. C.; McKeen, S. A.; Holloway, J. S.; Gros, V.; Gaimoz, C.; Beekmann, M.; De Gouw, J. A.

    2011-12-01

    Volatile Organic Compounds (VOC) affect urban air quality and regional climate change by contributing to ozone formation and the build-up of Secondary Organic Aerosols (SOA). Quantification of VOC emissions is a first critical step to predict VOC environmental impacts and to design effective abatement strategies. Indeed, the quality of ozone and SOA forecasts strongly depends on an accurate knowledge of the primary VOC emissions. However, commonly used bottom-up approaches are highly uncertain due to source multiplicity (combustion processes, storage and distribution of fossil fuels, solvent use, etc.) because of numerous controlling factors (driving conditions, fuel type, temperature, radiation, etc.), and their great variability in time and space. Field observations of VOC and other trace gases can provide valuable top-down constraints to evaluate VOC emission inventories at urban scales. In addition, the implementation of emission reduction measures raises the question of the increasing importance of VOC sources other than traffic. Here, we will evaluate VOC emissions of two mid-latitude megacities in the Northern Hemisphere: the Greater Paris area (Europe) and Los Angeles (USA). In 2009 and 2010, three intensive field campaigns took place in Paris and Los Angeles in the framework of the MEGAPOLI (EU FP7) and CalNex-2010 projects, respectively. Very detailed measurements of aerosol composition and properties, and their gaseous VOC precursors were carried out at ground-based sites (urban center and suburban) and on various mobile platforms. This contribution uses a comprehensive suite of VOC measurements collected by GC-MS/FID techniques at ground-based sites in both cities by a source-receptor methodology. First, emission ratios were estimated from the observations (uncertainty of ± 20%) and compared regarding regional characteristics and European vs. Californian control policies. Then, determined emission ratios were used to assess the accuracy of up

  20. GPM GROUND VALIDATION NOAA UHF 449 PROFILER RAW DATA SPC FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NOAA UHF 449 Profiler Raw SPC foramt data was collected during the NASA supported Midlatitude Continental Convective Clouds Experiment (MC3E). The Ultra High...

  1. GPM GROUND VALIDATION NOAA UHF 449 PROFILER RAW DATA SPC FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA UHF 449 Profiler Raw Data SPC Format MC3E dataset was collected during the NASA supported Midlatitude Continental Convective Clouds...

  2. GPM GROUND VALIDATION NOAA S-BAND PROFILER ORIGINAL DWELL DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The S-band Profiler Original Dwell dataset in the netCDF format was gathered during the Midlatitude Continental Convective Clouds Experiment (MC3E) in Oklahoma...

  3. The importance of moisture distribution for the growth and energetics of mid-latitude systems

    Directory of Open Access Journals (Sweden)

    V. Pavan

    1999-02-01

    Full Text Available A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, 'control' and 'doubled CO2' life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture.Key words. Meteorology and atmospheric dynamics (climatology; convective processes; synoptic-scale meteorology

  4. Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene

    Science.gov (United States)

    Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.

    2014-12-01

    Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.

  5. The Importance of HRA in Human Space Flight: Understanding the Risks

    Science.gov (United States)

    Hamlin, Teri

    2010-01-01

    Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs

  6. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  7. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  8. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    Science.gov (United States)

    Ardilouze, Constantin; Batté, L.; Bunzel, F.; Decremer, D.; Déqué, M.; Doblas-Reyes, F. J.; Douville, H.; Fereday, D.; Guemas, V.; MacLachlan, C.; Müller, W.; Prodhomme, C.

    2017-12-01

    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992-2010 period performed by five different global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land-atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

  9. GPM GROUND VALIDATION KICT NEXRAD MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validaiton KICT NEXRAD MC3E dataset was collected from April 22, 2011 to June 6, 2011 for the Midlatitude Continental Convective Clouds Experiment...

  10. GPM GROUND VALIDATION CHILL RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CHILL radar data for the Midlatitude Continental Convective Clouds Experiment (MC3E) held in Oklahoma were collected while the NASA ER-2 aircraft conducted a...

  11. GPM GROUND VALIDATION NOAA S-BAND PROFILER MINUTE DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA S-Band Profiler Minute Data MC3E dataset was gathered during the Midlatitude Continental Convective Clouds Experiment (MC3E) in...

  12. Space Weather: Where Is The Beef?

    Science.gov (United States)

    Koskinen, H. E. J.

    Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.

  13. Titan’s mid-latitude surface regions with Cassini VIMS and RADAR

    Science.gov (United States)

    Solomonidou, Anezina; Lopes, Rosaly M. C.; Coustenis, Athena; Malaska, Michael; Rodriguez, Sebastien; Maltagliati, Luca; Drossart, Pierre; Janssen, Michael; Lawrence, Kenneth; Jaumann, Ralf; Sohl, Frank; Stephan, Katrin; Brown, Robert H.; Bratsolis, Emmanuel; Matsoukas, Christos

    2015-11-01

    The Cassini-Huygens mission instruments have revealed Titan to have a complex and dynamic atmosphere and surface. Data from the remote sensing instruments have shown the presence of diverse surface terrains in terms of morphology and composition, suggesting both exogenic and endogenic processes [1]. We define both the surface and atmospheric contributions in the VIMS spectro-imaging data by use of a radiative transfer code in the near-IR range [2]. To complement this dataset, the Cassini RADAR instrument provides additional information on the surface morphology, from which valuable geological interpretations can be obtained [3]. We examine the origin of key Titan terrains, covering the mid-latitude zones extending from 50ºN to 50ºS. The different geological terrains we investigate include: mountains, plains, labyrinths, craters, dune fields, and possible cryovolcanic and/or evaporite features. We have found that the labyrinth terrains and the undifferentiated plains seem to consist of a very similar if not the same material, while the different types of plains show compositional variations [3]. The processes most likely linked to their formation are aeolian, fluvial, sedimentary, lacustrine, in addition to the deposition of atmospheric products though the process of photolysis and sedimentation of organics. We show that temporal variations of surface albedo exist for two of the candidate cryovolcanic regions. The surface albedo variations together with the presence of volcanic-like morphological features suggest that the active regions are possibly related to the deep interior, possibly via cryovolcanism processes (with important implications for the satellite’s astrobiological potential) as also indicated by new interior structure models of Titan and corresponding calculations of the spatial pattern of maximum tidal stresses [4]. However, an explanation attributed to exogenic processes is also possible [5]. We will report on results from our most recent

  14. Aerosol Properties and Their Impacts on Surface CCN at the ARM Southern Great Plains Site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Institute of Scientific and Technical Information of China (English)

    Timothy LOGAN; Xiquan DONG; Baike XI

    2018-01-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean.Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration (NCCN) on aerosol type and transport pathways.ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds,Aerosol,and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site.Northerly winds over the SGP reflect clean,continental conditions with aerosol scattering coefficient (σsp) values less than 20 Mm-1 and NCCN values less than 100 cm-3.However,southerly winds over the SGP are responsible for the observed moderate to high correlation (R)among aerosol loading (σsp > 60 Mm-1) and NCCN,carbonaceous chemical species (biomass burning smoke),and precipitable water vapor.This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico,indicating a strong dependence on air mass type.NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data,suggesting that this facility can represent surface aerosol conditions in the SGP,especially during strong aerosol loading events that transport via the Gulf of Mexico.Future long-term investigations will help to understand the seasonal influences of air masses on aerosol,CCN,and cloud properties over land in comparison to over ocean.

  15. Time and Space in Digital Game Storytelling

    Directory of Open Access Journals (Sweden)

    Huaxin Wei

    2010-01-01

    Full Text Available The design and representation of time and space are important in any narrative form. Not surprisingly there is an extensive literature on specific considerations of space or time in game design. However, there is less attention to more systematic analyses that examine both of these key factors—including their dynamic interrelationship within game storytelling. This paper adapts critical frameworks of narrative space and narrative time drawn from other media and demonstrates their application in the understanding of game narratives. In order to do this we incorporate fundamental concepts from the field of game studies to build a game-specific framework for analyzing the design of narrative time and narrative space. The paper applies this framework against a case analysis in order to demonstrate its operation and utility. This process grounds the understanding of game narrative space and narrative time in broader traditions of narrative discourse and analysis.

  16. GPM GROUND VALIDATION PAWNEE RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pawnee radar data for the Midlatitude Continental Convective Clouds Experiment (MC3E) held in Oklahoma were collected on May 24, 2011 to support the CHILL radar...

  17. MAGDAS Project for Space Weather Research and Application

    International Nuclear Information System (INIS)

    Yumoto, Kiyohumi

    2009-01-01

    The Space Environment Research Center (SERC), Kyushu University, is currently deploying a new ground-based magnetometer network of MAGnetic Data Acqusition System (MAGDAS), in cooperation with about 30 organizations in the world, in order to understand the complex Sun-Earth system for space weather research and application. SERC will conducts MAGDAS observation at 50 stations in the Circum-pan Pacific Magnetometer Network (CPMN) region, and FM-CW radar observation along the 210 deg. magnetic meridian (MM) during the IHY/ILWS/CAWSES periods. This project is actively providing the following space weather monitoring:(1) Global 3-dimensional current system to know electromagnetic coupling of the region 1 and 2 field-aligned currents, auroral electrojet current, Sq current, and equatorial electrojet current. (2) Plasma mass density along the 210 deg. MM to understand plasma environment change during space storms. (3) Ionospheric electric field intensity with 10-sec sampling at L = 1.26 to understand how the external electric field penetrates into the equatorial ionosphere.

  18. Spaces of Open-source Politics

    DEFF Research Database (Denmark)

    Husted, Emil; Plesner, Ursula

    2017-01-01

    . Inspired by the literature on organizational space, the analysis explores how different organizational spaces configure the party’s process of policy development, thereby adding to our understanding of the relationship between organizational space and political organization. We analyze three different....... Curiously, it seems that physical spaces open up the political process, while digital spaces close it down by fixing meaning. Accordingly, we argue that open-source politics should not be equated with online politics but may be highly dependent on physical spaces. Furthermore, digital spaces may provide......The recent proliferation of Web 2.0 applications and their role in contemporary political life have inspired the coining of the term ‘open-source politics’. This article analyzes how open-source politics is organized in the case of a radical political party in Denmark called The Alternative...

  19. Humans on the International Space Station-How Research, Operations, and International Collaboration are Leading to New Understanding of Human Physiology and Performance in Microgravity

    Science.gov (United States)

    Ronbinson, Julie A.; Harm, Deborah L.

    2009-01-01

    As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.

  20. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  1. The NASA Human Space Flight Supply Chain, Current and Future

    Science.gov (United States)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  2. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    Directory of Open Access Journals (Sweden)

    S. Saito

    2008-08-01

    Full Text Available Mid-latitude F-region field-aligned irregularities (FAIs were studied by using the middle-and-upper atmosphere (MU radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs observed as variations of total electron content (TEC. The echoes drifting away from (toward the radar were observed in the depletion (enhancement phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar appeared to drift north- (up- westward, and those with negative Doppler velocities south- (down- eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  3. New results on the mid-latitude midnight temperature maximum

    Science.gov (United States)

    Mesquita, Rafael L. A.; Meriwether, John W.; Makela, Jonathan J.; Fisher, Daniel J.; Harding, Brian J.; Sanders, Samuel C.; Tesema, Fasil; Ridley, Aaron J.

    2018-04-01

    (18 %). Also seen is a northwestward propagation of the MTM signature with a latitude-dependent amplitude. This behavior suggests either a latitudinal dependence of thermosphere tidal dissipation or a night-to-night variation of the composition of the higher-order tidal modes that contribute to the production of the MTM peak at mid-latitudes. Also presented in this paper is the perturbation on the divergence of the wind fields, which is associated with the passage of each MTM peak analyzed with the 2-D interpolation.

  4. Re-humanising Public Urban Space

    DEFF Research Database (Denmark)

    Almahmood, Mohammed Abdulrahman M

    , this thesis suggests that re-humanising public urban space should not only be considered as a matter of design, but also as an on-going process which includes an inclusive spatial planning agenda and the management of space supplemented by background knowledge regarding the culture of use of space.......This PhD thesis aims to contribute to a better understanding of the spatial, social, and cultural dimensions of the formation of human-centred public urban space. ‘Re-humanising’ the city is a traveling concept which implies that public urban spaces are liveable, walkable, safe, enjoyable......, and inclusive thereby allowing vibrant social interaction. While the inclusiveness of space is considered as a core value in human-centred public urban space, social and spatial exclusion is a key challenge to the success of public urban space, especially in the Global South. The mainstream research in urban...

  5. Understanding and Mitigating Adverse Health Effects in Space Using A System Physiology Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's vision for Space Exploration aims for human interplanetary missions that have significant challenges on crew health and safety including fluid shifts, and...

  6. The importance of moisture distribution for the growth and energetics of mid-latitude systems

    Directory of Open Access Journals (Sweden)

    V. Pavan

    Full Text Available A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, 'control' and 'doubled CO2' life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture.

    Key words. Meteorology and atmospheric dynamics (climatology; convective processes; synoptic-scale meteorology

  7. Space activities in 2009/2010

    Science.gov (United States)

    Pagkratis, Spyros

    2011-09-01

    The global financial crisis of 2008 has created an economic environment unfavourable to public and corporate economic activity alike, which could not have left space activities unaffected. However, the effects of the crisis upon the space sector have been so far less damaging than anticipated. The following paper presents recent developments in the field of space policies, institutional budgets and commercial activity worldwide, in an effort to improve the understanding of the new trends in commercial and public space activities. It particularly explores the strategies followed by space stakeholders in different countries and regions in order to pursue their planned space programmes in view of difficult financial conditions. Finally, it highlights the differences in the outlook of space activities between established and emerging space-faring nations and attempts to explore their medium-term consequences on an international level. For this purpose, it was based on research conducted in the framework of a recent ESPI report on "Space Policies, Issues and trends in 2009/2010".

  8. Stasis, Charging the Space of Change

    Directory of Open Access Journals (Sweden)

    Sarah Riviere

    2017-02-01

    Full Text Available This article fossicks through the fragments of historical understandings of the word stasis in ancient Greece – where stasis, in its extreme state, involved conflictual hostilities between kindred parties, often termed ‘civil war’ today. Through a series of readings of ancient Greek texts on topics ranging from pathology to literature and politics, stasis is revealed as a powerfully charged state of located dynamic exchange that operates through a precise temporal and spatial performance. This article teases out relevant aspects of the state of stasis – its high levels of spatial engagement, its inevitable resolution into energetic productivity, its precise restraint, its demand for full participation, and its role in the integration of change – all of which were acknowledged as part of the enactment and resolution of a stasis at that time. The intention of this article is to resurrect a more nuanced understanding of the state of stasis that can enrich current concepts of the dynamic in architectural and urban discourse. This understanding of stasis also poses new questions for the future design of spaces that can accommodate charged kindred engagement: lively spaces where contest becomes opportunity, and located spaces of kindred understanding that promise productive reconciliation as the common aim of all the parties involved.

  9. NASA's Carbon Cycle OSSE Initiative - Informing future space-based observing strategies through advanced modeling and data assimilation

    Science.gov (United States)

    Ott, L.; Sellers, P. J.; Schimel, D.; Moore, B., III; O'Dell, C.; Crowell, S.; Kawa, S. R.; Pawson, S.; Chatterjee, A.; Baker, D. F.; Schuh, A. E.

