WorldWideScience

Sample records for understanding metabolic adaption

  1. Current Understanding of the Formation and Adaptation of Metabolic Systems Based on Network Theory

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2012-07-01

    Full Text Available Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  2. Evolutionary dynamics of metabolic adaptation

    NARCIS (Netherlands)

    van Hoek, M.J.A.

    2008-01-01

    In this thesis we study how organisms adapt their metabolism to a changing environment. Metabolic adaptation occurs at different timescales. Organisms adapt their metabolism via metabolic regulation, which happens in the order of minutes to hours and via evolution, which takes many generations. Here

  3. Adaptations in the energy metabolism of parasites

    NARCIS (Netherlands)

    van Grinsven, K.W.A.|info:eu-repo/dai/nl/304833436

    2009-01-01

    For this thesis fundamental research was performed on the metabolic adaptations found in parasites. Studying the adaptations in parasite metabolisms leads to a better understanding of parasite bioenergetics and can also result in the identification of new anti-parasitic drug targets. We focussed on

  4. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  5. Understanding the Intersections between Metabolism and Cancer Biology.

    Science.gov (United States)

    Vander Heiden, Matthew G; DeBerardinis, Ralph J

    2017-02-09

    Transformed cells adapt metabolism to support tumor initiation and progression. Specific metabolic activities can participate directly in the process of transformation or support the biological processes that enable tumor growth. Exploiting cancer metabolism for clinical benefit requires defining the pathways that are limiting for cancer progression and understanding the context specificity of metabolic preferences and liabilities in malignant cells. Progress toward answering these questions is providing new insight into cancer biology and can guide the more effective targeting of metabolism to help patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Understanding the intersections between metabolism and cancer biology

    Science.gov (United States)

    Heiden, Matthew G. Vander; DeBerardinis, Ralph J.

    2017-01-01

    Transformed cells adapt metabolism to support tumor initiation and progression. Specific metabolic activities can participate directly in the process of transformation or support the biological processes that enable tumor growth. Exploiting cancer metabolism for clinical benefit requires defining the pathways that are limiting for cancer progression and understanding the context specificity of metabolic preferences and liabilities in malignant cells. Progress towards answering these questions is providing new insight into cancer biology and can guide the more effective targeting of metabolism to help patients. PMID:28187287

  7. Metabolic Adaptations of Uropathogenic E. coli in the Urinary Tract

    Directory of Open Access Journals (Sweden)

    Riti Mann

    2017-06-01

    Full Text Available Escherichia coli ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic E. coli (UPEC, are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients. Whole-organism (or “omics” methods have recently provided significant advances in our understanding of the importance of metabolic adaptation in the success of UPECs. Here we describe the nutritional and metabolic requirements for UPEC infection in these environments, and focus on particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract.

  8. Metabolic Adaptations of UropathogenicE. coliin the Urinary Tract.

    Science.gov (United States)

    Mann, Riti; Mediati, Daniel G; Duggin, Iain G; Harry, Elizabeth J; Bottomley, Amy L

    2017-01-01

    Escherichia coli ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic E. coli (UPEC), are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients. Whole-organism (or "omics") methods have recently provided significant advances in our understanding of the importance of metabolic adaptation in the success of UPECs. Here we describe the nutritional and metabolic requirements for UPEC infection in these environments, and focus on particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract.

  9. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only...

  10. Understanding Controversies in Urban Climate Change Adaptation

    DEFF Research Database (Denmark)

    Baron, Nina; Petersen, Lars Kjerulf

    2015-01-01

    This article explores the controversies that exist in urban climate change adaptation and how these controversies influence the role of homeowners in urban adaptation planning. A concrete SUDS project in a housing cooperative in Copenhagen has been used as a case study thereby investigating...... the multiple understandings “Sustainable Urban Drainages System’s” (SUDS). Several different perspectives are identified with regard to what are and what will become the main climate problems in the urban environment as well as what are considered to be the best responses to these problems. Building...... on the actor-network inspired theory of “urban green assemblages” we argue that at least three different assemblages can be identified in urban climate change adaptation. Each assemblage frames problems and responses differently, and thereby assigns different types of roles to homeowners. As climate change...

  11. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs.

    Science.gov (United States)

    Iglesias, José; Morales, Ludis; Barreto, George E

    2017-05-01

    Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.

  12. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  13. Understanding cachexia as a cancer metabolism syndrome.

    Science.gov (United States)

    Porporato, P E

    2016-02-22

    Metabolic reprogramming occurs in tumors to foster cancer cell proliferation, survival and metastasis, but as well at a systemic level affecting the whole organism, eventually leading to cancer cachexia. Indeed, as cancer cells rely on external sources of nitrogen and carbon skeleton to grow, systemic metabolic deregulation promoting tissue wasting and metabolites mobilization ultimately supports tumor growth. Cachectic patients experience a wide range of symptoms affecting several organ functions such as muscle, liver, brain, immune system and heart, collectively decreasing patients' quality of life and worsening their prognosis. Moreover, cachexia is estimated to be the direct cause of at least 20% of cancer deaths. The main aspect of cachexia syndrome is the unstoppable skeletal muscle and fat storage wasting, even with an adequate caloric intake, resulting in nutrient mobilization - both directly as lipid and amino acids and indirectly as glucose derived from the exploitation of liver gluconeogenesis - that reaches the tumor through the bloodstream. From a metabolic standpoint, cachectic host develops a wide range of dysfunctions, from increased insulin and IGF-1 resistance to induction of mitochondrial uncoupling proteins and fat tissue browning resulting in an increased energy expenditure and heat generation, even at rest. For a long time, cachexia has been merely considered an epiphenomenon of end-stage tumors. However, in specific tumor types, such as pancreatic cancers, it is now clear that patients present markers of tissue wasting at a stage in which tumor is not yet clinically detectable, and that host amino acid supply is required for tumor growth. Indeed, tumor cells actively promote tissue wasting by secreting specific factors such as parathyroid hormone-related protein and micro RNAs. Understanding the molecular and metabolic mediators of cachexia will not only advance therapeutic approaches against cancer, but also improve patients' quality of life.

  14. Understanding the adaptive approach to thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, M.A. [Oxford Univ. (United Kingdom). Centre for the Study of Christianity and Culture; Nicol, J.F. [Oxford Brookes Univ. (United Kingdom). School of Architecture

    1998-10-01

    This paper explains the adaptive approach to thermal comfort, and an adaptive model for thermal comfort is presented. The model is an example of a complex adaptive system (Casti 1996) whose equilibria are determined by the restrictions acting upon it. People`s adaptive actions are generally effective in securing comfort, which occurs at a wide variety of indoor temperatures. These comfort temperatures depend upon the circumstances in which people live, such as the climate and the heating or cooling regime. The temperatures may be estimated from the mean outdoor temperature and the availability of a heating or cooling plant. The evaluation of the parameters of the adaptive model requires cross-sectional surveys to establish current norms and sequential surveys (with and without intervention) to evaluate the rapidity of people`s adaptive actions. Standards for thermal comfort will need revision in the light of the adaptive approach. Implications of the adaptive model for the HVAC industry are noted.

  15. How to understand and outwit adaptation

    OpenAIRE

    Hoeller, Oliver; Gong, Delquin; Weiner, Orion D.

    2014-01-01

    Adaptation is the ability of a system to respond and reset itself even in the continuing presence of a stimulus. On one hand, adaptation is a physiological necessity that enables proper neuronal signaling and cell movement. On the other hand, adaptation can be a source of annoyance, as it can make biological systems resistant to experimental perturbations. Here we speculate where adaptation may live in eukaryotic chemotaxis and how it can be encoded in the signaling network. We then discuss t...

  16. Metabolic Adaptation to Nutritional Stress in Human Colorectal Cancer

    OpenAIRE

    Miyo, Masaaki; Konno, Masamitsu; Nishida, Naohiro; Sueda, Toshinori; Noguchi, Kozo; Matsui, Hidetoshi; Colvin, Hugh; Kawamoto, Koichi; Koseki, Jun; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Gotoh, Noriko; Matsuda, Fumio; Satoh, Taroh

    2016-01-01

    Tumor cells respond to their microenvironment, which can include hypoxia and malnutrition, and adapt their metabolism to survive and grow. Some oncogenes are associated with cancer metabolism via regulation of the related enzymes or transporters. However, the importance of metabolism and precise metabolic effects of oncogenes in colorectal cancer remain unclear. We found that colorectal cancer cells survived under the condition of glucose depletion, and their resistance to such conditions dep...

  17. Metabolic modeling to understand and redesign microbial systems

    NARCIS (Netherlands)

    Heck, van Ruben G.A.

    2017-01-01

    The goals of this thesis are to increase the understanding of microbial metabolism and to functionally (re-)design microbial systems using Genome- Scale Metabolic models (GSMs). GSMs are species-specific knowledge repositories that can be used to predict metabolic activities for wildtype and

  18. Assessing trophic adaptability is critical for understanding the ...

    African Journals Online (AJOL)

    Assessing trophic adaptability is critical for understanding the response of predatory fishes to climate change: a case study of Pomatomus saltatrix in a global hotspot. ... fishes biomass in a global hotspot (the coastal region of southern Angola, southern Africa) to gain an understanding of the tropic adaptability of the species.

  19. Role of metabolic stress for enhancing muscle adaptations: Practical applications.

    Science.gov (United States)

    de Freitas, Marcelo Conrado; Gerosa-Neto, Jose; Zanchi, Nelo Eidy; Lira, Fabio Santos; Rossi, Fabrício Eduardo

    2017-06-26

    Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H + )] in muscle cells. Traditional exercise protocol ( i.e ., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensity, volume and rest between sets, are determinants for the magnitude of metabolic stress, furthermore, different types of training, such as low-intensity resistance training plus blood flow restriction and high intensity interval training, could be used to maximize metabolic stress during exercise. Thus, the objective of this review is to describe practical applications that induce metabolic stress and the potential effects of metabolic stress to increase systemic hormonal release, hypoxia, ROS production, cell swelling and muscle adaptations.

  20. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  1. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  2. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and

  3. Macropinocytosis: A Metabolic Adaptation to Nutrient Stress in Cancer.

    Science.gov (United States)

    Recouvreux, Maria Victoria; Commisso, Cosimo

    2017-01-01

    Oncogenic mutations, such as Ras mutations, drive not only enhanced proliferation but also the metabolic adaptations that confer to cancer cells the ability to sustain cell growth in a harsh tumor microenvironment. These adaptations might represent metabolic vulnerabilities that can be exploited to develop novel and more efficient cancer therapies. Macropinocytosis is an evolutionarily conserved endocytic pathway that permits the internalization of extracellular fluid via large endocytic vesicles known as macropinosomes. Recently, macropinocytosis has been determined to function as a nutrient-scavenging pathway in Ras-driven cancer cells. Macropinocytic uptake of extracellular proteins, and their further degradation within endolysosomes, provides the much-needed amino acids that fuel cancer cell metabolism and tumor growth. Here, we review the molecular mechanisms that govern the process of macropinocytosis, as well as discuss recent work that provides evidence of the important role of macropinocytosis as a nutrient supply pathway in cancer cells.

  4. Macropinocytosis: A Metabolic Adaptation to Nutrient Stress in Cancer

    Directory of Open Access Journals (Sweden)

    Maria Victoria Recouvreux

    2017-09-01

    Full Text Available Oncogenic mutations, such as Ras mutations, drive not only enhanced proliferation but also the metabolic adaptations that confer to cancer cells the ability to sustain cell growth in a harsh tumor microenvironment. These adaptations might represent metabolic vulnerabilities that can be exploited to develop novel and more efficient cancer therapies. Macropinocytosis is an evolutionarily conserved endocytic pathway that permits the internalization of extracellular fluid via large endocytic vesicles known as macropinosomes. Recently, macropinocytosis has been determined to function as a nutrient-scavenging pathway in Ras-driven cancer cells. Macropinocytic uptake of extracellular proteins, and their further degradation within endolysosomes, provides the much-needed amino acids that fuel cancer cell metabolism and tumor growth. Here, we review the molecular mechanisms that govern the process of macropinocytosis, as well as discuss recent work that provides evidence of the important role of macropinocytosis as a nutrient supply pathway in cancer cells.

  5. Understanding human metabolic physiology: a genome-to-systems approach.

    Science.gov (United States)

    Mo, Monica L; Palsson, Bernhard Ø

    2009-01-01

    The intricate nature of human physiology renders its study a difficult undertaking, and a systems biology approach is necessary to understand the complex interactions involved. Network reconstruction is a key step in systems biology and represents a common denominator because all systems biology research on a target organism relies on such a representation. With the recent development of genome-scale human metabolic networks, metabolic systems analysis is now possible and has initiated a shift towards human systems biology. Here, we review the important aspects of reconstructing a bottom-up human metabolic network, the network's role in modeling human physiology and the necessity for a community-based consensus reconstruction of human metabolism to be established.

  6. One-carbon metabolism and epigenetics: understanding the specificity.

    Science.gov (United States)

    Mentch, Samantha J; Locasale, Jason W

    2016-01-01

    One-carbon metabolism is a metabolic network that integrates nutrient status from the environment to yield multiple biological functions. The folate and methionine cycles generate S-adenosylmethionine (SAM), which is the universal methyl donor for methylation reactions, including histone and DNA methylation. Histone methylation is a crucial part of the epigenetic code and plays diverse roles in the establishment of chromatin states that mediate the regulation of gene expression. The activities of histone methyltransferases (HMTs) are dependent on intracellular levels of SAM, which fluctuate based on cellular nutrient availability, providing a link between cell metabolism and histone methylation. Here we discuss the biochemical properties of HMTs, their role in gene regulation, and the connection to cellular metabolism. Our emphasis is on understanding the specificity of this intriguing link. © 2015 New York Academy of Sciences.

  7. Computational Strategies for a System-Level Understanding of Metabolism

    Science.gov (United States)

    Cazzaniga, Paolo; Damiani, Chiara; Besozzi, Daniela; Colombo, Riccardo; Nobile, Marco S.; Gaglio, Daniela; Pescini, Dario; Molinari, Sara; Mauri, Giancarlo; Alberghina, Lilia; Vanoni, Marco

    2014-01-01

    Cell metabolism is the biochemical machinery that provides energy and building blocks to sustain life. Understanding its fine regulation is of pivotal relevance in several fields, from metabolic engineering applications to the treatment of metabolic disorders and cancer. Sophisticated computational approaches are needed to unravel the complexity of metabolism. To this aim, a plethora of methods have been developed, yet it is generally hard to identify which computational strategy is most suited for the investigation of a specific aspect of metabolism. This review provides an up-to-date description of the computational methods available for the analysis of metabolic pathways, discussing their main advantages and drawbacks.  In particular, attention is devoted to the identification of the appropriate scale and level of accuracy in the reconstruction of metabolic networks, and to the inference of model structure and parameters, especially when dealing with a shortage of experimental measurements. The choice of the proper computational methods to derive in silico data is then addressed, including topological analyses, constraint-based modeling and simulation of the system dynamics. A description of some computational approaches to gain new biological knowledge or to formulate hypotheses is finally provided. PMID:25427076

  8. Metabolic Adaptation to Nutritional Stress in Human Colorectal Cancer.

    Science.gov (United States)

    Miyo, Masaaki; Konno, Masamitsu; Nishida, Naohiro; Sueda, Toshinori; Noguchi, Kozo; Matsui, Hidetoshi; Colvin, Hugh; Kawamoto, Koichi; Koseki, Jun; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Gotoh, Noriko; Matsuda, Fumio; Satoh, Taroh; Mizushima, Tsunekazu; Shimizu, Hiroshi; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2016-12-07

    Tumor cells respond to their microenvironment, which can include hypoxia and malnutrition, and adapt their metabolism to survive and grow. Some oncogenes are associated with cancer metabolism via regulation of the related enzymes or transporters. However, the importance of metabolism and precise metabolic effects of oncogenes in colorectal cancer remain unclear. We found that colorectal cancer cells survived under the condition of glucose depletion, and their resistance to such conditions depended on genomic alterations rather than on KRAS mutation alone. Metabolomic analysis demonstrated that those cells maintained tricarboxylic acid cycle activity and ATP production under such conditions. Furthermore, we identified pivotal roles of GLUD1 and SLC25A13 in nutritional stress. GLUD1 and SLC25A13 were associated with tumor aggressiveness and poorer prognosis of colorectal cancer. In conclusion, GLUD1 and SLC25A13 may serve as new targets in treating refractory colorectal cancer which survive in malnutritional microenvironments.

  9. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  10. Building Research Capacity to Understand and Adapt to Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Research Capacity to Understand and Adapt to Climate Change in the Indus Basin. The Indus river basin is home to the largest contiguous surface irrigation system in the world. In the summer of 2010, a combination of severe rainfall and unanticipated river flow resulted in a devastating flood, which was ...

  11. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability.

    Science.gov (United States)

    Westerblad, Håkan; Bruton, Joseph D; Katz, Abram

    2010-11-01

    Skeletal muscles cope with a large range of activities, from being able to support the body weight during long periods of upright standing to perform explosive movements in response to an unexpected threat. This requires systems for energy metabolism that can provide energy during long periods of moderately increased energy consumption as well as being able to rapidly increasing the rate of energy production more than 100-fold in response to explosive contractions. In this short review we discuss how muscles can deal with these divergent demands. We first outline the major energy metabolism pathways in skeletal muscle. Next we describe metabolic differences between different muscle fiber types. Contractile performance declines during intense activation, i.e. fatigue develops, and we discuss likely underlying mechanisms. Finally, we discuss the ability of muscle fibers to adapt to altered demands, and mechanisms behind these adaptations. The accumulated experimental evidence forces us to conclude that most aspects of energy metabolism involve multiple and overlapping signaling pathways, which indicates that the control of energy metabolism is too important to depend on one single molecule or mechanism. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Metabolic adaption of ethanol-tolerant Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Xinshu Zhu

    Full Text Available Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT strain and an ethanol-tolerant strain cultivated without (ET0 or with (ET3 3% (v/v exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production.

  13. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc

    2018-01-01

    Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. AL...... autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria....

  14. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    Science.gov (United States)

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Preparing for Local Adaptation: Understanding Flood Risk Perceptions in Pittsburgh

    Science.gov (United States)

    Klima, K.; Wong-Parodi, G.

    2015-12-01

    The City of Pittsburgh experiences numerous floods every year. Aging and insufficient infrastructure contribute to flash floods and to over 20 billion gallons of combined sewer overflows annually, contaminating Pittsburgh's streets, basements, and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme precipitation events in Western Pennsylvania. For a stormwater adaptation plan to be implemented effectively, the City will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop these communications effectively, the city and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. Here we seek to (1) identify Pittsburgh residents' knowledge level, risk perception and attitudes towards flooding and storm water management, and (2) pre-test communications meant to inform and empower Pittsburghers about flood risks and adaptation strategies. We conduct a city-wide survey of 10,000 Pittsburgh renters and homeowners from four life situations: high risk, above poverty; high-risk, below poverty; low risk, above poverty; and low-risk, below poverty. Mixed media recruitment strategies (online and paper-based solicitations guided/organized by community organizations) assist in reaching all subpopulations. Preliminary results suggest participants know what stormwater runoff is, but have a weak understanding of how stormwater interacts with natural and built systems. Furthermore, although participants have a good understanding of the difference between green and gray infrastructure, this does not translate into a change in their willingness to pay for green infrastructure adaptation. This suggests additional communications about flood risks and adaptation strategies.

  16. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed

    Science.gov (United States)

    Sundrum, Albert

    2015-01-01

    Simple Summary Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. Problems derive from difficulties animals have to adapt to large variations and disturbances occurring both outside and inside the organism. A lack of success in solving these issues may be due to predominant approaches in farm management and agricultural science, dealing with such disorders as merely negative side effects. Instead, a successful adaptation of animals to their living conditions should be seen as an important end in itself. Both farm management and agricultural sciences should support animals in their ability to cope with nutritional and metabolic challenges by employing a functional and result-driven approach. Abstract Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes and their large variations on various scales

  17. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism.

    Science.gov (United States)

    Ji, Hyang-Gi; Lee, Yeong-Ran; Lee, Min-Seuk; Hwang, Kyeong Hwan; Kim, Eun-Hee; Park, Jun Seong; Hong, Young-Shick

    2017-10-15

    Recently, we selected three tea (Camellia sinensis) cultivars that are rich in taste, epigallocatechin-3-O-gallate (EGCG) and epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) and then cultivated them through asexual propagation by cutting in the same region. In the present study, proton nuclear magnetic resonance ( 1 H NMR)-based metabolomics was applied to characterize the metabotype and to understand the metabolic mechanism of these tea cultivars including wild type tea. Of the tea leaf metabolite variations, reverse associations of amino acid metabolism with catechin compound metabolism were found in the rich-taste, and EGCG- and EGCG3″Me-rich tea cultivars. Indeed, the metabolism of individual catechin compounds in the EGCG3″Me-rich cultivar differed from those of other tea cultivars. The current study highlights the distinct metabolism of various tea cultivars newly selected for cultivation and the important role of metabolomics in understanding the metabolic mechanism. Thus, comprehensive metabotyping is a useful method to assess and then develop a new plant cultivar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Phase changes of energy metabolism during adaptation to immobilization stress].

    Science.gov (United States)

    Portnichenko, V I; Nosar, V I; Honchar, O O; Opanasenko, H V; Hlazyrin, I D; Man'kovs'ka, I M

    2014-01-01

    In stress, it was showed the organ and tissue changes associated with damage by lipid peroxides, and the disrupted barrier function. As a consequence, it was to lead to a syndrome of "stress-induced lung" and violation of oxygen delivery to the tissues and hypoxia. Purpose of the study was to investigate the dynamics of changes in gas exchange, blood glucose, body temperature, oxidant and antioxidant system activity, as well as mitochondrial respiration by Chance under the influence of chronic stress (6-hour immobilization daily for 3 weeks). It was identified 4 phase changes of energy metabolism in the dynamics of chronic stress. In the first phase, hypomethabolic, instability oxidative metabolism, decreased oxidation of NAD-dependent substrates, significant elevation of FAD-dependent substrates oxidation and low MRU were found. The activity of superoxide dismutase (MnSOD) was increased; it was occurred on a background low activity of glutathione peroxidase, and of misbalanced antioxidant system. After seven immobilizations, second phase-shift in energy metabolism, was observed, and then the third phase (hypermetabolic) started. It was characterized by gradual increase in oxidative metabolism, the restoration of oxidation of NAD-dependent substrates, MRU, as well as optimizing balance of oxidant and antioxidant systems. The fourth phase was started after 15 immobilizations, and characterized by the development of adaptive reactions expressed in increased tolerance of energy metabolism to the impact of immobilization. The results are correlated with changes in the dynamics of blood corticosterone. Thus, it was found the phase character of the energy metabolism rebuilding during the chronic stress.

  19. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  20. Preparing for local adaptation: Understanding flood risk perceptions in Pittsburgh

    Science.gov (United States)

    Wong-Parodi, G.; Klima, K.

    2016-12-01

    In cities such as Pittsburgh, aging and insufficient infrastructure contributes to flashfloods and numerous combined sewer overflows annually, contaminating streets, basements and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme events in Western Pennsylvania. For a storm water adaptation plan to be implemented successfully, the City of Pittsburgh will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop risk communications effectively, the City and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. To that end we surveyed 1,376 Pittsburgh residents on a variety of flood risk topics through an online or paper survey in Fall 2015. On balance, residents were relatively knowledgeable about storm water and see the City's current infrastructure as being inadequate to meet future risk. Moreover, they see the risk of runoff events as increasing and especially among those who live in hazardous flood areas. Residents expressed interest in having a dedicated fund to deal with runoff events. Among those queried about their willingness-to-pay, those asked to pay $15 were most interested in a dedicated fund and for green infrastructure (as opposed to gray infrastructure) in particular. Finally, while most residents favored green infrastructure in terms of its attractiveness and perceived affects on mitigating climate change many did not see it as effective at addressing flooding as gray infrastructure. We found people understand the risk and are open to doing something about it. However, more guidance and information on appropriate ways to adapt locally in terms that make sense to residents could enhance informed support for adaptation measures.

  1. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    Directory of Open Access Journals (Sweden)

    Ann Kathrin eHeroven

    2014-10-01

    Full Text Available Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Y. pseudotuberculosis and Y. enterocolitica and the causative agent of plague, Y. pestis, are able to survive in a large variety of environmental reservoirs (e.g. soil, plants, insects as well as warm-blooded animals (e.g. rodents, pigs, humans with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and inter-bacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp and the carbon storage regulator (Csr system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.

  2. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    Science.gov (United States)

    Heroven, Ann Kathrin; Dersch, Petra

    2014-01-01

    Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets. PMID:25368845

  3. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress.

    Science.gov (United States)

    McGee, Sean L; Swinton, Courtney; Morrison, Shona; Gaur, Vidhi; Campbell, Duncan E; Jorgensen, Sebastian B; Kemp, Bruce E; Baar, Keith; Steinberg, Gregory R; Hargreaves, M

    2014-08-01

    Some gene deletions or mutations have little effect on metabolism and metabolic adaptation because of redundancy and/or compensation in metabolic pathways. The mechanisms for redundancy and/or compensation in metabolic adaptation in mammalian cells are unidentified. Here, we show that in mouse muscle and myogenic cells, compensatory regulation of the histone deacetylase (HDAC5) transcriptional repressor maintains metabolic integrity. HDAC5 phosphorylation regulated the expression of diverse metabolic genes and glucose metabolism in mouse C2C12 myogenic cells. However, loss of AMP-activated protein kinase (AMPK), a HDAC5 kinase, in muscle did not affect HDAC5 phosphorylation in mouse skeletal muscle during exercise, but resulted in a compensatory increase (32.6%) in the activation of protein kinase D (PKD), an alternate HDAC5 kinase. Constitutive PKD activation in mouse C2C12 myogenic cells regulated metabolic genes and glucose metabolism. Although aspects of this response were HDAC5 phosphorylation dependent, blocking HDAC5 phosphorylation when PKD was active engaged an alternative compensatory adaptive mechanism, which involved post-transcriptional reductions in HDAC5 mRNA (-93.1%) and protein. This enhanced the expression of a specific subset of metabolic genes and mitochondrial metabolism. These data show that compensatory regulation of HDAC5 maintains metabolic integrity in mammalian cells and reinforces the importance of preserving the cellular metabolic adaptive response. © FASEB.

  4. Understanding specificity in metabolic pathways--structural biology of human nucleotide metabolism.

    Science.gov (United States)

    Welin, Martin; Nordlund, Pär

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging. 2010. Published by Elsevier Inc.

  5. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  6. Hepatic adaptations to maintain metabolic homeostasis in response to fasting and refeeding in mice.

    Science.gov (United States)

    Geisler, C E; Hepler, C; Higgins, M R; Renquist, B J

    2016-01-01

    The increased incidence of obesity and associated metabolic diseases has driven research focused on genetically or pharmacologically alleviating metabolic dysfunction. These studies employ a range of fasting-refeeding models including 4-24 h fasts, "overnight" fasts, or meal feeding. Still, we lack literature that describes the physiologically relevant adaptations that accompany changes in the duration of fasting and re-feeding. Since the liver is central to whole body metabolic homeostasis, we investigated the timing of the fast-induced shift toward glycogenolysis, gluconeogenesis, and ketogenesis and the meal-induced switch toward glycogenesis and away from ketogenesis. Twelve to fourteen week old male C57BL/6J mice were fasted for 0, 4, 8, 12, or 16 h and sacrificed 4 h after lights on. In a second study, designed to understand the response to a meal, we gave fasted mice access to feed for 1 or 2 h before sacrifice. We analyzed the data using mixed model analysis of variance. Fasting initiated robust metabolic shifts, evidenced by changes in serum glucose, non-esterified fatty acids (NEFAs), triacylglycerol, and β-OH butyrate, as well as, liver triacylglycerol, non-esterified fatty acid, and glycogen content. Glycogenolysis is the primary source to maintain serum glucose during the first 8 h of fasting, while de novo gluconeogenesis is the primary source thereafter. The increase in serum β-OH butyrate results from increased enzymatic capacity for fatty acid flux through β-oxidation and shunting of acetyl-CoA toward ketone body synthesis (increased CPT1 (Carnitine Palmitoyltransferase 1) and HMGCS2 (3-Hydroxy-3-Methylglutaryl-CoA Synthase 2) expression, respectively). In opposition to the relatively slow metabolic adaptation to fasting, feeding of a meal results in rapid metabolic changes including full depression of serum β-OH butyrate and NEFAs within an hour. Herein, we provide a detailed description of timing of the metabolic adaptations in response

  7. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals

    Directory of Open Access Journals (Sweden)

    Dorian S Houser

    2013-11-01

    Full Text Available Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris, which fasts from food and water for periods of up to three months. During this time, ~90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM. All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures

  8. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals.

    Science.gov (United States)

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E

    2013-11-01

    Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies.

  9. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  10. Crop plants as models for understanding plant adaptation and diversification

    Science.gov (United States)

    Olsen, Kenneth M.; Wendel, Jonathan F.

    2013-01-01

    Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of “domestication syndrome” traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various “omics” involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time) suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution. PMID:23914199

  11. Crop plants as models for understanding plant adaptation and diversification

    Directory of Open Access Journals (Sweden)

    Kenneth M Olsen

    2013-08-01

    Full Text Available Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

  12. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  13. Quantifying environmental adaptation of metabolic pathways in metagenomics

    DEFF Research Database (Denmark)

    Gianoulis, Tara A; Raes, Jeroen; Patel, Prianka V

    2009-01-01

    Recently, approaches have been developed to sample the genetic content of heterogeneous environments (metagenomics). However, by what means these sequences link distinct environmental conditions with specific biological processes is not well understood. Thus, a major challenge is how the usage...... of particular pathways and subnetworks reflects the adaptation of microbial communities across environments and habitats-i.e., how network dynamics relates to environmental features. Previous research has treated environments as discrete, somewhat simplified classes (e.g., terrestrial vs. marine), and searched...... for obvious metabolic differences among them (i.e., treating the analysis as a typical classification problem). However, environmental differences result from combinations of many factors, which often vary only slightly. Therefore, we introduce an approach that employs correlation and regression to relate...

  14. Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation.

    Science.gov (United States)

    Cheng, Jian; Guo, Xiaoxian; Cai, Pengli; Cheng, Xiaozhi; Piškur, Jure; Ma, Yanhe; Jiang, Huifeng; Gu, Zhenglong

    2017-11-01

    Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Role of hormones in cartilage and joint metabolism: understanding an unhealthy metabolic phenotype in osteoarthritis.

    Science.gov (United States)

    Bay-Jensen, Anne C; Slagboom, Eline; Chen-An, Pingping; Alexandersen, Peter; Qvist, Per; Christiansen, Claus; Meulenbelt, Ingrid; Karsdal, Morten A

    2013-05-01

    Joint health is affected by local and systemic hormones. It is well accepted that systemic factors regulate the metabolism of joint tissues, and that substantial cross-talk between tissues actively contributes to homeostasis. In the current review, we try to define a subtype of osteoarthritis (OA), metabolic OA, which is dependent on an unhealthy phenotype. Peer-reviewed research articles and reviews were reviewed and summarized. Only literature readily available online, either by download or by purchase order, was included. OA is the most common joint disease and is more common in women after menopause. OA is a disease that affects the whole joint, including cartilage, subchondral bone, synovium, tendons, and muscles. The clinical endpoints of OA are pain and joint space narrowing, which is characterized by cartilage erosion and subchondral sclerosis, suggesting that cartilage is a central tissue of joint health. Thus, the joint, more specifically the cartilage, may be considered a target of endocrine function in addition to the well-described traditional risk factors of disease initiation and progression such as long-term loading of the joint due to obesity. Metabolic syndrome affects a range of tissues and may in part be molecularly described as a dysregulation of cytokines, adipokines, and hormones (e.g., estrogen and thyroid hormone). Consequently, metabolic imbalance may both directly and indirectly influence joint health and cartilage turnover, altering the progression of diseases such as OA. There is substantial evidence for a connection between metabolic health and development of OA. We propose that more focus be directed to understanding this connection to improve the management of menopausal health and associated comorbidities.