    2017-12-01

    Satellite observations of carbon dioxide (CO2) and methane (CH4) are critically needed to improve understanding of the contemporary carbon budget and carbon-climate feedbacks. Though current carbon observing satellites have provided valuable data in regions not covered by surface in situ measurements, limited sampling of key regions and small but spatially coherent biases have limited the ability to estimate fluxes at the time and space scales needed for improved process-level understanding and informed decision-making. Next generation satellites will improve coverage in data sparse regions, either through use of active remote sensing, a geostationary vantage point, or increased swath width, but all techniques have limitations. The relative strengths and weaknesses of these approaches and their synergism have not previously been examined. To address these needs, a significant subset of the US carbon modeling community has come together with support from NASA to conduct a series of coordinated observing system simulation experiments (OSSEs), with close collaboration in framing the experiments and in analyzing the results. Here, we report on the initial phase of this initiative, which focused on creating realistic, physically consistent synthetic CO2 and CH4 observational datasets for use in inversion and signal detection experiments. These datasets have been created using NASA's Goddard Earth Observing System Model (GEOS) to represent the current state of atmospheric carbon as well as best available estimates of expected flux changes. Scenarios represented include changes in urban emissions, release of permafrost soil carbon, changes in carbon uptake in tropical and mid-latitude forests, changes in the Southern Ocean sink, and changes in both anthropogenic and natural methane emissions. This GEOS carbon `nature run' was sampled by instrument simulators representing the most prominent observing strategies with a focus on consistently representing the impacts of

  10. Space weather effects on communications

    Science.gov (United States)

    Lanzerotti, Louis J.

    In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.

  11. The Orbitrap mass analyzer as a space instrument for the understanding of prebiotic chemistry in the Solar System

    Science.gov (United States)

    Vuitton, Véronique; Briois, Christelle; Makarov, Alexander

    Over the past decade, it has become apparent that organic molecules are widespread in our Solar System and beyond. The better understand of the prebiotic chemistry leading to their formation is a primary objective of many ongoing space missions. Cassini-Huygens revealed the existence of very large molecular structures in Titan's atmosphere as well as on its surface, in the form of dune deposits, but their exact nature remains elusive. One key science goal of the Mars Science Laboratory Curiosity rover is to assess the presence of organics on the red planet. Rosetta will characterize the elemental and isotopic composition of the gas and dust ejected from comet Churyumov-Gerasimenko, while amino acids have been detected in meteorites. This search for complex organics relies heavily on mass spectrometry, which has the remarkable ability to analyze and quantify species from almost any type of sample (provided that the appropriate sampling and ionizing method is used). Because of the harsh constraints of the spatial environment, the mass resolution of the spectrometers onboard current space probes is quite limited compared to laboratory instruments, leading to significant limitations in the scientific return of the data collected. Therefore, future in situ solar system exploration missions would significantly benefit from instruments relying on High Resolution Mass Spectrometry (HRMS). Since 2009, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies form a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercializes Orbitrap based laboratory instruments. The Orbitrap is an electrostatic mass analyzer, it is compact, lightweight, and can reach a good sensitivity and dynamic range. A prototype is under development at

  12. Space environments and their effects on space automation and robotics

    Science.gov (United States)

    Garrett, Henry B.

    1990-01-01

    Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.

  13. In situ real-time x-ray reciprocal space mapping during InGaAs/GaAs growth for understanding strain relaxation mechanisms

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Suzuki, Hidetoshi; Sai, Akihisa; Lee, Jong-Han; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Takahashi, Masamitsu; Fujikawa, Seiji; Arafune, Koji

    2009-01-01

    In situ real-time X-ray diffraction measurements during In 0.12 Ga 0.88 As/GaAs(001) epitaxial growth are performed for the first time to understand the strain relaxation mechanisms in a lattice-mismatched system. The high resolution reciprocal space maps of 004 diffraction obtained at interval of 6.2 nm thickness enable transient behavior of residual strain and crystal quality to be observed simultaneously as a function of InGaAs film thickness. From the evolution of these data, five thickness ranges with different relaxation processes and these transition points are determined quantitatively, and the dominant dislocation behavior in each phase is deduced. (author)

  14. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  15. Deep Space Gateway Science Opportunities

    Science.gov (United States)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  16. Ice exposures and landscape evolution in the Martian mid-latitudes

    Science.gov (United States)

    Dundas, C. M.; Bramson, A. M.; Ojha, L.; Wray, J. J.; Mellon, M. T.; Byrne, S.; McEwen, A. S.; Putzig, N. E.; Viola, D.; Sutton, S.

    2017-12-01

    The large-scale geographic distribution of Martian shallow ground ice is now relatively well-known, but the vertical structure of the ice is not as well understood. Here we report on erosional scarps in kilometer-scale pits near ±55-60 degrees latitude that expose cross-sections through ice-rich mantling deposits covering much of the mid-latitudes. HiRISE images of the scarps reveal ice-rich deposits (i.e., not regolith-pore-filling ice) that are >100 m thick and occur within 1 m of the top of the scarps. CRISM spectra confirm the presence of water ice through late summer, implying exposed ground ice rather than seasonal frost. SHARAD sounding radar data show some candidate reflectors similar to those inferred to be from the base of excess ice deposits elsewhere on Mars, but no internal structure is resolved. Ice-exposing impacts and thermokarst landforms convey information about excess ice abundance in the upper few meters, but not its deeper structure. The overall structure of the ice table is simple, with massive ice (sometimes layered) under a relatively thin lithic mantle, plus a boulder-rich interior lens in one scarp. The latter may be partly ice-cemented. The ice is commonly fractured. These observations demonstrate how deep ice sheets link with the shallow ice table, at least locally. The likely origin of the ice is accumulation of snow with some admixed dust during a different climate. This snow accumulation could be related to 370 ka changes observed at the poles [1] but some ice sheets may be tens of Myr old [2]. the origin of superposed boulder-sized rocks is puzzling; possible explanations include glacial flow, impact gardening, or some form of frost heave or cryoturbation. Repeat HiRISE observations demonstrate that the scarps are actively retreating, as boulders have fallen from one scarp and there are albedo changes elsewhere. This activity demonstrates that local sublimation is contributing to present-day Martian landscape evolution and is an

  17. Characteristics and direct radiative effect of mid-latitude continental aerosols: the ARM case

    Directory of Open Access Journals (Sweden)

    M. G. Iziomon

    2003-01-01

    Full Text Available A multi-year field measurement analysis of the characteristics and direct radiative effect of aerosols at the Southern Great Plains (SGP central facility of the Atmospheric Radiation Measurement (ARM Program is presented. Inter-annual mean and standard deviation of submicrometer scattering fraction (at 550 nm and Ångström exponent å (450 nm, 700 nm at the mid-latitude continental site are indicative of the scattering dominance of fine mode aerosol particles, being 0.84±0.03 and 2.25±0.09, respectively. We attribute the diurnal variation of submicron aerosol concentration to coagulation, photochemistry and the evolution of the boundary layer. Precipitation does not seem to play a role in the observed afternoon maximum in aerosol concentration. Submicron aerosol mass at the site peaks in the summer (12.1±6.7mg m-3, with the summer value being twice that in the winter. Of the chemically analyzed ionic components (which exclude carbonaceous aerosols, SO4= and NH4+ constitute the dominant species at the SGP seasonally, contributing 23-30% and 9-12% of the submicron aerosol mass, respectively. Although a minor species, there is a notable rise in NO3- mass fraction in winter. We contrast the optical properties of dust and smoke haze. The single scattering albedo w0 shows the most remarkable distinction between the two aerosol constituents. We also present aircraft measurements of vertical profiles of aerosol optical properties at the site. Annually, the lowest 1.2 km contributes 70% to the column total light scattering coefficient. Column-averaged and surface annual mean values of hemispheric backscatter fraction (at 550 nm, w0 (at 550 nm and å (450 nm, 700 nm agree to within 5% in 2001. Aerosols produce a net cooling (most pronounced in the spring at the ARM site

  18. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  19. Construction of Improved Maps of Mercury's Crustal Magnetic Field at Northern Midlatitudes

    Science.gov (United States)

    Hood, L. L.; Oliveira, J. S.

    2017-12-01

    We report progress toward the construction of a refined version of the northern midlatitude crustal magnetic field map of Hood [GRL, 2016], extended to cover latitudes from 35N to 80N and all longitudes. The main improvements include: (1) Combining MESSENGER magnetometer data from August and September of 2014 with that from February, March, and April of 2015 to provide the best overall input data set for mapping and the largest possible area of coverage; (2) improving the elimination of external and core field contamination by using a model for Mercury's core field and a more conservative high-pass filter length; and (3) improving the equivalent source dipole (ESD) mapping technique using an equidistant equivalent source dipole array and varying the depth, orientation, and resolution of the array to minimize the overall root mean square misfit. Combining data from the two time intervals allows the total latitude range of the final map to be increased by at least 5 degrees to 35N - 80N. Also, previous mapping has concentrated on the hemisphere from 90E to 270E; inclusion of all available data will allow the final maps to be extended to all longitudes, more than doubling the coverage reported by Hood [2016]. Previous work has demonstrated a concentration of relatively strong magnetic anomalies near and within the Caloris impact basin. A secondary concentration near Sobkou Planitia, which contains an older impact basin, was also found. The existence of anomalies within the Caloris rim implies that a steady magnetizing field, i.e., a core dynamo, was present when this basin formed. A major application of the improved map will be to investigate whether anomalies are concentrated near and within other impact basins. If some basins are found not to have concentrations of magnetic anomalies, this could imply a role of impactor composition (e.g., iron content) in producing the crustal materials that are most strongly magnetized, as has previously been proposed to be the

  20. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  1. Mid-Holocene paleoclimatic changes and solar activity in San'in District, mid-latitude North Pacific Region

    Science.gov (United States)

    Okazaki, Y.; Seto, K.; Sakai, T.; Ooki, A.; yamada, K.; Dettman, D. L.

    2011-12-01

    Evidence shows that solar activity influences climate on a global scale. In the mid-latitude region, climate change is expected to change precipitation patterns. Concurrently, variation in solar activity may influence phytoplankton productivity. It seems that these changes should be recorded in sediment and organic matter deposits in coastal lagoons. In this study, we discuss the relationship between climate change and solar activity in the mid-Holocene in the northern hemisphere mid-latitude region based on grain size analysis, total organic carbon (TOC) content and organic carbon accumulation rates (Corg A.R.) in coastal lagoon sediment core samples. The INB core was drilled to produce a high resolution record of Holocene paleoenvironmental change in the San'in District, western Japan. The core is 19.17m in total length and is divided into Unit I~VII by lithofacies. Holocene sediment, primarily organic silt, forms Unit III and above in this core. Unit III was deposited from 8.4 to 5.4 ka, when sea level rose during the Jomon transgression; its depositional environment is a coastal lagoon. Progradation of the river mouth during the sea level rise lead to an increase in the C/N ratio of organic matter. Unit IV contains the volcanic Shigaku pyroclastic flow (the sixth stage of volcanic activity of the Sanbe volcano), and Unit V reflects deposition in a freshwater lake or swamp. Above this aggredational sediments were deposited by small rivers. This study focused on the coastal lagoon sediments of Unit III (8.4 to 5.4 ka); we carried out CNS elemental analysis and grain size analysis with a resolution of approximately five years. TOC content is variable and increases from 0.5 to 5%. Variation in TOC content is relatively well correlated with atmospheric radiocarbon 14C (Delta 14C) and therefore with solar activity, although the relationship is unclear in the upper portion of Unit III. The trend in Corg A.R. is different than TOC contents, about 40g/m/yr at ~8ka and

  2. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    Science.gov (United States)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  3. Space, place and ecology: Doing ecofeminist urban theology in Gauteng

    Directory of Open Access Journals (Sweden)

    Annalet van Schalkwyk

    2014-11-01

    Full Text Available The basic motivation for this article is to explore the critical, yet hopeful vision which urban theologians – and specifically ecofeminist urban theologians – have for justice, reconciliation and abundance of life in urban Gauteng. This requires that urban spatiality, with its conflicting sides in a rampantly capitalist Gauteng, needs to be understood. It also requires an understanding of how urbanity and ecology may – yet so often do not – overlap. According to ecofeminist theologian Anne Primavesi, space and place needs to be understood in relation to the earth as the body of God – a web of interrelated and interconnected subjects and living beings which constitute the earth with its various ecosystems. This belies the established understanding that space and place is created mostly through the anthropocentric activity and mastery of people. Such an ecological understanding of space, place and urbanity leads to my exploration of a missiology of space as the manifestation of the presence of God in the spaces of nature and human civilisation. I conclude by proposing the practice of urban mission as making the liturgical and sacramental links between ecology, space, and the reclamation of urban space as sacred by Christian and other agents of urban activism.

  4. New Designs for Modular Ultra-Light Precision Space Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — In a shared effort of advancing our scientific understanding of planets, stars, and galaxies, space agencies and astronomical centers have been building increasingly...

  5. Game Spaces

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2015-01-01

    , called “pervasive games.” These are games that are based on computer technology, but use a physical space as the game space as opposed to video games. Coupling spatial configuration with performance theory of rituals as liminal phenomena, I put forward a model and a new understanding of the magic circle......When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... hide-and-seek, but even these games are still spatially configured. The border (visible or not) both seem to separate and uphold the game that it is meant for. This chapter sets out to analyse the possible border that separates a game from the surrounding world. Johan Huizinga noted this “separateness...

  6. Space: A new frontier

    Science.gov (United States)

    Cutolo, Mona; Miranda, Denis M.

    1986-08-01

    The challenges and the promises of space colonization present an exciting opportunity for exploring and analyzing the values, the institutions and the physical environments we have created on Earth. Here we describe an interdisciplinary course, team-taught, that examines the current state of space exploration and the innovative technologies spawned by space research. The course also explores the possible social, economic, political and international impacts of migration to space of people and industries. A course project is to design a space colony for a community of 10,000 people. Given the technical design parameters and other details, the students are to engineer socially an ideal community, bearing in mind the short lifetimes of utopian communities of the past. The process is intended to help the students gain a fair understanding of the dynamics of human societies and of the technologies we have developed that enable us to change our world and to design new worlds.

  7. Scatterometer Observes Extratropical Transition of Pacific Typhoons

    Science.gov (United States)

    Liu, W. Timothy; Tang, Wenqing; Dunbar, R. Scott

    1997-01-01

    From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons, Violet and Tom, as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction (Figure 1), and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds (Figure 2). We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved [e.g., Sinclair, 1993], but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest trans-ocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas. NSCAT was successfully launched into a near-polar, sun-synchronous orbit on the Japanese Advanced Earth Observing Satellite (ADEOS) in August 1996 from Tanegashima Space Center in Japan. NSCAT's six antennas send microwave pulses at a frequency of 14 GHz to the Earth's surface and measure the backscatter. The antennas scan two 600-km bands of the ocean, which are separated by a 330-km data gap. From NSCAT observations, surface wind vectors can be derived at 25-km spatial resolution, covering 77% of the ice-free ocean in one day and 97% of the ocean in two days, under both clear and cloudy conditions.

  8. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  9. Implementing An Image Understanding System Architecture Using Pipe

    Science.gov (United States)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  10. Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather

    Science.gov (United States)

    Hapgood, Mike

    2017-04-01

    Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.

  11. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  12. Space and composition

    DEFF Research Database (Denmark)

    Kjølner, Torunn

    2005-01-01

    The article takes concept art and Deleuze and Guattari's understanding of concept as  references for thinking theatre as an art form defined as a composition of elements in time and space. It offers a discussion of three different kinds of spatial approaches to theatre making and  a discussion...

  13. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  14. The immune system in space, including Earth-based benefits of space-based research.