  16. Pronounced metabolic changes in adaptation to biofilm growth by Streptococcus pneumoniae.

    Science.gov (United States)

    Allan, Raymond N; Skipp, Paul; Jefferies, Johanna; Clarke, Stuart C; Faust, Saul N; Hall-Stoodley, Luanne; Webb, Jeremy

    2014-01-01

    Streptococcus pneumoniae accounts for a significant global burden of morbidity and mortality and biofilm development is increasingly recognised as important for colonization and infection. Analysis of protein expression patterns during biofilm development may therefore provide valuable insights to the understanding of pneumococcal persistence strategies and to improve vaccines. iTRAQ (isobaric tagging for relative and absolute quantification), a high-throughput gel-free proteomic approach which allows high resolution quantitative comparisons of protein profiles between multiple phenotypes, was used to interrogate planktonic and biofilm growth in a clinical serotype 14 strain. Comparative analyses of protein expression between log-phase planktonic and 1-day and 7-day biofilm cultures representing nascent and late phase biofilm growth were carried out. Overall, 244 proteins were identified, of which >80% were differentially expressed during biofilm development. Quantitatively and qualitatively, metabolic regulation appeared to play a central role in the adaptation from the planktonic to biofilm phenotype. Pneumococci adapted to biofilm growth by decreasing enzymes involved in the glycolytic pathway, as well as proteins involved in translation, transcription, and virulence. In contrast, proteins with a role in pyruvate, carbohydrate, and arginine metabolism were significantly increased during biofilm development. Downregulation of glycolytic and translational proteins suggests that pneumococcus adopts a covert phenotype whilst adapting to an adherent lifestyle, while utilization of alternative metabolic pathways highlights the resourcefulness of pneumococcus to facilitate survival in diverse environmental conditions. These metabolic proteins, conserved across both the planktonic and biofilm phenotypes, may also represent target candidates for future vaccine development and treatment strategies. Data are available via ProteomeXchange with identifier PXD001182.

  17. Optical techniques to understand biofunctional adaptation in human dentine

    Science.gov (United States)

    Kishen, Anil; Asundi, Anand K.

    2004-08-01

    Human tooth structure in the oral environment is subjected to mechanical forces and thermal fluctuations. Dentine, the major component of the tooth structure, is a bio-composite, mainly composed of a highly mineralized phase and a collagenous phase. When subjected to changes in load and/or temperature, dentine will experience stresses and strains distribution within their structure. Though such effects are found to cause deleterious effects on artificial dental restorations, biological structures such as dentine seem to posses an inherent ability to adapt to functional thermo-mechanical loads. Optical techniques enable visualization and quantification of deformation, strain and stress on dental structures and provide a better understanding on their thermo-mechanical response. In this study 2-dimensional and 3-dimensional digital photoelasticity, digital moiré interferometry and Electronic Speckle Pattern Interferometry (ESPI) are all shown to be quite promising in this application. This paper will highlight these techniques and the corresponding applications. These experiments will aid in designing and development of better dental restorations and implants in clinical practice.

  18. Flavonoids: A Metabolic Network Mediating Plants Adaptation to Their Real Estate

    Directory of Open Access Journals (Sweden)

    Aidyn eMouradov

    2014-11-01

    Full Text Available From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth’s terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  19. Flavonoids: a metabolic network mediating plants adaptation to their real estate.

    Science.gov (United States)

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  20. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality.

    Science.gov (United States)

    McIntyre, Alan; Harris, Adrian L

    2015-04-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6-8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table 1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha

    Directory of Open Access Journals (Sweden)

    Guolin Li

    2018-01-01

    Conclusions: These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis.

  2. Adaptation to different types of stress converge on mitochondrial metabolism.

    Science.gov (United States)

    Lahtvee, Petri-Jaan; Kumar, Rahul; Hallström, Björn M; Nielsen, Jens

    2016-08-01

    Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism. © 2016 Lahtvee et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic

  4. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses.

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic

  5. Body weight setpoint, metabolic adaption and human starvation.

    Science.gov (United States)

    Kozusko, F P

    2001-03-01

    A biological setpoint for fatness has been proposed in the medical literature. This body weight setpoint functions as a point of stable equilibrium. In an underfed state, with resulting weight loss, the body will reduce the relative energy expenditure by metabolic adaption which reduces the rate of weight loss. Previous mathematical models of energy expenditure and weight loss dynamics have not addressed this setpoint mechanism. The setpoint model has been proposed to quantify this biological process and is unique in predicting energy expenditure during weight loss as a function of the setpoint fat-free mass ratio and setpoint energy expenditure, eliminating the various controlling characteristics such as age, gender and heredity. The model is applied to the seminal Minnesota human semistarvation experiment and is used to predict weight vs time on an individual basis and the caloric requirements for weight maintenance at the reduced weight. Comparison is made with the Harris-Benedict equations and the Brody-Kleiber (W3/4) law.

  6. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  7. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2018-01-01

    robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and highresolution C-13-metabolic flux analysis were performed on 10 adaptively evolved pgi knockouts of Escherichia coli. Pgi catalyzes the first reaction in glycolysis, and its loss results in major......Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic......, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner-Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases...

  8. Understanding Urban Metabolism: A Tool for Urban Planning

    NARCIS (Netherlands)

    Chrysoulakis, N.; Castro, de E.A.; Moors, E.J.

    2014-01-01

    This book addresses the gap between the bio-physical sciences and urban planning and illustrates the advantages of accounting for urban metabolism issues in urban design decisions. Urban metabolism considers a city as a system, and distinguishes between energy and material flows as its components.

  9. (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    NARCIS (Netherlands)

    He, F.; Fromion, V.; Westerhoff, H.V.

    2013-01-01

    Background: Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a

  10. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  11. Understanding the causes and implications of endothelial metabolic variation in cardiovascular disease through genome scale metabolic modeling

    Directory of Open Access Journals (Sweden)

    Sarah eMcGarrity

    2016-04-01

    Full Text Available High-throughput biochemical profiling has led to a requirement for advanced data interpretation techniques capable of integrating the analysis of gene, protein, and metabolic profiles to shed light on genotype-phenotype relationships. Herein, we consider the current state of knowledge of endothelial cell (EC metabolism and its connections to cardiovascular disease, and explore the use of genome scale metabolic models (GEMs for integrating metabolic and genomic data. GEMs combine gene expression and metabolic data acting as frameworks for their analysis and, ultimately, afford mechanistic understanding of how genetic variation impacts metabolism. We demonstrate how GEMs can be used to investigate cardiovascular disease-related genetic variation, drug resistance mechanisms, and novel metabolic pathways, in ECs. The application of GEMs in personalized medicine is also highlighted. Particularly, we focus on the potential of GEMs to identify metabolic biomarkers of endothelial dysfunction and to discover methods of stratifying treatments for cardiovascular diseases based on individual genetic markers. Recent advances in systems biology methodology, and how these methodologies can be applied to understand EC metabolism in both health and disease, are thus highlighted.

  12. Climate change adaptation in informal settings: Understanding and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Combining architecture, urban planning and geography methodologies, the project will conduct research in five cities in Colombia, Chile, Cuba, and Haiti, and training and implementation activities will be carried out in three of these. A total of 27 informally-driven adaptation micro-projects will include strategies for the ...

  13. Metabolic adaptations and reduced respiration of the copepod ...

    African Journals Online (AJOL)

    The results reveal a reduction by 96% of metabolic rate in deep-living, diapausing C5s relative to surface-dwelling, active individuals. Only 14.4% of this metabolic reduction is explained by the lower ambient temperature at depth and a Q10 value of 2.34. Therefore, the major fraction (81.6%) of the metabolic reduction is ...

  14. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  15. Thioredoxin binding protein-2 mediates metabolic adaptation in response to lipopolysaccharide in vivo.

    OpenAIRE

    Oka, Shin-ichi; Liu, Wenrui; Yoshihara, Eiji; Ahsan, Md Kaimul; Ramos, Dorys Adriana Lopez; Son, Aoi; Okuyama, Hiroaki; Zhang, Li; Masutani, Hiroshi; Nakamura, Hajime; Yodoi, Junji

    2010-01-01

    Endotoxin triggers a reorganization of the energy metabolic pathway, including the promotion of fatty acid utilization to adapt to a high energy demand during endotoxemia. However, the factors responsible for the metabolic adaptation and characteristic pathologies resulting from defective utilization fatty acids during endotoxin response have not been fully clarified. The thioredoxin binding protein-2 (TBP-2) knockout (TBP-2) mouse is an animal model of fatty acid oxidation disorder. The aim ...

  16. Rumen-protected rice bran to induce the adaptation of calcium metabolism in dairy cows

    NARCIS (Netherlands)

    Martín-Tereso López, J.

    2010-01-01

    Dairy cows suffer from hypocalcaemia in the days around calving, which may result in a condition generally known as milk fever. Calcium metabolism sharply shifts at the start of lactation, because Ca needs suddenly become much greater than at the end of gestation. Calcium metabolism is able to adapt

  17. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  18. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease.

    Science.gov (United States)

    Smith, Reuben L; Soeters, Maarten R; Wüst, Rob C I; Houtkooper, Riekelt H

    2018-04-24

    The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage and utilization, dependent on availability and requirement is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways which is regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors like dietary composition and feeding frequency, exercise training, and use of pharmacological compounds influence metabolic flexibility and will be discussed here. Lastly, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.

  19. Cofactors As Metabolic Sensors Driving Cell Adaptation in Physiology and Disease

    Directory of Open Access Journals (Sweden)

    Nabil Rabhi

    2017-11-01

    Full Text Available Chromatin architectures and epigenetic fingerprint regulation are fundamental for genetically determined biological processes. Chemical modifications of the chromatin template sensitize the genome to intracellular metabolism changes to set up diverse functional adaptive states. Accumulated evidence suggests that the action of epigenetic modifiers is sensitive to changes in dietary components and cellular metabolism intermediates, linking nutrition and energy metabolism to gene expression plasticity. Histone posttranslational modifications create a code that acts as a metabolic sensor, translating changes in metabolism into stable gene expression patterns. These observations support the notion that epigenetic reprograming-linked energy input is connected to the etiology of metabolic diseases and cancer. In the present review, we introduce the role of epigenetic cofactors and their relation with nutrient intake and we question the links between epigenetic regulation and the development of metabolic diseases.

  20. Regulation of PGC-1α and exercise training-induced metabolic adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina

    and intracellular signalling in human skeletal muscle depend on adrenaline levels or metabolic stress. 2) PGC-1α mediated exercise and exercise training-induced adaptive metabolic responses in mouse skeletal muscle depend on exercise intensity. 3) β-adrenergic signalling contributes to exercise training......-induced metabolic adaptations in mouse skeletal muscle through PGC-1α . Paper I demonstrated that di erences in plasma adrenaline and muscle metabolic stress during exercise do not reinforce exercise-induced PGC-1 α mRNA response in human skeletal muscle. In addition, di erences in exercise-induced AMPK and p38......-adrenergic signaling mediates exercise-induced PGC-1α mRNA responses with most potent stimulation of the alternative promoter of the PGC-1α gene in mouse skeletal muscle but, neither elevated plasma adrenaline nor metabolic stress augment exercise-induced PGC-1α mRNA response in human skeletal muscle. While...

  1. Adaptation to different types of stress converge on mitochondrial metabolism

    DEFF Research Database (Denmark)

    Lahtvee, Petri-Jaan; Kumar, Rahul; Hallstrom, B. M.

    2016-01-01

    strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate–dependent changes are eliminated. By applying systems...... sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism....

  2. Progress in understanding and engineering primary plant metabolism.

    Science.gov (United States)

    Stitt, Mark

    2013-04-01

    The maximum yield of crop plants depends on the efficiency of conversion of sunlight into biomass. This review summarises recent models that estimate energy conversion efficiency for successive steps in photosynthesis and metabolism. Photorespiration was identified as a major reason for energy loss during photosynthesis and strategies to modify or suppress photorespiration are presented. Energy loss during the conversion of photosynthate to biomass is also large but cannot be modelled as precisely due to incomplete knowledge about pathways and turnover and maintenance costs. Recent research on pathways involved in metabolite transport and interconversion in different organs, and recent insights into energy requirements linked to the production, maintenance and turnover of the apparatus for cellular growth and repair processes are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Biochemist-Tree: Using Modular Origami to Understand the Integration of Intermediary Metabolism

    Science.gov (United States)

    Sharp, Duncan

    2013-01-01

    Intermediary metabolism can be a complex area to study due to the inherent modularity of the catabolic biochemical processes. This article outlines a novel, cost-effective, and universally applicable teaching activity to enhance students understanding of the inter-relationship between the key processes of intermediary metabolism. A simple origami…

  4. Glucocorticoids, metabolic adaptations and recovery : studies in specific mouse models

    NARCIS (Netherlands)

    Auvinen, Hanna Elina

    2013-01-01

    Today’s Western society and work promotes a sedentary lifestyle. This, coupled with high caloric food availability has increased obesity followed by an increased prevalence of the metabolic syndrome (MetS), type 2 diabetes (T2D) and cardiovascular diseases (CVD). Epidemiological data show a clear

  5. Bacterial adaptation through distributed sensing of metabolic fluxes

    NARCIS (Netherlands)

    Kotte, Oliver; Zaugg, Judith B.; Heinemann, Matthias

    The recognition of carbon sources and the regulatory adjustments to recognized changes are of particular importance for bacterial survival in fluctuating environments. Despite a thorough knowledge base of Escherichia coli’s central metabolism and its regulation, fundamental aspects of the employed

  6. Adaptations to climate in candidate genes for common metabolic disorders.

    Directory of Open Access Journals (Sweden)

    Angela M Hancock

    2008-02-01

    Full Text Available Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.

  7. Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism.

    Science.gov (United States)

    Sonnay, Sarah; Duarte, João M N; Just, Nathalie

    2017-03-27

    A better understanding of BOLD responses stems from a better characterization of the brain's ability to metabolize glucose and oxygen. Non-invasive techniques such as functional magnetic resonance spectroscopy (fMRS) have thus been developed allowing for the reproducible assessment of metabolic changes during barrel cortex (S1BF) activations in rats. The present study aimed at further exploring the role of neurotransmitters on local and temporal changes in vascular and metabolic function in S1BF. fMRS and fMRI data were acquired sequentially in α-chloralose anesthetized rats during 32-min rest and trigeminal nerve stimulation periods. During stimulation, concentrations of lactate (Lac) and glutamate (Glu) increased in S1BF by 0.23±0.05 and 0.34±0.05μmol/g respectively in S1BF. Dynamic analysis of metabolite concentrations allowed estimating changes in cerebral metabolic rates of glucose (ΔCMR Glc ) and oxygen (ΔCMR O2 ). Findings confirmed a prevalence of oxidative metabolism during prolonged S1BF activation. Habituation led to a significant BOLD magnitude decline as a function of time while both total ΔCMR Glc and ΔCMR O2 remained constant revealing adaptation of glucose and oxygen metabolisms to support ongoing trigeminal nerve stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Older adults learn less, but still reduce metabolic cost, during motor adaptation

    Science.gov (United States)

    Huang, Helen J.

    2013-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation. PMID:24133222

  9. Metabolic adaptation to chronic inhibition of mitochondrial protein synthesis in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Bozhena Jhas

    Full Text Available Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress.

  10. Understanding regional metabolism for a sustainable development of urban systems.

    Science.gov (United States)

    Baccini, P

    1996-06-01

    Cities are the most complex forms of settlements which man has built in the course of his cultural development. Their "metabolism" is connected with the world economy and is run mainly by fossil energy carriers. Up to now there are no validated models for the evaluation of a sustainable development of urban regions.The guidelines for a "sustainable development" suggest the reduction of resource consumption. The article is concerned with the problem of how the "sustainable-development concept" can be transformed from a global to a regional scale. In urban settlements the strategy of final storage should be applied. By this, the subsystem waste management can be transformed within 10 to 15 years to a "sustainable status".With regard to the system "agronomy", the article concludes that agriculture in urban systems should focus on food production instead of promoting reduction of food production in favour of energy plants, which is not a suitable strategy.The main problems are the energy carriers. Transformation to a "sustainble status" is only possible by a reconstruction of the urban system, i.e. of buildings and the transportation network. The rate determining step in achieving such a status is the change in the fabric of buildings and in the type of transportation networks. The reconstruction of an urban system needs, mainly for economical reasons, a time period of two generations.

  11. Adapting to a Challenging Fieldwork: Understanding the Ingredients

    Directory of Open Access Journals (Sweden)

    Emily Raphael-Greenfield

    2017-01-01

    Full Text Available Two occupational therapy students were assigned to an inpatient psychiatric unit for their first Level 1 fieldwork. With limited on-site supervision provided, they looked to each other for peer support and collaboration in assisting one patient with severe depression who was considered the “sickest patient on the unit.” The students were able to work together and make a positive intervention with this patient despite their novice status. Understanding what each of them brought personally to this experience as well as the nature of their working relationship and their use of concepts taught in the classroom has important implications for occupational therapy education. One of the profession’s goals in acute psychiatric settings is to engage clients in meaningful occupations to facilitate rehabilitation and the recovery process. The two students skillfully employed the concepts of emotional intelligence, cultural competence, and therapeutic use of self and demonstrated their comfort with technology and spirituality to facilitate his occupational reengagement. By examining this case report through the lens of the literature on emotional intelligence, cultural competence, and therapeutic use of self, the ingredients of their clinical reasoning becomes more transparent and available to other occupational therapy educational programs.

  12. AMPKα in Exercise-Induced Substrate Metabolism and Exercise Training-Induced Metabolic and Mitochondrial Adaptations

    DEFF Research Database (Denmark)

    Fentz, Joachim

    A bout of exercise potently stimulates skeletal muscle energy metabolism. The ATP turnover may rise up to0 ~100 fold compared to the resting state and this presents a substantial stress on skeletal muscle ATP regeneration. To prepare for future events of metabolic stress, the muscle increases its...

  13. Cold climate specialization: adaptive covariation between metabolic rate and thermoregulation in pregnant vipers.

    Science.gov (United States)

    Lourdais, Olivier; Guillon, Michaël; Denardo, Dale; Blouin-Demers, Gabriel

    2013-07-02

    We compared thermoregulatory strategies during pregnancy in two congeneric viperid snakes (Vipera berus and Vipera aspis) with parapatric geographic ranges. V. berus is a boreal specialist with the largest known distribution among terrestrial snakes while V. aspis is a south-European species. Despite contrasted climatic affinities, the two species displayed identical thermal preferences (Tset) in a laboratory thermal gradient. Under identical natural conditions, however, V. berus was capable of maintaining Tset for longer periods, especially when the weather was constraining. Consistent with the metabolic cold adaptation hypothesis, V. berus displayed higher standard metabolic rate at all temperatures considered. We used the thermal dependence of metabolic rate to calculate daily metabolic profiles from body temperature under natural conditions. The boreal specialist experienced higher daily metabolic rate and minimized gestation duration chiefly because of differences in the metabolic reaction norms, but also superior thermoregulatory efficiency. Under cold climates, thermal constraints should make precise thermoregulation costly. However, a shift in the metabolic reaction norm may compensate for thermal constraints and modify the cost-benefit balance of thermoregulation. Covariation between metabolic rate and thermoregulation efficiency is likely an important adaptation to cold climates. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

    Science.gov (United States)

    Mauro, Claudio; Leow, Shi Chi; Anso, Elena; Rocha, Sonia; Thotakura, Anil K; Tornatore, Laura; Moretti, Marta; De Smaele, Enrico; Beg, Amer A; Tergaonkar, Vinay; Chandel, Navdeep S; Franzoso, Guido

    2011-08-28

    Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.

  15. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis.

    Science.gov (United States)

    Sanchez, Diego H; Pieckenstain, Fernando L; Escaray, Francisco; Erban, Alexander; Kraemer, Ute; Udvardi, Michael K; Kopka, Joachim

    2011-04-01

    The legume genus Lotus includes glycophytic forage crops and other species adapted to extreme environments, such as saline soils. Understanding salt tolerance mechanisms will contribute to the discovery of new traits which may enhance the breeding efforts towards improved performance of legumes in marginal agricultural environments. Here, we used a combination of ionomic and gas chromatography-mass spectrometry (GC-MS)-based metabolite profilings of complete shoots (pooling leaves, petioles and stems) to compare the extremophile Lotus creticus, adapted to highly saline coastal regions, and two cultivated glycophytic grassland forage species, Lotus corniculatus and Lotus tenuis. L. creticus exhibited better survival after exposure to long-term lethal salinity and was more efficient at excluding Cl⁻ from the shoots than the glycophytes. In contrast, Na+ levels were higher in the extremophile under both control and salt stress, a trait often observed in halophytes. Ionomics demonstrated a differential rearrangement of shoot nutrient levels in the extremophile upon salt exposure. Metabolite profiling showed that responses to NaCl in L. creticus shoots were globally similar to those of the glycophytes, providing little evidence for metabolic pre-adaptation to salinity. This study is the first comparing salt acclimation responses between extremophile and non-extremophile legumes, and challenges the generalization of the metabolic salt pre-adaptation hypothesis. © 2011 Blackwell Publishing Ltd.

  16. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    Science.gov (United States)

    Őri, Zsolt P

    2017-05-01

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  17. Metabolic adaptation of skeletal muscles to gravitational unloading

    Science.gov (United States)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  18. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Richter, Erik; Wojtaszewski, Jørgen

    2006-01-01

    The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism...... during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We...... in relation to adaptation of skeletal muscle to exercise training....

  19. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Anna Koczula

    2017-02-01

    Full Text Available Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq. In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism. In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  20. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  1. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  2. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Justin D Crane

    Full Text Available Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  3. Elevated Mitochondrial Oxidative Stress Impairs Metabolic Adaptations to Exercise in Skeletal Muscle

    Science.gov (United States)

    Crane, Justin D.; Abadi, Arkan; Hettinga, Bart P.; Ogborn, Daniel I.; MacNeil, Lauren G.; Steinberg, Gregory R.; Tarnopolsky, Mark A.

    2013-01-01

    Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 +/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 +/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 +/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity. PMID:24324727

  4. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  5. Understanding the role of p53 in adaptive response to radiation-induced germline mutations

    International Nuclear Information System (INIS)

    Langlois, N.L.; Quinn, J.S.; Somers, C.M.; Boreham, D.R.; Mitchel, R.E.J.

    2003-01-01

    Full text: Radiation-induced adaptive response is now a widely studied area of radiation biology. Studies have demonstrated reduced levels of radiation-induced biological damage when an 'adaptive dose' is given before a higher 'challenge dose' compared to when the challenge dose is given alone. It has been shown in some systems to be a result of inducible cellular repair systems. The adaptive response has been clearly demonstrated in many model systems, however its impact on heritable effects in the mammalian germline has never been studied. Expanded Simple Tandem Repeat (ESTR) loci have been used as markers demonstrating that induced heritable mutations in mice follow a dose-response relationship. Recent data in our laboratory show preliminary evidence of radiation-induced adaptive response suppressing germline mutations at ESTR loci in wild type mice. The frequency of heritable mutations was significantly reduced when a priming dose of 0.1 Gy was given 24 hours prior to a 1 Gy acute challenging dose. We are now conducting a follow-up study to attempt to understand the mechanism of this adaptive response. P53 is known to play a significant role in governing apoptosis, DNA repair and cancer induction. In order to determine what function p53 has in the adaptive response for heritable mutations, we have mated radiation treated Trp53+/- male mice (C57Bl) to untreated, normal females (C57Bl). Using DNA fingerprinting, we are investigating the rate of inherited radiation-induced mutations on pre- and post-meiotic radiation-treated gametocytes by examining mutation frequencies in offspring DNA. If p53 is integral in the mechanism of adaptive response, we should not see an adaptive response in radiation-induced heritable mutations in these mice. This research is significant in that it will provide insight to understanding the mechanism behind radiation-induced adaptive response in the mammalian germline

  6. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST.

    Directory of Open Access Journals (Sweden)

    Xue Guo

    Full Text Available The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs. The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal

  7. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    Science.gov (United States)

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  9. Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows.

    Science.gov (United States)

    Ehrhardt, Richard A; Foskolos, Andreas; Giesy, Sarah L; Wesolowski, Stephanie R; Krumm, Christopher S; Butler, W Ronald; Quirk, Susan M; Waldron, Matthew R; Boisclair, Yves R

    2016-05-01

    Mammals meet the increased nutritional demands of lactation through a combination of increased feed intake and a collection of adaptations known as adaptive metabolism (e.g., glucose sparing via insulin resistance, mobilization of endogenous reserves, and increased metabolic efficiency via reduced thyroid hormones). In the modern dairy cow, adaptive metabolism predominates over increased feed intake at the onset of lactation and develops concurrently with a reduction in plasma leptin. To address the role of leptin in the adaptive metabolism of early lactation, we asked which adaptations could be countered by a constant 96-h intravenous infusion of human leptin (hLeptin) starting on day 8 of lactation. Compared to saline infusion (Control), hLeptin did not alter energy intake or milk energy output but caused a modest increase in body weight loss. hLeptin reduced plasma glucose by 9% and hepatic glycogen content by 73%, and these effects were associated with a 17% increase in glucose disposal during an insulin tolerance test. hLeptin attenuated the accumulation of triglyceride in the liver by 28% in the absence of effects on plasma levels of the anti-lipolytic hormone insulin or plasma levels of free fatty acids, a marker of lipid mobilization from adipose tissue. Finally, hLeptin increased the plasma concentrations of T4 and T3 by nearly 50% without affecting other neurally regulated hormones (i.e., cortisol and luteinizing hormone (LH)). Overall these data implicate the periparturient reduction in plasma leptin as one of the signals promoting conservation of glucose and energy at the onset of lactation in the energy-deficient dairy cow. © 2016 Society for Endocrinology.

  10. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    Science.gov (United States)

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  11. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  12. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment

    Directory of Open Access Journals (Sweden)

    Rui V. Simões

    2015-08-01

    Full Text Available Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells, leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1 provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2 lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.

  13. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.

    Directory of Open Access Journals (Sweden)

    Pep Charusanti

    2010-11-01

    Full Text Available Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1 the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2 two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3 despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.

  14. Mesenchymal Stem Cells and Metabolic Syndrome: Current Understanding and Potential Clinical Implications

    Directory of Open Access Journals (Sweden)

    Kenichi Matsushita

    2016-01-01

    Full Text Available Metabolic syndrome is an obesity-based, complicated clinical condition that has become a global epidemic problem with a high associated risk for cardiovascular disease and mortality. Dyslipidemia, hypertension, and diabetes or glucose dysmetabolism are the major factors constituting metabolic syndrome, and these factors are interrelated and share underlying pathophysiological mechanisms. Severe obesity predisposes individuals to metabolic syndrome, and recent data suggest that mesenchymal stem cells (MSCs contribute significantly to adipocyte generation by increasing the number of adipocytes. Accordingly, an increasing number of studies have examined the potential roles of MSCs in managing obesity and metabolic syndrome. However, despite the growing bank of experimental and clinical data, the efficacy and the safety of MSCs in the clinical setting are still to be optimized. It is thus hoped that ongoing and future studies can elucidate the roles of MSCs in metabolic syndrome and lead to MSC-based therapeutic options for affected patients. This review discusses current understanding of the relationship between MSCs and metabolic syndrome and its potential implications for patient management.

  15. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...... a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption...... values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact....

  16. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption......Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...... values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact....

  17. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  18. Understanding adaptation and transformation through indigenous practice: the case of the Guna of Panama

    Directory of Open Access Journals (Sweden)

    Marina J. Apgar

    2015-03-01

    Full Text Available Resilience is emerging as a promising vehicle for improving management of social-ecological systems that can potentially lead to more sustainable arrangements between environmental and social spheres. Central to an understanding of how to support resilience is the need to understand social change and its links with adaptation and transformation. Our aim is to contribute to insights about and understanding of underlying social dynamics at play in social-ecological systems. We argue that longstanding indigenous practices provide opportunities for investigating processes of adaptation and transformation. We use in-depth analysis of adaptation and transformation through engagement in participatory action research, focusing on the role of cultural and social practices among the Guna indigenous peoples in Panama. Our findings reveal that cultural practices facilitating leadership development, personhood development, and social networking are critical for enabling both adaptation and transformation. Further, we argue that Guna ritual practice builds additional skills, such as critical self-reflection and creative innovation, that are important for supporting the deeper changes required by transformation.

  19. Dealing with Stress: Defective Metabolic Adaptation in Chronic Obstructive Pulmonary Disease Pathogenesis.

    Science.gov (United States)

    Michaeloudes, Charalambos; Bhavsar, Pankaj K; Mumby, Sharon; Chung, Kian Fan; Adcock, Ian M

    2017-11-01

    The mitochondrion is the main site of energy production and a hub of key signaling pathways. It is also central in stress-adaptive response due to its dynamic morphology and ability to interact with other organelles. In response to stress, mitochondria fuse into networks to increase bioenergetic efficiency and protect against oxidative damage. Mitochondrial damage triggers segregation of damaged mitochondria from the mitochondrial network through fission and their proteolytic degradation by mitophagy. Post-translational modifications of the mitochondrial proteome and nuclear cross-talk lead to reprogramming of metabolic gene expression to maintain energy production and redox balance. Chronic obstructive pulmonary disease (COPD) is caused by chronic exposure to oxidative stress arising from inhaled irritants, such as cigarette smoke. Impaired mitochondrial structure and function, due to oxidative stress-induced damage, may play a key role in causing COPD. Deregulated metabolic adaptation may contribute to the development and persistence of mitochondrial dysfunction in COPD. We discuss the evidence for deregulated metabolic adaptation and highlight important areas for investigation that will allow the identification of molecular targets for protecting the COPD lung from the effects of dysfunctional mitochondria.

  20. Adaptive changes in basal metabolic rate and thermogenesis in chronic undernutrition

    International Nuclear Information System (INIS)

    Shetty, P.S.

    1993-01-01

    Metabolic adaptation during chronic undernutrition represents a complex integration of several processes which affect the total energy expenditure of the individual. Basal metabolic rate (BMR) is reduced; reductions in BMR per unit fat free mass (FFM) is difficult to demonstrate. BMR changes in undernutrition reflect the low body weight as well as alterations in the composition of the FFM; more specifically changes in the ratio of viscera to muscle compartments of the FFM. Thermogenic responses to norepinephrine are transiently suppressed but recover rapidly on repeated stimulation. Dietary thermogenesis is enhanced possible the result of increases in tissue synthesis within the body. Changes in BMR and thermogenesis suggestive of an increase in metabolic efficiency is thus difficult to demonstrate in chronic undernutrition. (author). 15 refs, 2 figs, 7 tabs

  1. Metabolic profiling provides a system understanding of hypothyroidism in rats and its application.

    Directory of Open Access Journals (Sweden)

    Si Wu

    Full Text Available BACKGROUND: Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND is a well-known formula of traditional Chinese medicine (TCM and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. METHODOLOGY/PRINCIPAL FINDINGS: A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. CONCLUSIONS/SIGNIFICANCE: Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on

  2. Metabolic profiling provides a system understanding of hypothyroidism in rats and its application.

    Science.gov (United States)

    Wu, Si; Tan, Guangguo; Dong, Xin; Zhu, Zhenyu; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of traditional Chinese medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism.

  3. Metabolic Profiling Provides a System Understanding of Hypothyroidism in Rats and Its Application

    Science.gov (United States)

    Dong, Xin; Zhu, Zhenyu; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    Background Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of Traditional Chinese Medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. Methodology/Principal Findings A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Conclusions/Significance Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism. PMID

  4. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs

    Directory of Open Access Journals (Sweden)

    Reser Jared

    2009-02-01

    Full Text Available Abstract The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD, represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent. Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural over raw brain power (working memory. Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer

  5. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs.

    Science.gov (United States)

    Kim, Kook Hwan; Lee, Myung-Shik

    2015-07-01

    Most hormones secreted from specific organs of the body in response to diverse stimuli contribute to the homeostasis of the whole organism. Fibroblast growth factor 21 (FGF21), a hormone induced by a variety of environmental or metabolic stimuli, plays a crucial role in the adaptive response to these stressful conditions. In addition to its role as a stress hormone, FGF21 appears to function as a mediator of the therapeutic effects of currently available drugs and those under development for treatment of metabolic diseases. In this review, we highlight molecular mechanisms and the functional importance of FGF21 induction in response to diverse stress conditions such as changes of nutritional status, cold exposure, and exercise. In addition, we describe recent findings regarding the role of FGF21 in the pathogenesis and treatment of diabetes associated with obesity, liver diseases, pancreatitis, muscle atrophy, atherosclerosis, cardiac hypertrophy, and diabetic nephropathy. Finally, we discuss the current understanding of the actions of FGF21 as a crucial regulator mediating beneficial metabolic effects of therapeutic agents such as metformin, glucagon/glucagon-like peptide 1 analogues, thiazolidinedione, sirtuin 1 activators, and lipoic acid. © 2015 Society for Endocrinology.

  6. Compensation of the Metabolic Costs of Antibiotic Resistance by Physiological Adaptation in Escherichia coli

    Science.gov (United States)

    Händel, Nadine; Schuurmans, J. Merijn; Brul, Stanley

    2013-01-01

    Antibiotic resistance is often associated with metabolic costs. To investigate the metabolic consequences of antibiotic resistance, the genomic and transcriptomic profiles of an amoxicillin-resistant Escherichia coli strain and the wild type it was derived from were compared. A total of 125 amino acid substitutions and 7 mutations that were located resistant cells. However, broad induction and suppression of genes were observed when comparing the expression profiles of resistant and wild-type cells. Expression of genes involved in cell wall maintenance, DNA metabolic processes, cellular stress response, and respiration was most affected in resistant cells regardless of the absence or presence of amoxicillin. The SOS response was downregulated in resistant cells. The physiological effect of the acquisition of amoxicillin resistance in cells grown in chemostat cultures consisted of an initial increase in glucose consumption that was followed by an adaptation process. Furthermore, no difference in maintenance energy was observed between resistant and sensitive cells. In accordance with the transcriptomic profile, exposure of resistant cells to amoxicillin resulted in reduced salt and pH tolerance. Taken together, the results demonstrate that the acquisition of antibiotic resistance in E. coli is accompanied by specifically reorganized metabolic networks in order to circumvent metabolic costs. The overall effect of the acquisition of resistance consists not so much of an extra energy requirement, but more a reduced ecological range. PMID:23716056

  7. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity.

    Science.gov (United States)

    Viry, Elodie; Paggetti, Jerome; Baginska, Joanna; Mgrditchian, Takouhie; Berchem, Guy; Moussay, Etienne; Janji, Bassam

    2014-11-01

    Several environmental-associated stress conditions, including hypoxia, starvation, oxidative stress, fast growth and cell death suppression, modulate both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain proliferation and evade therapies. It is now widely accepted that autophagy is essential to support cancer cell growth and metabolism and that metabolic reprogramming in cancer can also favor autophagy induction. Therefore, this complex interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets. As the regulation of the autophagic activity is related to metabolism, it is important to elucidate the exact molecular mechanism which drives it and the functional consequence of its activation in the context of cancer therapy. In this review, we will summarize the role of autophagy in shaping the cellular response to an abnormal tumor microenvironment and discuss some recent results on the molecular mechanism by which autophagy plays such a role in the context of the anti-tumor immune response. We will also describe how autophagy activation can behave as a double-edged sword, by activating the immune response in some circumstances, and impairing the anti-tumor immunity in others. These findings imply that defining the precise context-specific role for autophagy in cancer is critical to guide autophagy-based therapeutics which are becoming key strategies to overcome tumor resistance to therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Understanding Indian Institutional Networks and Participation in Water Management Adaptation to Climate Change

    Science.gov (United States)

    Azhoni, A.; Holman, I.; Jude, S.

    2014-12-01

    Adaptation to climate change for water management involves complex interactions between different actors and sectors. The need to understand the relationships between key stakeholder institutions (KSIs) is increasingly recognized. The complexity of water management in India has meant that enhancing adaptive capacity through improved inter-institutional networks remains a challenge for both government and non-governmental institutions. To analyse such complex inter-actions this study has used Social Network and Stakeholder Analysis tools to quantify the participation of, and interactions between, each KSI in the climate change adaptation and water discourse based on keyword analysis of their online presence. Using NodeXL, a Social Network Analysis tool, network diagrams have been used to evaluate the inter-relationships between these KSIs. Semi-structured interviews were conducted with twenty-five KSIs to identify the main barriers to adaptation and to triangulate the findings of the e-documents analysis. The analysis found that there is an inverse relationship between institutions' reference to water and climate change in their web-documents. Most institutions emphasize mitigation rather than adaptation. Bureaucratic delays, poor coordination between the KSIs, unclear policies and systemic deficiencies are identified as key barriers to improving adaptive capacity within water management to climate change. However, the increasing attention being given to the perceived climate change impacts on the water sector and improving the inter-institutional networks are some of the opportunities for Indian water institutions. Although websites of Union Government Institutions seldom directly hyperlink to one another, they are linked through "bridging" websites which have the potential to act as brokers for enhancing adaptive capacity. The research has wider implications for analysis of complex inter-disciplinary and inter-institutional issues involving multi stakeholders.

  9. Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment

    Directory of Open Access Journals (Sweden)

    Barbara R. Lyon

    2014-01-01

    Full Text Available Polar Regions are unique and highly prolific ecosystems characterized by extreme environmental gradients. Photosynthetic autotrophs, the base of the food web, have had to adapt physiological mechanisms to maintain growth, reproduction and metabolic activity despite environmental conditions that would shut-down cellular processes in most organisms. High latitudes are characterized by temperatures below the freezing point, complete darkness in winter and continuous light and high UV in the summer. Additionally, sea-ice, an ecological niche exploited by microbes during the long winter seasons when the ocean and land freezes over, is characterized by large salinity fluctuations, limited gas exchange, and highly oxic conditions. The last decade has been an exciting period of insights into the molecular mechanisms behind adaptation of microalgae to the cryosphere facilitated by the advancement of new scientific tools, particularly “omics” techniques. We review recent insights derived from genomics, transcriptomics, and proteomics studies. Genes, proteins and pathways identified from these highly adaptable polar microbes have far-reaching biotechnological applications. Furthermore, they may provide insights into life outside this planet, as well as glimpses into the past. High latitude regions also have disproportionately large inputs into global biogeochemical cycles and are the region most sensitive to climate change.

  10. Understanding circadian regulation of carbohydrate metabolism in Arabidopsis using mathematical models.

    Science.gov (United States)

    Webb, Alex A R; Satake, Akiko

    2015-04-01

    C3 plants assimilate carbon by photosynthesis only during the day, but carbon resources are also required for growth and maintenance at night. To avoid carbon starvation, many plants store a part of photosynthetic carbon in starch during the day, and degrade it to supply sugars for growth at night. In Arabidopsis, starch accumulation in the day and degradation at night occur almost linearly, with the shape of this diel starch profile adaptively changing to allow continuous supply of sugar even in long-night conditions. The anticipation of dawn required to ensure linear consumption of starch to almost zero at dawn presumably requires the circadian clock. We review the links between carbon metabolism and the circadian clock, and mathematical models aimed at explaining the diel starch profile. These models can be considered in two classes, those that assume the level of available starch is sensed and the system ensures linearity of starch availability, and those in which sugar sensing is assumed, yielding linearity of starch availability as an emergent property of sucrose homeostasis. In the second class of model the feedback from starch metabolism to the circadian clock is considered to be essential for adaptive response to diverse photoperiods, consistent with recent empirical data demonstrating entrainment of the circadian clock by photosynthesis. Knowledge concerning the mechanisms regulating the dynamics of starch metabolism and sugar homeostasis in plants is required to develop new theories about the limitations of growth and biomass accumulation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Using community archetypes to better understand differential community adaptation to wildfire risk.

    Science.gov (United States)

    Carroll, Matthew; Paveglio, Travis

    2016-06-05

    One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and reality of fire in a variety of landscapes. The challenge in creating 'fire-adapted communities' (FACs) is the great diversity in character and make-up of populations at risk from wildfire. This paper outlines a recently developed categorization scheme for Wildland-Urban Interface (WUI) communities based on a larger conceptual approach for understanding how social diversity is likely to influence the creation of FACs. The WUI categorization scheme situates four community archetypes on a continuum that recognizes dynamic change in human community functioning. We use results from the WUI classification scheme to outline key characteristics associated with each archetype and results from recent case studies to demonstrate the diversity across WUI communities. Differences among key characteristics of local social context will likely result in the need for different adaptation strategies to wildfire. While the WUI archetypes described here may not be broadly applicable to other parts of the world, we argue that the conceptual approach and strategies for systematically documenting local influences on wildfire adaptation have potential for broad application.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  12. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha.

    Science.gov (United States)

    Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J

    2018-01-01

    Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.

  13. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  14. Understanding role of genome dynamics in host adaptation of gut commensal, L. reuteri

    Directory of Open Access Journals (Sweden)

    Shikha Sharma

    2017-10-01

    Full Text Available Lactobacillus reuteri is a gram-positive gut commensal and exhibits noteworthy adaptation to its vertebrate hosts. Host adaptation is often driven by inter-strain genome dynamics like expansion of insertion sequences that lead to acquisition and loss of gene(s and creation of large dynamic regions. In this regard we carried in-house genome sequencing of large number of L. reuteri strains origination from human, chicken, pig and rodents. We further next generation sequence data in understanding invasion and expansion of an IS element in shaping genome of strains belonging to human associated lineage. Finally, we share our experience in high-throughput genomic library preparation and generating high quality sequence data of a very low GC bacterium like L. reuteri.

  15. Metabolic adaptation and reticuloruminal pH in periparturient dairy cows experiencing different lipolysis early postpartum.

    Science.gov (United States)

    Humer, E; Khol-Parisini, A; Gruber, L; Wittek, T; Aschenbach, J R; Zebeli, Q

    2016-11-01

    Metabolic adaptation includes an array of concerted metabolic and endocrine events that enable dairy cows bridging the period of energy deficit at the onset of lactation. The present study evaluated metabolic, endocrine and reticuloruminal pH changes in 30 (25 Holstein and five Simmental) periparturient dairy cows experiencing variable lipolysis early postpartum. Cows were fed the same close-up and fresh lactation diets and kept in the same management conditions. Blood samples were collected at day 14, and day 4, relative to expected parturition, and at day 2, and day 21 postpartum, and serum metabolites and hormones related to glucose and lipid metabolism, as well as concentrations of several liver enzymes and acute phase proteins were determined. Additionally, reticuloruminal pH was monitored every 10 min over the last 3 days of the observation period. BW and milk yields were recorded and balances of energy and protein were assessed. Based on serum concentration of non-esterified fatty acids (NEFA) postpartum, cows were retrospectively classified into low (n=8), medium (n=11), and high (n=11) lipolysis groups, with NEFA levels of 0.7 mmol/l, respectively. Overall, elevated NEFA concentrations in the High group went along with a higher ratio of NEFA to cholesterol and reduced insulin sensitivity. While serum glucose, energy deficit and BW loss did not differ, cows of the High group exhibited increased lactate concentrations in the serum, compared with the Medium group. No differences in liver enzymes and acute phase proteins were evidenced among fat mobilization groups, whereas concentration of serum billirubin was lowest in the Low group after parturition. Data of milk yield and milk energy output showed no differences among groups, despite divergences in calculated energy balance and BW change postpartum. Cows of the Low group tended to increase dry matter intake but also showed longer time duration of pH below 6.0 in the reticulorumen (on average 299 min

  16. Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte

    modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-­‐ standing these adaptation processes. The exploratory systems biology approach facilitates identification of important phenotypes...... by classical molecular biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-­‐ cal understanding and provide new surprising ideas to important biological processes....

  17. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    Science.gov (United States)

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  18. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    Science.gov (United States)

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  19. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training.

    Science.gov (United States)

    Thompson, Christopher; Wylie, Lee J; Blackwell, Jamie R; Fulford, Jonathan; Black, Matthew I; Kelly, James; McDonagh, Sinead T J; Carter, James; Bailey, Stephen J; Vanhatalo, Anni; Jones, Andrew M

    2017-03-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1 ) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2 ) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3 ) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR ( P 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only ( P interval training. Compared with placebo, dietary nitrate supplementation reduced the O 2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training. Copyright © 2017 the American Physiological Society.

  20. SEVERE OBESITY SHIFTS METABOLIC THRESHOLDS BUT DOES NOT ATTENUATE AEROBIC TRAINING ADAPTATIONS IN ZUCKER RATS

    Directory of Open Access Journals (Sweden)

    Thiago Santos Rosa

    2016-04-01

    Full Text Available Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10 were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60% (obese = 78±9% and lean = 68±5%, P 0.05, whereas increase in maximal velocity was greater in the obese group (P <0.05 vs. lean. In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations.

  1. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    Directory of Open Access Journals (Sweden)

    Sissel J. Moltu

    2014-05-01

    Full Text Available Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate. The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.

  2. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach.

    Science.gov (United States)

    Peppicelli, Silvia; Bianchini, Francesca; Calorini, Lido

    2015-01-01

    Cancer cells need to regulate their metabolic program to fuel several activities, including unlimited proliferation, resistance to cell death, invasion and metastasis. The aim of this work is to revise this complex scenario. Starting from proliferating cancer cells located in well-oxygenated regions, they may express the so-called "Warburg effect" or aerobic glycolysis, meaning that although a plenty of oxygen is available, cancer cells choose glycolysis, the sole pathway that allows a biomass formation and DNA duplication, needed for cell division. Although oxygen does not represent the primary font of energy, diffusion rate reduces oxygen tension and the emerging hypoxia promotes "anaerobic glycolysis" through the hypoxia inducible factor-1α-dependent up-regulation. The acquired hypoxic phenotype is endowed with high resistance to cell death and high migration capacities, although these cells are less proliferating. Cells using aerobic or anaerobic glycolysis survive only in case they extrude acidic metabolites acidifying the extracellular space. Acidosis drives cancer cells from glycolysis to OxPhos, and OxPhos transforms the available alternative substrates into energy used to fuel migration and distant organ colonization. Thus, metabolic adaptations sustain different energy-requiring ability of cancer cells, but render them responsive to perturbations by anti-metabolic agents, such as inhibitors of glycolysis and/or OxPhos.

  3. Adaptive clinical trial designs with pre-specified rules for modifying the sample size: understanding efficient types of adaptation.

    Science.gov (United States)

    Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S

    2013-04-15

    Adaptive clinical trial design has been proposed as a promising new approach that may improve the drug discovery process. Proponents of adaptive sample size re-estimation promote its ability to avoid 'up-front' commitment of resources, better address the complicated decisions faced by data monitoring committees, and minimize accrual to studies having delayed ascertainment of outcomes. We investigate aspects of adaptation rules, such as timing of the adaptation analysis and magnitude of sample size adjustment, that lead to greater or lesser statistical efficiency. Owing in part to the recent Food and Drug Administration guidance that promotes the use of pre-specified sampling plans, we evaluate alternative approaches in the context of well-defined, pre-specified adaptation. We quantify the relative costs and benefits of fixed sample, group sequential, and pre-specified adaptive designs with respect to standard operating characteristics such as type I error, maximal sample size, power, and expected sample size under a range of alternatives. Our results build on others' prior research by demonstrating in realistic settings that simple and easily implemented pre-specified adaptive designs provide only very small efficiency gains over group sequential designs with the same number of analyses. In addition, we describe optimal rules for modifying the sample size, providing efficient adaptation boundaries on a variety of scales for the interim test statistic for adaptation analyses occurring at several different stages of the trial. We thus provide insight into what are good and bad choices of adaptive sampling plans when the added flexibility of adaptive designs is desired. Copyright © 2012 John Wiley & Sons, Ltd.

  4. The Recent Understanding of the Neurotrophin's Role in Skeletal Muscle Adaptation

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2011-01-01

    Full Text Available This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression. In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.

  5. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  6. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations.

    Science.gov (United States)

    Franchi, Martino V; Reeves, Neil D; Narici, Marco V

    2017-01-01

    Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively); however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT) is assumed to produce greater hypertrophy than concentric resistance training (CON RT). Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood. Thus, the present review aims to, (a) critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b) clarify the molecular mechanisms that may regulate such adaptations. We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions.

  7. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations

    Directory of Open Access Journals (Sweden)

    Martino V. Franchi

    2017-07-01

    Full Text Available Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively; however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT is assumed to produce greater hypertrophy than concentric resistance training (CON RT. Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood.Thus, the present review aims to, (a critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b clarify the molecular mechanisms that may regulate such adaptations.We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions.

  8. Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis

    Science.gov (United States)

    Venev, Sergey V; Zeldovich, Konstantin B

    2018-01-01

    Abstract Prokaryotes evolved to thrive in an extremely diverse set of habitats, and their proteomes bear signatures of environmental conditions. Although correlations between amino acid usage and environmental temperature are well-documented, understanding of the mechanisms of thermal adaptation remains incomplete. Here, we couple the energetic costs of protein folding and protein homeostasis to build a microscopic model explaining both the overall amino acid composition and its temperature trends. Low biosynthesis costs lead to low diversity of physical interactions between amino acid residues, which in turn makes proteins less stable and drives up chaperone activity to maintain appropriate levels of folded, functional proteins. Assuming that the cost of chaperone activity is proportional to the fraction of unfolded client proteins, we simulated thermal adaptation of model proteins subject to minimization of the total cost of amino acid synthesis and chaperone activity. For the first time, we predicted both the proteome-average amino acid abundances and their temperature trends simultaneously, and found strong correlations between model predictions and 402 genomes of bacteria and archaea. The energetic constraint on protein evolution is more apparent in highly expressed proteins, selected by codon adaptation index. We found that in bacteria, highly expressed proteins are similar in composition to thermophilic ones, whereas in archaea no correlation between predicted expression level and thermostability was observed. At the same time, thermal adaptations of highly expressed proteins in bacteria and archaea are nearly identical, suggesting that universal energetic constraints prevail over the phylogenetic differences between these domains of life. PMID:29106597

  9. Recovery of Phenotypes Obtained by Adaptive Evolution through Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-01-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one...... of the mutations RAS2Lys77, RAS2Tyr112, and ERG5Pro370 were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites......, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2Lys77 mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2Tyr112 mutation also improved the specific...

  10. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle

    DEFF Research Database (Denmark)

    Cantó, Carles; Jiang, Lake Q; Deshmukh, Atul S

    2010-01-01

    During fasting and after exercise, skeletal muscle efficiently switches from carbohydrate to lipid as the main energy source to preserve glycogen stores and blood glucose levels for glucose-dependent tissues. Skeletal muscle cells sense this limitation in glucose availability and transform...... this information into transcriptional and metabolic adaptations. Here we demonstrate that AMPK acts as the prime initial sensor that translates this information into SIRT1-dependent deacetylation of the transcriptional regulators PGC-1alpha and FOXO1, culminating in the transcriptional modulation of mitochondrial...... and lipid utilization genes. Deficient AMPK activity compromises SIRT1-dependent responses to exercise and fasting, resulting in impaired PGC-1alpha deacetylation and blunted induction of mitochondrial gene expression. Thus, we conclude that AMPK acts as the primordial trigger for fasting- and exercise...

  11. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats

    DEFF Research Database (Denmark)

    Schultz, R L; Kullman, E L; Waters, Ryan

    2013-01-01

    SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function......The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female...... and expression, and glycogen utilization. The SHHFex rats ran a greater distance and duration as compared to the WFex rats (Pmuscle citrate synthase and beta-hydroxyacyl-CoA dehydrogenase enzyme activity was not altered in the SHHFex group...

  12. Using a complex adaptive system lens to understand family caregiving experiences navigating the stroke rehabilitation system.

    Science.gov (United States)

    Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey

    2016-10-01

    Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.

  13. Force-induced bone growth and adaptation: A system theoretical approach to understanding bone mechanotransduction

    International Nuclear Information System (INIS)

    Maldonado, Solvey; Findeisen, Rolf

    2010-01-01

    The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.

  14. Analysis of anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    Full Text Available Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism.

  15. Proteomic analysis of the metabolic adaptation of the biocontrol agent Pseudozyma flocculosa leading to glycolipid production

    Directory of Open Access Journals (Sweden)

    Bélanger Richard R

    2010-02-01

    Full Text Available Abstract The yeast-like epiphytic fungus Pseudozyma flocculosa is known to antagonize powdery mildew fungi through proliferation on colonies presumably preceded by the release of an antifungal glycolipid (flocculosin. In culture conditions, P. flocculosa can be induced to produce or not flocculosin through manipulation of the culture medium nutrients. In order to characterize and understand the metabolic changes in P. flocculosa linked to glycolipid production, we conducted a 2-DE proteomic analysis and compared the proteomic profile of P. flocculosa growing under conditions favoring the development of the fungus (control or conducive to flocculosin synthesis (stress. A large number of protein spots (771 were detected in protein extracts of the control treatment compared to only 435 matched protein spots in extracts of the stress cultures, which clearly suggests an important metabolic reorganization in slow-growing cells producing flocculosin. From the latter treatment, we were able to identify 21 protein spots that were either specific to the treatment or up-regulated significantly (2-fold increase. All of them were identified based on similarity between predicted ORF of the newly sequenced genome of P. flocculosa with Ustilago maydis' available annotated sequences. These proteins were associated with the carbon and fatty acid metabolism, and also with the filamentous change of the fungus leading to flocculosin production. This first look into the proteome of P. flocculosa suggests that flocculosin synthesis is elicited in response to specific stress or limiting conditions.

  16. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  17. Understanding How Space Travel Affects Blood Vessels: Arterial Remodeling and Functional Adaptations Induced by Microgravity

    Science.gov (United States)

    Delp, Michael; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Ever rise quickly from the couch to get something from the kitchen and suddenly feel dizzy? With a low heart rate and relaxed muscles, the cardiovascular system does not immediately provide the resistance necessary to keep enough blood going to your head. Gravity wins, at least for a short time, before your heart and blood vessels can respond to the sudden change in position and correct the situation. Actually, the human cardiovascular system is quite well adapted to the constant gravitational force of the Earth. When standing, vessels in the legs constrict to prevent blood from collecting in the lower extremities. In the space environment, the usual head-to-foot blood pressure and tissue fluid gradients that exist during the upright posture on Earth are removed. The subsequent shift in fluids from the lower to the upper portions of the body triggers adaptations within the cardiovascular system to accommodate the new pressure and fluid gradients. In animal models that simulate microgravity, the vessels in the head become more robust while those in the lower limbs become thin and lax. Similar changes may also occur in humans during spaceflight and while these adaptations are appropriate for a microgravity environment, they can cause problems when the astronauts return to Earth or perhaps another planet. Astronauts often develop orthostatic intolerance which means they become dizzy or faint when standing upright. This dizziness can persist for a number of days making routine activities difficult. In an effort to understand the physiological details of these cardiovascular adaptations, Dr. Michael Delp at Texas A&M University, uses the rat as a model for his studies. For the experiment flown on STS-107, he will test the hypothesis that blood vessels in the rats' hindlimbs become thinner, weaker, and constrict less in response to pressure changes and to chemical signals when exposed to microgravity. In addition, he will test the hypothesis that arteries in the brain

  18. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    Science.gov (United States)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  19. Effective long term adaptation and metabolic state regulation of ski-racers

    Directory of Open Access Journals (Sweden)

    A.S. Bakhareva

    2016-06-01

    Full Text Available Purpose: to scientifically substantiate effective mechanisms of organism’s bio-chemical adaptation of ski-racers in competition period with the help of lipid peroxidation indicators, oxidative modification of proteins and activity of hypothalamus pituitary adrenocortical system. Material: in the research 14 sportsmen of 18-25 years’ age (combined team of university with different level of sportsmanship participated. Assessment of free radical oxidation, anti-oxidant system, cortisol level was fulfilled with the help of indicators’ quantitative analysis by bio-chemical methods applied to blood serum samples. Results: it was found that in the basis of bio-chemical changes under intensive physical loads is increase of catabolic processes’ speed. Change of organism’s metabolic orientation of ski racers at optimal level results in working muscles’ energy supply improvement, increase of energy systems’ power and sports efficiency. Conclusions: Application of interval trainings at stages of preparation to special significant competitions results in expected adaptation and increase of sports efficiency. We also showed their effective role in ensuring long term reactions, conditioning high sports efficiency.

  20. Adaptation to metabolic dysfunction during aging: Making the best of a bad situation.

    Science.gov (United States)

    Jazwinski, S Michal; Jiang, James C; Kim, Sangkyu

    2017-07-29

    Mitochondria play a central role in energy metabolism in the process of oxidative phosphorylation. As importantly, they are key in several anabolic processes, including amino acid biosynthesis, nucleotide biosynthesis, heme biosynthesis, and the formation of iron‑sulfur clusters. Mitochondria are also engaged in waste removal in the urea cycle. Their activity can lead to the formation of reactive oxygen species which have damaging effects in the cell. These organelles are dynamic, undergoing cycles of fission and fusion which can be coupled to their removal by mitophagy. In addition to these widely recognized processes, mitochondria communicate with other subcellular compartments. Various components of mitochondrial complexes are encoded by either the nuclear or the mitochondrial genome necessitating coordination between these two organelles. This article reviews another form of communication between the mitochondria and the nucleus, in which the dysfunction of the former triggers changes in the expression of nuclear genes to compensate for it. The most extensively studied of these signaling pathways is the retrograde response whose effectors and downstream targets have been characterized. This response extends yeast replicative lifespan by adapting the organism to the mitochondrial dysfunction. Similar responses have been found in several other organisms, including mammals. Declining health and function during human aging incurs energetic costs. This compensation plays out differently in males and females, and variation in nuclear genes whose products affect mitochondrial function influences the outcome. Thus, the theme of mitochondria-nucleus communication as an adaptive response during aging appears very widespread. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  2. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.

    Science.gov (United States)

    Berdeaux, Rebecca; Stewart, Randi

    2012-07-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.

  3. Metabolic adaptation and hormonal regulation in young rabbit does during long-term caloric restriction and subsequent compensatory growth

    NARCIS (Netherlands)

    Rommers, J.M.; Boiti, C.; Brecchia, G.; Meijerhof, R.; Noordhuizen, J.P.T.M.; Decuypere, M.P.; Kemp, B.

    2004-01-01

    An experiment was performed to assess the metabolic adaptation and hormonal regulation in young female rabbits during long-term food restriction and subsequent compensatory growth during rearing. Feeding level was either ad libitum (AL, no. = 52) or restricted (R, no. = 52). From 6 to 12 weeks of

  4. Understanding stakeholder preferences for flood adaptation alternatives with natural capital implications

    Directory of Open Access Journals (Sweden)

    Jonathon R. Loos

    2016-09-01

    Full Text Available Inland flood risks are defined by a range of environmental and social factors, including land use and floodplain management. Shifting patterns of storm intensity and precipitation, attributed to climate change, are exacerbating flood risk in regions across North America. Strategies for adapting to growing flood risks and climate change must account for a community's specific vulnerabilities, and its local economic, environmental, and social conditions. Through a stakeholder-engaged methodology, we designed an interactive decision exercise to enable stakeholders to evaluate alternatives for addressing specific community flood vulnerabilities. We used a multicriteria framework to understand what drives stakeholder preferences for flood mitigation and adaptation alternatives, including ecosystem-based projects. Results indicated strong preferences for some ecosystem-based projects that utilize natural capital, generated a useful discussion on the role of individual values in driving decisions and a critique of local environmental and hazard planning procedure, and uncovered support for a river management alternative that had previously been considered socially infeasible. We conclude that a multicriteria decision framework may help ensure that the multiple benefit qualities of natural capital projects are considered by decision makers. Application of a utility function can demonstrate the role of individual decision-maker values in decision outcomes and help illustrate why one alternative may be a better choice than another. Although designing an efficient and accurate multicriteria exercise is quite challenging and often data intensive, we imagine that this method is applicable elsewhere. It may be especially suitable to group decisions that involve varying levels of expertise and competing values, as is often the case in planning for the ecological and human impacts of climate change.

  5. For a better understanding of adaptive capacity to climate change: a research framework

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2010-05-01

    It is generally accepted that there exists a systematic link between a low level of adaptive capacity and a low level of development, which thus implies that the poor inevitably have low adaptive capacities. We argue here that this viewpoint is biased because adaptation to climate change is not solely determined by economic and technological capacities. Many other characteristics of a community can play a major role in its ability to react to and anticipate climate changes (e.g. the territorial identity or the social relationships). From our point of view, this limited view of adaptive capacity is related to a relative immaturity of the science of adaptation, a discipline that analyses the processes and determinants of adaptive capacity. This can be explained by the fact that there are currently few existing frameworks for studying adaptive capacity. This paper consists in a proposal for a research framework which is based upon four main fields of investigation: (i) the influential factors of adaptive capacity and their interactions, (ii) the relevant spatial and temporal scales of adaptive capacity, (iii) the links between adaptive capacity, vulnerability and the level of development and (iv) the theoretical links between adaptation and sustainability. These four fields of research should bring new knowledge on adaptive capacity and feed a more general reflection on the adaptation pathways for dealing with climate change. (author)

  6. Adaptive Changes in Basal Metabolic Rate in Humans in Different Eco-Geographical Areas.

    Science.gov (United States)

    Maximov, Arkady L; Belkin, Victor Sh; Kalichman, Leonid; Kobyliansky, Eugene D

    2015-12-01

    Our aim was to establish whether the human basal metabolic rate (BMR) shifts towards the reduction of vital functions as an adaptation response to extreme environmental conditions. Data was collected in arid and Extreme North zones. The arid zone samples included Bedouins living in the Sinai Peninsula in Egypt, Turkmen students, the Pedagogical University of Chardzhou, Turkmenistan born Russians and Russian soldiers. Soldiers were divided into 3 groups according to the length of their tour of duty in the area: 1st group: up to six months, 2nd group: up to 2 years and the 3rd group: 3-5 years. The Extreme North samples comprised Chukchi natives, 1st generation Russian immigrants born in the area and 3 groups of soldiers comparable to the soldiers from Turkmenistan. BMR values of the new recruits had the highest values of total and relative BMR (1769 ± 16 and 28.3 ± 0.6, correspondingly). The total and relative BMR tended to decrease within a longer adaptation period. The BMR values of officers who served >3 years in Turkmenistan were very similar to the Turkmenistan born Russians (1730 ± 14 vs. 1726 ± 18 and 26.5 ± 0.6 vs. 27.3 ± 0.7, correspondingly). Similarly, in Chukotka, the highest relative BMR was found in the new recruits, serving up to 6 months (28.1 ± 0.7) and was significantly (p BMR was virtually similar in Russian officers serving > 3 years, compared to the middle-aged Chukchi or Chukotka-born Russians (25.8 ± 0.5 vs. 25.6 ± 0.5 and 25.5 ± 0.6, correspondingly). The BMR parameters demonstrated a stronger association with body weight than with age. In extreme environmental conditions, migrant populations showed a decrease in BMR, thus reducing its vital functions. The BMR reduction effect with the adequate adaptive transformation is likely to be the key strategy for developing programs to facilitate human and animal adaptation to extreme factors. This process is aimed at preserving the optimum energy balance and homeostasis while minimizing

  7. Adaptation to climate change and climate variability:The importance of understanding agriculture as performance

    NARCIS (Netherlands)

    Crane, T.A.; Roncoli, C.; Hoogenboom, G.