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  15. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  16. Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017

    Science.gov (United States)

    Aa, Ercha; Huang, Wengeng; Liu, Siqing; Ridley, Aaron; Zou, Shasha; Shi, Liqin; Chen, Yanhong; Shen, Hua; Yuan, Tianjiao; Li, Jianyong; Wang, Tan

    2018-03-01

    This paper presents observations of postsunset super plasma bubbles over China and adjacent areas during the second main phase of a storm on 8 September 2017. The signatures of the plasma bubbles can be seen or deduced from (1) deep field-aligned total electron content depletions embedded in regional ionospheric maps derived from dense Global Navigation Satellite System networks, (2) significant equatorial and midlatitudinal plasma bite-outs in electron density measurements on board Swarm satellites, and (3) enhancements of ionosonde virtual height and scintillation in local evening associated with strong southward interplanetary magnetic field. The bubbles/depletions covered a broad area mainly within 20°-45°N and 80°-110°E with bifurcated structures and persisted for nearly 5 hr (˜13-18 UT). One prominent feature is that the bubbles extended remarkably along the magnetic field lines in the form of depleted flux tubes, reaching up to midlatitude of around 50°N (magnetic latitude: 45.5°N) that maps to an altitude of 6,600 km over the magnetic equator. The maximum upward drift speed of the bubbles over the magnetic equator was about 700 m/s and gradually decreased with altitude and time. The possible triggering mechanism of the plasma bubbles was estimated to be storm time eastward prompt penetration electric field, while the traveling ionospheric disturbance could play a role in facilitating the latitudinal extension of the depletions.

  17. Space Radiation and Risks to Human Health

    Science.gov (United States)

    Huff, Janice L.; Patel, Zarana S.; Simonsen, Lisa C.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  18. Quantifying and Modelling the Effect of Cloud Shadows on the Surface Irradiance at Tropical and Midlatitude Forests

    Science.gov (United States)

    Kivalov, Sergey N.; Fitzjarrald, David R.

    2018-02-01

    Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.

  19. Understanding and Mitigating Scale Formation on Membranes Used for Membrane Distillation of Wastewater During Space Travel

    Data.gov (United States)

    National Aeronautics and Space Administration — Water sustains life, and on space missions this resource is a vital commodity that must be safeguarded. For short-term missions it is most reliable and...

  20. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  1. Differential calculus in normed linear spaces

    CERN Document Server

    Mukherjea, Kalyan

    2007-01-01

    This book presents Advanced Calculus from a geometric point of view: instead of dealing with partial derivatives of functions of several variables, the derivative of the function is treated as a linear transformation between normed linear spaces. Not only does this lead to a simplified and transparent exposition of "difficult" results like the Inverse and Implicit Function Theorems but also permits, without any extra effort, a discussion of the Differential Calculus of functions defined on infinite dimensional Hilbert or Banach spaces.The prerequisites demanded of the reader are modest: a sound understanding of convergence of sequences and series of real numbers, the continuity and differentiability properties of functions of a real variable and a little Linear Algebra should provide adequate background for understanding the book. The first two chapters cover much of the more advanced background material on Linear Algebra (like dual spaces, multilinear functions and tensor products.) Chapter 3 gives an ab ini...

  2. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  3. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  4. Fundamental geodesic deformations in spaces of treelike shapes

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    This paper presents a new geometric framework for analysis of planar treelike shapes for applications such as shape matching, recognition and morphology, using the geometry of the space of treelike shapes. Mathematically, the shape space is given the structure of a stratified set which...... is a quotient of a normed vector space with a metric inherited from the vector space norm. We give examples of geodesic paths in tree-space corresponding to fundamental deformations of small trees, and discuss how these deformations are key building blocks for understanding deformations between larger trees....

  5. Protection from space radiation

    International Nuclear Information System (INIS)

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-01-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods

  6. Philosophical analysis of virtualization educational space problems

    Directory of Open Access Journals (Sweden)

    V. D. Kolomiets

    2016-06-01

    Full Text Available Categorical imperative of the new spatial organization of education through its integration in the media space is its virtualization. It is possible in principle, given that both spaces are characterized by adaptability, ease transfer from one semiotic system to another, mobility, functionality, flexibility, allowing for their continuous restructuring. On the philosophical and educational perspective, for us it is important to note that the «idea» of media education space sets the goal of education, understanding of the complex and multi­level organization of information relations of the educational process is a simple link between empirical concepts and ideas about education space as integrity within the information society. Virtual dimension issues of educational space formed within one of the major philosophical and educational issues ­ problems of socio­cultural nature of education as a mechanism of becoming human in man. Today feature virtual philosophical analysis is understanding not just a technical phenomenon, but as a space of human existence, and therefore its educational space. It is in this sense the philosophy of education is important to apply the methodology of media philosophy in the development problems of media education space as a space of life, self­development and self­knowledge of man. Crisis and negative phenomena in postmodern education is not the result of the process of formation of modern electronic media and virtual media space. However, this specific problem requires analysis of education is in the context of new technologies of mass communication. The spread of the crisis of education in terms of media reality should be seen as a crisis of a man who fell into the information system, which is the media model and simulated education and awareness of life. Education in terms of media consumerism acts as a social technology and media culture «escape from thinking.» The transition from education information and

  7. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    Science.gov (United States)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  8. The Perception of Sounds in Phonographic Space

    DEFF Research Database (Denmark)

    Walther-Hansen, Mads

    . The third chapter examines how listeners understand and make sense of phonographic space. In the form of a critique of Pierre Schaeffer and Roger Scruton’s notion of the acousmatic situation, I argue that our experience of recorded music has a twofold focus: the sound-in-itself and the sound’s causality...... the use of metaphors and image schemas in the experience and conceptualisation of phonographic space. With reference to descriptions of recordings by sound engineers, I argue that metaphors are central to our understanding of recorded music. This work is grounded in the tradition of cognitive linguistics......This thesis is about the perception of space in recorded music, with particular reference to stereo recordings of popular music. It explores how sound engineers create imaginary musical environments in which sounds appear to listeners in different ways. It also investigates some of the conditions...

  9. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  10. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  11. Seductive Atmospheres: Using tools to effectuate spaces for Leadership Development

    DEFF Research Database (Denmark)

    Elmholdt, Kasper Trolle; Clausen, Rune Thorbjørn; Madsen, Mona T

    2018-01-01

    Hospital, this study investigates how a business game is used as a tool to effectuate episodic spaces for leadership development. The study reveals three tool affordances and discusses how they enable and constrain episodic spaces for development and further develops the notion of seductive atmospheres......This study applies an affordance lens to understand the use of management tools and how atmospheres for change and development are created and exploited. Drawing on an ethnographic case study of a consultant-facilitated change intervention among a group of research leaders at a Danish Public...... as an important mechanism. The article suggests that a broader understanding of the use of tools and the role of atmospheres is essential for understanding how episodic spaces for development come to work in relation to organizational change and development....

  12. Understanding Outdoor Gyms in Public Open Spaces: A Systematic Review and Integrative Synthesis of Qualitative and Quantitative Evidence.

    Science.gov (United States)

    Lee, Janet Lok Chun; Lo, Temmy Lee Ting; Ho, Rainbow Tin Hung

    2018-03-25

    (1) Background: An outdoor gym (OG) is environmental infrastructure built in a public open space to promote structured physical activity. The provision of OGs is increasingly seen as an important strategy to realize public health agendas promoting habitual physical activity. A systematic review was conducted to synthesize characteristics of OG and OG users' experiences and perceptions in different cultural contexts; (2) Methods: Online searches of multidisciplinary databases were conducted in health, sport and recreation, and urban planning disciplines. Characteristics of OGs were synthesized by integrating evidence from quantitative, qualitative, and mix-methods studies. The experiences and perceptions of OG users from both qualitative data and survey responses were synthesized through framework analysis; (3) Results: Nine studies met the inclusion criteria (three quantitative studies, four mixed-methods studies, and two pure qualitative studies). None were excluded on the basis of quality. OGs mainly serve adult and older adult population groups. Their size, design, and instructional support vary across studies. The inclusion of functional types of equipment did not have a unified standard. Regarding experiences and perceptions of OGs, five major themes emerged: "health", "social connectedness", "affordable", "support", and "design and promotion"; (4) Conclusions: The OG characteristics synthesis guides the direction in further studies regarding exploration of design parameters. The qualitative and quantitative synthesis revealed that health was a central theme of users' experiences. OGs are also spaces where community-dwellers can find social connectedness while participating in structured physical activity at no cost. Findings from this review create knowledge support for OG as environmental infrastructure for further research and facilitate the understanding of users' experiences and perceptions of OGs in different cultural contexts.

  13. Understanding Outdoor Gyms in Public Open Spaces: A Systematic Review and Integrative Synthesis of Qualitative and Quantitative Evidence

    Science.gov (United States)

    Lee, Janet Lok Chun; Lo, Temmy Lee Ting

    2018-01-01

    (1) Background: An outdoor gym (OG) is environmental infrastructure built in a public open space to promote structured physical activity. The provision of OGs is increasingly seen as an important strategy to realize public health agendas promoting habitual physical activity. A systematic review was conducted to synthesize characteristics of OG and OG users’ experiences and perceptions in different cultural contexts; (2) Methods: Online searches of multidisciplinary databases were conducted in health, sport and recreation, and urban planning disciplines. Characteristics of OGs were synthesized by integrating evidence from quantitative, qualitative, and mix-methods studies. The experiences and perceptions of OG users from both qualitative data and survey responses were synthesized through framework analysis; (3) Results: Nine studies met the inclusion criteria (three quantitative studies, four mixed-methods studies, and two pure qualitative studies). None were excluded on the basis of quality. OGs mainly serve adult and older adult population groups. Their size, design, and instructional support vary across studies. The inclusion of functional types of equipment did not have a unified standard. Regarding experiences and perceptions of OGs, five major themes emerged: “health”, “social connectedness”, “affordable”, “support”, and “design and promotion”; (4) Conclusions: The OG characteristics synthesis guides the direction in further studies regarding exploration of design parameters. The qualitative and quantitative synthesis revealed that health was a central theme of users’ experiences. OGs are also spaces where community-dwellers can find social connectedness while participating in structured physical activity at no cost. Findings from this review create knowledge support for OG as environmental infrastructure for further research and facilitate the understanding of users’ experiences and perceptions of OGs in different cultural contexts

  14. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  15. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  16. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  17. Exploring Engaged Spaces in Community-University Partnership

    Science.gov (United States)

    Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie

    2016-01-01

    The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…

  18. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    Science.gov (United States)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  19. Geometry of Moishezon and 1-convex spaces II: Projectivity of Moishezon spaces and its non-compact version

    International Nuclear Information System (INIS)

    Sitaramayya, M.

    1993-11-01

    After a brief review of the geometry of Moishezon spaces, their relation with l-convex spaces and a reasonable and up to date understanding of the obstructions for projectivity of Moishezon objects both in singular and non-singular case is given. The geometry of l-convex manifolds and with l-dimensional exceptional set is studied and some problems and conjectures are stated. The tools of cohomology vanishing theorems important for the subject are briefly sketched. Compactifications of C 3 and Stein spaces are finally outlined. given. 111 refs, 2 figs

  20. Phase-space topography characterization of nonlinear ultrasound waveforms.

    Science.gov (United States)

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Star laws: legal controls on armed conflict in outer space

    International Nuclear Information System (INIS)

    Stephens, Dale

    2016-01-01

    An undeclared military space race is unfolding yet there is no clear understanding of how international las operates in the field of armed conflict in outer space. In conjunction with McGill University Law School, Montreal, Canada, a 'Manual on international law applicable to military uses of outer space' has been drafted. This article looks at types of space weapons, previous space treaties and discusses humanitarian law.

  2. Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring

    NARCIS (Netherlands)

    Kuijper, A.; Florack, L.M.J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the influence of parameter-driven blurring. During this evolution two different types of special points are encountered, the so-called scale space saddles and the

  3. Neurology of microgravity and space travel

    Science.gov (United States)

    Fujii, M. D.; Patten, B. M.

    1992-01-01

    Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.

  4. Northern and Mid-Latitude Soil Database, Version 1, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — The U.S. Department of Agriculture, Agriculture and Agri-Food Canada, the Russian Academy of Agricultural Sciences, the University of Copenhagen Institute of...

  5. Topological vector spaces and their applications

    CERN Document Server

    Bogachev, V I

    2017-01-01

    This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. In addition, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

  6. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  7. Fluid management in space construction

    Science.gov (United States)

    Snyder, Howard

    1989-01-01

    The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.

  8. Validation of Martilli's urban boundary layer scheme with measurements from two mid-latitude European cities

    Science.gov (United States)

    Hamdi, R.; Schayes, G.

    2007-08-01

    Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  9. Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Gerrard, A. J.; Miller, E. S.; Marini, J. P.; West, M. L.; Bristow, W. A.

    2014-09-01

    A climatology of daytime midlatitude medium-scale traveling ionospheric disturbances (MSTIDs) observed by the Blackstone Super Dual Auroral Radar Network (SuperDARN) radar is presented. MSTIDs were observed primarily from fall through spring. Two populations were observed: a dominant population heading southeast (centered at 147° geographic azimuth, ranging from 100° to 210°) and a secondary population heading northwest (centered at -50° azimuth, ranging from -75° to -25°). Horizontal velocities ranged from 50 to 250 m s-1 with a distribution maximum between 100 and 150 m s-1. Horizontal wavelengths ranged from 100 to 500 km with a distribution peak at 250 km, and periods between 23 and 60 min, suggesting that the MSTIDs may be consistent with thermospheric gravity waves. A local time (LT) dependence was observed such that the dominant (southeastward) population decreased in number as the day progressed until a late afternoon increase. The secondary (northwestward) population appeared only in the afternoon, possibly indicative of neutral wind effects or variability of sources. LT dependence was not observed in other parameters. Possible solar-geomagnetic and tropospheric MSTID sources were considered. The auroral electrojet (AE) index showed a correlation with MSTID statistics. Reverse ray tracing with the HINDGRATS model indicates that the dominant population has source regions over the Great Lakes and near the geomagnetic cusp, while the secondary population source region is 100 km above the Atlantic Ocean east of the Carolinas. This suggests that the dominant population may come from a region favorable to either tropospheric or geomagnetic sources, while the secondary population originates from a region favorable to secondary waves generated via lower atmospheric convection.

  10. Changes of benthic fauna in the Kattegat - An indication of climate change at mid-latitudes?

    Science.gov (United States)

    Göransson, Peter

    2017-07-01

    Several predictions point to changes in the marine benthic macrofauna associated with climate change, but so far only a few and minor changes have been reported. This study relates observed changes in the species composition to climate change by looking on the past decades in the Kattegat between Denmark and Sweden. A reduction of the total number species and a reduction of species with a northern range parallel to an increase of species with a southern range have been observed. The most likely explanation of the changes is the increase in temperature of the bottom water. Increased temperature could change the species distributions but also decrease primary production which impacts recruitment and growth. Hypoxia and bottom trawling could also act synergistic in this process. A sparse occurrence of previously encountered Arctic-Boreal species and critical foundation species, which gives the area its special character, suggests a change in biodiversity and might therefore be designated as early warning signals of a warmer climate. The northern fauna below the halocline with limited capacity of dispersal and low reproduction potential, can be considered as sensitive with low adaptive capacity to climate change. Therefore, not only tropical and high-latitude species, but also benthos on deep bottoms at mid-latitudes, could be vulnerable to warming. As many species live at the edge of their range in the Kattegat, and also are dependent of distant recruitment, large scale changes will probably be detected here at an early stage. It is important to protect relatively undisturbed reference areas in the Kattegat for future studies, but also for preserving a large number of ecosystem services, biotopes, habitats, and fish species.