    2011-01-01

    Most climate change studies that address potential impacts and potential adaptation strategies are largely based on modelling technologies. While models are useful for visualizing potential future outcomes and evaluating options for potential adaptation, they do not adequately represent and

  8. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    Directory of Open Access Journals (Sweden)

    Anubhav Srivastava

    2016-12-01

    Full Text Available Malaria parasites (Plasmodium spp. encounter markedly different (nutritional environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  9. Adaptations in lipid metabolism of bovine adipose tissue in lactogenesis and lactation.

    Science.gov (United States)

    McNamara, J P; Hillers, J K

    1986-02-01

    The timing and magnitude of metabolic adaptations in adipose tissue during lactogenesis and lactation were determined in first lactation bovines. In vitro rates of lipogenesis and palmitate esterification were measured to estimate in vivo synthesis. Lipolysis was measured in the basal state and as maximally stimulated by norepinephrine or epinephrine to estimate physiological adaptations as well as the changes in catecholamine responsiveness. Subcutaneous adipose tissue was biopsied at -1, -0.5, +0.5, 1, 2, and 6 months from parturition. From 1 to 0.5 months prepartum there was a 54% reduction in lipogenesis, a 16% reduction in esterification, a 54 and 77% increase in norepinephrine- and epinephrine-stimulated free fatty acid (FFA) release, respectively, and a 28% increase in epinephrine-stimulated glycerol release. The immediate postpartum period (0.5 and 1 month) was marked by a decrease in lipogenesis to 5% and esterification to 50% of -1 month rates. During this period, norepinephrine-stimulated FFA release increased 50% above -1 month rates, epinephrine-stimulated FFA release increased 128%, and norepinephrine- and epinephrine-stimulated glycerol release increased 30 and 87%, respectively. Midlactation (2 and 6 months) was marked by a dramatic rebound in lipogenesis and esterification to 14-fold and 2.5-fold prepartum rates, respectively. Basal glycerol release doubled during this period, while basal FFA release declined to near prepartum levels. Catecholamine-stimulated FFA and glycerol release decreased from the peak during midlactation, but remained elevated compared to prepartum levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Applying a complex adaptive system's understanding of health to primary care [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Johannes Bircher

    2016-09-01

    Full Text Available This paper explores the diagnostic and therapeutic potential of a new concept of health. Investigations into the nature of health have led to a new definition that explains health as a complex adaptive system (CAS and is based on five components (a-e. Humans like all biological creatures must satisfactorily respond to (a the demands of life. For this purpose they need (b a biologically given potential (BGP and (c a personally acquired potential (PAP. These properties of individuals are embedded within (d social and (e environmental determinants of health. Between these five components of health there are 10 complex interactions that justify viewing health as a CAS. In each patient, the current state of health as a CAS evolved from the past, will move forward to a new future, and has to be analyzed and treated as an autonomous whole. A diagnostic procedure is suggested as follows: together with the patient, the five components and 10 complex interactions are assessed. This may help patients to better understand their situations and to recognize possible next steps that may be useful in order to evolve toward better health by themselves. In this process mutual trust in the patient-physician interaction is critical. The described approach offers new possibilities for helping patients improve their health prospects.

  11. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Understanding Controversies in Urban Climate Change Adaptation. A case study of the role of homeowners in the process of climate change adaptation in Copenhagen

    Directory of Open Access Journals (Sweden)

    Nina Baron

    2015-12-01

    Full Text Available This article explores the controversies that exist in urban climate change adaptation and how these controversies influence the role of homeowners in urban adaptation planning. A concrete ‘Sustainable Urban Drainages System’ (SUDS project in a housing cooperative in Copenhagen has been used as a case study, thereby investigating multiple understandings of urban climate change adaptation. Several different perspectives are identified with regard to what are and what will become the main climate problems in the urban environment as well as what are considered to be the best responses to these problems. Building on the actor-network inspired theory of ‘urban green assemblages’ we argue that at least three different assemblages can be identified in urban climate change adaptation. Each assemblage constitutes and connects problems and responses differently and thereby involve homeowners in different ways. As climate change is a problem of unknown character and outcome in the future, we argue that it can be problematic if one way of constituting urban climate change adaptation becomes dominant, in which case some climate problems and adaptation options may become less influential, even though the enrolment of these could contribute to a more resilient city. Furthermore, the case study from Copenhagen also shows that the influence and involvement of homeowners might be reduced if the conception of future climate problems becomes too restricted. The result would be that the potential benefits of involving urban citizens in defining and responding to problems related to climate change would be lost.

  13. Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication.

    Science.gov (United States)

    Pichereaux, Carole; Hernández-Domínguez, Eric E; Santos-Diaz, Maria Del Socorro; Reyes-Agüero, Antonio; Astello-García, Marizel; Guéraud, Françoise; Negre-Salvayre, Anne; Schiltz, Odile; Rossignol, Michel; Barba de la Rosa, Ana Paulina

    2016-06-30

    The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under

  14. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    Science.gov (United States)

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7.

    Science.gov (United States)

    Trivedi, Vikas D; Bharadwaj, Anahita; Varunjikar, Madhushri S; Singha, Arminder K; Upadhyay, Priya; Gautam, Kamini; Phale, Prashant S

    2017-08-01

    Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl - ions remained constant (6-8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.

  16. Long-term high air pollution exposure induced metabolic adaptations in traffic policemen.

    Science.gov (United States)

    Tan, Chaochao; Wang, Yupeng; Lin, Mingyue; Wang, Zhu; He, Li; Li, Zhiyi; Li, Yu; Xu, Keqian

    2018-03-01

    To assess the adverse physiological changes induced by long-term exposure to PM2.5. Totally 183 traffic policemen and 88 office policemen as the control group, were enrolled in this study. The concentrations of PM2.5 in both the working places of traffic and office policemen were obtained. Detailed personal questionnaires and conventional laboratory tests including hematology, fasting blood glucose, blood lipids, liver, kidney, immunity and tumor-related markers were conducted on all participants of this study. A dose-response relationship between the FBG, HDL-c and CEA values and the PM2.5 exposure duration was observed. Multivariate analysis confirmed that one hour on duty outdoor per day for one year was associated with an increase in FBG of 0.005% (95% CI: 0.0004% to 0.009%), CEA of 0.012% (95% CI: 0.006% to 0.017%), and a decrease in HDL-C of 0.001% (95% CI: 0.00034% to 0.002%). Long-term high air pollution exposure may lead to metabolism adaptation and it is likely involved in the development of cardiovascular disease and diabetes mellitus. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Noninvasive Monitoring of Training Induced Muscle Adaptation with -MRS: Fibre Type Shifts Correlate with Metabolic Changes

    Directory of Open Access Journals (Sweden)

    Eike Hoff

    2013-01-01

    Full Text Available Purpose. To evaluate training induced metabolic changes noninvasively with magnetic resonance spectroscopy (-MRS for measuring muscle fibre type adaptation. Methods. Eleven volunteers underwent a 24-week training, consisting of speed-strength, endurance, and detraining (each 8 weeks. Prior to and following each training period, needle biopsies and -MRS of the resting gastrocnemius muscle were performed. Fibre type distribution was analyzed histologically and tested for correlation with the ratios of high energy phosphates ([PCr]/[], [PCr]/[βATP] and [PCr + ]/[βATP]. The correlation between the changes of the -MRS parameters during training and the resulting changes in fibre composition were also analysed. Results. We observed an increased type-II-fibre proportion after speed-strength and detraining. After endurance training the percentage of fast-twitch fibres was reduced. The progression of the [PCr]/[]-ratio was similar to that of the fast-twitch fibres during the training. We found a correlation between the type-II-fibre proportion and [PCr]/[] (, or [PCr]/[βATP] (, ; the correlations between its changes (delta and the fibre-shift were significant as well (delta[PCr]/[] , delta[PCr]/[βATP] , . Conclusion. Shifts in fibre type composition and high energy phosphate metabolite content covary in human gastrocnemius muscle. Therefore -MRS might be a feasible method for noninvasive monitoring of exercise-induced fibre type transformation.

  18. Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Klimacek, Mario; Kirl, Elisabeth; Krahulec, Stefan; Longus, Karin; Novy, Vera; Nidetzky, Bernd

    2014-03-08

    To effectively convert lignocellulosic feedstocks to bio-ethanol anaerobic growth on xylose constitutes an essential trait that Saccharomyces cerevisiae strains normally do not adopt through the selective integration of a xylose assimilation route as the rate of ATP-formation is below energy requirements for cell maintenance (mATP). To enable cell growth extensive evolutionary and/or elaborate rational engineering is required. However the number of available strains meeting demands for process integration are limited. In this work evolutionary engineering in just two stages coupled to strain selection under strict anaerobic conditions was carried out with BP10001 as progenitor. BP10001 is an efficient (Yethanol = 0.35 g/g) but slow (qethanol = 0.05 ± 0.01 g/gBM/h) xylose-metabolizing recombinant strain of Saccharomyces cerevisiae that expresses an optimized yeast-type xylose assimilation pathway. BP10001 was adapted in 5 generations to anaerobic growth on xylose by prolonged incubation for 91 days in sealed flasks. Resultant strain IBB10A02 displayed a specific growth rate μ of 0.025 ± 0.002 h-1 but produced large amounts of glycerol and xylitol. In addition growth was strongly impaired at pH below 6.0 and in the presence of weak acids. Using sequential batch selection and IBB10A02 as basis, IBB10B05 was evolved (56 generations). IBB10B05 was capable of fast (μ = 0.056 ± 0.003 h-1; qethanol = 0.28 ± 0.04 g/gBM/h), efficient (Yethanol = 0.35 ± 0.02 g/g), robust and balanced fermentation of xylose. Importantly, IBB10A02 and IBB10B05 displayed a stable phenotype. Unlike BP10001 both strains displayed an unprecedented biphasic formation of glycerol and xylitol along the fermentation time. Transition from a glycerol- to a xylitol-dominated growth phase, probably controlled by CO2/HCO3-, was accompanied by a 2.3-fold increase of mATP while YATP (= 87 ± 7 mmolATP/gBM) remained unaffected. As long as glycerol

  19. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.

    Science.gov (United States)

    Swanson, David L; McKechnie, Andrew E; Vézina, François

    2017-12-01

    Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.

  20. Adaptation and Mitigation in Agriculture: A Review of Synergies and Tradeoffs and How EO Could Improve Understanding and Outcomes

    Science.gov (United States)

    Barbieri, L.; Wollenberg, E.

    2017-12-01

    We present a review of the published literature on agricultural adaptation and mitigation, and report on the current evidence as to whether changes in agricultural practices meant to achieve mitigation or adaptation goals can be dual purpose: simultaneously reducing greenhouse gas (GHG) emissions and helping to facilitate adaptation. We characterize the spatio-temporal and system trends in how adaptation and mitigation outcomes are being achieved, and report on the current technical and knowledge gaps that exist and where Earth observations (EO) could improve our understanding. Agriculture contributes 12% GHG emissions globally, roughly one third from the developing world. Nearly 70% of the technical mitigation potential in agriculture sector occurs in these countries, however, while the mitigation potential is high, agricultural productivity also relies heavily on climate factors. With climate change, agricultural systems already, and will increasingly, need to adapt to extreme events and variability in temperatures and precipitation. This underscores the importance of implementing agricultural practices that can both reduce GHG emissions and help facilitate adaptation. Until recently, these objectives have been treated separately, but policy makers are increasingly calling for a joint approach to improve synergies, and avoid tradeoffs. There remain many complications in considering a joint approach: lack of clear conceptual frameworks, knowledge gaps in scientific understanding and evidence associated with adaptation and mitigation outcomes, and the abilities and motivations of stakeholders to consider both objectives. We review 56 peer-reviewed publications and present results from an in-depth analysis to answer two major concerns: to what extent is evidence provided for claims of synergistic outcomes, and what uncertainty surrounds this evidence. Our results show that only 21% of studies empirically measured both mitigation and adaptation outcomes, and claims

  1. Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries?

    OpenAIRE

    Samuel Fankhauser; Thomas K. J. McDermott

    2014-01-01

    Poor countries are more heavily affected by extreme weather events and future climate change than rich countries. This discrepancy is sometimes known as an adaptation deficit. This paper analyses the link between income and adaptation to climate events theoretically and empirically. We postulate that the adaptation deficit is due to two factors: A demand effect, whereby the demand for the good �climate security� increases with income, and an efficiency effect, which works as a spill-over exte...

  2. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    OpenAIRE

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2015-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled o...

  3. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    Science.gov (United States)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  4. Features of Metabolic Processes in Children Born by Caesarean Section in the Early Adaptation Period: the Role of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Т. S. Tumaeva

    2015-01-01

    Full Text Available Background: The postnatal adaptation comprises alteration of metabolic processes of a newborn, the disturbance of which can lead to dysfunction, and later — to the development of diseases. Objective: Our aim was to study the bond of cerebral ischemia in full-term children born by Caesarean section with the course of metabolic processes in the early neonatal period. Methods: A retrospective comparative study was conducted. Children born by Caesarean section, who had cerebral ischemia (n =120 and who didn't have it, (n = 150 were examined. Complex examination included an assessment of a number of factors: clinical, biochemical blood tests, acidbase balance, concentration of some hormones. Results: In children after Caesarean section with cerebral ischemia in the early period of adaptation we noted disturbances of the acid-base balance (BE 0.3 ± 1.9 mmol/l; р = 0.038, blood oxygenation (SaO2 79.7 ± 2.8%; р = 0.001, frank lactataemia (4.3 ± 1.8 mmol/l; р = 0.002, signs of a catabolic orientation of metabolism (hypoproteinemia, increased protein metabolism products, frank primary loss of body weight. The considerable changes of activity of the blood enzymes, disturbance of glucose metabolism indicated the lack of energy-dependent processes. Due to this, the hyperbilirubinemia and a hormonal imbalance were more often formed. Conclusion: Cerebral ischemia in children born by Caesarean section is a reason for the development of a metabolic disadaptation. The detection of disturbances of metabolic processes in the early neonatal period is necessary for a timely start of the correctional therapy in order to prevent the development of diseases in more distant periods of a child's life. 

  5. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection

    Science.gov (United States)

    Eisenreich, Wolfgang; Rudel, Thomas; Heesemann, Jürgen; Goebel, Werner

    2017-01-01

    Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens. PMID:28752080

  6. Analysis of farm performance in Europe under different climate and management conditions to improve understanding of adaptive capacity

    NARCIS (Netherlands)

    Reidsma, P.; Ewert, F.; Oude Lansink, A.

    2007-01-01

    The aim of this paper is to improve understanding of the adaptive capacity of European agriculture to climate change. Extensive data on farm characteristics of individual farms from the Farm Accountancy Data Network (FADN) have been combined with climatic and socio-economic data to analyze the

  7. Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers

    Science.gov (United States)

    Saraswathiamma, Manjusha Thekkedathu

    This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (benefit are other factors that are also significantly (< p = 0.1) related.

  8. Toward a conceptual understanding of acute cultural adaptation: A preliminary examination of ACA in female swimming

    DEFF Research Database (Denmark)

    Ryba, Tatiana; Haapanen, Saara; Mosek, Shwiko

    2012-01-01

    processes to a new cultural site during an interim relocation. Rereading a self-determination theory through the lens of cultural epistemology, the proposed theorisation suggests that ACA is realised in everyday practices drawing on a range of material and symbolic cultural resources to satisfy basic......This paper considers a novel approach to researching adaptation in transnational athletes. The first part introduces a conceptualisation of acute cultural adaptation (ACA), which extends the current literature in sport psychology by offering original insights into mechanisms underpinning adaptive...

  9. Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria.

    Science.gov (United States)

    Hernández-Prieto, Miguel A; Semeniuk, Trudi A; Futschik, Matthias E

    2014-01-01

    Cyanobacteria are essential primary producers in marine ecosystems, playing an important role in both carbon and nitrogen cycles. In the last decade, various genome sequencing and metagenomic projects have generated large amounts of genetic data for cyanobacteria. This wealth of data provides researchers with a new basis for the study of molecular adaptation, ecology and evolution of cyanobacteria, as well as for developing biotechnological applications. It also facilitates the use of multiplex techniques, i.e., expression profiling by high-throughput technologies such as microarrays, RNA-seq, and proteomics. However, exploration and analysis of these data is challenging, and often requires advanced computational methods. Also, they need to be integrated into our existing framework of knowledge to use them to draw reliable biological conclusions. Here, systems biology provides important tools. Especially, the construction and analysis of molecular networks has emerged as a powerful systems-level framework, with which to integrate such data, and to better understand biological relevant processes in these organisms. In this review, we provide an overview of the advances and experimental approaches undertaken using multiplex data from genomic, transcriptomic, proteomic, and metabolomic studies in cyanobacteria. Furthermore, we summarize currently available web-based tools dedicated to cyanobacteria, i.e., CyanoBase, CyanoEXpress, ProPortal, Cyanorak, CyanoBIKE, and CINPER. Finally, we present a case study for the freshwater model cyanobacteria, Synechocystis sp. PCC6803, to show the power of meta-analysis, and the potential to extrapolate acquired knowledge to the ecologically important marine cyanobacteria genus, Prochlorococcus.

  10. Understanding and applying principles of social cognition and decision making in adaptive environmental governance

    Science.gov (United States)

    Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance...

  11. Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rodriguez, Jr., Miguel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Raman, Babu [Dow Chemical Company, Midland, MI (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martin, Madhavi Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Engle, Nancy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mielenz, Jonathan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nookaew, Intawat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Arkansas, Fayetteville, AR (United States); Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Tschaplinski, Timothy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ussery, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Arkansas, Fayetteville, AR (United States); Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-01-10

    Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Though much of the work-to-date has centered on characterizing the organism s metabolism during growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand it metabolizes more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum s cellular membrane as the culture progresses. This is likely a response to the gradual build-up of lignocellulose-derived inhibitory compounds detected as the organism deconstructs the switchgrass to access the embedded cellulose and includes 4-hydroxybenzoic acid, vanillic acid, ferulic acid, p-coumaric acid and vanillin. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in enzymes involved in the interconversion of branched amino acids valine, leucine and isoleucine to iso- and anteiso-fatty acid precursors. Furthermore, the metabolic accumulation of hemicellulose-derived sugars and sugar-alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism / the pentose phosphate pathway, indicate that C. thermocellum either shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux or is simply a response to C5 sugar metabolite pools that build during lignocellulose deconstruction.

  12. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    Science.gov (United States)

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The effect of problem posing and problem solving with realistic mathematics education approach to the conceptual understanding and adaptive reasoning

    Science.gov (United States)

    Mahendra, Rengga; Slamet, Isnandar; Budiyono

    2017-12-01

    One of the difficulties of students in learning mathematics is on the subject of geometry that requires students to understand abstract things. The aim of this research is to determine the effect of learning model Problem Posing and Problem Solving with Realistic Mathematics Education Approach to conceptual understanding and students' adaptive reasoning in learning mathematics. This research uses a kind of quasi experimental research. The population of this research is all seventh grade students of Junior High School 1 Jaten, Indonesia. The sample was taken using stratified cluster random sampling technique. The test of the research hypothesis was analyzed by using t-test. The results of this study indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students' conceptual understanding significantly in mathematics learning. In addition tu, the results also showed that the model of Problem Solving learning with Realistic Mathematics Education Approach can improve students' adaptive reasoning significantly in learning mathematics. Therefore, the model of Problem Posing and Problem Solving learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on the subject of geometry so as to improve conceptual understanding and students' adaptive reasoning. Furthermore, the impact can improve student achievement.

  14. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  15. Understanding and applying principles of social cognition and decision making in adaptive environmental governance

    Directory of Open Access Journals (Sweden)

    Daniel A. DeCaro

    2017-03-01

    Full Text Available Environmental governance systems are under greater pressure to adapt and to cope with increased social and ecological uncertainty from stressors like climate change. We review principles of social cognition and decision making that shape and constrain how environmental governance systems adapt. We focus primarily on the interplay between key decision makers in society and legal systems. We argue that adaptive governance must overcome three cooperative dilemmas to facilitate adaptation: (1 encouraging collaborative problem solving, (2 garnering social acceptance and commitment, and (3 cultivating a culture of trust and tolerance for change and uncertainty. However, to do so governance systems must cope with biases in people's decision making that cloud their judgment and create conflict. These systems must also satisfy people's fundamental needs for self-determination, fairness, and security, ensuring that changes to environmental governance are perceived as legitimate, trustworthy, and acceptable. We discuss the implications of these principles for common governance solutions (e.g., public participation, enforcement and conclude with methodological recommendations. We outline how scholars can investigate the social cognitive principles involved in cases of adaptive governance.

  16. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    Science.gov (United States)

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  17. Proceedings of the adapting to climate change in Canada 2005 conference : understanding risks and building capacity

    International Nuclear Information System (INIS)

    2005-01-01

    This four-day conference provided a national forum for researchers and decision-makers from a variety of disciplines to share information and results on climate change. Sponsored by Natural Resources Canada's Climate Change Impacts and Adaptation Program, the conference explored ways to improve knowledge of Canada's vulnerability to climate change, to better assess the benefits and risks of climate change and to examine policies and options through which decisions on adaptation can be made. Conference topics included issues such as global warming; sustainable development; climate change and agriculture; adaptation strategies; water, coastline and marine management and climate change; municipal level management and climate change; climate change and health issues; and many other topics related to climate change. The conference featured paper and poster presentations, opening remarks, and panel discussions. A total of 118 conference papers and 46 conference posters were presented at the conference of which 17 have been catalogued separately in this database. refs., tabs., figs

  18. Flipping the Metabolic Switch: Understanding and Applying Health Benefits of Fasting

    Science.gov (United States)

    Anton, Stephen D.; Moehl, Keelin; Donahoo, William T.; Marosi, Krisztina; Lee, Stephanie; Mainous, Arch G.; Leeuwenburgh, Christiaan; Mattson, Mark P.

    2017-01-01

    Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. Here we focus on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch – the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). Emerging findings suggest the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty-acid derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and the magnitude of negative energy balance during the fasting period. PMID:29086496

  19. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting.

    Science.gov (United States)

    Anton, Stephen D; Moehl, Keelin; Donahoo, William T; Marosi, Krisztina; Lee, Stephanie A; Mainous, Arch G; Leeuwenburgh, Christiaan; Mattson, Mark P

    2018-02-01

    Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. This review is focused on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch: the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). Emerging findings suggest that the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty acid-derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and of the magnitude of negative energy balance during the fasting period. © 2017 The Obesity Society.

  20. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain.

    Science.gov (United States)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K M; Krivoruchko, Anastasia; Hallström, Björn M; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2015-08-08

    A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial transfer, resulting in three independently evolved strains, which were able to grow in minimal medium containing glucose as the sole carbon source at the maximum specific rates of 0.138, 0.148, 0.141 h(-1), respectively. Several genetic changes were identified in the evolved Pdc negative strains by genomic DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase, and RPD3 encoding a histone deacetylase. Reverse engineering of the non-evolved Pdc negative strain through introduction of the MTH1 (81D) allele restored its growth on glucose at a maximum specific rate of 0.053 h(-1) in minimal medium with 2% glucose, and the CIT1 deletion in the reverse engineered strain further increased the maximum specific growth rate to 0.069 h(-1). In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in

  1. Elucidating the adaptation and temporal coordination of metabolic pathways using in-silico evolution

    Czech Academy of Sciences Publication Activity Database

    Gottstein, W.; Müller, Stefan; Herzel, H.; Steuer, Ralf

    2014-01-01

    Roč. 117, mar (2014), s. 68-76 ISSN 0303-2647 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : evolutionary algorithms * flux-balance analysis * metabolic oscillations * metabolism * systems biology Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.548, year: 2014

  2. Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli

    NARCIS (Netherlands)

    Händel, N.; Schuurmans, J.M.; Brul, S.; ter Kuile, B.H.

    2013-01-01

    Antibiotic resistance is often associated with metabolic costs. To investigate metabolic consequences of antibiotic resistance, the genomic and transcriptomic profile was compared between an amoxicillin resistant E. coli strain and the wildtype it was derived from. 125 amino acid substitutions and 7

  3. Metabolic adaptations in models of fatty liver disease : Of mice and math

    NARCIS (Netherlands)

    Hijmans, Brenda

    2017-01-01

    The increasing incidence of overweight is accompanied by a plethora of medical symptoms together called the metabolic syndrome. Non-alcoholic fatty liver disease, characterized by persistent storage of lipids in the liver, is regarded as the hepatic component of the metabolic syndrome. An imbalance

  4. In search of an adaptive social-ecological approach to understanding a tropical city

    Science.gov (United States)

    A.E. Lugo; C.M. Concepcion; L.E. Santiago-Acevedo; T.A. Munoz-Erickson; J.C. Verdejo Ortiz; R. Santiago-Bartolomei; J. Forero-Montana; C.J. Nytch; H. Manrique; W. Colon-Cortes

    2012-01-01

    This essay describes our effort to develop a practical approach to the integration of the social and ecological sciences in the context of a Latin-American city such as San Juan, Puerto Rico. We describe our adaptive social-ecological approach in the historical context of the developing paradigms of the Anthropocene, new integrative social and ecological sciences, and...

  5. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions.

    Science.gov (United States)

    Koziol, Leonard F; Budding, Deborah Ely; Chidekel, Dana

    2010-12-01

    Current cortico-centric models of cognition lack a cohesive neuroanatomic framework that sufficiently considers overlapping levels of function, from "pathological" through "normal" to "gifted" or exceptional ability. While most cognitive theories presume an evolutionary context, few actively consider the process of adaptation, including concepts of neurodevelopment. Further, the frequent co-occurrence of "gifted" and "pathological" function is difficult to explain from a cortico-centric point of view. This comprehensive review paper proposes a framework that includes the brain's vertical organization and considers "giftedness" from an evolutionary and neurodevelopmental vantage point. We begin by discussing the current cortico-centric model of cognition and its relationship to intelligence. We then review an integrated, dual-tiered model of cognition that better explains the process of adaptation by simultaneously allowing for both stimulus-based processing and higher-order cognitive control. We consider the role of the basal ganglia within this model, particularly in relation to reward circuitry and instrumental learning. We review the important role of white matter tracts in relation to speed of adaptation and development of behavioral mastery. We examine the cerebellum's critical role in behavioral refinement and in cognitive and behavioral automation, particularly in relation to expertise and giftedness. We conclude this integrated model of brain function by considering the savant syndrome, which we believe is best understood within the context of a dual-tiered model of cognition that allows for automaticity in adaptation as well as higher-order executive control.

  6. How Do They (Participants) Understand Our (Researchers) Intentions? A Qualitative Test of the Curvilinear Assumptions of the Adaptability Items of the FACES III.

    Science.gov (United States)

    Ben-David, Amith; Sprenkle, Douglas H.

    1993-01-01

    Eight individuals from larger study of lay persons who interpreted Family Adaptability and Cohesion Evaluation Scales (FACES-III) adaptability items were interviewed in-depth concerning their understanding of adaptability items of regular FACES III and two alternate versions. Qualitative results suggest that participants may not be understanding…

  7. Adaptive changes in the neuronal proteome: mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress.

    Science.gov (United States)

    Herrmann, Abigail G; Deighton, Ruth F; Le Bihan, Thierry; McCulloch, Mailis C; Searcy, James L; Kerr, Lorraine E; McCulloch, James

    2013-05-01

    Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (Presponses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.

  8. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin.

    Science.gov (United States)

    Knuth, Nicolas D; Johannsen, Darcy L; Tamboli, Robyn A; Marks-Shulman, Pamela A; Huizenga, Robert; Chen, Kong Y; Abumrad, Naji N; Ravussin, Eric; Hall, Kevin D

    2014-12-01

    To measure changes in resting metabolic rate (RMR) and body composition in obese subjects following massive weight loss achieved via bariatric surgery or calorie restriction plus vigorous exercise. Body composition and RMR were measured in 13 pairs of obese subjects retrospectively matched for sex, body mass index, weight, and age who underwent either Roux-en-Y gastric bypass surgery (RYGB) or participated in "The Biggest Loser" weight loss competition (BLC). Both groups had similar final weight loss (RYGB: 40.2 ± 12.7 kg, BLC: 48.8 ± 14.9 kg; P = 0.14); however, RYGB lost a larger proportion of their weight as fat-free mass (FFM) (RYGB: 30 ± 12%, BLC: 16 ± 8% [P Calorie restriction along with vigorous exercise in BLC participants resulted in preservation of FFM and greater metabolic adaption compared to RYGB subjects despite comparable weight loss. Metabolic adaptation was related to the degree of energy imbalance and the changes in circulating leptin. © 2014 The Obesity Society.

  9. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs

    Science.gov (United States)

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.

    2012-01-01

    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  10. Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses

    Science.gov (United States)

    2013-01-01

    Background In this paper we use multivariate statistical techniques to gain insights into how adaptive gait involving obstacle crossing is regulated in lower-limb amputees compared to able-bodied controls, with the aim of identifying underlying characteristics that differ between the two groups and consequently highlighting gait deficits in the amputees. Methods Eight unilateral trans-tibial amputees and twelve able-bodied controls completed adaptive gait trials involving negotiating various height obstacles; with amputees leading with their prosthetic limb. Spatiotemporal variables that are regularly used to quantify how gait is adapted when crossing obstacles were determined and subsequently analysed using multivariate statistical techniques. Results and discussion There were fundamental differences in the adaptive gait between the two groups. Compared to controls, amputees had a reduced approach velocity, reduced foot placement distance before and after the obstacle and reduced foot clearance over it, and reduced lead-limb knee flexion during the step following crossing. Logistic regression analysis highlighted the variables that best distinguished between the gait of the two groups and multiple regression analysis (with approach velocity as a controlling factor) helped identify what gait adaptations were driving the differences seen in these variables. Getting closer to the obstacle before crossing it appeared to be a strategy to ensure the heel of the lead-limb foot passed over the obstacle prior to the foot being lowered to the ground. Despite adopting such a heel clearance strategy, the lead-foot was positioned closer to the obstacle following crossing, which was likely a result of a desire to attain a limb/foot angle and orientation at instant of landing that minimised loads on the residuum (as evidenced by the reduced lead-limb knee flexion during the step following crossing). These changes in foot placement meant the foot was in a different part of swing

  11. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    Science.gov (United States)

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Cultivating Resilience in Families Who Foster: Understanding How Families Cope and Adapt Over Time.

    Science.gov (United States)

    Lietz, Cynthia A; Julien-Chinn, Francie J; Geiger, Jennifer M; Hayes Piel, Megan

    2016-12-01

    Families who foster offer essential care for children and youth when their own parents are unable to provide for their safety and well-being. Foster caregivers face many challenges including increased workload, emotional distress, and the difficulties associated with health and mental health problems that are more common in children in foster care. Despite these stressors, many families are able to sustain fostering while maintaining or enhancing functioning of their unit. This qualitative study applied an adaptational process model of family resilience that emerged in previous studies to examine narratives of persistent, long-term, and multiple fostering experiences. Data corroborated previous research in two ways. Family resilience was again described as a transactional process of coping and adaptation that evolves over time. This process was cultivated through the activation of 10 family strengths that are important in different ways, during varied phases. © 2016 Family Process Institute.

  13. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.

    Science.gov (United States)

    Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania

    2015-10-01

    Escherichia coli strain DH5α was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters.

  14. Understanding Migration as an Adaptation in Deltas Using a Bayesian Network Model

    Science.gov (United States)

    Lázár, A. N.; Adams, H.; de Campos, R. S.; Mortreux, C. C.; Clarke, D.; Nicholls, R. J.; Amisigo, B. A.

    2016-12-01

    Deltas are hotspots of high population density, fertile lands and dramatic environmental and anthropogenic pressures and changes. Amongst other environmental factors, sea level rise, soil salinization, water shortages and erosion threaten people's livelihoods and wellbeing. As a result, there is a growing concern that significant environmental change induced migration might occur from these areas. Migration, however, is already happening for economic, education and other reasons (e.g. livelihood change, marriage, planned relocation, etc.). Migration hence has multiple, interlinked drivers and depending on the perspective, can be considered as a positive or negative phenomenon. The DECCMA project (Deltas, Vulnerability & Climate Change: Migration & Adaptation) studies migration as part of a suite of adaptation options available to the coastal populations in the Ganges delta in Bangladesh, the Mahanadi delta in India and the Volta delta in Ghana. It aims to develop a holistic framework of analysis that assesses the impact of climate and environmental change on the migration patterns of these areas. This assessment framework will couple environmental, socio-economics and governance dimensions in an attempt to synthesise drivers and barriers and allow testing of plausible future scenarios. One of the integrative methods of DECCMA is a Bayesian Belief Network (BBN) model describing the decision-making of a coastal household. BBN models are built on qualitative and quantitative observations/expert knowledge and describe the probability of different events/responses etc. BBN models are especially useful to capture uncertainties of large systems and engaging with stakeholders. The DECCMA BBN model is based on household survey results from delta migrant sending areas. This presentation will describe model elements (livelihood sensitivity to climate change, local and national adaptation options, household characteristics/attitude, social networks, household decision) and

  15. SANParks, people and adaptive management: Understanding a diverse field of practice during changing times

    Directory of Open Access Journals (Sweden)

    Louise K. Swemmer

    2011-05-01

    Conservation implications: Benefit sharing through biodiversity conservation has been shown to be crucial for the long-term success of protected areas, but the practicalities of implementing this are thwart with challenges. Despite this, SANParks is attempting to facilitate and promote benefits through conservation, specifically in the sense of benefits that support livelihoods whilst reducing vulnerability. With this in mind, we acknowledge the importance of the concepts of scale, resilience, complexity and adaptive learning for, and during, this process.

  16. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    . Dar es Salaam. Durban. Bloemfontein. Antananarivo. Cape Town. Ifrane ... program strategy. A number of CCAA-supported projects have relevance to other important adaptation-related themes such as disaster preparedness and climate.

  17. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells.

    Science.gov (United States)

    Ray, Upasana; Roy Chowdhury, Shreya; Vasudevan, Madavan; Bankar, Kiran; Roychoudhury, Susanta; Roy, Sib Sankar

    2017-05-01

    metabolic adaptation of cancer cells as a driver of tumor progression. These findings reveal oncolipid-induced metabolic predisposition as a new mechanism of tumorigenesis and propose metabolic inhibitors as a potential approach for future management of aggressive ovarian cancer. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  18. Socio-ecological Typologies for Understanding Adaptive Capacity of a Region to Natural Disasters

    Science.gov (United States)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.

    2015-12-01

    It is expected that the frequency and magnitude of extreme climatic events will increase in coming decades with an anticipated increase in losses from climate hazards. In the Gulf Coastal region of the United States, climate hazards/disasters are common including hurricanes, drought and flooding. However, the capacity to adapt to extreme climatic events varies across the region. This adaptive capacity is linked to the magnitude of the extreme event, exposed infrastructure, and the socio-economic conditions across the region. This study uses hierarchical clustering to quantitatively integrates regional socioeconomic and biophysical factors and develop socio-ecological typologies (SET). The biophysical factors include climatic and topographic variables, and the socio-economic variables include human capital, social capital and man-made resources (infrastructure) of the region. The types of the SET are independent variables in a statistical model of a regional variable of interest. The methodology was applied to US Gulf States to evaluate the social and biophysical determinants of the regional variation in social vulnerability and economic loss to climate hazards. The results show that the SET explains much of the regional variation in social vulnerability, effectively capturing its determinants. In addition, the SET also explains of the variability in economic loss to hazards across of the region. The approach can thus be used to prioritize adaptation strategies to reduce vulnerability and loss across the region.

  19. Pancreatic β- and α-cell adaptation in response to metabolic changes

    NARCIS (Netherlands)

    Ellenbroek, Johanne Hendrike (Rianne)

    2015-01-01

    Insulin-producing pancreatic β-cells are essential to maintain blood glucose levels within a narrow range. β-cells can adapt to an increased insulin demand by enhancing insulin secretion via increased β-cell function and/or increased β-cell mass. Inadequate β-cell adaptation leads to hyperglycemia

  20. Comparative genomics unravels metabolic differences at the species and/or strain level and extremely acidic environmental adaptation of ten bacteria belonging to the genus Acidithiobacillus.

    Science.gov (United States)

    Zhang, Xian; She, Siyuan; Dong, Weiling; Niu, Jiaojiao; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Zhang, Xiaoxia; Fan, Fenliang; Yin, Huaqun

    2016-12-01

    Members of the Acidithiobacillus genus are widely found in extreme environments characterized by low pH and high concentrations of toxic substances, thus it is necessary to identify the cellular mechanisms needed to cope with these harsh conditions. Pan-genome analysis of ten bacteria belonging to the genus Acidithiobacillus suggested the existence of core genome, most of which were assigned to the metabolism-associated genes. Additionally, the unique genes of Acidithiobacillus ferrooxidans were much less than those of other species. A large proportion of Acidithiobacillus ferrivorans-specific genes were mapped especially to metabolism-related genes, indicating that diverse metabolic pathways might confer an advantage for adaptation to local environmental conditions. Analyses of functional metabolisms revealed the differences of carbon metabolism, nitrogen metabolism, and sulfur metabolism at the species and/or strain level. The findings also showed that Acidithiobacillus spp. harbored specific adaptive mechanisms for thriving under extreme environments. The genus Acidithiobacillus had the genetic potential to resist and metabolize toxic substances such as heavy metals and organic solvents. Comparison across species and/or strains of Acidithiobacillus populations provided a deeper appreciation of metabolic differences and environmental adaptation, as well as highlighting the importance of cellular mechanisms that maintain the basal physiological functions under complex acidic environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2016-05-01

    Full Text Available Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.

  2. A problem-oriented approach to understanding adaptation: lessons learnt from Alpine Shire, Victoria Australia.

    Science.gov (United States)

    Roman, Carolina

    2010-05-01

    Climate change is gaining attention as a significant strategic issue for localities that rely on their business sectors for economic viability. For businesses in the tourism sector, considerable research effort has sought to characterise the vulnerability to the likely impacts of future climate change through scenarios or ‘end-point' approaches (Kelly & Adger, 2000). Whilst useful, there are few demonstrable case studies that complement such work with a ‘start-point' approach that seeks to explore contextual vulnerability (O'Brien et al., 2007). This broader approach is inclusive of climate change as a process operating within a biophysical system and allows recognition of the complex interactions that occur in the coupled human-environmental system. A problem-oriented and interdisciplinary approach was employed at Alpine Shire, in northeast Victoria Australia, to explore the concept of contextual vulnerability and adaptability to stressors that include, but are not limited to climatic change. Using a policy sciences approach, the objective was to identify factors that influence existing vulnerabilities and that might consequently act as barriers to effective adaptation for the Shire's business community involved in the tourism sector. Analyses of results suggest that many threats, including the effects climate change, compete for the resources, strategy and direction of local tourism management bodies. Further analysis of conditioning factors revealed that many complex and interacting factors define the vulnerability and adaptive capacity of the Shire's tourism sector to the challenges of global change, which collectively have more immediate implications for policy and planning than long-term future climate change scenarios. An approximation of the common interest, i.e. enhancing capacity in business acumen amongst tourism operators, would facilitate adaptability and sustainability through the enhancement of social capital in this business community. Kelly, P

  3. SANParks, people and adaptive management: Understanding a diverse field of practice during changing times

    Directory of Open Access Journals (Sweden)

    Louise K. Swemmer

    2011-05-01

    Full Text Available Biodiversity conservation is often measurable and achievable and has been reasonably successful within the boundaries of national parks. However, the concept of parks providing tangible benefits and hence being seen as ‘valuable’ to the majority of the nation has been more difficult to define, measure and, importantly, deliver on. This function has traditionally fallen under what is currently known as the People and Conservation Department, which has a rich history in South African National Parks (SANParks of change and adaptive learning in terms of defining core functions and associated management strategies, spanning from its original inception as the Information Services Department over 80 years ago. Learning from and in some cases, adapting to change, is evident throughout this broad scale national evolution of the department, from an initial focus on information sharing and education in the 1930s, to what we see today. This includes the primary focus areas of cultural resource management and indigenous knowledge, community relations, environmental education, awareness, youth outreach, interpretation and training. At a more local, park scale, there is a current drive to formalise the adaptive management and learning process for the people component of protected areas through the alignment of relevant project, programme and park objectives with those at a corporate or national level. Associated with this is an attempt to further align the associated monitoring, evaluation and reporting processes, thereby completing the formal adaptive management loops in order to facilitate and stimulate co-learning within and between relevant responsible departments within the organisation.Conservation implications: Benefit sharing through biodiversity conservation has been shown to be crucial for the long-term success of protected areas, but the practicalities of implementing this are thwart with challenges. Despite this, SANParks is attempting to

  4. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.

    Directory of Open Access Journals (Sweden)

    Petra Tielen

    Full Text Available Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM. Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.

  5. Obese and anorexic yeasts: experimental models to understand the metabolic syndrome and lipotoxicity.

    Science.gov (United States)

    Kohlwein, Sepp D

    2010-03-01

    Lipotoxicity is the pathological consequence of lipid overflow in non-adipose tissue, mediated through reactive lipid moieties which may even lead to lipid-induced cell death (lipoapoptosis). This derailment of cellular and organismal fat homeostasis is the consequence of obesity due to continued over-feeding, and contributes substantially to the pathogenesis of insulin resistance, type 2 diabetes mellitus and cardiovascular disease, which are all components of the metabolic syndrome. Now, does yeast, a single-celled eukaryote, ever suffer from the metabolic syndrome and what can we potentially learn from studies in this organism about the underlying molecular mechanism that lead to lipid-associated pathologies in human cells? In this review I will summarize the remarkably conserved metabolic and regulatory processes relevant to establishing cellular energy and lipid homeostasis, as well as recent findings that provide detailed insights into the molecular mechanisms underlying fat-induced cellular malfunction and cell death, with potential implications also for mammalian cells. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Adaptive interaction a utility maximization approach to understanding human interaction with technology

    CERN Document Server

    Payne, Stephen J

    2013-01-01

    This lecture describes a theoretical framework for the behavioural sciences that holds high promise for theory-driven research and design in Human-Computer Interaction. The framework is designed to tackle the adaptive, ecological, and bounded nature of human behaviour. It is designed to help scientists and practitioners reason about why people choose to behave as they do and to explain which strategies people choose in response to utility, ecology, and cognitive information processing mechanisms. A key idea is that people choose strategies so as to maximise utility given constraints. The frame

  7. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution.

    Science.gov (United States)

    Koonin, Eugene V

    2016-12-23

    The study of any biological features, including genomic sequences, typically revolves around the question: what is this for? However, population genetic theory, combined with the data of comparative genomics, clearly indicates that such a "pan-adaptationist" approach is a fallacy. The proper question is: how has this sequence evolved? And the proper null hypothesis posits that it is a result of neutral evolution: that is, it survives by sheer chance provided that it is not deleterious enough to be efficiently purged by purifying selection. To claim adaptation, the neutral null has to be falsified. The adaptationist fallacy can be costly, inducing biologists to relentlessly seek function where there is none.

  8. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  9. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  10. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  11. Crossing Scales and Disciplines to Understand Challenges for Climate Change Adaptation and Water Resources Management in Chile and Californi

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Meza, F. J.; Medellin-Azuara, J.; Herman, J. D.; Sandoval Solis, S.

    2017-12-01

    California and Chile share similarities in terms of climate, ecosystems, topography and water use. In both regions, the hydro-climatologic system is characterized by a typical Mediterranean climate, rainy winters and dry summers, highly variable annual precipitation, and snowmelt-dependent water supply systems. Water use in both regions has also key similarities, with the highest share devoted to high-value irrigated crops, followed by urban water use and a significant hydropower-driven power supply system. Snowmelt-driven basins in semiarid regions are highly sensitive to climate change for two reasons, temperature effects on snowmelt timing and water resources scarcity in these regions subject to ever-increasing demands. Research in both regions also coincide in terms of the potential climate change impacts. Expected impacts on California and Chile water resources have been well-documented in terms of changes in water supply and water demand, though significant uncertainties remain. Both regions have recently experienced prolonged droughts, providing an opportunity to understand the future challenges and potential adaptive responses under climate change. This study connects researchers from Chile and California with the goal of understanding the problem of how to adapt to climate change impacts on water resources and agriculture at the various spatial and temporal scales. The project takes advantage of the complementary contexts between Chile and California in terms of similar climate and hydrologic conditions, water management institutions, patterns of water consumption and, importantly, a similar challenge facing recent drought scenarios to understand the challenges faced by a changing climate.

  12. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A. B. A.

    2017-07-01

    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future global and regional SLR, corresponding uncertainties in contemporary ESL have not been assessed and projections are limited. Here we quantify, for the first time at global scale, the uncertainties in present-day ESL estimates, which have by default been ignored in broad-scale sea-level rise impact assessments to date. ESL uncertainties exceed those from global SLR projections and, assuming that we meet the Paris agreement goals, the projected SLR itself by the end of the century in many regions. Both uncertainties in SLR projections and ESL estimates need to be understood and combined to fully assess potential impacts and adaptation needs.

  13. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nairobi, Kenya. 28 Adapting Fishing Policy to Climate Change with the Aid of Scientific and Endogenous Knowledge. Cap Verde, Gambia,. Guinea, Guinea Bissau,. Mauritania and Senegal. Environment and Development in the Third World. (ENDA-TM). Dakar, Senegal. 29 Integrating Indigenous Knowledge in Climate Risk ...

  14. Recent developments in our understanding of the implications of traditional African medicine on drug metabolism.

    Science.gov (United States)

    Gouws, Chrisna; Hamman, Josias H

    2018-02-01

    The use of traditional herbal medicines has become increasingly popular globally, but in some countries, it is the main or sometimes even the only healthcare service available in the most rural areas. This is especially true for Africa where herbal medicines form a key component of traditional medicinal practices and there is access to a diversity of medicinal plants. Although many benefits have been derived from the use of traditional herbal medicines, many concerns are associated with their use of which herb-drug interactions have been identified to have a rising impact on patient treatment outcome. One type of pharmacokinetic interaction involves the modulation of drug metabolizing enzymes, which may result in enhanced or reduced bioavailability of co-administered drugs. Areas covered: This review highlights the current information available on drug metabolism-associated information with regards to traditional African medicines related to some of the most prevalent diseases burdening the African continent. Expert opinion: It is clear from previous studies that enzyme modulation by traditional African medicines plays a significant role in the pharmacokinetics of some co-administered drugs, but more research is needed to provide detailed information on these interactions, specifically for treatment of prevalent diseases such as tuberculosis and hypertension.

  15. Application of the ''bootstrap'' technique to understanding cerebral interregional metabolic relationships

    International Nuclear Information System (INIS)

    Metter, E.J.; Riege, W.H.; Kuhl, D.E.; Phelps, M.E.

    1984-01-01

    The authors' previous studies using (F18)-flourodeoxyglucose with positron computed tomography examined region to region metabolic correlations in (1) normal subjects, (2) normal elderly versus younger individuals, and (3) Alzheimer's, Huntington's and Parkinson's Diseases. Variations in the correlation matrices suggested differences in how brain regions function together. An alternative explanation was that the distribution of each matrix was not distinctly different, and the observations represented variations from the same distribution. To examine this tissue, the authors focused on the observation of differences in the total number of reliable correlations (i.e. correlations with r representing a p .01 uncorrected for the number of correlations) between the groups. For example in Parkinson Disease a total of 12 reliable correlations were found, as compared to 34 in Alzheimer's Disease. Four groups were compared including normal elderly, normal young, Alzheimer and Parkinson's Diseases. For each group, random samples were drawn from the studied subjects, and correlation matrices were calculated from the new samples. 508 matrices were calculated for the two normal groups, and 1016 were calculated for the Alzheimer's and Parkinson's groups. The total number of reliable correlations were counted for each matrix and the distribution of these counts were examined. Distinct differences were found in the mean, median and mode for each group. In particular, Parkinson's Disease peaked the earliest of the four groups, while Alzheimer's peaked the latest. The findings demonstrated that the metabolic data for each group were derived from different populations

  16. KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response.

    Science.gov (United States)

    Rabhi, Nabil; Denechaud, Pierre-Damien; Gromada, Xavier; Hannou, Sarah Anissa; Zhang, Hongbo; Rashid, Talha; Salas, Elisabet; Durand, Emmanuelle; Sand, Olivier; Bonnefond, Amélie; Yengo, Loic; Chavey, Carine; Bonner, Caroline; Kerr-Conte, Julie; Abderrahmani, Amar; Auwerx, Johan; Fajas, Lluis; Froguel, Philippe; Annicotte, Jean-Sébastien

    2016-05-03

    The endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance. Genome-wide analysis of Kat2b-regulated genes and functional assays reveal a critical role for Kat2b in maintaining UPR(er) gene expression and subsequent β cell function. Importantly, Kat2b expression is decreased in mouse and human diabetic β cells and correlates with UPR(er) gene expression in normal human islets. In conclusion, Kat2b is a crucial transcriptional regulator for adaptive β cell function during metabolic stress by controlling UPR(er) and represents a promising target for T2D prevention and treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Restoring of Glucose Metabolism of Engineered Yarrowia lipolytica for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy.

    Science.gov (United States)

    Yang, Xiaofeng; Wang, Huaimin; Li, Chong; Lin, Carol Sze Ki

    2017-05-24

    Succinate dehydrogenase inactivation in Yarrowia lipolytica has been demonstrated for robust succinic acid production, whereas the inefficient glucose metabolism has hindered its practical application. In this study, a simple and efficient adaptive evolution strategy via cell immobilization was conducted in shake flasks, with an aim to restore the glucose metabolism of Y. lipolytica mutant PGC01003. After 21 days with 14 generations evolution, glucose consumption rate increased to 0.30 g/L/h in YPD medium consisting of 150 g/L initial glucose concentration, while poor yeast growth was observed in the same medium using the initial strain without adaptive evolution. Succinic acid productivity of the evolved strain also increased by 2.3-fold, with stable cell growth in YPD medium with high initial glucose concentration. Batch fermentations resulted in final succinic acid concentrations of 65.7 g/L and 87.9 g/L succinic acid using YPD medium and food waste hydrolysate, respectively. The experimental results in this study show that a simple and efficient strategy could facilitate the glucose uptake rate in succinic acid fermentation using glucose-rich substrates.

  18. Final Report: Filling Knowledge Gaps in Biological Networks: Integrated Global Approaches to Understand H{sub 2} Metabolism in Chlamydomonas Reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Arthur

    2012-05-01

    The major goal of our part of this project has been to generate mutants in fermentation metabolism and begin to decipher how lesions in the pathways associated with fermentation metabolism impact both H{sub 2} production and the production of other metabolites that accumulate as cells become anoxic. We are also trying to understand how metabolic pathways are regulated as O{sub 2} in the environment becomes depleted.

  19. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment.

    NARCIS (Netherlands)

    Degens, H.; Gilde, A.J.; Lindhout, M.; Willemsen, P.H.; Vusse, G.J. van der; Bilsen, M. van

    2003-01-01

    In heart failure, thyroid hormone (TH) treatment improves cardiac performance. The long-term effects of TH on cardiac function and metabolism, however, are incompletely known. To investigate the effects of up to 28 days of TH treatment, male Wistar rats received 3,3',5-triiodo-l-thyronine (200

  20. Metabolic and endocrine adaptations to fasting in lean and obese individuals

    NARCIS (Netherlands)

    Wijngaarden, Marjolein A.

    2015-01-01

    In this thesis we examined several effects of fasting in lean and obese individuals. As expected, both the hormonal response as well as the metabolic shift from glucose towards lipid oxidation was impaired in obese individuals. At baseline, mitochondrial protein content in skeletal muscle of obese

  1. Muscle mitochondrial stress-induced metabolic adaptations do not require FGF21 action

    NARCIS (Netherlands)

    Schothorst, van Evert; Ost, Mario; Stelt, van der Inge; Klaus, Susanne; Keijer, Jaap

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which was recently discovered as stress-induced myokine and common denominator of muscle mitochondrial disease. However, its precise function and pathophysiological relevance remains unknown. Here we demonstrate that white adipose

  2. Folate deficiency and over-supplementation causes impaired folate metabolism: Regulation and adaptation mechanisms in Caenorhabditis elegans.

    Science.gov (United States)

    Ortbauer, Martina; Ripper, Doris; Fuhrmann, Thomas; Lassi, Maximilian; Auernigg-Haselmaier, Sandra; Stiegler, Christina; König, Jürgen

    2016-04-01

    Impaired folate metabolism increases the risk of birth defects, neurodegenerative and cardiovascular disease, osteoporosis and cancer. We used Caenorhabditis elegans to investigate impaired folate metabolism by RNA interference of key enzymes in the methionine synthase (MS) and thymidylate synthase (TS) cycle and by folate deficiency and over-supplementation feeding studies. Folate status is influenced by genetic variations (polymorphisms), folate deficiency and supplementation. Single RNAi of dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR) and MS revealed that gene regulation is largely affected in both folate cycles. Adaptation requires a close transcriptional connection between TS and MS cycle. Coupled DHFR and MS expression is required to balance both cycles, but seems to reduce the overall rate of folate conversion. Feeding studies showed that folate over-supplementation to functioning metabolism inactivates MS and MTHFR expression and enhances TS activity, which favors DNA synthesis over methylation reactions. Folate deficiency disrupted homeostasis by favoring TS cycle and led to malformation in C. elegans offspring. Embryos show aneuploidy and are nonviable lacking DNA repair during meiotic stage of diakinesis. Single gene silencing alters gene expression in both cycles and disrupts folate homeostasis. Folate over-supplementation and deficiency favors TS over MS cycle and causes prophase DNA damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Systemic adaptation of lipid metabolism in response to low- and high-fat diet in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    He, An-Yuan; Ning, Li-Jun; Chen, Li-Qiao; Chen, Ya-Li; Xing, Qi; Li, Jia-Min; Qiao, Fang; Li, Dong-Liang; Zhang, Mei-Ling; Du, Zhen-Yu

    2015-08-01

    Natural selection endows animals with the abilities to store lipid when food is abundant and to synthesize lipid when it is limited. However, the relevant adaptive strategy of lipid metabolism has not been clearly elucidated in fish. This study examined the systemic metabolic strategies of Nile tilapia to maintain lipid homeostasis when fed with low- or high-fat diets. Three diets with different lipid contents (1%, 7%, and 13%) were formulated and fed to tilapias for 10 weeks. At the end of the feeding trial, the growth rate, hepatic somatic index, and the triglyceride (TG) contents of serum, liver, muscle, and adipose tissue were comparable among three groups, whereas the total body lipid contents and the mass of adipose tissue increased with the increased dietary lipid levels. Overall quantitative PCR, western blotting and transcriptomic assays indicated that the liver was the primary responding organ to low-fat (LF) diet feeding, and the elevated glycolysis and accelerated biosynthesis of fatty acids (FA) in the liver is likely to be the main strategies of tilapia toward LF intake. In contrast, excess ingested lipid was preferentially stored in adipose tissue through increasing the capability of FA uptake and TG synthesis. Increasing numbers, but not enlarging size, of adipocytes may be the main strategy of Nile tilapia responding to continuous high-fat (HF) diet feeding. This is the first study illuminating the systemic adaptation of lipid metabolism responding to LF or HF diet in fish, and our results shed new light on fish physiology. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: Current understandings and future research priorities

    Directory of Open Access Journals (Sweden)

    Todd C Rideout

    2008-10-01

    Full Text Available Todd C Rideout1, Scott V Harding1, Peter JH Jones1, Ming Z Fan21Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada; 2Centre for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, CanadaAbstract: The hypocholesterolemic effects associated with soluble fiber consumption are clear from animal model and human clinical investigations. Moreover, the modulation of whole-body cholesterol metabolism in response to dietary fiber consumption, including intestinal cholesterol absorption and fecal sterol and bile acid loss, has been the subject of many published reports. However, our understanding of how dietary fibers regulate molecular events at the gene/protein level and alter cellular cholesterol metabolism is limited. The modern emphasis on molecular nutrition and rapid progress in ‘high-dimensional’ biological techniques will permit further explorations of the role of genetic polymorphisms in determining the variable interindividual responses to soluble fibers. Furthermore, with traditional molecular biology tools and the application of ‘omic’ technology, specific insight into how fibers modulate the expression of genes and proteins that regulate intestinal cholesterol absorption and alter hepatic sterol balance will be gained. Detailed knowledge of the molecular mechanisms by which soluble fibers reduce plasma cholesterol concentrations is paramount to developing novel fiber-based “cocktails” that target specific metabolic pathways to gain maximal cholesterol reductions.Keywords: dietary fiber, cholesterol, bile acids, gene, protein

  5. The metabolic stress response to burn trauma: current understanding and therapies.

    Science.gov (United States)

    Porter, Craig; Tompkins, Ronald G; Finnerty, Celeste C; Sidossis, Labros S; Suman, Oscar E; Herndon, David N

    2016-10-01

    Major burns provoke a profound stress response, which is unrivalled in terms of its magnitude and duration. Evidence suggests that the pathophysiological stress response to severe burn trauma persists for several years after injury. Thus, there is a pressing need for novel strategies that mitigate this response and restore normal metabolic function in patients with burns. This is the first in a Series of three papers about the care of people with burns. In this paper, we review the current knowledge of the stress response to burn trauma, with a focus on hypermetabolism, muscle wasting, and stress-induced diabetes. We highlight recent developments and important knowledge gaps that need to be pursued to develop novel therapeutic strategies to improve outcomes in burn survivors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment

    Directory of Open Access Journals (Sweden)

    Lijing Jiang

    2017-12-01

    Full Text Available Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7–6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C, alkaline pH (optimal pH 8.0, microaerobic conditions (optimal 4% O2, and reduced sulfur compounds (e.g., sulfide, optimal 100 μM. Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep

  7. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  8. PP064. Total vascular resistances in early pregnancy: A key to understand abnormal cardiovascular adaptation associated with spontaneous abortion.

    Science.gov (United States)

    Lo Presti, Damiano; Scala, Roberta Licia; Tiralongo, Grazia Maria; Pisani, Ilaria; Gagliardi, Giulia; Novelli, Gian Paolo; Vasapollo, Barbara; Valensise, Herbert

    2013-04-01

    From early pregnancy, maternal hemodynamic profile begins to change. The absence of these changes leads to increased risk of complication during the gestation. Aim of this study is to understand in early pregnancy the behaviour of total vascular resistances (TVR) as a sign of maternal cardiovascular adaptation to pregnancy. A cross section study was conducted. We followed 160 healthy women with singleton pregnancy during the first trimester of gestation. We evaluated cardiac output (CO) and TVR at 7, 9 and 11 weeks of gestation. We obtained the following haemodynamic measurements with the USCOM system, a non invasive method: heart rate (HR), systolic and diastolic blood pressure (SBP, DBP), CO and TVR. 160 healthy pregnant women were selected, 8 patients, were excluded for a bad signal. Absolute values of the haemodynamic measures are shown in Fig. 1. 41 patients underwent spontaneous embryonic demise. This last group of patients showed in 54% (group A) TVR values within the normal limits (TVR1200) and CO values below the normal adaptation to pregnancy. Table 1 shows hemodynamic measures for the group A and group B; we found differences in term of CO, TVR and PAS between the two groups. Elevated TVR might indicate an abnormal vascular adaptation already in first weeks of pregnancy. Moreover, in women who undergo to abortion, elevated TVR could be use to distinguish genetic or environmental causes of miscarriage. Copyright © 2013. Published by Elsevier B.V.

  9. Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Nielsen, Kristian Fog

    2017-01-01

    In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds...

  10. Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome.

    Directory of Open Access Journals (Sweden)

    Lisa M Nigro

    2016-08-01

    Full Text Available Deep-sea hypersaline anoxic basins (DHABs and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that has been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome (SAG of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source.

  11. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    Science.gov (United States)

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. PMID:24833580

  12. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Partial restoration of dietary fat induced metabolic adaptations to training by 7 days of carbohydrate diet

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Watt, Peter W; Richter, Erik A

    2002-01-01

    We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high-...

  14. Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia

    Science.gov (United States)

    2012-09-13

    prokaryotic bacteria . In yeast, the observed correlations Figure 6. Genes predicted to be essential for Mycobacterium tuberculosis H37Rv to adapt to...proteome quantification of haploid versus diploid yeast. Nature 455: 1251–1254. 64. Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, et al. (2003

  15. Aging and longevity of yeast colony populations: metabolic adaptation and differentiation

    Czech Academy of Sciences Publication Activity Database

    Váchová, Libuše; Palková, Z.

    2011-01-01

    Roč. 39, - (2011), s. 1471-1475 ISSN 0300-5127 R&D Projects: GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z50200510 Keywords : adaptation and longevity * ammonia signalling * quorum sensing Subject RIV: EE - Microbiology, Virology Impact factor: 3.711, year: 2011

  16. Responses of mouse skeletal muscle to endurance exercise. Functional, metabolic, and genomic adaptations

    NARCIS (Netherlands)

    de Snoo, M.W.

    2009-01-01

    Endurance exercise is commonly known to improve skeletal muscle performance with respect to fatigue resistance. The exact mechanisms, however, as to how skeletal muscle adapts to increased physical demand are still largely unknown, despite extensive research. These processes were originally studied

  17. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism.

    Science.gov (United States)

    de Kloet, E R; Molendijk, M L

    2016-01-01

    In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive "coping" was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.

  18. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism

    Directory of Open Access Journals (Sweden)

    E. R. de Kloet

    2016-01-01

    Full Text Available In the forced swim test (FST rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving behavioural style. In the past decade however the switch from active to passive “coping” was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000 stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR and glucocorticoid receptors (GR in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent’s behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.

  19. PGC-1alpha in exercise- and exercise training-induced metabolic adaptations

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm

    (PGC)-1α is required for exercise-, exercise training- and fasting-induced mRNA and protein responses, respectively, of metabolic, angiogenic and gluconeogenic proteins in liver and adipose tissue in mice, 3) PGC-1α is required for both exercise training and resveratrol mediated prevention of age....... Furthermore the physical inactivity abolished the exercise-induced mRNA response of PGC-1α and vascular endothelial growth factor (VEGF) in skeletal muscle that was present before bed rest. This indicates that just 7 days of physical inactivity reduces the metabolic capacity of human skeletal muscle...... that citrate synthase (CS) activity and mtDNA/nDNA content decreased with age in skeletal muscle of WT mice. CS activity, mtDNA/nDNA content, pyruvate dehydrogenase-E1α and VEGF protein content increased with lifelong exercise training in WT mice but not in PGC-1α KO mice. In contrast, lifelong resveratrol...