  11. The Road to Independently Understandable Information

    Science.gov (United States)

    Habermann, T.; Robinson, E.

    2017-12-01

    The turn of the 21st century was a pivotal time in the Earth and Space Science information ecosystem. The Content Standard for Digital Geospatial Metadata (CSDGM) had existed for nearly a decade and ambitious new standards were just emerging. The U.S. Federal Geospatial Data Committee (FGDC) had extended many of the concepts from CSDGM into the International community with ISO 19115:2003 and the Consultative Committee for Space Data Systems (CCSDS) had migrated their Open Archival Information System (OAIS) Reference Model into an international standard (ISO 14721:2003). The OAIS model outlined the roles and responsibilities of archives with the principle role being preserving information and making it available to users, a "designated community", as a service to the data producer. It was mandatory for the archive to ensure that information is "independently understandable" to the designated community and to maintain that understanding through on-going partnerships between archives and designated communities. Standards can play a role in supporting these partnerships as designated communities expand across disciplinary and geographic boundaries. The ISO metadata standards include many capabilities that might make critical contributions to this goal. These include connections to resources outside of the metadata record (i.e. documentation) and mechanisms for ongoing incorporation of user feedback into the metadata stream. We will demonstrate these capabilities with examples of how they can increase understanding.

  12. Blue space geographies: Enabling health in place.

    Science.gov (United States)

    Foley, Ronan; Kistemann, Thomas

    2015-09-01

    Drawing from research on therapeutic landscapes and relationships between environment, health and wellbeing, we propose the idea of 'healthy blue space' as an important new development Complementing research on healthy green space, blue space is defined as; 'health-enabling places and spaces, where water is at the centre of a range of environments with identifiable potential for the promotion of human wellbeing'. Using theoretical ideas from emotional and relational geographies and critical understandings of salutogenesis, the value of blue space to health and wellbeing is recognised and evaluated. Six individual papers from five different countries consider how health can be enabled in mixed blue space settings. Four sub-themes; embodiment, inter-subjectivity, activity and meaning, document multiple experiences within a range of healthy blue spaces. Finally, we suggest a considerable research agenda - theoretical, methodological and applied - for future work within different forms of blue space. All are suggested as having public health policy relevance in social and public space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  14. Tidal variations of O2 Atmospheric and OH(6-2 airglow and temperature at mid-latitudes from SATI observations

    Directory of Open Access Journals (Sweden)

    M. J. López-González

    2005-12-01

    Full Text Available Airglow observations with a Spectral Airglow Temperature Imager (SATI, installed at the Sierra Nevada Observatory (37.06° N, 3.38° W at 2900-m height, have been used to investigate the presence of tidal variations at mid-latitudes in the mesosphere/lower thermosphere region. Diurnal variations of the column emission rate and vertically averaged temperature of the O2 Atmospheric (0-1 band and of the OH Meinel (6-2 band from 5 years (1998-2003 of observations have been analysed. From these observations a clear tidal variation of both emission rates and rotational temperatures is inferred. It is found that the amplitude of the daily variation for both emission rates and temperatures is greater from late autumn to spring than during summer. The amplitude decreases by more than a factor of two during summer and early autumn with respect to the amplitude in the winter-spring months. Although the tidal modulations are preferentially semidiurnal in both rotational temperatures and emission rates during the whole year, during early spring the tidal modulations seem to be more consistent with a diurnal modulation in both rotational temperatures and emission rates. Moreover, the OH emission rate from late autumn to early winter has a pattern suggesting both diurnal and semidiurnal tidal modulations.

  15. Extratropical response to Fast and Slow episodes of Madden-Julian Oscillation in observation and using intervention experiments with CFSv2

    Science.gov (United States)

    Yadav, P.; Straus, D. M.

    2017-12-01

    The Madden-Julian Oscillation (MJO) is a potential source of predictability in the extratropics in extended range weather forecasting. The nature of MJO is sporadic and therefore, the mid-latitude response may depend on the nature of the MJO event, in particular the phase speed. We discuss the results of our observational and modeling study of mid-latitude circulation response to Fast and Slow MJO episodes using wintertime ERA-Interim reanalysis data and the CFSv2 coupled model of NOAA. The observational study shows that the mid-latitude response to different propagating speeds is not the same. The propagation speed is defined by the time the OLR takes to propagate from phase 3 to phase 6. The mid-latitude response is assessed in terms of composite maps and frequency of occurrence of robust circulation regimes. Fast episode composite anomalies of 500hPa height show a developing Rossby wave in the mid-Pacific with downstream propagation through MJO phases 2- 4. Development of NAO+ teleconnection pattern is stronger in Slow that in Fast MJO episodes, and occurs with a greater time lag after MJO heating is in the Indian Ocean (phase 3). Previous results find an increase in occurrence of NAO- regime following phase 6. We have found that much of this behavior is due to the slow episodes. Based on these observational results, intervention experiments using CFSv2 are designed to better understand the impact of heating/cooling and to estimate mid-latitude response to Fast and Slow MJO episodes. The added heating experiments consist of 31 year reforecasts for December 1 initial conditions from CFS reanalysis (1980-2011) in which the identical MJO evolution of three-dimensional diabatic heating has been added, thus producing fast and slow MJO episodes with well-defined phase speeds. We will discuss the results of these experiments with a focus on understanding the role of phase speed and interference in setting up the response, and to understand the mechanisms that

  16. Ongoing Space Physics - Astrophysics Connections

    OpenAIRE

    Eichler, David

    2005-01-01

    I review several ongoing connections between space physics and astrophysics: a) Measurements of energetic particle spectra have confirmed theoretical prediction of the highest energy to which shocks can accelerate particles, and this has direct bearing on the origin of the highest energy cosmic rays. b) Mass ejection in solar flares may help us understand photon ejection in the giant flares of magnetar outbursts. c) Measurements of electron heat fluxes in the solar wind can help us understand...

  17. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  18. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  19. The museum as information space

    DEFF Research Database (Denmark)

    Navarrete, T.; Mackenzie Owen, J.

    2016-01-01

    space to being outside the museum in the online information space of the Internet. This has fundamental implications for the institutional role of museums, our understanding of metadata and the methods of documentation. The onsite museum institution will, eventually, not be able to function...... as an institutional entity on the Internet, for in this new information space, objects, collections and museums, all function as independent components in a vast universe of data, side by side at everyone’s disposal at anytime. Potentially, users can access cultural heritage anytime, anywhere and anyhow. © The Author......Although museums vary in nature and may have been founded for all sorts of reasons, central to all museum institutions are the collected objects. These objects are information carriers organized in a catalogue system. In this chapter, the museum will be conceived as an information space, consisting...

  20. Extreme Space Weather Events: From Cradle to Grave

    Science.gov (United States)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  1. 18-year variability of ultraviolet radiation penetration in the mid-latitude coastal waters of the western boundary Pacific

    Science.gov (United States)

    Kuwahara, Victor S.; Nozaki, Sena; Nakano, Junji; Toda, Tatsuki; Kikuchi, Tomohiko; Taguchi, Satoru

    2015-07-01

    The 18-year time-series shows in situ ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) diffuse attenuation coefficient Kd(λ) have recurrent seasonal variability of high/low attenuation during summer/winter months, respectively, dependent on variability in water column stratification and concentrations of bio-optical properties. The mid-latitude coastal survey station displayed significant seasonality of the mixed layer depth (MLD) between 12 and 82 m which modified the distribution of chlorophyll a (4.6-24.9 mg m-2) and absorption of colored dissolved organic matter [aCDOM(320 nm) 0.043-1.34 m-1]. The median Kd(320 nm) displayed significant seasonality at 0.19-0.74 m-1 (C.V. = 44.1%) and seasonal variability within the euphotic layer [Z10%(320 nm) = 7-20%]. High attenuation of UVR with relatively moderate attenuation of PAR was consistently observed during the summer months when increased concentrations of terrestrially derived CDOM coupled with a shallow MLD were present. The winter season showed the opposite of low UVR and PAR attenuation due to a relatively deeper MLD coupled with low concentrations of bio-optical properties. Although the long term Kd(λ) did not vary significantly during the time-series, analysis of the interannual variability suggests there are positive and negative phases following the Pacific Decadal Oscillation (PDO) vis-a-vis variability in bio-optical properties (p < 0.001).

  2. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models

    International Nuclear Information System (INIS)

    Rangwala, Imtiaz; Sinsky, Eric; Miller, James R

    2013-01-01

    We use output from global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for three different greenhouse gas emission scenarios to investigate whether the projected warming in mountains by the end of the 21st century is significantly different from that in low elevation regions. To remove the effects of latitudinal variation in warming rates, we focus on seasonal changes in the mid-latitude band of the northern hemisphere between 27.5° N and 40° N, where the two major mountain systems are the Tibetan Plateau/Himalayas in Asia and the Rocky Mountains in the United States. Results from the multi-model ensemble indicate that warming rates in mountains will be enhanced relative to non-mountain regions at the same latitude, particularly during the cold season. The strongest correlations of enhanced warming with elevation are obtained for the daily minimum temperature during winter, with the largest increases found for the Tibetan Plateau/Himalayas. The model projections indicate that this occurs, in part, because of proportionally greater increases in downward longwave radiation at higher elevations in response to increases in water vapor. The mechanisms for enhanced increases in winter and spring maximum temperatures in the Rockies appear to be influenced more by increases in surface absorption of solar radiation owing to a reduced snow cover. Furthermore, the amplification of warming with elevation is greater for a higher greenhouse gas emission scenario. (letter)

  3. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  4. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  5. Educational Outreach: The Space Science Road Show

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with

  6. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  7. Physiology, medicine, long-duration space flight and the NSBRI

    Science.gov (United States)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  8. Leveraging Faculty Reflective Practice to Understand Active Learning Spaces: Flashbacks and Re-Captures

    Science.gov (United States)

    Ramsay, Crystal M.; Guo, Xiuyan; Pursel, Barton K.

    2017-01-01

    Although learning spaces research is not new, research approaches that target the specific teaching and learning experiences of faculty and students who occupy active learning classrooms (ALCs) is nascent. We report on two novels data collection approaches: Flashbacks and Re-Captures. Both leverage faculty reflective practice and provide windows…

  9. Space reactors, a prospective for the future

    International Nuclear Information System (INIS)

    Wahlquist, E.; Voss, S.S.

    1989-01-01

    The power requirements for future space missions are increasing and alternate power systems will be required to meet these needs. Therefore, in the early 1980's a tri-agency space reactor program, the SP-100, was initiated that is capable of meeting the higher power requirements. To understand the current space reactor program, it is important to review it in the context of past space nuclear programs - including radioisotopes, nuclear rockets and reactors. Initial effort on these programs began in the mid-1950's. Radioisotope generators have been flown on a variety of missions and are continuing to be used. The space reactor and nuclear rocket programs were technically successful but were both terminated in 1973. The current SP-100 program builds on those earlier programs

  10. Concept for an International Standard related to Space Weather Effects on Space Systems

    Science.gov (United States)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  11. On spaces of hospitality

    DEFF Research Database (Denmark)

    Greve, Anni

    Although specialists in hospitality have worked extensively on hospitality with respect to relations between different nations or between nations and individuals of a different nationality, for instance when they seek asylum, Jacques Derrida preferred to focus instead upon the relationship between...... the guest and the host. This has provided a much-needed rethinking of how to understand hospitality as a way of relating, as an ethics and as a politics. Within this work, there have often appeared discussions of ‘spaces of hospitality’, but these spaces have remained largely abstract. This is where...... this paper comes in: It will re open discussions of spaces of hospitality with an introduction into an on-going research project that studies the performative, structural and social dynamics of cultural encounters focusing on forms of hospitality that are related to particular sites in the city, namely...

  12. Information Architecture the Design of Digital Information Spaces

    CERN Document Server

    Ding, Wei

    2009-01-01

    Information Architecture is about organizing and simplifying information, designing and integrating information spaces/systems, and creating ways for people to find and interact with information content. Its goal is to help people understand and manage information and make right decisions accordingly. In the ever-changing social, organizational and technological contexts, Information Architects not only design individual information spaces (e.g., individual websites, software applications, and mobile devices), but also tackle strategic aggregation and integration of multiple information spaces

  13. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  14. Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Petersen, Walter A.; Jensen, Michael P.

    2011-01-01

    The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde

  15. Socio-technical Spaces: Guiding Politics, Staging Design

    DEFF Research Database (Denmark)

    Clausen, Christian; Yoshinaka, Yutaka

    2005-01-01

    This article addresses how insights from the social shaping tradition and political process theory may contribute to an understanding of the sociotechnical design and implementation of change. This idea is pursued through the notion of 'socio-technical spaces' and its delineation, with respect...... political concerns. The paper tentatively points to some analytical implications and to challenges and possibilities for the 'bridging' between spaces otherwise rendered distinct....

  16. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK)

    1976-09-30

    It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.

  17. The Alpha-Helix Concept: Innovative utilization of the Space Station Program. A report to the National Aeronautical and Space Administration requesting establishment of a Sensory Physiology Laboratory on the Space Station

    Science.gov (United States)

    Bandurski, R. S.; Singh, N.

    1983-01-01

    A major laboratory dedicated to biological-medical research is proposed for the Space Platform. The laboratory would focus on sensor physiology and biochemistry since sensory physiology represents the first impact of the new space environment on living organisms. Microgravity and the high radiation environment of space would be used to help solve the problems of prolonged sojourns in space but, more importantly, to help solve terrestrial problems of human health and agricultural productivity. The emphasis would be on experimental use of microorganisms and small plants and small animals to minimize the space and time required to use the Space Platform for maximum human betterment. The Alpha Helix Concept, that is, the use of the Space Platform to bring experimental biomedicine to a new and extreme frontier is introduced so as to better understand the worldly environment. Staffing and instrumenting the Space Platform biomedical laboratory in a manner patterned after successful terrestrial sensory physiology laboratories is also proposed.

  18. Real space renormalization tecniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1984-01-01

    Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt

  19. The Space Puppets

    Science.gov (United States)

    Lago, M. Miguel; Esteban Berea, J.; Miñambres Fernández, M.; Rufino, M.

    2002-01-01

    This proposal is a response to the initiative "Physics on Stage 2" to excite interest in physics and science by a dance and puppetry performance. The purpose of this piece is to show the possibilities and characteristics of entertainment with space knowledge and education for the audience of teachers and children through a show. Two virtually opposite areas (science and arts), both generally inaccessible for children, will be introduced in a funny and amusing way, with the interaction of puppets. Education is not "fashion"... we need to develop an educational package to focus the attention of children on the uses of Space in everyday life. Our world today is mainly logic and mathematical. The presence of art in the children's lives is often scarce or even inexistent. With the performance children will gain a better understanding of space physics through the joy of a dance performance like an educational tool. Dance as body expression, is a very powerful tool to explain and interact with children and teachers. Through dance the physics of movement may be studied in a visual way, within the body's limits. We consider as priority the use of dance as well as theater (in this case, puppet theater) as an efficient and fun didactic method, which we may go further and explain in an imaginative funny way all those complex processes of physics, which are further unknown. Aiming to teach in a relaxing atmosphere the performance is based on the " Earth Space Alphabet", a first dictionary for Primary Schools combining Science, Space and Education... Did you ever realize that people are not interested in something because they do not understand the words or the meaning? The alphabet is intended to meet the overwhelming need that exists for education on space, and allows both teachers and children to learn about the "Art of Teaching Space" combining earth and space language linked by space technology. The performance explains many concepts of physics through a comet puppet, which

  20. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    Science.gov (United States)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  1. Studying Planarian Regeneration Aboard the International Space Station Within the Student Space Flight Experimental Program

    Directory of Open Access Journals (Sweden)

    Vista SSEP Mission 11 Team

    2018-05-01

    Full Text Available The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  2. Implementation of Intellectual Property Law on the International Space Station

    Science.gov (United States)

    Mannix, John G.

    2002-01-01

    Because of the importance of intellectual property rights to the private sector, NASA has developed a reference guide to assist business leaders in understanding how the Intellectual Property Articles of the 1998 Intergovernmental Agreement on the International Space Station will be implemented. This reference guide discusses the statutory, regulatory and programmatic strictures on the deployment, utilization and ownership of intellectual property within the Space Station program. This guide presents an analysis of the intellectual property law aspects of the international agreements and documents pertaining to the International Space Station, and then relates them to NASA's authorities for entering into research and development agreements with private entities. This paper will discuss the reference guide and should aid potential agreement participants in understanding the legal environment for entering into agreements with NASA to fly research and development payloads on the International Space Station.

  3. Voluble: a space-time diagram of the solar system

    Science.gov (United States)

    Aguilera, Julieta C.; SubbaRao, Mark U.

    2008-02-01

    Voluble is a dynamic space-time diagram of the solar system. Voluble is designed to help users understand the relationship between space and time in the motion of the planets around the sun. Voluble is set in virtual reality to relate these movements to our experience of immediate space. Beyond just the visual, understanding dynamic systems is naturally associated to the articulation of our bodies as we perform a number of complex calculations, albeit unconsciously, to deal with simple tasks. Such capabilities encompass spatial perception and memory. Voluble investigates the balance between the visually abstract and the spatially figurative in immersive development to help illuminate phenomena that are beyond the reach of human scale and time. While most diagrams, even computer-based interactive ones, are flat, three-dimensional real-time virtual reality representations are closer to our experience of space. The representation can be seen as if it was "really there," engaging a larger number of cues pertaining to our everyday spatial experience.

  4. Physical Origins of Space Weather Impacts: Open Physics Questions

    Science.gov (United States)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  5. Real space renormalization techniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1985-01-01

    Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt

  6. Creating a Space for Creativity

    DEFF Research Database (Denmark)

    Bøjer, Bodil

    2017-01-01

    Space shapes us but is also shaped by the way we interact with and act within the space. In recent years many schools are being built or rebuilt based on student-centred learning with smaller classrooms and large innovative learning environments (ILEs), expected to foster collaboration and creati......Space shapes us but is also shaped by the way we interact with and act within the space. In recent years many schools are being built or rebuilt based on student-centred learning with smaller classrooms and large innovative learning environments (ILEs), expected to foster collaboration...... teacher), space (the designer) and organisation (management). With my research, I would like to contribute to the understanding of the relationship between the physical learning environment and creative learning processes and the potential of the space as a tool to stimulate creativity. In my poster...... presentation at ‘Educational Architecture’ I will present a case study from my PhD-project where I developed a new ILE at a Danish municipal school in collaboration with the design agency Rune Fjord Studio. A starting point for the project was to examine if and how involving teachers and management...

  7. Iconic Religion in Urban Space

    NARCIS (Netherlands)

    Meyer, B.; Knott, Kim; Krech, Volkhard

    2016-01-01

    In order to understand current dynamics of religious diversity, a focus on the tangible presence of religion and the co-existence of new and longstanding religious buildings, sites and artifacts in urban spaces is a fruitful starting point. Launching the notion of iconic religion, this introduction

  8. Quantum mechanics in an evolving Hilbert space

    Science.gov (United States)

    Artacho, Emilio; O'Regan, David D.

    2017-03-01

    Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalization, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fiber bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge implied by a smoothly varying basis set readily connects with Berry's formalism for geometric phases. Generalized expressions for the Berry connection and curvature are obtained for a parameter-dependent occupied Hilbert space spanned by nonorthogonal Wannier functions. The formalism is applicable to basis sets made of atomic-like orbitals and also more adaptative moving basis functions (such as in methods using Wannier functions as intermediate or support bases), but should also apply to other situations in which nonorthogonal functions or related projectors should arise. The formalism is applied to the time-dependent quantum evolution of electrons for moving atoms. The geometric insights provided here allow us to propose new finite-difference time integrators, and also better understand those already proposed.

  9. Transition probability spaces in loop quantum gravity

    Science.gov (United States)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  10. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  11. Thinking Egyptian: Active Models for Understanding Spatial Representation.

    Science.gov (United States)

    Schiferl, Ellen

    This paper highlights how introductory textbooks on Egyptian art inhibit understanding by reinforcing student preconceptions, and demonstrates another approach to discussing space with a classroom exercise and software. The alternative approach, an active model for spatial representation, introduced here was developed by adapting classroom…

  12. Bigger eyes in a wider universe: The American understanding of Earth in outer space, 1893--1941

    Science.gov (United States)

    Prosser, Jodicus Wayne

    Between 1893 and 1941, the understanding of the Milky Way galaxy within the American culture changed from a sphere to a spiral and Earth's location within it changed from the center to the periphery. These changes were based primarily upon scientific theories developed at Mount Wilson Observatory near Pasadena, California. This dissertation is an "astrosophy" that traces the history of changing depictions of the Milky Way in selected published sources and identifies key individuals, theories and technologies involved. It also demonstrates why the accepted depictions of the universe envisioned at Mount Wilson were cultural-scientific products created, in part, as the result of place. Southern California became the hearth of a culture that justified its superiority based upon its unique climate. Clear skies, remarkable visibility, and a perceived existence of intense natural light became the basis for the promotion of Mount Wilson as the premier location for astronomical observations. Conservation, en plein air paintings, and the concept of pays age moralisé are Southern Californian cultural products of the early 1900s that promoted an idealized society capable of exceptional intellectual endeavors and scientific accomplishments. The efforts of astronomers Hale, Shapley, Adams, Hubble and Ritchey resulted in the changing American understanding of the universe. This dissertation reveals how the diverse social interactions of these astronomers intersected Arroyo Seco meetings, women's organizations, the Valley Hunt Club elites, and philanthropic groups that comprised the schizophrenic culture of Pasadena. Their astronomical theories are compared to other aspects of the Southern Californian culture revealed in the writings of Raymond Chandler, Nathanael West and John Fante. The desire of astronomers to gain prestige from their discoveries is compared to competition in the creative processes of Hollywood. The theories created by astronomers and the films of the motion

  13. Kin-aesthetic Space-making

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2016-01-01

    -Francois Lyotard’s Gestus , discussing the work-of-art as a sensuously expressed ‘torsion’ of space/ time/ matter, producing its own space/ time/ matter. Erin Brannigan in Dancefilm uses the gesture-model as well, and points to a hybrid practice where dance and film work on each other. Likewise Shaun Gallagher...... as well as their production of meaning. Concurrently the practice questions presentation/ representation and creator/ spectator relations. Gesture-models call for an understanding of the work-of-art as creating affordance; affordance in the sense that effects generated between embodied-enactive perception......’s How the Body Shapes the Mind forms part of the theoretical approach to motile kin-aesthetical forces of art-making, underlying this paper. In my practice I work with body- and space gestures, interchanging through a ‘third’ material, featured on screens. The hybrid production includes animated 2 and 3...

  14. Building on IPY Data, Collaborations and Infrastructure to Understand the Changing Poles (Invited)

    Science.gov (United States)

    Bell, R. E.; Krupnik, I.; Hik, D.; Alverson, K. D.; Drinkwater, M. R.

    2010-12-01

    In contrast to previous IPY programs that were driven by a central organizing group, the 2007-9 IPY emerged from more than 1000 ideas provided by the global science community. This global IPY planning process produced six major themes that framed the IPY programs. Three themes focused on change at the poles, one focused on probing the frontiers of the polar science, one targeted on using the polar regions as vantage points to look beyond into space and a sixth theme targeted integrated studies of polar cultural, historical and social processes. The results of the IPY 2007-9 are just beginning to emerge. Benchmark data sets were acquired such as coordinated imaging of the poles from space, systematic ocean measurements and a census of marine life. IPY programs have documented how ongoing polar change from permafrost to ecosystems varies regionally depending on local conditions. Analysis of past change in ecosystems, sediment cores and numeric models indicate that during periods with elevated temperatures and atmospheric CO2, the West Antarctic ice sheet can collapse repeatedly. Studies of the polar oceans have confirmed a strong connection between the mid-latitudes and polar processes. The efforts to explore the poles have revealed explosive volcanism beneath the Arctic Ocean, strong genetic similarities between microbes at the two poles and dynamic processes at the base of the East Antarctic ice sheet. IPY programs looking beyond the poles imaged new galaxies and identified new linkages between solar output and weather. The early insights from IPY 2007-9 are remarkable. Building on these will be a challenge for the science community and science agencies over the next decade. The IPY data must be archived and made available to the broad science community to ensure it is preserved as a vital benchmark. The collaborations between scientists, agencies, Arctic residents and institutions initiated by the IPY structure must be fostered and continued. Successful scientific

  15. The photochemistry and kinetics of chlorine compounds important to stratospheric mid-latitude ozone destruction

    Science.gov (United States)

    Goldfarb, Leah

    1997-09-01

    The catalytic destruction of stratospheric ozone via chlorinated species was first proposed in the 1970's. Since that time a decline in column ozone abundance in the polar regions as well as at mid-latitudes has been observed. Much of this reduction has been attributed to the increases in anthropogenic chlorine compounds such as CFCs. This study summarizes experimental results obtained using pulsed-photolysis resonance fluorescence and pulsed- photolysis long-path absorption methods to study processes important to chlorine-catalyzed ozone destruction: the quantum yields of the products in the dissociation of ClONO2 and the reactions of free radicals with ClONO2 and ClO. The quantum yields for the production of O, Cl and ClO from ClONO2 were studied at specific laser wavelengths (193, 222, 248, and 308 nm). Cl and ClO yields were comparable at nearly all the wavelengths, expect for 193 nm, where the O atom yield was appreciable. The yields at 308 nm (a wavelength available in the stratosphere) were 0.64 ± 0.17 for Cl, 0.37 ± 0.18 for ClO and product yield for the former reaction, previously unreported, was determined to be ~1. The kinetics of the reaction of O atoms with ClO were measured using a new experimental system built specifically to investigate such radical-radical reactions. A slight negative temperature dependence (E/B = -90 ± 30) was observed over the temperature range (227-363 K). From the measured Arrhenius equation the rate constant at 240 K is 4.1 × 10-11 cm3molecule-1s-1 which is in excellent agreement (l.4% greater) with the currently recommended value. This observation is significant, since this reaction is the rate limiting the dominate chlorine catalytic cycle that destroys O3 near 40 km. To analyze the implications of the kinetic and photochemical information from this work, a box model was constructed. The vertical profile of ozone concentrations and loss rates calculated by this simple model compare well with atmospheric measurements and

  16. Spaces an introduction to real analysis

    CERN Document Server

    Lindstrøm, Tom L

    2017-01-01

    Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis ...

  17. Understanding Relationships between Health, Ethnicity, Place and the Role of Urban Green Space in Deprived Urban Communities

    Directory of Open Access Journals (Sweden)

    Jenny Roe

    2016-07-01

    Full Text Available Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523 to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID segmentation analyses identified three distinct general health segments in our sample ranging from “very good” health (people of Indian origin, to ”good” health (white British, and ”poor” health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups, labelled ”Mixed BME” in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in ”Mixed BME”. Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME

  18. Understanding Relationships between Health, Ethnicity, Place and the Role of Urban Green Space in Deprived Urban Communities

    Science.gov (United States)

    Roe, Jenny; Aspinall, Peter A.; Ward Thompson, Catharine

    2016-01-01

    Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from “very good” health (people of Indian origin), to ”good” health (white British), and ”poor” health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled ”Mixed BME” in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in ”Mixed BME”. Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this

  19. Understanding Relationships between Health, Ethnicity, Place and the Role of Urban Green Space in Deprived Urban Communities.

    Science.gov (United States)

    Roe, Jenny; Aspinall, Peter A; Ward Thompson, Catharine

    2016-07-05

    Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from "very good" health (people of Indian origin), to "good" health (white British), and "poor" health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled "Mixed BME" in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in "Mixed BME". Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this can play an

  20. Social risk, stigma and space: key concepts for understanding HIV vulnerability among black men who have sex with men in New York City.

    Science.gov (United States)

    Parker, Caroline M; Garcia, Jonathan; Philbin, Morgan M; Wilson, Patrick A; Parker, Richard G; Hirsch, Jennifer S

    2017-03-01

    Black men who have sex with men in the USA face disproportionate incidence rates of HIV. This paper presents findings from an ethnographic study conducted in New York City that explored the structural and socio-cultural factors shaping men's sexual relationships with the goal of furthering understandings of their HIV-related vulnerability. Methods included participant observation and in-depth interviews with 31 Black men who have sex with men (three times each) and 17 key informants. We found that HIV vulnerability is perceived as produced through structural inequalities including economic insecurity, housing instability, and stigma and discrimination. The theoretical concepts of social risk, intersectional stigma, and the social production of space are offered as lenses through which to analyse how structural inequalities shape HIV vulnerability. We found that social risk shaped HIV vulnerability by influencing men's decisions in four domains: 1) where to find sexual partners, 2) where to engage in sexual relationships, 3) what kinds of relationships to seek, and 4) whether to carry and to use condoms. Advancing conceptualisations of social risk, we show that intersectional stigma and the social production of space are key processes through which social risk generates HIV vulnerability among Black men who have sex with men.

  1. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012

    Science.gov (United States)

    Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin

    2015-04-01

    The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.

  2. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  3. Comprendiendo la aparición de los protocolos sociales en MySpace: impacto y ramificaciones Understanding the Emergence of Social Protocols on MySpace: Impact and its Ramifications

    Directory of Open Access Journals (Sweden)

    Hiesun Cecilia Suhr

    2010-03-01

    Full Text Available En los últimos años, MySpace ha sido crucial para promover el aumento de los seguidores de músicos independientes y ha representado un papel muy importante a la hora de ayudar a artistas populares a mantener las comunidades de fans. La popularidad de MySpace ha ido acompañada del establecimiento de protocolos sociales que han permitido a los músicos establecer vínculos entre ellos de una manera eficaz y exitosa. Estos protocolos han servido de inspiración para publicar varios libros (como «MySpace Music Profit Monster!: Proven Online Marketing Strategies!» de Nicky Kalliongis con consejos y estrategias para los músicos. Si bien, algunos de estos protocolos pretenden conocer el aspecto tecnológico de MySpace, otros protocolos están directamente relacionados con el aprendizaje de una manera particular de conexión en red a través de MySpace. Además, estas prácticas son consideradas un trabajo serio, ya que requieren mucho tiempo y habilidades de conexión en red para lograr un cierto nivel de éxito, es decir, aumentar el número de amigos en la red personal. Así que, en este artículo, se analizan los protocolos sociales emergentes en MySpace como una forma de trabajo afectivo e inmaterial. La autora sostiene que la implementación de algunos consejos, como los proporcionados por expertos en MySpace, posiblemente pueda tener un efecto regresivo en las prácticas de los músicos en redes sociales, ya que podrían estandarizarizarse y volverse repetitivas. En conjunto, este artículo describe la evolución de My - Space, sobre todo en lo que respecta a la decreciente popularidad del sitio como una tendencia actual.Over the recent years, MySpace has been vital to fostering the growth of independent musicians’ followings and have played critical roles in helping mainstream artists maintain fan communities. The popularity of MySpace has been accompanied by the establishment of social protocols which allow musicians to network with

  4. An Argument for Design Space Reflection

    DEFF Research Database (Denmark)

    Dove, Graham; Halskov, Kim; Hansen, Nicolai Brodersen

    2016-01-01

    We argue that documenting, revisiting and reflecting on the design space of a project provides three important benefits. First it increases our awareness of the constraints introduced by particular design choices. Second, this qualifies our understanding of the way a design space has been filtered...... by design activities. Third we are prompted to challenge these constraints and reconsider disregarded opportunities. To support this argument, we revisit key activities from two projects in our interaction design lab’s portfolio, selected because of the detailed documentation available. We also introduce...... SnapShot, the web-based tool we are developing for this method of design space reflection. Based on these examples, we present a critical discussion and outline areas of future research....