  20. Gender-related effects on substrate utilization and metabolic adaptation in hairless spontaneously hypertensive rat

    Czech Academy of Sciences Publication Activity Database

    Trnovská, J.; Šilhavý, Jan; Zídek, Václav; Šimáková, Miroslava; Mlejnek, Petr; Landa, Vladimír; Eigner, Sebastian; Eigner-Henke, Kateřina; Škop, V.; Oliyarnyk, O.; Kazdová, L.; Mráček, Tomáš; Houštěk, Josef; Pravenec, Michal

    2015-01-01

    Roč. 64, č. 1 (2015), s. 51-60 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GB14-36804G; GA ČR(CZ) GA13-04420S; GA MŠk(CZ) LL1204; GA MZd(CZ) NT14325 Institutional support: RVO:67985823 ; RVO:61389005 Keywords : gender * hairless rat * metabolism * brown adipose tissue Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  1. Metabolic adaptation in the crew of the Hesperides on their Antarctic journey.

    Science.gov (United States)

    Fernández-Riestra, Francisco A; Garcés, Carmen; Lahoz, Carlos; Lasunción, Miguel A; Castilla, Patricia; Viturro, Enrique; Cano, Beatriz; de Oya, Manuel

    2006-10-01

    We studied the metabolic changes that took place in the crew of the Hesperides vessel in their 2001-2002 Antarctic journey, comparing two periods differing in diet and physical activity. Lipid profile, vitamin and hormone levels were analyzed in 17 subjects who completed the study in its two phases. In phase I the participants spent 47 days sailing with hard work and rough seas, and the diet was rich in fat and poor in fresh foods. In this phase, glucose decreased and HDL-cholesterol, apo-AI, and TSH increased. Plasma retinol and alpha-tocopherol levels remained stable, gamma-tocopherol, alpha-carotene and beta-carotene significantly decreased, and lycopene significantly increased. Phase II lasted 49 days including a 7-day long stop in port. This meant that a more varied diet was available and fresh foods were present in the hold. There was also less extreme physical activity. The metabolic pattern changed direction, glucose rose, HDL-cholesterol and apo-AI decreased and the levels of the vitamins that dropped in phase I started to increase. Lycopene significantly decreased. Contrary to popular beliefs about navigation at extreme latitudes, the metabolic changes described may be explained by the intense physical activity in a cold environment and a high-fat diet poor in fresh products.

  2. Response of Estrogen-related Receptor Alpha (ERRα to Endurance Training and its Participation in Endurance Training-induced Adaptations in Lipid Metabolism in Skeletal Muscle of Male Wistar rats

    Directory of Open Access Journals (Sweden)

    Soheil Aminizadeh

    2017-08-01

    Conclusion: In sum, expression of ERRα is a trainable factor and its changes are parallel with the increase in expression of lipid metabolism indexes; so, it could have a direct role in endurance training-induced adaptation in fat metabolism.

  3. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain....

  4. Tau phosphorylation as adaptive response to metabolic dysfunction in the brain

    NARCIS (Netherlands)

    van der Harg, J.M.

    2017-01-01

    In healthy neurons, tau is regulated by phosphorylation and dephosphorylation and fulfills multiple functions. However, in tauopathies tau is hyperphosphorylated resulting in the aggregation of the tau protein. To develop a successful therapeutic intervention understanding of the underlying

  5. Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure.

    Science.gov (United States)

    Nemutlu, Emirhan; Zhang, Song; Xu, Yi-Zhou; Terzic, Andre; Zhong, Li; Dzeja, Petras D; Cha, Yong-Mei

    2015-06-01

    Heart failure (HF) is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT). The aim of this study was to determine the metabolomic signature in HF and its prognostic value regarding the response to CRT. This prospective study consisted of 24 patients undergoing CRT for advanced HF and 10 control patients who underwent catheter ablation for supraventricular arrhythmia but not CRT. Blood samples were collected before and 3 months after CRT. Metabolomic profiling of plasma samples was performed with the use of gas chromatography-mass spectrometry and nuclear magnetic resonance. The plasma metabolomic profile was altered in the HF patients, with a distinct panel of metabolites, including Krebs cycle and lipid, amino acid, and nucleotide metabolism. CRT improved the metabolomic profile. The succinate-glutamate ratio, an index of Krebs cycle activity, improved from 0.58 ± 0.13 to 2.84 ± 0.60 (P HF patients, indicating harmonization of myocardial energy substrate metabolism. CRT responders may have a favorable metabolomic profile as a potential biomarker for predicting CRT outcome. Published by Elsevier Inc.

  6. The Mediator subunit MDT-15 confers metabolic adaptation to ingested material.

    Directory of Open Access Journals (Sweden)

    Stefan Taubert

    2008-02-01

    Full Text Available In eukaryotes, RNA polymerase II (Pol(II dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to Pol(II-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds.

  7. Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health.

    Science.gov (United States)

    Nirwane, Abhijit; Majumdar, Anuradha

    2017-10-26

    Mitochondria play a pivotal role in physiological energy governance. Mitochondrial biogenesis comprises growth and division of pre-existing mitochondria, triggered by environmental stressors such as endurance exercise, caloric restriction, cold exposure and oxidative stress. For normal physiology, balance between energy intake, storage and expenditure is of utmost important for the coordinated regulation of energy homeostasis. In contrast, abnormalities in these regulations render the individual susceptible to cardiometabolic disorders. This review provides a comprehensive coverage and understanding on mitochondrial biogenesis achieved through energy-sensing pathways. This includes the complex coordination of nuclear, cytosolic and mitochondrial events involving energy sensors, transcription factors, coactivators and regulators. It focuses on the importance of mitochondrial biogenesis in cardiometabolic health. Lastly, converging on the benefits of caloric restriction and endurance exercise in achieving cardiometabolic health.

  8. Adaptation of intestinal calcium absorption: parathyroid hormone and vitamin D metabolism

    International Nuclear Information System (INIS)

    Ribovich, M.L.; DeLuca, H.F.

    1978-01-01

    It has already been demonstrated that the adaptation of intestinal calcium absorption of rats on a low calcium diet can be eliminated by thyroparathyoidectomy plus parathyroid hormone administration. It therefore appears likely that the modulation of intestinal calcium absorption by dietary calcium is mediated by the parathyroid glands and the renal biogenesis of 1,25-dihydoxyvitamin D 3 . Changes in the other unknown vitamin D metabolite levels as a result of dietary calcium are also modified by thyroparathyroidectomy and parathyroid hormone administration, but the effect of these metabolites on intestinal calcium transport is unknown

  9. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    Science.gov (United States)

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  10. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Rakoczy, Sharlene

    2013-09-01

    Restrictive dietary interventions exert significant beneficial physiological effects in terms of aging and age-related disease in many species. Every other day feeding (EOD) has been utilized in aging research and shown to mimic many of the positive outcomes consequent with dietary restriction. This study employed long living Ames dwarf mice subjected to EOD feeding to examine the adaptations of the oxidative phosphorylation and antioxidative defense systems to this feeding regimen. Every other day feeding lowered liver glutathione (GSH) concentrations in dwarf and wild type (WT) mice but altered GSH biosynthesis and degradation in WT mice only. The activities of liver OXPHOS enzymes and corresponding proteins declined in WT mice fed EOD while in dwarf animals, the levels were maintained or increased with this feeding regimen. Antioxidative enzymes were differentially affected depending on the tissue, whether proliferative or post-mitotic. Gene expression of components of liver methionine metabolism remained elevated in dwarf mice when compared to WT mice as previously reported however, enzymes responsible for recycling homocysteine to methionine were elevated in both genotypes in response to EOD feeding. The data suggest that the differences in anabolic hormone levels likely affect the sensitivity of long living and control mice to this dietary regimen, with dwarf mice exhibiting fewer responses in comparison to WT mice. These results provide further evidence that dwarf mice may be better protected against metabolic and environmental perturbations which may in turn, contribute to their extended longevity. © 2013.

  11. Understanding the dynamics of the Seguro Popular de Salud policy implementation in Mexico from a complex adaptive systems perspective.

    Science.gov (United States)

    Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed

    2016-05-13

    In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power

  12. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD.

    Directory of Open Access Journals (Sweden)

    William B Ashworth

    2016-09-01

    Full Text Available In non-alcoholic fatty liver disease (NAFLD, lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation

  13. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD

    Science.gov (United States)

    Ashworth, William B.; Bogle, I. David L.

    2016-01-01

    In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the

  14. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach.

    Science.gov (United States)

    Chen, Meimei; Yang, Fafu; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-12-16

    Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)-a famous traditional Chinese medicine formula-has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  15. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Meimei Chen

    2016-12-01

    Full Text Available Metabolic syndrome (MS is becoming a worldwide health problem. Wendan decoction (WDD—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  16. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  17. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...... reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes...... cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  18. Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize.

    Science.gov (United States)

    Blacutt, Alex A; Gold, Scott E; Voss, Kenneth A; Gao, Minglu; Glenn, Anthony E

    2018-03-01

    The importance of understanding the biology of the mycotoxigenic fungus Fusarium verticillioides and its various microbial and plant host interactions is critical given its threat to maize, one of the world's most valuable food crops. Disease outbreaks and mycotoxin contamination of grain threaten economic returns and have grave implications for human and animal health and food security. Furthermore, F. verticillioides is a member of a genus of significant phytopathogens and, thus, data regarding its host association, biosynthesis of secondary metabolites, and other metabolic (degradative) capabilities are consequential to both basic and applied research efforts across multiple pathosystems. Notorious among its secondary metabolites are the fumonisin mycotoxins, which cause severe animal diseases and are implicated in human disease. Additionally, studies of these mycotoxins have led to new understandings of F. verticillioides plant pathogenicity and provide tools for research into cellular processes and host-pathogen interaction strategies. This review presents current knowledge regarding several significant lines of F. verticillioides research, including facets of toxin production, virulence, and novel fitness strategies exhibited by this fungus across rhizosphere and plant environments.

  19. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins

    Directory of Open Access Journals (Sweden)

    Kevin D. Kohl

    2016-07-01

    Full Text Available The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, nongastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host’s ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that

  20. Thermoregulatory and adaptive responses of adult buffaloes (Bubalus bubalis during hyperthermia: Physiological, behavioral, and metabolic approach

    Directory of Open Access Journals (Sweden)

    Alok K. Wankar

    2014-10-01

    Full Text Available Aim: The study was planned to evaluate the indigenous animal adaptive capabilities during optimum temperature versus heat stress (HS. Materials and Methods: Four adult buffaloes were exposed at 25°C, 30°C, 35°C, and 40°C for 21 days at every treatment in environmentally controlled chamber and physio-biochemical variation and animal behavior was observed. Results: The study revealed significantly increased rectal temperature, respiration rate, water intake, sodium, reactive oxygen metabolites, cortisol, aspartate aminotransferase, and alanine aminotransferase while, pulse rate and thyroid hormones decreased during thermal stress. Panting, restlessness, salivation, and sweating were higher during HS while, rumination and urination contrastingly lowered. Conclusion: The results reflect the impact of hyperthermia both acute and chronic, on the animals forcing various physiobiochemical, endocrinal, and behavioral changes for acclimatization during a stressful period aimed at maintaining homeothermy.

  1. Phylogenetic analysis of standard metabolic rate of snakes: a new proposal for the understanding of interspecific variation in feeding behavior.

    Science.gov (United States)

    Stuginski, Daniel Rodrigues; Navas, Carlos Arturo; de Barros, Fábio Cury; Camacho, Agustín; Bicudo, José Eduardo Pereira Wilken; Grego, Kathleen Fernandes; de Carvalho, José Eduardo

    2017-10-06

    The current proposal about the variation of standard metabolic rates (SMR) in snakes predicts that SMR is influenced by the feeding frequency (frequent or infrequent feeders). However, feeding frequency in snakes is poorly studied and hard to quantify under natural conditions. Alternatively, foraging strategy was studied for a large number of species and is usually related to the feeding frequency. In this work, we performed a meta-analysis on the SMR of compiled data from 74 species of snakes obtained from the literature and five more different species of lanceheads (genus Bothrops), after categorization according to the foraging mode (ambush or active foraging) and regarding their phylogenetic history. We tested the hypothesis that foraging mode (FM) is a determinant factor on the interspecific variation of SMR despite the phylogenetic relationship among species. We demonstrated that FM predicted SMR, but there is also a partial phylogenetic structuration of SMR in snakes. We also detected that evolution rates of SMR in active foragers seem to be higher than ambush-hunting snakes. We suggested that foraging mode has a major effect over the evolution of SMR in snakes, which could represent an ecophysiological co-adaptation, since ambush hunters (with low feeding rates) present a lower maintenance energetic cost (SMR) when compared to active foragers. The higher SMR evolution rates for active foraging snakes could be related to a higher heterogeny in the degree of activity during hunting by active foragers when compared to ambush-hunting snakes.

  2. Teachers' Understandings of Curriculum Adaptations for Learners with Learning Difficulties in Primary Schools in Botswana: Issues and Challenges of Inclusive Education

    Science.gov (United States)

    Otukile-Mongwaketse, Mpho; Mangope, Boitumelo; Kuyini, Ahmed Bawa

    2016-01-01

    This paper derives from research carried out in a number of Botswana primary schools on teachers' understanding of curriculum adaptations for learners who experience learning difficulties (LD) as part of implementing inclusive education. Teachers' understanding play a crucial role in how they make curriculum accessible for learners with LD during…

  3. Recent advances in understanding the adaptive immune response to Zika virus and the effect of previous flavivirus exposure.

    Science.gov (United States)

    Andrade, Daniela V; Harris, Eva

    2017-06-26

    Zika virus (ZIKV) caused explosive epidemics across the Americas, starting in Brazil in 2015, and has been associated with severe manifestations such as microcephaly in babies born to infected mothers and Guillain-Barré syndrome in adults. As the underlying mechanisms of pathogenesis remain largely unknown, diverse investigations have focused on a potential role for flavivirus cross-reactive antibodies in enhancing ZIKV infection. Antibody-dependent enhancement is especially concerning due to structural similarities between ZIKV and other flaviviruses, especially dengue virus (DENV), that co-circulate in areas affected by ZIKV. Conversely, investigating cross-neutralizing antibodies is important for understanding protection among flaviviruses, including ZIKV. In this review, we discuss the latest findings regarding ZIKV-induced adaptive immunity, such as monoclonal and polyclonal antibody responses, structural immunology, and T cell-mediated responses. Much progress has been made in a short amount of time, but many questions remain. Fully understanding the specificity, magnitude, and kinetics of B cell/antibody and T cell responses in ZIKV-infected individuals with or without prior exposure to flaviviruses is of great relevance for diagnostics and vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Metabolic adaptation of white adipose tissue to nutritional and environmental challenges

    OpenAIRE

    Hoevenaars, F.P.M.

    2014-01-01

    Summary of main findings When adipose tissue is present in excessive amounts, as in obesity, it predisposes to a number of pathologies. Obesity is a complex, multifactorial condition as it influences many endogenous genetic, endocrine, and inflammatory pathways. Excess dietary intake is one of the important factors which are responsible for the increasing prevalence of obesity. For the understanding of the reciprocity between consumed diet and excessive amounts of adipose tissue, it is essent...

  5. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Joseph

    2010-03-26

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  6. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice

    Science.gov (United States)

    Foglesong, Grant D.; Huang, Wei; Liu, Xianglan; Slater, Andrew M.; Siu, Jason; Yildiz, Vedat; Salton, Stephen R. J.

    2016-01-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF. PMID:26730934

  7. Metabolic syndrome in children: comparison of the International Diabetes Federation 2007 consensus with an adapted National Cholesterol Education Program definition in 300 overweight and obese French children.

    Science.gov (United States)

    Druet, Céline; Ong, Ken; Levy Marchal, Claire

    2010-01-01

    Former definitions of metabolic syndrome (MS) in children have been adapted from adult MS definitions using age-related thresholds for each biochemical component, whereas the International Diabetes Federation (IDF) definition is based on absolute values. We compared the IDF childhood MS definition (IDF-MS) to the adapted National Cholesterol Education Program (adapted-NCEP) definition in overweight children. 300 overweight and obese children were included with a median age of 11 years and BMI SDS of +4.7. Below 10 years of age, the frequency of MS according to the adapted-NCEP-MS definition was 18.6%, and 86.1% had abdominal obesity. In children aged 10 to definition and appears to identify a group of children with higher fasting insulin than the adapted-MS definition which uses age-related thresholds (90th percentile). Copyright 2010 S. Karger AG, Basel.

  8. Metabolic adaptations during lactogenesis. Fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation

    Science.gov (United States)

    Mellenberger, R. W.; Bauman, D. E.

    1974-01-01

    1. Mammary tissue was obtained from rabbits at various stages of pregnancy and lactation and used for tissue-slice incubations (to measure the rate of fatty acid synthesis and CO2 production) and to determine relevant enzymic activities. A biphasic adaptation in fatty acid synthetic capacity during lactogenesis was noted. 2. The first lactogenic response occurred between day 15 and 24 of pregnancy. Over this period fatty acid synthesis (from acetate) increased 14-fold and the proportions of fatty acids synthesized changed to those characteristic of milk fat (77–86% as C8:0+C10:0 acids). 3. The second lactogenic response occurred post partum as indicated by increased rates of fatty acid synthesis and CO2 production (from acetate and glucose) and increased enzymic activities. 4. Major increases in enzymic activities between mid-pregnancy and lactation were noted for ATP citrate lyase (EC 4.1.3.8), acetyl-CoA synthetase (EC 6.2.1.1), acetyl-CoA carboxylase (EC 6.4.1.2), fatty acid synthetase, glucose 6-phosphate dehydrogenase (EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). Smaller increases in activity occurred with glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) and NADP+–isocitrate dehydrogenase (EC 1.1.1.42) and the activity of NADP+–malate dehydrogenase (EC 1.1.1.40) was negligible at all periods tested. 5. During pregnancy and lactation there was a close temporal relationship between fatty acid synthetic capacity and the activities of ATP citrate lyase (r=0.94) and acetyl-CoA carboxylase (r=0.90). PMID:4154742

  9. Understanding Obesity and the Influence of Acculturation on Metabolic Responses in East Asian Populations in the United States

    Science.gov (United States)

    2007-09-05

    2001). Postprandial lipid metabolism and insulin sensitivity in young Northern Europeans, South Asians and Latin Americans in the UK...Asians and Caucasians partially explained the differing postprandial metabolic responses. East Asian ethnicity is a risk factor for insulin resistance... Postprandial Metabolic Responses by Ethnicity .................................................................................... 91 6.1.2. Specific Aim 3

  10. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses

    Directory of Open Access Journals (Sweden)

    Alexandre Morrot

    2018-03-01

    Full Text Available The tumor microenvironment (TME is composed by cellular and non-cellular components. Examples include the following: (i bone marrow-derived inflammatory cells, (ii fibroblasts, (iii blood vessels, (iv immune cells, and (v extracellular matrix components. In most cases, this combination of components may result in an inhospitable environment, in which a significant retrenchment in nutrients and oxygen considerably disturbs cell metabolism. Cancer cells are characterized by an enhanced uptake and utilization of glucose, a phenomenon described by Otto Warburg over 90 years ago. One of the main products of this reprogrammed cell metabolism is lactate. “Lactagenic” or lactate-producing cancer cells are characterized by their immunomodulatory properties, since lactate, the end product of the aerobic glycolysis, besides acting as an inducer of cellular signaling phenomena to influence cellular fate, might also play a role as an immunosuppressive metabolite. Over the last 10 years, it has been well accepted that in the TME, the lactate secreted by transformed cells is able to compromise the function and/or assembly of an effective immune response against tumors. Herein, we will discuss recent advances regarding the deleterious effect of high concentrations of lactate on the tumor-infiltrating immune cells, which might characterize an innovative way of understanding the tumor-immune privilege.

  11. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    Science.gov (United States)

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Understanding Students' Adaptation to Graduate School: An Integration of Social Support Theory and Social Learning Theory

    Science.gov (United States)

    Tsay, Crystal Han-Huei

    2012-01-01

    The contemporary business world demands adaptive individuals (Friedman & Wyman, 2005). Adaptation is essential for any life transition. It often involves developing coping mechanisms, strategies, and seeking of social support. Adaptation occurs in many settings from moving to a new culture, taking a new job, starting or finishing an…

  13. NAD(P)H-Hydrate Dehydratase- A Metabolic Repair Enzyme and Its Role in Bacillus subtilis Stress Adaptation

    Science.gov (United States)

    Dvoracek, Lukas; Streitova, Eliska; Licha, Irena

    2014-01-01

    Background One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. Methods and Results We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. Conclusion We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells. PMID:25393291

  14. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited.

    Science.gov (United States)

    Müller, Manfred James; Enderle, Janna; Pourhassan, Maryam; Braun, Wiebke; Eggeling, Benjamin; Lagerpusch, Merit; Glüer, Claus-Christian; Kehayias, Joseph J; Kiosz, Dieter; Bosy-Westphal, Anja

    2015-10-01

    Adaptive thermogenesis (AT) is the fat-free mass (FFM)-independent reduction of resting energy expenditure (REE) to caloric restriction (CR). AT attenuates weight loss and favors weight regain. Its variance, dynamics, and control remain obscure. Our aims were to address the variance and kinetics of AT, its associations with body composition in the context of endocrine determinants, and its effect on weight regain. Thirty-two nonobese men underwent sequential overfeeding (1 wk at +50% of energy needs), CR (3 wk at -50% of energy needs), and refeeding (2 wk at +50% of energy needs). AT and its determinants were measured together with body composition as assessed with the use of quantitative magnetic resonance, whole-body MRI, isotope dilution, and nitrogen and fluid balances. Changes in body weight were +1.8 kg (overfeeding), -6.0 kg (CR), and +3.5 kg (refeeding). CR reduced fat mass and FFM by 114 and 159 g/d, respectively. Within FFM, skeletal muscle (-5%), liver (-13%), and kidneys (-8%) decreased. CR also led to reductions in REE (-266 kcal/d), respiratory quotient (-15%), heart rate (-14%), blood pressure (-7%), creatinine clearance (-12%), energy cost of walking (-22%), activity of the sympathetic nervous system (SNS) (-38%), and plasma leptin (-44%), insulin (-54%), adiponectin (-49%), 3,5,3'-tri-iodo-thyronine (T3) (-39%), and testosterone (-11%). AT was 108 kcal/d or 48% of the decrease in REE. Changes in FFM composition explained 36 kcal, which left 72 kcal/d for true AT. The decrease in AT became significant at ≤3 d of CR and was related to decreases in insulin secretion (r = 0.92, P < 0.001), heart rate (r = 0.60, P < 0.05), creatinine clearance (r = 0.79, P < 0.05), negative fluid balance (r = 0.51, P < 0.01), and the free water clearance rate (r = -0.90, P < 0.002). SNS activity and plasma leptin, ghrelin, and T3 and their changes with CR were not related to AT. During early weight loss, AT is associated with a fall in insulin secretion and body fluid

  15. Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts.

    Science.gov (United States)

    Zhang, Xinning; Leadbetter, Jared R

    2012-01-01

    Termites and their gut microbes engage in fascinating dietary mutualisms. Less is known about how these complex symbioses have evolved after first emerging in an insect ancestor over 120 million years ago. Here we examined a bacterial gene, formate dehydrogenase (fdhF), that is key to the mutualism in 8 species of "higher" termite (members of the Termitidae, the youngest and most biomass-abundant and species-rich termite family). Patterns of fdhF diversity in the gut communities of higher termites contrasted strongly with patterns in less-derived (more-primitive) insect relatives (wood-feeding "lower" termites and roaches). We observed phylogenetic evidence for (i) the sweeping loss of several clades of fdhF that may reflect extinctions of symbiotic protozoa and, importantly, bacteria dependent on them in the last common ancestor of all higher termites and (ii) a radiation of genes from the (possibly) single allele that survived. Sweeping gene loss also resulted in (iii) the elimination of an entire clade of genes encoding selenium (Se)-independent enzymes from higher termite gut communities, perhaps reflecting behavioral or morphological innovations in higher termites that relaxed preexisting environmental limitations of Se, a dietary trace element. Curiously, several higher termite gut communities may have subsequently reencountered Se limitation, reinventing genes for Se-independent proteins via convergent evolution. Lastly, the presence of a novel fdhF lineage within litter-feeding and subterranean higher (but not other) termites may indicate recent gene "invasion" events. These results imply that cascades of perturbation and adaptation by distinct evolutionary mechanisms have impacted the evolution of complex microbial communities in a highly successful lineage of insects. Since patterns of relatedness between termite hosts are broadly mirrored by the relatedness of their symbiotic gut microbiota, coevolution between hosts and gut symbionts is rightly

  16. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework.

    Science.gov (United States)

    Renouf, Marguerite A; Kenway, Steven J; Lam, Ka Leung; Weber, Tony; Roux, Estelle; Serrao-Neumann, Silvia; Choy, Darryl Low; Morgan, Edward A

    2018-06-15

    Water sensitive interventions are being promoted to reduce the adverse impacts of urban development on natural water cycles. However it is currently difficult to know the best strategy for their implementation because current and desired urban water performance is not well quantified. This is particularly at the city-region scale, which is important for strategic urban planning. This work aimed to fill this gap by quantifying the water performance of urban systems within city-regions using 'urban water metabolism' evaluation, to inform decisions about water sensitive interventions. To do this we adapted an existing evaluation framework with new methods. In particular, we used land use data for defining system boundaries, and for estimating natural hydrological flows. The criteria for gauging the water performance were water efficiency (in terms of water extracted externally) and hydrological performance (how much natural hydrological flows have changed relative to a nominated pre-urbanised state). We compared these performance criteria for urban systems within three Australian city-regions (South East Queensland, Melbourne and Perth metropolitan areas), under current conditions, and after implementation of example water sensitive interventions (demand management, rainwater/stormwater harvesting, wastewater recycling and increasing perviousness). The respective water efficiencies were found to be 79, 90 and 133 kL/capita/yr. In relation to hydrological performance, stormwater runoff relative to pre-urbanised flows was of most note, estimated to be 2-, 6- and 3- fold, respectively. The estimated performance benefits from water sensitive interventions suggested different priorities for each region, and that combined implementation of a range of interventions may be necessary to make substantive gains in performance. We concluded that the framework is suited to initial screening of the type and scale of water sensitive interventions needed to achieve desired water

  17. Adapting public policy theory for public health research: A framework to understand the development of national policies on global health.

    Science.gov (United States)

    Jones, Catherine M; Clavier, Carole; Potvin, Louise

    2017-03-01

    National policies on global health appear as one way that actors from health, development and foreign affairs sectors in a country coordinate state action on global health. Next to a burgeoning literature in which international relations and global governance theories are employed to understand global health policy and global health diplomacy at the international level, little is known about policy processes for global health at the national scale. We propose a framework of the policy process to understand how such policies are developed, and we identify challenges for public health researchers integrating conceptual tools from political science. We developed the framework using a two-step process: 1) reviewing literature to establish criteria for selecting a theoretical framework fit for this purpose, and 2) adapting Real-Dato's synthesis framework to integrate a cognitive approach to public policy within a constructivist perspective. Our framework identifies multiple contexts as part of the policy process, focuses on situations where actors work together to make national policy on global health, considers these interactive situations as spaces for observing external influences on policy change and proposes policy design as the output of the process. We suggest that this framework makes three contributions to the conceptualisation of national policy on global health as a research object. First, it emphasizes collective action over decisions of individual policy actors. Second, it conceptualises the policy process as organised interactive spaces for collaboration rather than as stages of a policy cycle. Third, national decision-making spaces are opportunities for transferring ideas and knowledge from different sectors and settings, and represent opportunities to identify international influences on a country's global health policy. We discuss two sets of challenges for public health researchers using interdisciplinary approaches in policy research. Copyright

  18. Methanogenic H2 syntrophy among thermophiles: a model of metabolism, adaptation and survival in the subsurface

    Science.gov (United States)

    Topcuoglu, B. D.; Stewart, L. C.; Butterfield, D. A.; Huber, J. A.; Holden, J. F.

    2016-12-01

    Approximately 1 giga ton (Gt, 1015 g) of CH4 is formed globally per year from H2, CO2 and acetate through methanogenesis, largely by methanogens growing in syntrophic association with anaerobic microbes that hydrolyze and ferment biopolymers. However, our understanding of methanogenesis in hydrothermal regions of the subseafloor and potential syntrophic methanogenesis at thermophilic temperatures (i.e., >50°C) is nascent. In this study, the growth of natural assemblages of thermophilic methanogens from Axial Seamount was primarily limited by H2 availability. Heterotrophs supported thermophilic methanogenesis by H2 syntrophy in microcosm incubations of hydrothermal fluids at 55°C and 80°C supplemented with tryptone only. Based on 16S rRNA gene sequencing, only heterotrophic archaea that produce H2, H2-consuming methanogens, and sulfate reducing archaea were found in 80°C tryptone microcosms from Marker 113 vent. No bacteria were found. In 55°C tryptone microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. In order to model the impact of H2 syntrophy at hyperthemophilic temperatures, a co-culture was established consisting of the H2-producing hyperthermophilic heterotroph Thermococcus paralvinellae and a H2-consuming hyperthermophilic methanogen Methanocaldococcus bathoardescens. When grown alone in a chemostat, the growth rates and steady-state cell concentrations of T. paralvinellae decreased significantly when a high H2 (70 µM) background was present. H2 inhibition was ameliorated by the production of formate, but in silico modeling suggests less energetic yield for the cells. H2 syntrophy relieved H2 inhibition for both the heterotroph and the methanogenic partners. The results demonstrate that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important alternative energy source for thermophilic autotrophs in marine geothermal environments.

  19. Lipolytic response of adipose tissue and metabolic adaptations to long periods of fasting in red tilapia (Oreochromis sp., Teleostei: Cichlidae

    Directory of Open Access Journals (Sweden)

    WALTER DIAS JUNIOR

    2016-01-01

    Full Text Available ABSTRACT Adaptive changes of carbohydrate and lipid metabolism induced by 7, 15, 30, 60, 90, 150 and 200 days of fasting were investigated in red tilapia (Oreochromis sp.. Plasma glucose, lactate and free fatty acids (FFA levels, liver and muscle glycogen and total lipid contents and rates of FFA release from mesenteric adipose tissue (MAT were measured. Plasma glucose levels showed significant differences only after 90 days of fasting, when glycemia was 34% lower (50±5mg.dL-1 than fed fish values (74±1mg.dL-1, remaining relatively constant until 200 days of fasting. The content of liver glycogen ("15% in fed tilapia fell 40% in 7 days of food deprivation. In 60, 90 and 150 days of fasting, plasma FFA levels increased 49%, 64% and 90%, respectively, compared to fed fish values. In agreement with the increase in plasma FFA, fasting induced a clear increase in lipolytic activity of MAT incubated in vitro. Addition of isobutylmethylxanthine (cAMP-phosphodiesterase inhibitor and isoproterenol (non selective beta adrenergic agonist to the incubation medium induced a reduction of lipolysis in fasted fish, differently to what was observed in mammal adipose tissue. This study allowed a physiological assessment of red tilapia response to starvation.

  20. Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows.

    Science.gov (United States)

    Kuhla, Björn; Nürnberg, Gerd; Albrecht, Dirk; Görs, Solvig; Hammon, Harald M; Metges, Cornelia C

    2011-09-02

    During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.

  1. The Effect of a Three-Week Adaptation to a Low Carbohydrate/High Fat Diet on Metabolism and Cognitive Performance

    Science.gov (United States)

    1990-04-11

    soleus muscle of rats fed a high fat diet . Diabetes 31(3):232-37, 1982. 14. Hagg, S.A., S.I. Taylor, and N.B. Ruberman. Glucose metabolism in perfused... ketogenic diet . J Clin Invest. 66(5):1152-61, 1980. 30. Satabin, P., B. Bois-Joyeux, M. Chanez, C.Y. Guezennec, and J. Peret. Effects of long-term feeding of...D-A247 575 . THE EFFECT OF A THREE-WEEK ADAPTATION TO A LOW CARBOHYDRATE / HIGH FAT DIET ON METABOLISM AND COGNITIVE PERFORMANCE C. G. GRAY 0. G

  2. Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2009-11-01

    Full Text Available Abstract Background Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA representation. The optimization task is posed as a nonconvex nonlinear programming (NLP problem that is solved by an outer-approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion Our results

  3. Absorption spectroscopic analysis of Astacus rhodopsin systems and evidence of metabolic regeneration of rhodopsins after light adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Hamacher, K.

    1981-05-01

    A method was developed to isolate, from a single Astacus retina, purified rhabdoms almost entirely free from screening pigments. SDS-gelelectrophoretical analysis of the protein pattern of purified photoreceptor membranes yields a rhodopsin portion of 40 to 50% of the total protein. Absorption spectra of the rhodopsin system show that both, the membrane-bound chromoprotein (sonicated rhabdom suspension) and the digitonin-solubilized chromoprotein are thermostable and photoreversible at 0/sup 0/C and pH 7.0. Due to its photoreversibility metarhodopsin can be isomerized to rhodopsin by irradiation at lambda < 630 nm. As the extinction spectra of the two chromoprotein isomers overlap, only partial photochemical isomerization to rhodopsin is possible. The light-induced decrease of the rhodopsin portion in vivo depends on the state of adaptation of the Astacus eyes. The light-induced decrease of the rhodopsin mole fraction in vivo can be restored by a metabolic process of rhodopsin regeneration. The question whether dark regeneration is an enzymatic isomerization of metarhodopsin and/or a biochemical synthesis of rhodopsin cannot yet be answered. The course of the spectra of the digitonin-solubilized chromoprotein is remarkably dependent on the temperature. The kinetic of the thermal denaturation of the metarhodopsin corresponds to a first-order reaction with a half time tau/sub 1/2/ = 34 min at 30/sup 0/C. The process of the denaturation of the digitonin-solubilized chromoprotein at 20/sup 0/C, or 30/sup 0/C, respectively, - accompanied by the separation of retinal - is accelerated by irradiation of the system.

  4. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land.

    Science.gov (United States)

    Emiliani, Giovanni; Fondi, Marco; Fani, Renato; Gribaldo, Simonetta

    2009-02-16

    The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL), which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT) during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments) suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV.

  5. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land

    Directory of Open Access Journals (Sweden)

    Gribaldo Simonetta

    2009-02-01

    Full Text Available Abstract Background The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. Results We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL, which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Conclusion Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV. Reviewers This article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.

  6. The importance of socio-ecological system dynamics in understanding adaptation to global change in the forestry sector.

    Science.gov (United States)

    Blanco, Victor; Brown, Calum; Holzhauer, Sascha; Vulturius, Gregor; Rounsevell, Mark D A

    2017-07-01

    Adaptation is necessary to cope with or take advantage of the effects of climate change on socio-ecological systems. This is especially important in the forestry sector, which is sensitive to the ecological and economic impacts of climate change, and where the adaptive decisions of owners play out over long periods of time. Relatively little is known about how successful these decisions are likely to be in meeting demands for ecosystem services in an uncertain future. We explore adaptation to global change in the forestry sector using CRAFTY-Sweden; an agent-based model that represents large-scale land-use dynamics, based on the demand and supply of ecosystem services. Future impacts and adaptation within the Swedish forestry sector were simulated for scenarios of socio-economic change (Shared Socio-economic Pathways) and climatic change (Representative Concentration Pathways, for three climate models), between 2010 and 2100. Substantial differences were found in the competitiveness and coping ability of land owners implementing different management strategies through time. Generally, multi-objective management was found to provide the best basis for adaptation. Across large regions, however, a combination of management strategies was better at meeting ecosystem service demands. Results also show that adaptive capacity evolves through time in response to external (global) drivers and interactions between individual actors. This suggests that process-based models are more appropriate for the study of autonomous adaptation and future adaptive and coping capacities than models based on indicators, discrete time snapshots or exogenous proxies. Nevertheless, a combination of planned and autonomous adaptation by institutions and forest owners is likely to be more successful than either group acting alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex.

    Science.gov (United States)

    Anjum, Naser A; Ahmad, Iqbal; Rodrigues, Sónia M; Henriques, Bruno; Cruz, Nuno; Coelho, Cláudia; Pacheco, Mário; Duarte, Armando C; Pereira, Eduarda

    2013-01-01

    As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH

  8. Atrial Fibrillation Activates AMP-Dependent Protein Kinase and its Regulation of Cellular Calcium Handling: Potential Role in Metabolic Adaptation and Prevention of Progression.

    Science.gov (United States)

    Harada, Masahide; Tadevosyan, Artavazd; Qi, Xiaoyan; Xiao, Jiening; Liu, Tao; Voigt, Niels; Karck, Matthias; Kamler, Markus; Kodama, Itsuo; Murohara, Toyoaki; Dobrev, Dobromir; Nattel, Stanley

    2015-07-07

    Atrial fibrillation (AF) is associated with metabolic stress, which activates adenosine monophosphate-regulated protein kinase (AMPK). This study sought to examine AMPK response to AF and associated metabolic stress, along with consequences for atrial cardiomyocyte Ca(2+) handling. Calcium ion (Ca(2+)) transients (CaTs) and cell shortening (CS) were measured in dog and human atrial cardiomyocytes. AMPK phosphorylation and AMPK association with Ca(2+)-handling proteins were evaluated by immunoblotting and immunoprecipitation. CaT amplitude and CS decreased at 4-min glycolysis inhibition (GI) but returned to baseline at 8 min, suggesting cellular adaptation to metabolic stress, potentially due to AMPK activation. GI increased AMPK-activating phosphorylation, and an AMPK inhibitor, compound C (CompC), abolished the adaptation of CaT and CS to GI. The AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) increased CaT amplitude and CS, restoring CompC-induced CaT and CS decreases. CompC decreased L-type calcium channel current (ICa,L), along with ICa,L-triggered CaT amplitude and sarcoplasmic reticulum (SR) Ca(2+) content under voltage clamp conditions in dog cells and suppressed CaT and ICa,L in human cardiomyocytes. Small interfering ribonucleic acid-based AMPK knockdown decreased CaT amplitude in neonatal rat cardiomyocytes. L-type Ca(2+) channel α subunits coimmunoprecipitated with AMPKα. Atrial AMPK-activating phosphorylation was enhanced by 1 week of electrically maintained AF in dogs; fractional AMPK phosphorylation was increased in paroxysmal AF and reduced in longstanding persistent AF patients. AMPK is activated by metabolic stress and AF, and helps maintain the intactness of atrial ICa,L, Ca(2+) handling, and cell contractility. AMPK contributes to the atrial compensatory response to AF-related metabolic stress; AF-related metabolic responses may be an interesting new therapeutic target. Copyright © 2015 American College of Cardiology

  9. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress.

    Science.gov (United States)

    Quan, Xiaoyan; Qian, Qiufeng; Ye, Zhilan; Zeng, Jianbin; Han, Zhigang; Zhang, Guoping

    2016-11-01

    Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Dominance as adaptive stressing and ranking of males, serving to allocate reproduction by differential self-suppressed fertility: towards a fully biological understanding of social systems.

    Science.gov (United States)

    Moxon, Steve

    2009-07-01

    Dominance is a biological concept of an asymmetric 'power' relationship between (any pair of) individuals, as a result of previous encounters with others biasing likelihood of contesting. That this requires dedicated neural structure shows that dominance is adaptive; and it is usually thought that fitness is increased through dominance (hierarchy) minimising mutually unproductive contest over resources, and/or determining access to or control over resources. But highly inconsistent data indicates that this operational definition is too wide, and given clear evidence that dominance is invariably same-sex, it would seem instead to function primarily to allocate reproduction. Dominance contest exposes individual differences in metabolic vigor especially, but also in various other, including sophisticated attributes; and by a self-organising process there is ranking of same-sex individuals in a hierarchy. But this achieves nothing in itself without an integral mechanism of corresponding individual variable self-suppression of the physiology re reproduction--and mate choice with rank as the criteria. Reproductive suppression would appear to vary along a continuum, from in some species (most 'cooperative breeders') a 100% reproductive skew with total suppression of all individuals bar the sole breeder to, in most others, a gradient down the length of the dominance hierarchy. The mechanism in most species is directly either hormonal or pheromonal, on top of an indirect consequence of the stress caused by relatively low rank. Dominance would seem to have evolved as a major instrument of the proposed 'genetic filter' function of the male, whereby in effect accumulated deleterious genetic material is 'quarantined' in the male half of the lineage from where it is purged, so as to keep this source of reproductive logjam away from females, thereby to avoid amplifying the problem of the female being necessarily the limiting factor in reproduction. The theory makes predictions

  11. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus).

    Science.gov (United States)

    Coleto, Inmaculada; de la Peña, Marlon; Rodríguez-Escalante, Jon; Bejarano, Iraide; Glauser, Gaëtan; Aparicio-Tejo, Pedro M; González-Moro, M Begoña; Marino, Daniel

    2017-09-20

    The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH 4 + , amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.

  12. Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam.-supplemented diet is related to the modulation of gut microbiota in mice.

    Science.gov (United States)

    Gao, Xiaoyu; Xie, Qiuhong; Liu, Ling; Kong, Ping; Sheng, Jun; Xiang, Hongyu

    2017-06-01

    The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.

  13. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    Science.gov (United States)

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Ole Lamp

    Full Text Available High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS and one pair-fed (PF at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1, cows were challenged for 6 days (P2 by heat stress (temperature humidity index (THI = 76 or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  15. Toward integrating Theory of Mind into adaptive decision-making of social robots to understand human intention

    CSIR Research Space (South Africa)

    Görür, OC

    2017-03-01

    Full Text Available We propose an architecture that integrates Theory of Mind into a robot’s decision-making to infer a human’s intention and adapt to it. The architecture implements humanrobot collaborative decision-making for a robot incorporating human variability...

  16. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  17. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium.

    Science.gov (United States)

    Bove, Claudio Giorgio; De Angelis, Maria; Gatti, Monica; Calasso, Maria; Neviani, Erasmo; Gobbetti, Marco

    2012-11-01

    The aim of this study was to demonstrate the metabolic and proteomic adaptation of Lactobacillus rhamnosus strains, which were isolated at different stages of Parmigiano Reggiano cheese ripening. Compared to de Man, Rogosa, and Sharpe (MRS) broth, cultivation under cheese-like conditions (cheese broth, CB) increased the number of free amino acids used as carbon sources. Compared with growth on MRS or pasteurized and microfiltrated milk, all strains cultivated in CB showed a low synthesis of d,l-lactic acid and elevated levels of acetic acid. The proteomic maps of the five representative strains, showing different metabolic traits, were comparatively determined after growth on MRS and CB media. The amount of intracellular and cell-associated proteins was affected by culture conditions and diversity between strains, depending on their time of isolation. Protein spots showing decreased (62 spots) or increased (59 spot) amounts during growth on CB were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Compared with cultivation on MRS broth, the L. rhamnosus strains cultivated under cheese-like conditions had modified amounts of some proteins responsible for protein biosynthesis, nucleotide, and carbohydrate metabolisms, the glycolysis pathway, proteolytic activity, cell wall, and exopolysaccharide biosynthesis, cell regulation, amino acid, and citrate metabolism, oxidation/reduction processes, and stress responses. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life

    DEFF Research Database (Denmark)

    Husted, Sanne Munch; Nielsen, Mette Benedicte Olaf; Blache, D.

    2008-01-01

    This study investigated whether undernutrition (UN) during late fetal life can programme the subsequent adult life adaptation of glucose homeostasis and metabolism during pregnancy and lactation. Twenty-four primiparous experimental ewes were used. Twelve had been exposed to a prenatal NORM level...... during lactation. There was no effect of prenatal UN on glucose tolerance during G-IGTT, however, during RG-IGTT LOW was more glucose intolerant and apparently more insulin resistant compared to NORM. In conclusion, UN during late fetal life in sheep impairs subsequent pancreatic insulin secretory...

  19. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  20. The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone

    Directory of Open Access Journals (Sweden)

    Lee B Meakin

    2014-10-01

    Full Text Available Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading.Jiri Heřt introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gauges to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced.Experiments combining strain gauge instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats and mice has yielded significant insight into the control of strain-related adaptive (remodeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice which is now the model of choice for many studies. Together such studies have demonstrated that; over the physiological strain range, bone’s mechanically-adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles and that these are most effective when interrupted by short periods of

  1. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone

    Science.gov (United States)

    Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them

  2. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae

    International Nuclear Information System (INIS)

    Chang, Christopher; Alber, David; Graf, Peter; Kim, Kwiseon; Seibert, Michael

    2007-01-01

    The Genomics Revolution has resulted in a massive and growing quantity of whole-genome DNA sequences, which encode the metabolic catalysts necessary for life. However, gene annotations can rarely be complete, and measurement of the kinetic constants associated with the encoded enzymes can not possibly keep pace, necessitating the use of careful modeling to explore plausible network behaviors. Key challenges are (1) quantitatively formulating kinetic laws governing each transformation in a fixed model network; (2) characterizing the stable solution (if any) of the associated ordinary differential equations (ODEs); (3) fitting the latter to metabolomics data as it becomes available; and (4) optimizing a model output against the possible space of kinetic parameters, with respect to properties such as robustness of network response, or maximum consumption/production. This SciDAC-2 project addresses this large-scale uncertainty in the genome-scale metabolic network of the water-splitting, H 2 -producing green alga Chlamydomonas reinhardtii. Each metabolic transformation is formulated as an irreversible steady-state process, such that the vast literature on known enzyme mechanisms may be incorporated directly. To start, glycolysis, the tricarboxylic acid cycle, and basic fermentation pathways have been encoded in Systems Biology Markup Language (SBML) with careful annotation and consistency with the KEGG database, yielding a model with 3 compartments, 95 species, 38 reactions, and 109 kinetic constants. To study and optimize such models with a view toward larger models, we have developed a system which takes as input an SBML model, and automatically produces C code that when compiled and executed optimizes the model's kinetic parameters according to test criteria. We describe the system and present numerical results. Further development, including overlaying of a parallel multistart algorithm, will allow optimization of thousands of parameters on high-performance systems

  3. Multi-omic profiling of EPO producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    Heterologous protein production in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to characterize the physiological impact of erythropoietin production, and discover production bottlenecks, ...

  4. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    2015-01-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied...

  5. Adaptations in the glucose metabolism of procyclic Trypanosoma brucei isolates from Tsetse flies and during differentiation of bloodstream forms.

    NARCIS (Netherlands)

    van Grinsven, K.W.A.; van den Abbeele, J.; van den Bossche, P.; van Hellemond, J.J.; Tielens, A.G.M.

    2009-01-01

    Procyclic forms of Trypanosoma brucei isolated from the midguts of infected tsetse flies, or freshly transformed from a strain that is close to field isolates, do not use a complete Krebs cycle. Furthermore, short stumpy bloodstream forms produce acetate and are apparently metabolically preadapted

  6. Therapeutic targets in cancer cell metabolism and autophagy

    Science.gov (United States)

    Cheong, Heesun; Lu, Chao; Lindsten, Tullia; Thompson, Craig B.

    2013-01-01

    The metabolism of cancer cells is reprogrammed by oncogene signaling and/or mutations in metabolic enzymes. These metabolic alterations support cell proliferation and survival, but leave cancer cells dependent on continuous support of the nutrients that fuel their altered metabolism. Thus, in addition to core oncogenic pathways, many metabolic enzymes have become targets for novel therapies. Two novel processes- isoform-specific expression of metabolic enzymes and autophagy- have recently been shown to play critical roles in the adaptation of tumor cells to changes in nutrient availability and the cell's ability to sense and adapt to depletion of critical nutrients. These findings suggest that a better understanding of the molecular basis of cancer-associated metabolic changes has the potential to provide insights to enhance cancer therapy. PMID:22781696

  7. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men.

    Science.gov (United States)

    Heiskanen, Marja A; Leskinen, Tuija; Heinonen, Ilkka H A; Löyttyniemi, Eliisa; Eskelinen, Jari-Joonas; Virtanen, Kirsi; Hannukainen, Jarna C; Kalliokoski, Kari K

    2016-09-01

    Despite the recent studies on structural and functional adaptations of the right ventricle (RV) to exercise training, adaptations of its metabolism remain unknown. We investigated the effects of short-term, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on RV glucose and fat metabolism. Twenty-eight untrained, healthy 40-55 yr-old-men were randomized into HIIT (n = 14) and MICT (n = 14) groups. Subjects performed six supervised cycle ergometer training sessions within 2 wk (HIIT session: 4-6 × 30 s all-out cycling/4-min recovery; MICT session: 40-60 min at 60% peak O2 uptake). Primary outcomes were insulin-stimulated RV glucose uptake (RVGU) and fasted state RV free fatty acid uptake (RVFFAU) measured by positron emission tomography. Secondary outcomes were changes in RV structure and function, determined by cardiac magnetic resonance. RVGU decreased after training (-22% HIIT, -12% MICT, P = 0.002 for training effect), but RVFFAU was not affected by the training (P = 0.74). RV end-diastolic and end-systolic volumes, respectively, increased +5 and +7% for HIIT and +4 and +8% for MICT (P = 0.002 and 0.005 for training effects, respectively), but ejection fraction mildly decreased (-2% HIIT, -4% MICT, P = 0.034 for training effect). RV mass and stroke volume remained unaltered. None of the observed changes differed between the training groups (P > 0.12 for group × training interaction). Only 2 wk of physical training in previously sedentary subjects induce changes in RV glucose metabolism, volumes, and ejection fraction, which precede exercise-induced hypertrophy of RV. Copyright © 2016 the American Physiological Society.

  8. Adaptive Activation of a Stress Response Pathway Improves Learning and Memory Through Gs and β-Arrestin-1-Regulated Lactate Metabolism.

    Science.gov (United States)

    Dong, Jun-Hong; Wang, Yi-Jing; Cui, Min; Wang, Xiao-Jing; Zheng, Wen-Shuai; Ma, Ming-Liang; Yang, Fan; He, Dong-Fang; Hu, Qiao-Xia; Zhang, Dao-Lai; Ning, Shang-Lei; Liu, Chun-Hua; Wang, Chuan; Wang, Yue; Li, Xiang-Yao; Yi, Fan; Lin, Amy; Kahsai, Alem W; Cahill, Thomas Joseph; Chen, Zhe-Yu; Yu, Xiao; Sun, Jin-Peng

    2017-04-15

    Stress is a conserved physiological response in mammals. Whereas moderate stress strengthens memory to improve reactions to previously experienced difficult situations, too much stress is harmful. We used specific β-adrenergic agonists, as well as β 2 -adrenergic receptor (β2AR) and arrestin knockout models, to study the effects of adaptive β2AR activation on cognitive function using Morris water maze and object recognition experiments. We used molecular and cell biological approaches to elucidate the signaling subnetworks. We observed that the duration of the adaptive β2AR activation determines its consequences on learning and memory. Short-term formoterol treatment, for 3 to 5 days, improved cognitive function; however, prolonged β2AR activation, for more than 6 days, produced harmful effects. We identified the activation of several signaling networks downstream of β2AR, as well as an essential role for arrestin and lactate metabolism in promoting cognitive ability. Whereas Gs-protein kinase A-cyclic adenosine monophosphate response element binding protein signaling modulated monocarboxylate transporter 1 expression, β-arrestin-1 controlled expression levels of monocarboxylate transporter 4 and lactate dehydrogenase A through the formation of a β-arrestin-1/phospho-mitogen-activated protein kinase/hypoxia-inducible factor-1α ternary complex to upregulate lactate metabolism in astrocyte-derived U251 cells. Conversely, long-term treatment with formoterol led to the desensitization of β2ARs, which was responsible for its decreased beneficial effects. Our results not only revealed that β-arrestin-1 regulated lactate metabolism to contribute to β2AR functions in improved memory formation, but also indicated that the appropriate management of one specific stress pathway, such as through the clinical drug formoterol, may exert beneficial effects on cognitive abilities. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  9. 2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage.

    Science.gov (United States)

    Simova-Stoilova, Lyudmila P; Romero-Rodríguez, Maria C; Sánchez-Lucas, Rosa; Navarro-Cerrillo, Rafael M; Medina-Aunon, J Alberto; Jorrín-Novo, Jesús V

    2015-01-01

    Holm oak is a dominant tree in the western Mediterranean region. Despite being well adapted to dry hot climate, drought is the main cause of mortality post-transplanting in reforestation programs. An active response to drought is critical for tree establishment and survival. Applying a gel-based proteomic approach, dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Stress was monitored by changes in water status, plant growth, and electrolyte leakage. Contrary to leaves, holm oak roots responded readily to water shortage at physiological level by growth inhibition, changes in water status and membrane stability. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and separated by two-dimensional electrophoresis. Coomassie colloidal stained gel images were analyzed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS). For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Data are available via ProteomeXchange with identifier PXD002484. Identified proteins were classified into functional groups: metabolism, protein biosynthesis and proteolysis, defense against biotic stress, cellular protection against abiotic stress, intracellular transport. Several enzymes of the carbohydrate metabolism decreased in abundance in roots under drought stress while some related to ATP synthesis and secondary metabolism increased. Results point at active metabolic adjustment and mobilization of the defense system in roots to actively counteract drought stress.

  10. Bone marrow transplantation as an established approach for understanding the role of macrophages in atherosclerosis and the metabolic syndrome

    NARCIS (Netherlands)

    Aparicio-Vergara, Marcela; Shiri-Sverdlov, Ronit; Koonen, Debby P. Y.; Hofker, Marten H.

    Purpose of review Bone marrow transplantation (BMT) technology is a firmly established tool for studying atherosclerosis. Only recently it is helping us to understand the inflammatory mechanisms leading to the development of obesity, insulin resistance and type 2 diabetes. Here we review the use of

  11. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  12. Radiohistochemical investigations into the central nervous sialoglycoconjugate metabolism of dormice (Glis glis) in different stages of adaptation

    International Nuclear Information System (INIS)

    Mehlfeld, R.

    1988-01-01

    Twenty adult dormice (Glis glis, Gliridae) were used to measure seasonal and temperature-related variations of sialoglycoconjugates in the central nervous system. The study had two different aims: On the one hand, biochemical and radiochemical methods of separation were used to investigate 10 cerebral regions for any changes in their individual contents of proteins and protein-bound sialic acids and for alterations in the ganglioside pattern of neurons as well as the time curves plotted for the uptake of a specific ganglioside tracer, 14C-N-Ac-mannosamine, that may possibly arise in response to seasonal and temperature-dependent adaptations. In addition, 32 central cerebral regions were examined for dormice showing different stages of adaptation (winter versus summer) to determine in autoradiograms that percentage share of integrated optical density (IOD), which accounts for the radioactively labelled proportions of TCA/PTA-soluble compounds, sialoglycolipids and sialoglycoproteins plus asialocompounds in the total radioactivity. (orig./ECB) [de

  13. Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids.

    Science.gov (United States)

    Rosenfeld, Jordan; Van Leeuwen, Travis; Richards, Jeffrey; Allen, David

    2015-01-01

    Mass-specific standard metabolic rate (SMR, or maintenance metabolism) varies greatly among individuals. Metabolism is particularly sensitive to variation in food consumption and growth creating the potential for significant bias in measured SMR for animals that are growing (e.g. juveniles) or of uncertain nutritional status. Consequently, interpreting individual variation in metabolism requires a sound understanding of the potentially confounding role of growth and the relative importance of fixed (genetic) vs. environmental drivers of SMR variation. We review the role of growth in measured SMR variation in juvenile salmonids, with the goals of (i) understanding the contribution of growth (and food consumption) to SMR variation through ontogeny, (ii) understanding the relative contributions of tissue maintenance and biosynthesis (overhead costs of growth) to apparent SMR variation, and (iii) using intrinsic growth effects on SMR to model how alternate life-history strategies may influence growth and measured SMR in juvenile salmonids. SMR measures on juveniles, even when post-absorptive, may be inflated by delayed growth-associated overhead costs, unless juveniles are on a maintenance ration (i.e. not growing). Empirical measurements of apparent SMR in food restricted vs. satiated 2-5 g juvenile salmon demonstrate that estimates may be inflated by as much as 67% due to delayed overhead costs of growth, even when SMR measurements are taken 35 h post-feeding. These results indicate that a substantial component of variation in apparent SMR among juvenile salmonids may be associated with (i) environmentally driven variation in ration (where elevated SMR measurements are an artefact of delayed growth overhead costs), (ii) intrinsic (genetic) or plastic organ-system trade-offs related to increasing investment in metabolically expensive digestive tissue responsible for processing food and (iii) intrinsic (genetic) variation in maximum body size and growth among

  14. A 7-day high protein hypocaloric diet promotes cellular metabolic adaptations and attenuates lean mass loss in healthy males

    Directory of Open Access Journals (Sweden)

    Matthew Furber

    2017-08-01

    Full Text Available Mitochondrial quantity and density are associated with increased oxidative metabolism. It has been demonstrated that a hypocaloric high fat/low carbohydrate (HF/LC diet can up-regulate transcriptional markers of mitochondrial biogenesis; this was yet to be explored in vivo subsequent to a high protein/low carbohydrate (HP/LC diet. Thus the aims of the study were to explore such diets on transcriptional markers or mitochondrial biogenesis, body composition and resting metabolic rate (RMR. Forty-five healthy male participants were randomly assigned one of four intervention diets: eucaloric high protein low carbohydrate (PRO-EM, hypocaloric high protein low carbohydrate (PRO-ER, eucaloric high carbohydrate (CHO-EM or hypocaloric high carbohydrate (CHO-ER. The macronutrient ratio of the high protein diet and high carbohydrate diets was 40:30:30% and 10:60:30% (PRO:CHO:FAT respectively. Energy intake for the hypocaloric diets were calculated to match resting metabolic rate. Participants visited the laboratory on 3 occasions each separated by 7 days. On each visit body composition, resting metabolic rate and a muscle biopsy from the vastus lateralis was collected. Prior to visit 1 and 2 habitual diet was consumed which was used as a control, between visit 2 and 3 the intervention diet was consumed continuously for 7-days. No group × time effect was observed, however in the PRO-ER group a significant increase in AMPK, PGC-1α, SIRT1 and SIRT3 mRNA expression was observed post diet intervention groups (p < 0.05. No change was observed in any of the transcriptional markers in the other 3 groups. Despite ∼30% reduction in calorie intake no difference in lean mass (LM loss was observed between the PRO-ER and CHO-EM groups. The results from this study suggest that a 7-day a high protein low carbohydrate hypocaloric diet increased AMPK, SIRT1 and PGC-1 α mRNA expression at rest, and also suggest that increased dietary protein may attenuate LM mass

  15. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    Science.gov (United States)

    McGill, Anne-Thea

    2014-01-01

    Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts

  16. Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: Implications for understanding neglect.

    Science.gov (United States)

    Umarova, Roza M

    2017-12-01

    Advanced lesion mapping and connectivity analyses are currently the main tools used to understand the mechanisms underlying post-stroke cognitive deficits. However, the factors contributing to pre-stroke architecture of cognitive networks are often ignored, even though they reportedly play a decisive role in the manifestation of cognitive impairment in neurodegeneration. The present review on post-stroke cognitive deficits therefore adopts the concept of brain and cognitive reserve, which was originally developed to account for the individual differences in the course of aging and neurodegenerative diseases. By focusing on spatial neglect, a typical network disorder, it is discussed how individual susceptibility to stroke lesion might explain the reported discrepancies in lesion anatomy, non-spatial deficits and recovery courses. A detailed analysis of the literature reveals that premorbid brain (age, brain atrophy, previous strokes, leukoaraiosis, genetic factors, etc.) and cognitive reserve (IQ, life experience, education, occupation, premorbid cognitive impairment, etc.) greatly impact the brain's capacity for compensation. Furthermore, the interaction between pre-stroke brain/cognitive reserve and the degree of stroke-induced system impairment (e.g., hypoperfusion, lesion load) determines both the extent of neglect symptoms variability and the course of recovery. Premorbid brain/cognitive reserves should thus be considered to: (i) understand the mechanisms of post-stroke cognitive disorders and sufficiently explain their inter-individual variability; (ii) provide a prognosis for cognitive recovery and hence post-stroke dependency; (iii) identify individual targets for cognitive rehabilitation: in the case of reduced brain/cognitive reserve, neglect might occur even with a confined lesion, and non-spatial training of general attentional capacity should represent the main therapeutic target also for treatment of neglect; this might be true also for non

  17. Renal adaptation during hibernation.

    Science.gov (United States)

    Jani, Alkesh; Martin, Sandra L; Jain, Swati; Keys, Daniel; Edelstein, Charles L

    2013-12-01

    Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.

  18. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    Science.gov (United States)

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  19. Computational design of a pH stable enzyme: understanding molecular mechanism of penicillin acylase's adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Dmitry Suplatov

    Full Text Available Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.

  20. An integrated RNAseq-1H NMR metabolomics approach to understand soybean primary metabolism regulation in response to Rhizoctonia foliar blight disease.

    Science.gov (United States)

    Copley, Tanya R; Aliferis, Konstantinos A; Kliebenstein, Daniel J; Jabaji, Suha H

    2017-04-27

    Rhizoctonia solani AG1-IA is a devastating phytopathogen causing Rhizoctonia foliar blight (RFB) of soybean worldwide with yield losses reaching 60%. Plant defense mechanisms are complex and information from different metabolic pathways is required to thoroughly understand plant defense regulation and function. Combining information from different "omics" levels such as transcriptomics, metabolomics, and proteomics is required to gain insights into plant metabolism and its regulation. As such, we studied fluctuations in soybean metabolism in response to R. solani infection at early and late disease stages using an integrated transcriptomics-metabolomics approach, focusing on the regulation of soybean primary metabolism and oxidative stress tolerance. Transcriptomics (RNAseq) and metabolomics ( 1 H NMR) data were analyzed individually and by integration using bidirectional orthogonal projections to latent structures (O2PLS) to reveal possible links between the metabolome and transcriptome during early and late infection stages. O2PLS analysis detected 516 significant transcripts, double that reported in the univariate analysis, and more significant metabolites than detected in partial least squares discriminant analysis. Strong separation of treatments based on integration of the metabolomes and transcriptomes of the analyzed soybean leaves was revealed, similar trends as those seen in analyses done on individual datasets, validating the integration method being applied. Strong fluctuations of soybean primary metabolism occurred in glycolysis, the TCA cycle, photosynthesis and photosynthates in response to R. solani infection. Data were validated using quantitative real-time PCR on a set of specific markers as well as randomly selected genes. Significant increases in transcript and metabolite levels involved in redox reactions and ROS signaling, such as peroxidases, thiamine, tocopherol, proline, L-alanine and GABA were also recorded. Levels of ethanol increased 24

  1. Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells

    Directory of Open Access Journals (Sweden)

    Zinkl Daniela

    2008-10-01

    Full Text Available Abstract Background The luxS/AI-2 signaling pathway has been reported to interfere with important physiological and pathogenic functions in a variety of bacteria. In the present study, we investigated the functional role of the streptococcal luxS/AI-2 system in metabolism and diverse aspects of pathogenicity including the adaptation of the organism to stress conditions using two serotypes of Streptococcus pyogenes, M1 and M19. Results Exposing wild-type and isogenic luxS-deficient strains to sulfur-limited media suggested a limited role for luxS in streptococcal activated methyl cycle metabolism. Interestingly, loss of luxS led to an increased acid tolerance in both serotypes. Accordingly, luxS expression and AI-2 production were reduced at lower pH, thus linking the luxS/AI-2 system to stress adaptation in S. pyogenes. luxS expression and AI-2 production also decreased when cells were grown in RPMI medium supplemented with 10% serum, considered to be a host environment-mimicking medium. Furthermore, interaction analysis with epithelial cells and macrophages showed a clear advantage of the luxS-deficient mutants to be internalized and survive intracellularly in the host cells compared to the wild-type parents. In addition, our data revealed that luxS influences the expression of two virulence-associated factors, the fasX regulatory RNA and the virulence gene sibA (psp. Conclusion Here, we suggest that the group A streptococcal luxS/AI-2 system is not only involved in the regulation of virulence factor expression but in addition low level of luxS expression seems to provide an advantage for bacterial survival in conditions that can be encountered during infections.