  5. Synoptic climate change as a driver of late Quaternary glaciations in the mid-latitudes of the Southern Hemisphere

    Science.gov (United States)

    Rother, H.; Shulmeister, J.

    2006-05-01

    The relative timing of late Quaternary glacial advances in mid-latitude (40-55° S) mountain belts of the Southern Hemisphere (SH) has become a critical focus in the debate on global climate teleconnections. On the basis of glacial data from New Zealand (NZ) and southern South America it has been argued that interhemispheric synchrony or asynchrony of Quaternary glacial events is due to Northern Hemisphere (NH) forcing of SH climate through either the ocean or atmosphere systems. Here we present a glacial snow-mass balance model that demonstrates that large scale glaciation in the temperate and hyperhumid Southern Alps of New Zealand can be generated with moderate cooling. This is because the rapid conversion of precipitation from rainfall to snowfall drives massive ice accumulation at small thermal changes (1-4°C). Our model is consistent with recent paleo-environmental reconstructions showing that glacial advances in New Zealand during the Last Glacial Maximum (LGM) and the Last Glacial Interglacial Transition (LGIT) occurred under very moderate cooling. We suggest that such moderate cooling could be generated by changes in synoptic climatology, specifically through enhanced regional flow of moist westerly air masses. Our results imply that NH climate forcing may not have been the exclusive driver of Quaternary glaciations in New Zealand and that synoptic style climate variations are a better explanation for at least some late Quaternary glacial events, in particular during the LGIT (e.g. Younger Dryas and/or Antarctic Cold Reversal).

  6. Synoptic climate change as a driver of late Quaternary glaciations in the mid-latitudes of the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    H. Rother

    2006-01-01

    Full Text Available The relative timing of late Quaternary glacial advances in mid-latitude (40-55° S mountain belts of the Southern Hemisphere (SH has become a critical focus in the debate on global climate teleconnections. On the basis of glacial data from New Zealand (NZ and southern South America it has been argued that interhemispheric synchrony or asynchrony of Quaternary glacial events is due to Northern Hemisphere (NH forcing of SH climate through either the ocean or atmosphere systems. Here we present a glacial snow-mass balance model that demonstrates that large scale glaciation in the temperate and hyperhumid Southern Alps of New Zealand can be generated with moderate cooling. This is because the rapid conversion of precipitation from rainfall to snowfall drives massive ice accumulation at small thermal changes (1-4°C. Our model is consistent with recent paleo-environmental reconstructions showing that glacial advances in New Zealand during the Last Glacial Maximum (LGM and the Last Glacial Interglacial Transition (LGIT occurred under very moderate cooling. We suggest that such moderate cooling could be generated by changes in synoptic climatology, specifically through enhanced regional flow of moist westerly air masses. Our results imply that NH climate forcing may not have been the exclusive driver of Quaternary glaciations in New Zealand and that synoptic style climate variations are a better explanation for at least some late Quaternary glacial events, in particular during the LGIT (e.g. Younger Dryas and/or Antarctic Cold Reversal.

  7. GIS oriented analysis of tourist time-space patterns to support sustainable tourism development

    NARCIS (Netherlands)

    Knaap, van der W.G.M.

    1999-01-01

    Tourism and tourism development create major changes in the environment. To determine their impact on environmental sustainability, it is necessary to understand tourist behaviour. Time, space and context are important components in describing tourist time-space behaviour. Tourist time-space

  8. Green Space, Violence, and Crime: A Systematic Review.

    Science.gov (United States)

    Bogar, Sandra; Beyer, Kirsten M

    2016-04-01

    To determine the state of evidence on relationships among urban green space, violence, and crime in the United States. Major bibliographic databases were searched for studies meeting inclusion criteria. Additional studies were culled from study references and authors' personal collections. Comparison among studies was limited by variations in study design and measurement and results were mixed. However, more evidence supports the positive impact of green space on violence and crime, indicating great potential for green space to shape health-promoting environments. Numerous factors influence the relationships among green space, crime, and violence. Additional research and standardization among research studies are needed to better understand these relationships. © The Author(s) 2015.

  9. [Establishment of design space for production process of traditional Chinese medicine preparation].

    Science.gov (United States)

    Xu, Bing; Shi, Xin-Yuan; Qiao, Yan-Jiang; Wu, Zhi-Sheng; Lin, Zhao-Zhou

    2013-03-01

    The philosophy of quality by design (QbD) is now leading the changes in the drug manufacturing mode from the conventional test-based approach to the science and risk based approach focusing on the detailed research and understanding of the production process. Along with the constant deepening of the understanding of the manufacturing process, the design space will be determined, and the emphasis of quality control will be shifted from the quality standards to the design space. Therefore, the establishment of the design space is core step in the implementation of QbD, and it is of great importance to study the methods for building the design space. This essay proposes the concept of design space for the production process of traditional Chinese medicine (TCM) preparations, gives a systematic introduction of the concept of the design space, analyzes the feasibility and significance to build the design space in the production process of traditional Chinese medicine preparations, and proposes study approaches on the basis of examples that comply with the characteristics of traditional Chinese medicine preparations, as well as future study orientations.

  10. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    OpenAIRE

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing

    2017-01-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the ...

  11. Hilbert space methods in partial differential equations

    CERN Document Server

    Showalter, Ralph E

    1994-01-01

    This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

  12. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  13. The Outer Space Treaty

    Science.gov (United States)

    Johnson, Christopher Daniel

    2018-01-01

    Negotiated at the United Nations and in force since 1967, the Outer Space Treaty has been ratified by over 100 countries and is the most important and foundational source of space law. The treaty, whose full title is "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies," governs all of humankind's activities in outer space, including activities on other celestial bodies and many activities on Earth related to outer space. All space exploration and human spaceflight, planetary sciences, and commercial uses of space—such as the global telecommunications industry and the use of space technologies such as position, navigation, and timing (PNT), take place against the backdrop of the general regulatory framework established in the Outer Space Treaty. A treaty is an international legal instrument which balances rights and obligations between states, and exists as a kind of mutual contract of shared understandings, rights, and responsibilities between them. Negotiated and drafted during the Cold War era of heightened political tensions, the Outer Space Treaty is largely the product of efforts by the United States and the USSR to agree on certain minimum standards and obligations to govern their competition in "conquering" space. Additionally, the Outer Space Treaty is similar to other treaties, including treaties governing the high seas, international airspace, and the Antarctic, all of which govern the behavior of states outside of their national borders. The treaty is brief in nature and only contains 17 articles, and is not comprehensive in addressing and regulating every possible scenario. The negotiating states knew that the Outer Space Treaty could only establish certain foundational concepts such as freedom of access, state responsibility and liability, non-weaponization of space, the treatment of astronauts in distress, and the prohibition of non-appropriation of

  14. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  15. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  16. Free-piston Stirling technology for space power

    Science.gov (United States)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  17. Radio stimulation and diagnostics of space plasmas. Progress report

    International Nuclear Information System (INIS)

    Lee, Minchang.

    1993-02-01

    This report describes the investigation of the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures

  18. Representing space in the scientific revolution

    CERN Document Server

    Miller, David Marshall

    2014-01-01

    The novel understanding of the physical world that characterized the Scientific Revolution depended on a fundamental shift in the way its protagonists understood and described space. At the beginning of the seventeenth century, spatial phenomena were described in relation to a presupposed central point; by its end, space had become a centerless void in which phenomena could only be described by reference to arbitrary orientations. David Marshall Miller examines both the historical and philosophical aspects of this far-reaching development, including the rejection of the idea of heavenly sphere

  19. Spaces of interaction, places for experience

    CERN Document Server

    Benyon, David

    2014-01-01

    Spaces of Interaction, Places for Experience is a book about Human-Computer Interaction (HCI), interaction design (ID) and user experience (UX) in the age of ubiquitous computing. The book explores interaction and experience through the different spaces that contribute to interaction until it arrives at an understanding of the rich and complex places for experience that will be the focus of the next period for interaction design. The book begins by looking at the multilayered nature of interaction and UX-not just with new technologies, but with technologies that are embedded in the world. Peop

  20. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  1. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  2. Elements of Hilbert spaces and operator theory

    CERN Document Server

    Vasudeva, Harkrishan Lal

    2017-01-01

    The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...

  3. Validation of the Martilli's Urban Boundary Layer Scheme with measurements from two mid-latitude European cities

    Science.gov (United States)

    Hamdi, R.; Schayes, G.

    2005-07-01

    The Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate the Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme is able to reproduce the generation of the Urban Heat Island (UHI) effect over urban area and represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of the Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  4. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  5. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  6. Space as an inspiring context

    Science.gov (United States)

    Stancu, Cristina

    2017-04-01

    Using space as context to inspire science education tapps into the excitement of generations of discovering the unknown resulting in unprecedented public participation. Educators are finding exciting and age appropiate materials for their class that explore science, technology, engineering and mathematics. Possible misconceptions are highlighted so that teachers may plan lessons to facilitate correct conceptual understanding. With a range of hands-on learning experiences, Web materials and online ,opportunities for students, educators are invited to take a closer look to actual science missions. This session leverages resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on various space agencies programs.

  7. Adaptation by Stealth: Understanding climate information use across scales and decision spaces in water management in the United States

    Science.gov (United States)

    Kirchhoff, C.; Vang Rasmussen, L.; Lemos, M. C.

    2016-12-01

    While there has been considerable focus on understanding how factors related to the creation of climate knowledge affect its uptake and use, less attention has been paid to the actors, decisions, and processes through which climate information supports, or fails to support, action. This is particularly the case concerning how different scales of decision-making influence information uptake. In this study, we seek to understand how water and resource managers' decision space influences climate information use in two Great Lakes watersheds. We find that despite the availability of tailored climate information, actual use of information in decision making remains low. Reasons include: a) lack of willingness to place climate on agendas because local managers perceive climate change as politically risky and a difficult and intangible problem; b) lack of formal mandate or authority at the city and county scale to translate climate information into on-the-ground action, c) problems with the information itself, and d) perceived lack of demand for climate information by those managers who have the mandate and authority (e.g. at the state level) to use (or help others use) climate information. Our findings suggest that 1) climate scientists and information brokers should produce information that meets a range of decision needs and reserve intensive tailoring efforts for decision makers who have authority and willingness to employ climate information, 2) without support from higher levels of decision-making (e.g. state) it is unlikely that climate information use for adaptation decisions will accelerate significantly in the next few years, and 3) the trend towards adopting more sustainability and resilience practices over climate-specific actions should be supported as an important component of the climate adaptation repertoire.

  8. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    Science.gov (United States)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; hide

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  9. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    Science.gov (United States)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  10. The dynamic landscape of virtual space explored through a multidisciplinary kaleidoscope

    Directory of Open Access Journals (Sweden)

    C.-I. REZEANU

    2017-07-01

    Full Text Available A social life disconnected from space it`s difficult to conceive. However, in sociology, the concept of space is still underdeveloped, missing from theories, dictionaries, or encyclopaedias. For more than a century, sociologists have assumed space as a passive scene for social actions, and implied as material, static, continuous and linearly travelled. In the new context of information society, economic globalisation, and postmodern hyper-reality, scholars question the conventional definitions of space. We believe sociologists will arrive at a more nuanced understanding of space, by taking an interdisciplinary approach, and focusing on how space is lived. We use virtual space as a proxy for understanding how complex space can be, and frame it through the concept of “cultural landscape” to capture its relational, dynamic, and socially constructed dimensions. Our aim is to illustrate the dynamism, versatility, and fluidity of virtual space by moving from one discipline and theoretical perspective to the other and interpreting the newly configured landscapes. We show that virtual space is a discontinuous imaginary process, organised in networks with multiple layers, experienced as a journey into a narrative text or as a ”consensual hallucination”, where the evanescence of the body and the anonymity of the self boost the quest for authenticity, self-discovery, self-disclosure and intimacy. Nonetheless, virtual space, due to its potential to equalise statuses, minimise authority and multiply the audiences of messages, is becoming the enabler of Habermasian communicative rationality, rousing moral consciousness and triggering civic actions.

  11. SCA Waveform Development for Space Telemetry

    Science.gov (United States)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  12. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  13. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    Science.gov (United States)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  14. The Philosophical Practitioner and the Curriculum Space

    DEFF Research Database (Denmark)

    Dredge, Dianne; Benckendorff, Pierre; Day, Michele

    2014-01-01

    the balance between higher order knowledge in liberal education and skills-based vocational education required by industry; and it builds upon the Philosophic Practitioner Education to conceptualise a curriculum space that is socially constructed, dynamic and flexible. The proposed framework incorporates......This chapter reviews contemporary debates about tourism and hospitality education to conceptualise a curriculum space framework that can be used to facilitate understanding and decision making. The chapter is conceptual and makes two key contributions: it draws together diverse discourses about...

  15. Validation of Martilli's urban boundary layer scheme with measurements from two mid-latitude European cities

    Directory of Open Access Journals (Sweden)

    R. Hamdi

    2007-08-01

    Full Text Available Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE. The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE and its urban boundary layer (UBL campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  16. An Overview of Science Challenges Pertaining to our Understanding of Extreme Geomagnetically Induced Currents. Chapter 8

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti A.

    2018-01-01

    Vulnerability of man-made infrastructure to Earth-directed space weather events is a serious concern for today's technology-dependent society. Space weather-driven geomagnetically induced currents (GICs) can disrupt operation of extended electrically conducting technological systems. The threat of adverse impacts on critical technological infrastructure, like power grids, oil and gas pipelines, and communication networks, has sparked renewed interest in extreme space weather. Because extreme space weather events have low occurrence rate but potentially high impact, this presents a major challenge for our understanding of extreme GIC activity. In this chapter, we discuss some of the key science challenges pertaining to our understanding of extreme events. In addition, we present an overview of GICs including highlights of severe impacts over the last 80 years and recent U.S. Federal actions relevant to this community.

  17. What English Can Contribute to Understanding Sexual Identities

    Science.gov (United States)

    Ellis, Viv

    2009-01-01

    English in schools is a productive curriculum space for young people to learn about sexuality, to develop a sense of their identity as sexual beings, and to understand the importance of equality and social justice. Drawing on John Dixon's theory of "personal growth," the author (a British educator) explains how teachers' attitudes about learning…

  18. Space Archaeology: Attribute, Object, Task and Method

    Science.gov (United States)

    Wang, Xinyuan; Guo, Huadong; Luo, Lei; Liu, Chuansheng

    2017-04-01

    Archaeology takes the material remains of human activity as the research object, and uses those fragmentary remains to reconstruct the humanistic and natural environment in different historical periods. Space Archaeology is a new branch of the Archaeology. Its study object is the humanistic-natural complex including the remains of human activities and living environments on the earth surface. The research method, space information technologies applied to this complex, is an innovative process concerning archaeological information acquisition, interpretation and reconstruction, and to achieve the 3-D dynamic reconstruction of cultural heritages by constructing the digital cultural-heritage sphere. Space archaeology's attribute is highly interdisciplinary linking several areas of natural and social and humanities. Its task is to reveal the history, characteristics, and patterns of human activities in the past, as well as to understand the evolutionary processes guiding the relationship between human and their environment. This paper summarizes six important aspects of space archaeology and five crucial recommendations for the establishment and development of this new discipline. The six important aspects are: (1) technologies and methods for non-destructive detection of archaeological sites; (2) space technologies for the protection and monitoring of cultural heritages; (3) digital environmental reconstruction of archaeological sites; (4) spatial data storage and data mining of cultural heritages; (5) virtual archaeology, digital reproduction and public information and presentation system; and (6) the construction of scientific platform of digital cultural-heritage sphere. The five key recommendations for establishing the discipline of Space Archaeology are: (1) encouraging the full integration of the strengths of both archaeology and museology with space technology to promote the development of space technologies' application for cultural heritages; (2) a new

  19. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  20. Quarrels over Sacred Space. The Tlajomulco Doctrina in the Late-Colonial Period

    Directory of Open Access Journals (Sweden)

    José Refugio de la Torre Curiel

    2004-04-01

    Full Text Available This article  explores how historical  actors who interact in a sacred space create, confront and rebuild it in several ways. The author chose to study the Tlajomulco doctrina in the  late colonial period in order to analyze some changes undergone during the secularization of a Franciscan doctrine. He also studies the institutional dimension of the doctrine in order to understand how the Guadalajara diocese  and  the Franciscan province of Jalisco related to this particular sacred  space. The  analysis of quarrels over property and authority over the doctrine enables the author to discuss what this sacred  space meant to ministers and  parishioners  and  to conclude that each form of interaction with a sacred  space represents a particular way of understanding society and, more specifically, religiosity.

  1. Space polypropulsion

    CSIR Research Space (South Africa)

    Kellett, BJ

    2008-04-01

    Full Text Available understandably, fallen by the wayside. NASAs putative atom bomb propelled mission, coincidently also baptized ORION, was also curtailed. And last of all, the use of lasers for propulsion remains firmly “stuck in the doldrums.” This mode of access to space...) Except for LOX, very polluting. V. high ζ Launch costs: $20,000/kg. Gas guns. 1 1-4 km/s Most of the system mass stays on the ground. Recoil problems. Large NASA gas gun project abandoned. (too many “g’s”) E-M guns: rail/coil. 1.5 1-10 km...

  2. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere: A climatological study

    Science.gov (United States)

    Lee, C. C.; Chen, W. S.

    2018-04-01

    The aim of this study is to examine the effects of Es-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere. The Es-layer parameters and spread-F appearance of the 23rd solar cycle (1996-2008) are recorded by the Kokubunji ionosonde. The Es-layer parameters are foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). In order to completely explore the effects, the pre-midnight and post-midnight data are classified by seasons, solar activities, and geomagnetic conditions. Results show that the spread-F occurs more frequently in post-midnight and in summer. And, the occurrence probabilities of spread-F are greater, when the solar activity is lower. For the occurrence probabilities of spread-F versus foEs and Δf under geomagnetic quiet-conditions, the trend is increasing, when the associated probabilities are significant. These indicate that the spread-F occurrence increases with increasing foEs and/or Δf. Further, the increasing trends demonstrate that polarization electric fields generated in Es-layer would be helpful to generate spread-F, through the electrodynamical coupling of Es-layer and F-region. Moreover, this electrodynamical coupling is efficient not only under quiet-conditions but under disturbed-conditions, since the significant increasing trend can also be found under disturbed-conditions. Regarding the occurrence probabilities of spread-F versus fbEs, the evident trends are not in the majority. This implies that fbEs might not be a major factor for the spread-F formation.

  3. Geomagnetic activity at Northern Hemisphere's mid-latitude ground stations: How much can be explained using TS05 model

    Science.gov (United States)

    Castillo, Yvelice; Pais, Maria Alexandra; Fernandes, João; Ribeiro, Paulo; Morozova, Anna L.; Pinheiro, Fernando J. G.

    2017-12-01

    For the 2007 to 2014 period, we use a statistical approach to evaluate the performance of Tsyganenko and Sitnov [2005] semi-empirical model (TS05) in estimating the magnetospheric transient signal observed at four Northern Hemisphere mid-latitude ground stations: Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA. Using hourly mean data, we find that the TS05 performance is clearly better for the X (North-South) than for the Y (East-West) field components and for more geomagnetically active days as determined by local K-indices. In ∼ 50% (X) and ∼ 30% (Y) of the total number of geomagnetically active days, correlation values yield r ≥ 0.7. During more quiet conditions, only ∼ 30% (X) and ∼ 15% (Y) of the number of analyzed days yield r ≥ 0.7. We compute separate contributions from different magnetospheric currents to data time variability and to signal magnitude. During more active days, all tail, symmetric ring and partial ring currents contribute to the time variability of X while the partial ring and field aligned currents contribute most to the time variability of Y. The tail and symmetric ring currents are main contributors to the magnitude of X. In the best case estimations when r ≥ 0.7, remaining differences between observations and TS05 predictions could be explained by global induction in the Earth's upper layers and crustal magnetization. The closing of field aligned currents through the Earth's center in the TS05 model seems to be mainly affecting the Y magnetospheric field predictions.

  4. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  5. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  6. Space-time design of the public city

    CERN Document Server

    Thomaier, Susanne; Könecke, Benjamin; Zedda, Roberto; Stabilini, Stefano

    2013-01-01

    Time has become an increasingly important topic in urban studies and urban planning. The spatial-temporal interplay is not only of relevance for the theory of urban development and urban politics, but also for urban planning and governance. The space-time approach focuses on the human being with its various habits and routines in the city. Understanding and taking those habits into account in urban planning and public policies offers a new way to improve the quality of life in our cities. Adapting the supply and accessibility of public spaces and services to the inhabitants’ space-time needs calls for an integrated approach to the physical design of urban space and to the organization of cities. In the last two decades the body of practical and theoretical work on urban space-time topics has grown substantially. The book offers a state of the art overview of the theoretical reasoning, the development of new analytical tools, and practical experience of the space-time design of public cities in major Europea...

  7. A Journey into Reciprocal Space; A crystallographer's perspective

    Science.gov (United States)

    Glazer, A. M.

    2017-10-01

    This book introduces undergraduate and graduate students to a crystallographer's view of real and reciprocal space, a concept that has been of particular use by crystallographers to understand the patterns of spots when x-rays are diffracted by crystals. It then proceeds to develop the concept in a form suitable for physics applications; such as how solid-state physicists use reciprocal space to explain various solid-state properties such as thermal and electrical phenomena.

  8. The Design Space

    DEFF Research Database (Denmark)

    Heape, Chris

    was to also understand what was meaningful to the students in their process of designing, a hermeneutic phenomenological research perspective was also adopted throughout this study, where human actions and language are considered as expressions of meaning in the context within which they occur. From......, the one effecting the other. As much as the processes of construction, exploration and expansion of a Design Space can be described in general terms as social and as design activities, it also emerged that there are a number of interrelated processes, sensibilities and skills in constant transaction...... the shifting flow of adjustments and perspectives necessary to relate to the ongoing contingency of a design task. From these interweavings a design proposal is gradually pulled to the fore as an emergent composition, a figure of parts that is directly related to the structure and ground of a Design Space...

  9. Optimized Strategies for Detecting Extrasolar Space Weather

    Science.gov (United States)

    Hallinan, Gregg

    2018-06-01

    Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.

  10. Global Precipitation Measurement (GPM) L-6

    Science.gov (United States)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2013-10-01

    The Global Precipitation Measurement (GPM) mission will advance the measurement of global precipitation, making possible high spatial resolution precipitation measurements. GPM will provide the first opportunity to calibrate measurements of global precipitation across tropical, mid-latitude, and polar regions. The GPM mission has the following scientific objectives: (1) Advance precipitation measurement capability from space through combined use of active and passive remote-sensing techniques; (2) Advance understanding of global water/energy cycle variability and fresh water availability; (3) Improve climate prediction by providing the foundation for better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release in the Earth's atmosphere; (4) Advance Numerical Weather Prediction (NWP) skills through more accurate and frequent measurements of instantaneous rain rates; and (5) Improve high impact natural hazard (flood/drought, landslide, and hurricane hazard) prediction capabilities. The GPM mission centers on the deployment of a Core Observatory carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. GPM, jointly led with the Japan Aerospace Exploration Agency (JAXA), involves a partnership with other international space agencies including the French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory is currently being prepared for shipment to Japan for launch. Launch is scheduled for February 2014 from JAXA's Tanegashima Space Center on an H-IIA 202 launch vehicle.

  11. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  12. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  13. Conflict, Space and Architecture

    Directory of Open Access Journals (Sweden)

    Marc Schoonderbeek

    2017-02-01

    Full Text Available Footprint 19 focuses on the more recent roles of architecture in the contemporary spaces of conflict. Departing from a spatial understanding of geopolitical, climatological and economical conflicts, the various contributions highlight the large scale and phenomenal transitions in the physical world and in society by extrapolating, through examples, the abundance of relations that can be traced between conflict, territory and architecture. Conflict areas often prove to be fertile grounds for innovation and for the emergence of new spatial forms. The issue reports on the state of perpetual global unrest in architecture through a series of articles and case studies that highlight the consequences of conflicts in the places and spaces that we inhabit. In the introduction, these are discussed as an interlinked global reality rather than as isolated incidents. In doing so, the contemporary spaces of conflict are positioned in the context of emerging global trends, conditions, and discourses in the attempt to address their indicative symptoms while reflecting on their underlying causes.

  14. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  15. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    Science.gov (United States)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  16. The vibrational dynamics of carbon monoxide in a confined space-CO in zeolites.

    Science.gov (United States)

    Nachtigallová, Dana; Bludský, Ota; Otero Areán, Carlos; Bulánek, Roman; Nachtigall, Petr

    2006-11-14

    Based on theoretical calculations, and a survey of infrared spectra of CO adsorbed on different cation exchanged zeolites, a model is proposed to explain the influence of the zeolite framework on the vibrational behaviour of CO confined into small void spaces (zeolite channels and cavities). The concepts developed should help to understand a number of details relevant to both, precise interpretation of IR spectra and a better understanding of the vibrational dynamics of small molecules in a confined space.

  17. Through the Students’ Lens: Photographic Methods for Research in Library Spaces

    Directory of Open Access Journals (Sweden)

    Shailoo Bedi

    2017-06-01

    Full Text Available Abstract Objective – As librarians and researchers, we are deeply curious about how our library users navigate and experience our library spaces. Although we have some data about users’ experiences and wayfinding strategies at our libraries, including anecdotal evidence, statistics, surveys, and focus group discussions, we lacked more in-depth information that reflected students’ real-time experiences as they move through our library spaces. Our objective is to address that gap by using photographic methods for studying library spaces. Methods – We present two studies conducted in two academic libraries that used participant-driven photo-elicitation (PDPE methods. Described simply, photo-elicitation methods involve the use of photographs as discussion prompts in interviews. In both studies presented here, we asked participants to take photographs that reflected their experiences using and navigating our library spaces. We then met with participants for an interview using their photos as prompts to discuss their experiences. Results – Our analysis of students’ photos and interviews provided rich descriptions of student experiences in library spaces. This analysis resulted in new insights into the ways that students navigate the library as well as the ways that signage, furniture, technology, and artwork in the library can shape student experiences in library spaces. The results have proven productive in generating answers to our research questions and supporting practical improvements to our libraries. Additionally, when comparing the results from our two studies we identified the importance of detailed spatial references for understanding student experiences in library spaces, which has implications beyond our institutions. Conclusion – We found that photographic methods were very productive in helping us to understand library users’ experiences and supporting decision-making related to library spaces. In addition, engaging with

  18. Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space

    International Nuclear Information System (INIS)

    Athalye, Vivek; Lustig, Michael; Martin Uecker

    2015-01-01

    In magnetic resonance imaging data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a theoretical framework is needed to analyze how well arbitrary sampling patterns reconstruct unsampled k-space using receive coil information. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a reproducing kernel Hilbert space with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional image-domain g-factor noise analysis to both noise amplification and approximation errors in k-space. This is demonstrated with numerical examples. (paper)

  19. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Science.gov (United States)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups

  20. The space as a natural laboratory of Electrotechnics

    Directory of Open Access Journals (Sweden)

    P. K. Marhavilas

    2008-01-01

    Full Text Available Electricity is a general term for a variety of phenomena resulting from the presence and flow of charge, and “Electro-technics” is the study or the science of practical and industrial applications of electricity. On the other side, the space is mainly characterized by the interaction of energetic charged particles with electric and magnetic fields, which justifies the claim «the space composes a natural laboratory of electrotechnics». This paper reviews present understanding of the dy-namics of the solar-terrestrial environment, and its impacts on the human activity, and explain processes, which establish the space as a natural laboratory of electrotechnics.

  1. Seismology and space-based geodesy

    Science.gov (United States)

    Tralli, David M.; Tajima, Fumiko

    1993-01-01

    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  2. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  3. Urban Public Space Context and Cognitive Psychology Evolution in Information Environment

    Science.gov (United States)

    Feng, Chen; Xu, Hua-wei

    2017-11-01

    The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.

  4. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  5. Third Space Weather Summit Held for Industry and Government Agencies

    Science.gov (United States)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  6. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  7. When creating new learning spaces, the affordance is a key study aspect

    DEFF Research Database (Denmark)

    Dau, Susanne

    2013-01-01

    and individual knowledge development. Through analysis of empirical data, gained through a pragmatic mixed method approach, is the role of different face-to-face as well as online spaces investigated in the view of students, lectures and practitioners understanding. The major findings regards spaces contribution...

  8. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  9. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  10. Shape understanding system machine understanding and human understanding

    CERN Document Server

    Les, Zbigniew

    2015-01-01

    This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.    

  11. Rethinking the Space for Religion

    DEFF Research Database (Denmark)

    What happens to people’s sense of belonging when globalization meets with proclaimed regional identities resting heavily on conceptions of religion and ethnicity? Who are the actors stressing cultural heritage and authenticity as tools for self-understanding? In Rethinking the Space for Religion...... as a political and cultural argument. The approach makes a nuanced and fresh survey for researchers and other initiated readers to engage in....

  12. The method of moments and nested Hilbert spaces in quantum mechanics

    International Nuclear Information System (INIS)

    Adeniyi Bangudu, E.

    1980-08-01

    It is shown how the structures of a nested Hilbert space Hsub(I), associated with a given Hilbert space Hsub(O), may be used to simplify our understanding of the effects of parameters, whose values have to be chosen rather than determined variationally, in the method of moments. The result, as applied to non-relativistic quartic oscillator and helium atom, is to associate the parameters with sequences of Hilbert spaces, while the error of the method of moments relative to the variational method corresponds to a nesting operator of the nested Hilbert space. Difficulties hindering similar interpretations in terms of rigged Hilbert space structures are highlighted. (author)

  13. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space...... coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  14. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  15. Biomechanics Strategies for Space Closure in Deep Overbite

    Directory of Open Access Journals (Sweden)

    Harryanto Wijaya

    2013-07-01

    Full Text Available Space closure is an interesting aspect of orthodontic treatment related to principles of biomechanics. It should be tailored individually based on patient’s diagnosis and treatment plan. Understanding the space closure biomechanics basis leads to achieve the desired treatment objective. Overbite deepening and losing posterior anchorage are the two most common unwanted side effects in space closure. Conventionally, correction of overbite must be done before space closure resulted in longer treatment. Application of proper space closure biomechanics strategies is necessary to achieve the desired treatment outcome. This cases report aimed to show the space closure biomechanics strategies that effectively control the overbite as well as posterior anchorage in deep overbite patients without increasing treatment time. Two patients who presented with class II division 1 malocclusion were treated with fixed orthodontic appliance. The primary strategies included extraction space closure on segmented arch that employed two-step space closure, namely single canine retraction simultaneously with incisors intrusion followed by enmasse retraction of four incisors by using differential moment concept. These strategies successfully closed the space, corrected deep overbite and controlled posterior anchorage simultaneously so that the treatment time was shortened. Biomechanics strategies that utilized were effective to achieve the desired treatment outcome.

  16. The Iranian space endeavor ambitions and reality

    CERN Document Server

    Tarikhi, Parviz

    2015-01-01

    For those who see the trend of progress and movement of the Iranian space endeavor from the outside, it can be difficult to understand what goes on behind the scenes. However, for one who observes these events firsthand, they take on a very different meaning. In this book, the author brings new and different profiles of Iran’s space endeavor to light. Iran claims to be the ninth leading country in the world capable of manufacturing satellites and launching them, plans to land an astronaut on the Moon within a decade, and says its own president plans to be the first Iranian astronaut to travel into space. The author explains in this book that not all of these claims are quite as they seem.  In addition to technical explanations, the book also includes historical, legal, social and cultural aspects of Iran’s space program as well. It is the author’s goal to create a tangible feeling of Iran’s space endeavor for the readers.

  17. LOBSTER: new space x-ray telescopes

    Science.gov (United States)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  18. Space Weather in the Machine Learning Era: A Multidisciplinary Approach

    Science.gov (United States)

    Camporeale, E.; Wing, S.; Johnson, J.; Jackman, C. M.; McGranaghan, R.

    2018-01-01

    The workshop entitled Space Weather: A Multidisciplinary Approach took place at the Lorentz Center, University of Leiden, Netherlands, on 25-29 September 2017. The aim of this workshop was to bring together members of the Space Weather, Mathematics, Statistics, and Computer Science communities to address the use of advanced techniques such as Machine Learning, Information Theory, and Deep Learning, to better understand the Sun-Earth system and to improve space weather forecasting. Although individual efforts have been made toward this goal, the community consensus is that establishing interdisciplinary collaborations is the most promising strategy for fully utilizing the potential of these advanced techniques in solving Space Weather-related problems.

  19. Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy.

    Science.gov (United States)

    Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye

    2017-06-06

    Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments.

  20. Understand B-type stars

    Science.gov (United States)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  1. Problem and Project Based Learning in Hybrid Spaces:Nomads and Artisans

    OpenAIRE

    Ryberg, Thomas; Davidsen, Jacob; Hodgson, Vivien

    2016-01-01

    There is a need within networked learning to understand and conceptualise the interplay between digital and physical spaces or what we could term hybrid spaces. Therefore, we discuss a recent study of students from two different programmes who are engaged in long-term, group-based problem and project based learning. Based on interviews, workshops and observations of students’ actual group practices in open, shared and flexible spaces in Aalborg University (AAU), we identify and discuss how st...

  2. School Leadership and Intercultural Understanding: School Foyers as Situated Spaces for Doing Diversity

    Science.gov (United States)

    Moss, Julianne; O'Mara, Joanne; McCandless, Trevor

    2017-01-01

    Internationally, Intercultural Understanding (ICU) is increasingly prevalent in the field of education. The recent evidence base includes a growing academic literature and examples of specified education policy and curricula. In regards to leveraging ICU, research suggests a multi-level and longitudinal approach is needed to ensure effective and…

  3. A cross-sectional analysis of green space prevalence and mental wellbeing in England.

    Science.gov (United States)

    Houlden, Victoria; Weich, Scott; Jarvis, Stephen

    2017-05-17

    With urbanisation increasing, it is important to understand how to design changing environments to promote mental wellbeing. Evidence suggests that local-area proportions of green space may be associated with happiness and life satisfaction; however, the available evidence on such associations with more broadly defined mental wellbeing in still very scarce. This study aimed to establish whether the amount of neighbourhood green space was associated with mental wellbeing. Data were drawn from Understanding Society, a national survey of 30,900 individuals across 11,096 Census Lower-Layer Super Output Areas (LSOAs) in England, over the period 2009-2010. Measures included the multi-dimensional Warwick-Edinburgh Mental Well-Being Scale (SWEMWBS) and LSOA proportion of green space, which was derived from the General Land Use Database (GLUD), and were analysed using linear regression, while controlling for individual, household and area-level factors. Those living in areas with greater proportions of green space had significantly higher mental wellbeing scores in unadjusted analyses (an expected increase of 0.17 points (95% CI 0.11, 0.23) in the SWEMWBS score for a standard deviation increase of green space). However, after adjustment for confounding by respondent sociodemographic characteristics and urban/rural location, the association was attenuated to the null (regression coefficient B = - 0.01, 95% CI -0.08, 0.05, p = 0.712). While the green space in an individual's local area has been shown through other research to be related to aspects of mental health such as happiness and life satisfaction, the association with multidimensional mental wellbeing is much less clear from our results. While we did not find a statistically significant association between the amount of green space in residents' local areas and mental wellbeing, further research is needed to understand whether other features of green space, such as accessibility, aesthetics or use, are important

  4. Non-Euclidean geometry and curvature two-dimensional spaces, volume 3

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...

  5. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  6. Using n-alkane records to constrain carbon cycle - hydrological cycle coupling: Case study from the Northern Hemisphere mid-latitudes during the PETM

    Science.gov (United States)

    Krishnan, S.; Pagani, M.; Tipple, B. J.

    2010-12-01

    The early Eocene was a warmer world compared to the present and is characterized by rising temperatures interspersed with rapid hyperthermal events. During the largest of these rapid warming events; the Paleocene-Eocene Thermal Maximum (PETM), proxy records suggest that sea surface temperatures (SST) rose by 3-5 deg. C in the tropics (Zachos et al., 2003, Tripati and Elderfield, 2004), >5 deg. C in the Arctic (Sluijs et al., 2006) and perhaps has high as 9 deg. C in some sub-Antarctic regions (Kennett and Stott, 1991; Thomas et al., 1999). This warming is believed to be the result of massive input of 13C-depleted carbon into the ocean-atmosphere system, evidenced by the large negative carbon isotope excursion (CIE) and carbonate dissolution associated with the event. However, there are several questions regarding the exact mechanism of warming and feedbacks between the carbon cycle and climate. Did climate shift prior to the main event that led to the release of isotopically light carbon? Do we observe consistent leads or lags between changes in carbon isotopes and hydrological conditions during warm intervals? This study aims to reconstruct hydrological changes in the in the Northern Hemisphere mid-latitudes during the PETM using terrestrial biomarkers. Terrestrial biomarkers, such leaf-wax lipids stored in sediments, have the unique advantage of recording carbon and hydrogen isotopic compositions of atmospheric CO2 (modified by plant fractionation) and precipitation (modified by plant fractionation and evapotranspiration), allowing evaluation of the relative timing of carbon and hydrogen isotopic (i.e., climate) shifts. In this study, we compile and present three mid-latitude PETM records from the Northern Hemisphere, i.e. Alamedilla (Spain), Cicogna and Forada (Italy). The Cicogna and Forada sections are located in the Belluno basin (~12 km apart). Preliminary results do not indicate any significant pre-excursion hydrogen isotope changes at Cicogna, while at

  7. Temporal patterns of vegetation phenology and their responses to climate change in mid-latitude grasslands of the Northern Hemisphere

    Science.gov (United States)

    Ren, S.; Chen, X.; Qin, Q.; Zhang, Y.; Wu, Z.

    2017-12-01

    Grassland ecosystem is greatly sensitive to regional and global climate changes. In this study, the start (SOS) and end (EOS) date of growing season were extracted from NDVI data (1981 2014) across the mid-latitude (30°N 55°N) grasslands of Northern Hemisphere. We first validated their accuracy by ground observed phenological data and phenological metrics derived from gross primary production (GPP) data. And then, main climatic factors influencing the temporal patterns of SOS/EOS were explored by means of gridded meteorological data and partial correlation analysis. Based on the results of above statistical analysis, the similarities and differences of spring and autumn phenological responses to climate change among North American grasslands, Mid-West Asian grasslands, and Mongolian grasslands were analyzed. The main results and conclusions are as follows. First, a significant positive correlation was found between SOS/EOS and observed green-up/brown-off date (PSOS/EOS (PSOS/EOS can reflect temporal dynamics of terrestrial vegetation phenology. Second, SOS in Mid-West Asian grasslands showed a significant advancing trend (0.22 days/year, PSOS in North American grasslands and Mongolian grasslands was not significant. EOS in North American grasslands (0.31 dyas/year, PSOS/EOS inter-annual fluctuations and hydrothermal factors showed that a significant negative correlation was found between SOS and the pre-season temperature in 41.6% of pixels (PSOS and pre-season rainfall/snowfall in 14.6%/19.0% of pixels (PSOS and EOS are mainly affected by pre-season temperature and pre-season rainfall.

  8. Time and space: undergraduate Mexican physics in motion

    Science.gov (United States)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular

  9. Corporal diagnostic work and diagnostic spaces: clinicians' use of space and bodies during diagnosis.

    Science.gov (United States)

    Gardner, John; Williams, Clare

    2015-06-01

    An emerging body of literature in sociology has demonstrated that diagnosis is a useful focal point for understanding the social dimensions of health and illness. This article contributes to this work by drawing attention to the relationship between diagnostic spaces and the way in which clinicians use their own bodies during the diagnostic process. As a case study, we draw upon fieldwork conducted with a multidisciplinary clinical team providing deep brain stimulation (DBS) to treat children with a movement disorder called dystonia. Interviews were conducted with team members and diagnostic examinations were observed. We illustrate that clinicians use communicative body work and verbal communication to transform a material terrain into diagnostic space, and we illustrate how this diagnostic space configures forms of embodied 'sensing-and-acting' within. We argue that a 'diagnosis' can be conceptualised as emerging from an interaction in which space, the clinician-body, and the patient-body (or body-part) mutually configure one another. By conceptualising diagnosis in this way, this article draws attention to the corporal bases of diagnostic power and counters Cartesian-like accounts of clinical work in which the patient-body is objectified by a disembodied medical discourse. © 2015 The Authors. Sociology of Health & Illness © 2015 Foundation for the Sociology of Health & Illness.

  10. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    Science.gov (United States)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  11. Emigrating Beyond Earth Human Adaptation and Space Colonization

    CERN Document Server

    Smith, Cameron M

    2012-01-01

    For four million years humankind has been actively expanding geographically and in doing so has adapted to a wide variety of hostile environments. Now we are looking towards the ultimate adaptation - the colonization of space. Emigrating Beyond Earth illustrates that this is not a technocratic endeavor, but a natural continuation of human evolution; a journey not just for the engineer and rocket scientist, but for everyman. Based on the most current understanding of our universe, human adaptation and evolution, the authors explain why space colonization must be planned as an adaptation to, rather than the conquest of, space. Emigrating Beyond Earth argues that space colonization is an insurance policy for our species, and that it isn't about rockets and robots, it's about humans doing what we've been doing for four million years: finding new places and new ways to live. Applying a unique anthropological approach, the authors outline a framework for continued human space exploration and offer a glimpse of a po...

  12. Midlatitude ionospheric F2-layer response to eruptive solar events-caused geomagnetic disturbances over Hungary during the maximum of the solar cycle 24: A case study

    Science.gov (United States)

    Berényi, K. A.; Barta, V.; Kis, Á.

    2018-03-01

    In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.

  13. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Koepke, M. E.

    2005-01-01

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  14. Human exploration of space: why, where, what for?

    Science.gov (United States)

    Vernikos, J

    2008-08-01

    "Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives"-Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market".

  15. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    Science.gov (United States)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  16. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  17. Problem and Project Based Learning in Hybrid Spaces

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Davidsen, Jacob; Hodgson, Vivien

    2016-01-01

    There is a need within networked learning to understand and conceptualise the interplay between digital and physical spaces or what we could term hybrid spaces. Therefore, we discuss a recent study of students from two different programmes who are engaged in long-term, group-based problem...... and project based learning. Based on interviews, workshops and observations of students’ actual group practices in open, shared and flexible spaces in Aalborg University (AAU), we identify and discuss how students incorporate networked and digital technologies into their group work and into the study places...... they create for themselves. We describe how in one of the programmes ‘nomadic’ groups of students used different technologies and spaces for ‘placemaking’. We then show how their experience and approach to collaborative work differs to that of the more static or ‘artisan’ groups of students in the other...

  18. Integrative Review of the Intersection of Green Space and Neighborhood Violence.

    Science.gov (United States)

    Mancus, Gibran C; Campbell, Jacquelyn

    2018-03-01

    To systematically analyze evidence about the impact of green space on the perception and actual safety of residents of urban neighborhoods. Systematic review of green space and violence based on Broome review criteria. One landmark study prompted the initial hand search and identification of search terms. Twenty-three quantitative, five qualitative, and two mixed-methods studies were found in the urban planning, public health, medical, and psychological literature that met the following criteria: analyzed green space and violence as factors in the perception of safety as an outcome measure, including action taken by being outside for recreation, exercise, or self-report in the survey. Findings were inconsistent regarding the direct relationship between perception of safety and green space when using recreation and exercise as a proxy for perception of safety. Findings regarding perception of safety in surveys were limited but indicated a positive correlation with green space. There is sufficient evidence to conclude that the perception of safety is supported by quality, accessibility, and aesthetic dimensions of neighborhood green space, and the perception of safety is often unrelated to actual crime rates. The science for understanding mechanisms between green space and violence as part of environmental health has been insufficiently developed and requires further study. Environmental health, including green space, is central to health promotion, and understanding is key to preventing the epidemic of violence. This article provides a summary of research related to green space, violence in communities, perception of safety, and violent crime in those communities. It identifies gaps in our knowledge where future research is needed. Nurses have the opportunity to lead the development, implementation, and evaluation of evidence-based interventions and policies addressing the inequality of quality and quantity of green space in the built and natural environment and

  19. Whose commons are mobilities spaces?

    DEFF Research Database (Denmark)

    Freudendal-Pedersen, Malene

    2015-01-01

    for cyclists and cycling to be given greater consideration in broader societal understandings of the common good. I argue that this is in fact not the case. Rather the specific project identities that are nurtured by Copenhagen’s cycling community inhibit it from advocating publicly or aggressively...... for a vision of the common good that gives cyclists greater and more protected access to the city’s mobility spaces...

  20. The philosophy of space and time

    CERN Document Server

    Reichenbach, Hans

    1958-01-01

    With unusual depth and clarity, the author covers the problem of the foundations of geometry, the theory of time, the theory and consequences of Einstein's relativity including: relations between theory and observations, coordinate definitions, relations between topological and metrical properties of space, the psychological problem of the possibility of a visual intuition of non-Euclidean structures, and many other important topics in modern science and philosophy. While some of the book utilizes mathematics of a somewhat advanced nature, the exposition is so careful and complete that most people familiar with the philosophy of science or some intermediate mathematics will understand the majority of the ideas and problems discussed. Partial contents: I. The Problem of Physical Geometry. Universal and Differential Forces. Visualization of Geometries. Spaces with non-Euclidean Topological Properties. Geometry as a Theory of Relations. II. The Difference between Space and Time. Simultaneity. Time Order. Unreal ...