  2. Filling Knowledge Gaps in Biological Networks: integrating global approaches to understand H2 metabolism in Chlamydomonas reinhardtii - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Posewitz, Matthew C

    2011-06-30

    The green alga Chlamydomonas reinhardtii (Chlamydomonas) has numerous genes encoding enzymes that function in fermentative pathways. Among these genes, are the [FeFe]-hydrogenases, pyruvate formate lyase, pyruvate ferredoxin oxidoreductase, acetate kinase, and phosphotransacetylase. We have systematically undertaken a series of targeted mutagenesis approaches to disrupt each of these key genes and omics techniques to characterize alterations in metabolic flux. Funds from DE-FG02-07ER64423 were specifically leveraged to generate mutants with disruptions in the genes encoding the [FeFe]-hydrogenases HYDA1 and HYDA2, pyruvate formate lyase (PFL1), and in bifunctional alcohol/aldehyde alcohol dehydrogenase (ADH1). Additionally funds were used to conduct global transcript profiling experiments of wildtype Chlamydomonas cells, as well as of the hydEF-1 mutant, which is unable to make H2 due to a lesion in the [FeFe]-hydrogenase biosynthetic pathway. In the wildtype cells, formate, acetate and ethanol are the dominant fermentation products with traces of CO2 and H2 also being produced. In the hydEF-1 mutant, succinate production is increased to offset the loss of protons as a terminal electron acceptor. In the pfl-1 mutant, lactate offsets the loss of formate production, and in the adh1-1 mutant glycerol is made instead of ethanol. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars, and a decline in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant performs a complete rerouting of the glycolytic carbon to lactate and glycerol. Lastly, transcriptome data have been analysed for both the wildtype and hydEF-1, that correlate with our

  3. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    Directory of Open Access Journals (Sweden)

    Supriya V Bhat

    Full Text Available There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D, as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  4. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with “Auxin-Like” Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways

    Science.gov (United States)

    Bhat, Supriya V.; Booth, Sean C.; McGrath, Seamus G. K.; Dahms, Tanya E. S.

    2015-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria. PMID:25919284

  5. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    Science.gov (United States)

    Bhat, Supriya V; Booth, Sean C; McGrath, Seamus G K; Dahms, Tanya E S

    2014-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  6. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism.

    Directory of Open Access Journals (Sweden)

    Renukaradhya K Math

    Full Text Available Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT. Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat.

  7. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Acrolein-stressed threshold adaptation alters the molecular and metabolic bases of an engineered Saccharomyces cerevisiae to improve glutathione production.

    Science.gov (United States)

    Zhou, Wenlong; Yang, Yan; Tang, Liang; Cheng, Kai; Li, Changkun; Wang, Huimin; Liu, Minzhi; Wang, Wei

    2018-03-14

    Acrolein (Acr) was used as a selection agent to improve the glutathione (GSH) overproduction of the prototrophic strain W303-1b/FGP PT . After two rounds of adaptive laboratory evolution (ALE), an unexpected result was obtained wherein identical GSH production was observed in the selected isolates. Then, a threshold selection mechanism of Acr-stressed adaption was clarified based on the formation of an Acr-GSH adduct, and a diffusion coefficient (0.36 ± 0.02 μmol·min -1 ·OD 600 -1 ) was calculated. Metabolomic analysis was carried out to reveal the molecular bases that triggered GSH overproduction. The results indicated that all three precursors (glutamic acid (Glu), glycine (Gly) and cysteine (Cys)) needed for GSH synthesis were at a relativity higher concentration in the evolved strain and that the accumulation of homocysteine (Hcy) and cystathionine might promote Cys synthesis and then improve GSH production. In addition to GSH and Cys, it was observed that other non-protein thiols and molecules related to ATP generation were at obviously different levels. To divert the accumulated thiols to GSH biosynthesis, combinatorial strategies, including deletion of cystathionine β-lyase (STR3), overexpression of cystathionine γ-lyase (CYS3) and cystathionine β-synthase (CYS4), and reduction of the unfolded protein response (UPR) through up-regulation of protein disulphide isomerase (PDI), were also investigated.

  9. Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View

    Science.gov (United States)

    Koehorst, Jasper J.; Martins dos Santos, Vitor A. P.; Schaap, Peter J.

    2015-01-01

    Understanding the diversity and robustness of the metabolism of bacteria is fundamental for understanding how bacteria evolve and adapt to different environments. In this study, we characterised 121 Streptococcus strains and studied metabolic diversity from a protein domain perspective. Metabolic pathways were described in terms of the promiscuity of domains participating in metabolic pathways that were inferred to be functional. Promiscuity was defined by adapting existing measures based on domain abundance and versatility. The approach proved to be successful in capturing bacterial metabolic flexibility and species diversity, indicating that it can be described in terms of reuse and sharing functional domains in different proteins involved in metabolic activity. Additionally, we showed striking differences among metabolic organisation of the pathogenic serotype 2 Streptococcus suis and other strains. PMID:26366735

  10. Blood serum retinol levels in Asinara white donkeys reflect albinism-induced metabolic adaptation to photoperiod at Mediterranean latitudes.

    Science.gov (United States)

    Cappai, Maria Grazia; Lunesu, Maria Grazia Antonietta; Accioni, Francesca; Liscia, Massimo; Pusceddu, Mauro; Burrai, Lucia; Nieddu, Maria; Dimauro, Corrado; Boatto, Gianpiero; Pinna, Walter

    2017-01-01

    Previous works on albinism form of Asinara white donkeys ( Equus asinus ) identified the mutation leading to the peculiar phenotype spread to all specimens of the breed. Inbreeding naturally occurred under geographic isolation, on Asinara Island, in the Mediterranean Sea. Albino individuals can be more susceptible to develop health problems when exposed to natural sun radiation. Alternative metabolic pathways involved in photoprotection were explored in this trial. Nutrition-related metabolites are believed to contribute to the conservation of Asinara donkeys, in which melanin, guaranteeing photoprotection, is lacking. Biochemical profiles with particular focus on blood serum β-carotene and retinol levels were monitored. Identical natural grazing conditions for both Asinara (albino) and Sardo (pigmented) donkey breeds were assured on same natural pastures throughout the experimental period. A comparative metabolic screening, with emphasis on circulating retinol and nutrient-related metabolites between the two breeds, was carried out over one year. Potential intra- and interspecimen fluctuations of metabolites involved in photoprotection were monitored, both during negative and positive photoperiods. Differences ( p  =   .064) between blood serum concentrations of retinol from Asinara versus Sardo breed donkeys (0.630 vs . 0.490 μg/ml, respectively) were found. Retinol levels of blood serum turned out to be similar in the two groups (0.523 vs . 0.493 μg/ml, respectively, p  =   .051) during the negative photoperiod, but markedly differed during the positive one (0.738 vs. 0.486, respectively, p  =   .016). Blood serum β-carotene levels displayed to be constantly around the limit of sensitivity in all animals of both breeds. Variations in blood serum concentrations of retinol in Asinara white donkeys can reflect the need to cope with seasonal exposure to daylight at Mediterranean latitudes, as an alternative to the lack of melanin. These results may

  11. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training.

    Science.gov (United States)

    Bayati, Mahdi; Farzad, Babak; Gharakhanlou, Reza; Agha-Alinejad, Hamid

    2011-01-01

    Recently, a novel type of high-intensity interval training known as sprint interval training has demonstrated increases in aerobic and anaerobic performance with very low time commitment. However, this type of training program is unpractical for general populations. The present study compared the impact of a low-volume high-intensity interval training to a "all-out" sprint interval training. Twenty-four active young males were recruited and randomized into three groups: (G1: 3-5 cycling bouts ˟ 30-s all-out with 4 min recovery; G2: 6- 10 cycling bouts ˟ 125% Pmax with 2 min recovery) and a non-trained control group. They all performed a VO2max test, a time to exhaustion at Pmax (Tmax) and a Wingate test before and after the intervention. Capillary blood lactate was taken at rest, 3, and 20 min after the Wingate trial. Training was performed 3 sessions per week for 4 weeks. In G1, significant improvements (p training were found in VO2max (9.6%), power at VO2max (12.8%), Tmax (48.4%), peak power output (10.3%) and mean power output (17.1%). In G2, significant improvements following training were found in VO2max (9.7%), power at VO2max (16.1%), Tmax (54.2%), peak power output (7.4%; p training program to aerobic and anaerobic adaptations. Of substantial interest is that the low volume high intensity training provides similar results but involves only half the intensity with double the repetitions. Key pointsGiven the markedly lower training volume in the training groups, our results suggest that intense interval training is indeed a time-efficient strategy to induce rapid metabolic and performance adaptations.The results demonstrate that a practical low-volume HIT program is effective for improving metabolic and performance adaptations that resemble many of the same performance gains occurred in all-out SIT protocol.

  12. Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae

    Directory of Open Access Journals (Sweden)

    Christina Nagler

    2016-07-01

    Full Text Available Parasites significantly influence food webs and ecosystems and occur all over the world in almost every animal group. Within crustaceans there are numerous examples of ectoparasites; for example, representatives of the isopod group Cymothoidae. These obligatory parasitic isopods are relatively poorly studied regarding their functional morphology. Here we present new details of the morphological adaptations to parasitism of the cymothoiid ingroup Nerocila with up-to-date imaging methods (macro photography, stereo imaging, fluorescence photography, micro CT, and histology. Central aspects of the study were (1 the morphology of the mouthparts and (2 the attachment on the host, hence the morphology of the thoracopods. The mouthparts (labrum, mandibles, paragnaths, maxillulae, maxillae, maxillipeds form a distinct mouth cone and are most likely used for true sucking. The mouthparts are tightly “folded” around each other and provide functional rails for the only two moving mouthparts, mandible and maxillula. Both are not moving in an ancestral-type median-lateral movement, but are strongly tilted to move more in a proximal-distal axis. New details concerning the attachment demonstrate that the angular arrangement of the thoracopods is differentiated to impede removal by the host. The increased understanding of morphological adaptation to parasitism of modern forms will be useful in identifying disarticulated (not attached to the host fossil parasites.

  13. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge.

    Science.gov (United States)

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-06-17

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40-55) to 21.3 ± 1.5% in the last period (day 71-110) when ammonium concentration was elevated to be within 5,000-6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial 'ammonium inhibition'.

  14. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.

    Science.gov (United States)

    Koza, Anna; Kusmierska, Anna; McLaughlin, Kimberley; Moshynets, Olena; Spiers, Andrew J

    2017-07-03

    Combined experimental evolutionary and molecular biology approaches have been used to investigate the adaptive radiation of Pseudomonas fluorescens SBW25 in static microcosms leading to the colonisation of the air-liquid interface by biofilm-forming mutants such as the Wrinkly Spreader (WS). In these microcosms, the ecosystem engineering of the early wild-type colonists establishes the niche space for subsequent WS evolution and colonisation. Random WS mutations occurring in the developing population that deregulate diguanylate cyclases and c-di-GMP homeostasis result in cellulose-based biofilms at the air-liquid interface. These structures allow Wrinkly Spreaders to intercept O2 diffusing into the liquid column and limit the growth of competitors lower down. As the biofilm matures, competition increasingly occurs between WS lineages, and niche divergence within the biofilm may support further diversification before system failure when the structure finally sinks. A combination of pleiotropic and epistasis effects, as well as secondary mutations, may explain variations in WS phenotype and fitness. Understanding how mutations subvert regulatory networks to express intrinsic genome potential and key innovations providing a selective advantage in novel environments is key to understanding the versatility of bacteria, and how selection and ecological opportunity can rapidly lead to substantive changes in phenotype and in community structure and function. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The Effects of Sprint Interval vs. Continuous Endurance Training on Physiological and Metabolic Adaptations in Young Healthy Adults

    Directory of Open Access Journals (Sweden)

    Nalcakan Gulbin Rudarli

    2014-12-01

    Full Text Available The purpose of this study was to compare the effects of sprint interval training (SIT and continuous endurance training (CET on selected anthropometric, aerobic, and anaerobic performance indices as well as the blood lipid profile, inflammatory and muscle damage markers in healthy young males. Fifteen recreationally active male volunteers (age: 21.7 ±2.2 years, body mass: 83.0 ±8.0 kg, body height: 1.82 ±0.05 m were divided into two groups according to their initial VO2max levels. Training programs were conducted 3 times per week for 7 weeks. The SIT program consisted of 4-6 Wingate anaerobic sprints with a 4.5 min recovery, while CET consisted of 30-50 min cycling at 60% VO2max. Biochemical, anthropometric and fitness assessments were performed both pre and post-intervention. Significant improvements in VO2max, anaerobic power and capacity, and VO2 utilization during the submaximal workout and significant decreases in body fat and in waist circumference after the intervention occurred in both SIT and CET groups. Significantly greater gross efficiency was measured in the CET group. No differences in the lipid profile or serum levels of inflammatory, myocardial and skeletal muscle damage markers were observed after the training period. The study results agree with the effectiveness of a 30 s all-out training program with a reduced time commitment for anthropometric, aerobic and anaerobic adaptation and eliminate doubts about its safety as a model.

  16. Applied evolutionary theories for engineering of secondary metabolic pathways.

    Science.gov (United States)

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM).

    Science.gov (United States)

    Bruntz, Ronald C; Lane, Andrew N; Higashi, Richard M; Fan, Teresa W-M

    2017-07-14

    Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...

  19. Respiratory muscle hemodynamic and metabolic adaptations to 16 weeks of training in varsity soccer players: near-infrared spectroscopy measurements during lung function tests (Conference Presentation)

    Science.gov (United States)

    Harris, R. Luke; Grob, Tanya; Sandhu, Komal; Schwab, Timothy

    2017-02-01

    The purpose of this study was to test the hypothesis that mobile, wireless near-infrared spectroscopy (NIRS) instruments can be used during standard lung function tests to measure adaptations in respiratory muscle metabolism over weeks to months. In eight varsity soccer players at 0 weeks and after 16 weeks of routine training, commercially available mobile, wireless NIRS instruments were used to measure oxygenation and hemodynamics in the sternocleidomastoid (SCM, accessory inspiration muscle). During maximal expiratory pressure (MEP) and forced vital capacity (FVC) maneuvers we determined peak or antipeak changes relative to baseline in oxygenation and hemodynamics: Δ%Sat (muscle oxygen saturation), ΔtHb (total hemoglobin), ΔO2Hb (oxygenated hemoglobin), and ΔHHb (deoxygenated hemoglobin). Subjects reported that the average training load was 13.3 h/week during the 16 study weeks, compared to 10.4 h/week during 12 prior weeks. After 16 weeks of training compared to 0 weeks we found statistically significant increases in SCM Δ%Sat (57.7%), ΔtHb (55.3%), and ΔO2Hb (56.7%) during MEP maneuvers, and in SCM Δ%Sat (64.8%), ΔtHb (29.4%), and ΔO2Hb (51.6%) during FVC maneuvers. Our data provide preliminary evidence that NIRS measurements during standard lung function tests are sufficiently sensitive to detect improvements or declines in respiratory muscle metabolism over periods of weeks to months due to training, disease, and rehabilitation exercise.

  20. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep

    Science.gov (United States)

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until 6 months of age, and a moderate (obesity correcting) diet thereafter. At 2½ years of age (adulthood), plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states) tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights. PMID:27257993

  1. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Harris, Marie A; Delisser, Peter J; Lanyon, Lance E; Harris, Stephen E; Price, Joanna S

    2017-01-30

    In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice31P-MR spectroscopic sequence.

    Science.gov (United States)

    Moll, Kevin; Gussew, Alexander; Nisser, Maria; Derlien, Steffen; Krämer, Martin; Reichenbach, Jürgen R

    2018-04-01

    Measurements of exercise-induced metabolic changes, such as oxygen consumption, carbon dioxide exhalation or lactate concentration, are important indicators for assessing the current performance level of athletes in training science. With exercise-limiting metabolic processes occurring in loaded muscles, 31 P-MRS represents a particularly powerful modality to identify and analyze corresponding training-induced alterations. Against this background, the current study aimed to analyze metabolic adaptations after an exhaustive exercise in two calf muscles (m. soleus - SOL - and m. gastrocnemius medialis - GM) of sprinters and endurance athletes by using localized dynamic 31 P-MRS. In addition, the respiratory parameters VO 2 and VCO 2 , as well as blood lactate concentrations, were monitored simultaneously to assess the effects of local metabolic adjustments in the loaded muscles on global physiological parameters. Besides noting obvious differences between the SOL and the GM muscles, we were also able to identify distinct physiological strategies in dealing with the exhaustive exercise by recruiting two athlete groups with opposing metabolic profiles. Endurance athletes tended to use the aerobic pathway in the metabolism of glucose, whereas sprinters produced a significantly higher peak concentration of lactate. These global findings go along with locally measured differences, especially in the main performer GM, with sprinters revealing a higher degree of acidification at the end of exercise (pH 6.29 ± 0.20 vs. 6.57 ± 0.21). Endurance athletes were able to partially recover their PCr stores during the exhaustive exercise and seemed to distribute their metabolic activity more consistently over both investigated muscles. In contrast, sprinters mainly stressed Type II muscle fibers, which corresponds more to their training orientation preferring the glycolytic energy supply pathway. In conclusion, we were able to analyze the relation between specific local metabolic

  3. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations

    Science.gov (United States)

    Hammond, Timothy G.; Allen, Patricia L.; Gunter, Margaret A.; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Birdsall, Holly H.

    2017-12-01

    Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or `giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

  4. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    Science.gov (United States)

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  5. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea

    Directory of Open Access Journals (Sweden)

    Yoshinori Fujimura

    2017-09-01

    Full Text Available Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.

  6. Understanding the Genomic Basis of Adaptive Response to Variable Osmotic Niches in Freshwater Prawns: A Comparative Intraspecific RNA-Seq Analysis of Macrobrachium australiense.

    Science.gov (United States)

    Moshtaghi, Azam; Rahi, Md Lifat; Mather, Peter B; Hurwood, David A

    2017-07-01

    Understanding the molecular basis of adaptive response to variable environmental conditions is a central goal of evolutionary biology. Here, we sought to identify potential outlier single nucleotide polymorphisms (SNPs) in 3 wild populations of a freshwater prawn (Macrobrachium australiense) that are exposed to differing osmotic niches by using a comparative transcriptomics approach. De novo assembly of approximately 542 million (75 nt) pair end reads collected from 10 individuals revealed 123396 longer contigs/transcripts of variable length, that showed 97.38% transcriptome assembly completeness. Differential gene expression analysis of major osmoregulatory genes revealed that calreticulin, Na+/H+ exchanger, and V-type (H+) ATPase showed the highest expression levels in the Blunder Creek (low ionic) population, while Crustacean cardiovascular peptide (CCP), Na+/K+-ATPase, Na+/K+/2Cl- co-transporter (NKCC) and Na+/HCO3- exchanger showed the highest expression levels in the Bulimba Creek (higher ionic) population. In total, 16 gene ontology term categories were functionally enriched among the 3 studied populations. We identified 4144 raw and 835 high quality filtered SNPs in the 3 M. australiense populations, of which 84 SNPs were identified as outliers. Outliers were detected in 4 important osmoregulatory genes that include: calreticulin, Na+/H+ exchanger, Na+/K+-ATPase, and V-type-(H+)-ATPase. All outliers in the osmoregulatory genes were located in noncoding regulatory regions (untranslated regions) of the gene. We hypothesize that the outlier SNPs identified here in M. australiense populations exposed naturally to different osmotic conditions influence specific gene expression patterns that allow individuals to respond to local environmental conditions. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet

    International Nuclear Information System (INIS)

    Machado, C.R.; Garofalo, M.A.; Roselino, J.E.; Kettelhut, I.C.; Migliorini, R.H.

    1988-01-01

    The effects of starvation and of a short period of refeeding on energy-linked metabolic processes, as well as the effects of insulin administration, were investigated in an omnivorous fish (catfish, Rhamdia hilarii) previously adapted to a carbohydrate-rich diet. Following food deprivation blood sugar levels declined progressively to about 50% of fed values after 30 days. During the same period plasma free fatty acid (FFA) concentration increased twofold. Starvation resulted in reduced concentrations of lipid and glycogen in the liver and of glycogen, lipid, and protein in white muscle. However, taking into account the initial and final concentrations of tissue constituents, the liver weight, and the large fractions of body weight represented by muscle, it could be estimated that most of the energy utilized during starvation derived from the catabolism of muscle lipid and protein. Refeeding starved fishes for 48 hr induced several-fold increases in the rates of in vivo and in vitro incorporation of [14C]glucose into liver and muscle lipid and of [14C]glycine into liver and muscle protein. Incorporation of [14C]glucose into liver glycogen was also increased. However; refeeding did not affect the incorporation of labeled glucose into muscle glycogen, neither in vivo nor in vitro. Administration of pharmacological doses of insulin to normally fed catfishes resulted in marked increases in the in vivo incorporation of 14C from glucose into lipid and protein in both liver and muscle. In contrast, labeled glucose incorporation into muscle glycogen was not affected by insulin and label incorporation into liver glycogen was actually lower than that in noninjected controls

  8. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis.

    Science.gov (United States)

    Akiba, T; Rocco, V K; Warnock, D G

    1987-01-01

    Recent studies have shown that the bicarbonate reabsorptive capacity of the proximal tubule is increased in metabolic acidosis. For net bicarbonate reabsorption to be regulated, there may be changes in the rate of apical H+ secretion as well as in the basolateral base exit step. The present studies examined the rate of Na+/H+ exchange (acridine orange method) and Na+/HCO3 cotransport (22Na uptake) in apical and basolateral membranes prepared from the rabbit renal cortex by sucrose density gradient centrifugation. NH4Cl loading was used to produce acidosis (arterial pH, 7.27 +/- 0.03), and Cl-deficient diet with furosemide was used to produce alkalosis (arterial pH, 7.51 +/- 0.02). Maximal transport rate (Vmax) of Na+/H+ antiporter and Na+/HCO3 cotransporter were inversely related with plasma bicarbonate concentration from 6 to 39 mM. Furthermore, the maximal transport rates of both systems varied in parallel; when Vmax for the Na+/HCO3 cotransporter was plotted against Vmax for the Na+/H+ antiporter for each of the 24 groups of rabbits, the regression coefficient (r) was 0.648 (P less than 0.001). There was no effect of acidosis or alkalosis on affinity for Na+ of either transporter. We conclude that both apical and basolateral H+/HCO3 transporters adapt during acid-base disturbances, and that the maximal transport rates of both systems vary in parallel during such acid-base perturbations. PMID:3038953

  9. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut.

    Directory of Open Access Journals (Sweden)

    Viveka Vadyvaloo

    Full Text Available Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.

  10. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    Science.gov (United States)

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  11. Exercise Intensity Modulation of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Fábio S. Lira

    2012-01-01

    Full Text Available Lipid metabolism in the liver is complex and involves the synthesis and secretion of very low density lipoproteins (VLDL, ketone bodies, and high rates of fatty acid oxidation, synthesis, and esterification. Exercise training induces several changes in lipid metabolism in the liver and affects VLDL secretion and fatty acid oxidation. These alterations are even more conspicuous in disease, as in obesity, and cancer cachexia. Our understanding of the mechanisms leading to metabolic adaptations in the liver as induced by exercise training has advanced considerably in the recent years, but much remains to be addressed. More recently, the adoption of high intensity exercise training has been put forward as a means of modulating hepatic metabolism. The purpose of the present paper is to summarise and discuss the merit of such new knowledge.

  12. Understanding Resilience

    Directory of Open Access Journals (Sweden)

    Gang eWu

    2013-02-01

    Full Text Available Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of PTSD, depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences.

  13. [Metabolism of xenobiotics: beneficial and adverse effects].

    Science.gov (United States)

    Mansuy, Daniel

    2013-01-01

    The systems developed by living organisms for the metabolism of xenobiotics play a key role in the adaptation of living species to their chemical environment. Recent data about mammalian cytochrome P450 structures have led to a better understanding of the molecular basis for the adaptability of these enzymes to xenobiotics exhibiting highly variable structures. The action of these enzymes on xenobiotics leads to other beneficial effects such as the bioactivation of some drugs, but also to adverse effects with the formation of aggressive metabolites for the cell that are responsible for the appearance of many toxicities. © Société de Biologie, 2013.

  14. Rare inborn errors of metabolism with movement disorders : a case study to evaluate the impact upon quality of life and adaptive functioning

    NARCIS (Netherlands)

    Eggink, Hendriekje; Kuiper, Anouk; Peall, Kathryn J.; Contarino, Maria Fiorella; Bosch, Annet M.; Post, Bart; Sival, Deborah A.; Tijssen, Marina A. J.; de Koning, Tom J.

    2014-01-01

    Background: Inborn errors of metabolism (IEM) form an important cause of movement disorders in children. The impact of metabolic diseases and concordant movement disorders upon children's health-related quality of life (HRQOL) and its physical and psychosocial domains of functioning has never been

  15. Rare inborn errors of metabolism with movement disorders: a case study to evaluate the impact upon quality of life and adaptive functioning

    NARCIS (Netherlands)

    Eggink, Hendriekje; Kuiper, Anouk; Peall, Kathryn J.; Contarino, Maria Fiorella; Bosch, Annet M.; Post, Bart; Sival, Deborah A.; Tijssen, Marina A. J.; de Koning, Tom J.

    2014-01-01

    Inborn errors of metabolism (IEM) form an important cause of movement disorders in children. The impact of metabolic diseases and concordant movement disorders upon children's health-related quality of life (HRQOL) and its physical and psychosocial domains of functioning has never been investigated.

  16. [Influence of age and degree of compensation of carbohydrate metabolism on metabolic changes in blood of women patients with type 2 diabetes].

    Science.gov (United States)

    Mikashinovich, Z I; Ishonina, O G; Krivolapova, E G

    The purpose of this study was a comprehensive analysis of various aspects of metabolism of erythrocytes in women with type 2 diabetes, according to the age characteristics of compensation of carbohydrate metabolism. The obtained results, based on the nature of changes in parameters of carbohydrate and energy metabolism, gas transport and antioxidant systems of blood, contribute to the understanding of the role of metabolic changes in red blood cells, leading to changes in their biological properties, severity of which reflects the adaptive capacity of the organism in terms of hyperglycemia in different age groups in type 2 diabetes.

  17. Climate. For a successful change. Volume 1: How to commit one's territory in an adaptation approach. Volume 2: How to implement a territorial project which integrates adaptation. Volume 3: How to understand the complexity of climate change - Scientific issues

    International Nuclear Information System (INIS)

    2013-12-01

    The first volume presents the climate issue as a world issue as well as a local issue (historic context of adaptation to climate change effects, legal obligation for local communities, indicators of direct and indirect effects of climate change, economic impacts), and presents adaptation as a way of action at a local level (definition of a strategy, articulation between works on greenhouse gas emissions and those on adaptation, actions to be implemented, action follow-up and adjustment). The second volume describes how to communicate and talk about climate change, and more specifically about the above-mentioned issues (reality of climate change, indirect and direct effects, obligations and responsibilities for local communities, economic impacts). It addresses the issue of climate change in the Rhone-Alpes region: adaptation within the regional scheme on climate, air and energy (SRCAE), role of local communities. It presents an action methodology: to inform and organise, to prepare the mobilisation of actors, to prepare the territory vulnerability diagnosis, to define the adaptation strategy, and to implement, follow-up and assess the action. The third volume proposes a set of sheets containing scientific information and data related to climate change: factors of climate variability, current global warming, greenhouse gases and aerosols, physical-chemical principles involved in greenhouse effect, carbon sinks and carbon sources, effects of land assignment and agriculture, combined effects of mankind actions on the atmosphere, climate change and oceans, climate change and cryo-sphere, climate change and biodiversity, extreme meteorological and climate events and their consequences

  18. Cancer stem cell metabolism.

    Science.gov (United States)

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-05-24

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Determining the role of cancer stem cell metabolism in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards discovering clinical targets.

  19. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2017-01-01

    BACKGROUND: Exogenous glucagon-like peptide 2 (GLP-2) stimulates intestinal adaptation after resection in animal models of pediatric short bowel syndrome (SBS). It is unknown whether the molecular mechanisms of such GLP-2 effects are similar to those of postresection spontaneous adaptation. Using...... affected by the spontaneous intestinal adaptation following resection alone. Whether more long-term GLP-2 treatment may affect the intestinal proteome following intestinal resection remains unknown.......BACKGROUND: Exogenous glucagon-like peptide 2 (GLP-2) stimulates intestinal adaptation after resection in animal models of pediatric short bowel syndrome (SBS). It is unknown whether the molecular mechanisms of such GLP-2 effects are similar to those of postresection spontaneous adaptation. Using...

  20. Cerebral metabolism in dogs assessed by 18F-FDG PET. A pilot study to understand physiological changes in behavioral disorders in dogs

    International Nuclear Information System (INIS)

    Irimajiri, Mami; Jaeger, C.B.; Luescher, A.U.; Miller, M.A.; Hutchins, G.D.; Green, M.A.

    2010-01-01

    The positron emission tomography (PET) imaging technique, which is utilized in human behavior and psychiatric disorder research, was performed on the brains of clinically normal mixed breed dogs, 3 hound-type (long floppy ears) mixed breed dogs and 3 non-hound retriever-type mixed breed dogs. Glucose metabolism was obtained with F-18 fluorodeoxyglucose (FDG), and quantitative analysis was performed by standardized uptake value (SUV) measurement. Magnetic resonance (MR) images were obtained in each dog, and these images were superimposed on PET images to identify anatomical locations. The glucose metabolism in each region of interest was compared between the three hound-type dogs and 3 non-hound-type dogs. The two anatomically different types of dog were compared to assess whether breed-typical behavioral tendencies (e.g., sniffing behavior in hound-type dogs, staring and retrieving in Labrador-type dogs) are reflected in baseline brain metabolic activity. There were no significant differences between the hound-type dogs and non-hound-type dogs in cerebral SUV values. These data might serve as normal canine cerebral metabolism data for FDG PET studies in dogs and form the basis for investigations into behavioral disorders in dogs such as compulsive disorder, anxiety disorders and cognitive dysfunction. (author)

  1. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  3. Reconstruction of metabolic pathways for the cattle genome

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-03-01

    Full Text Available Abstract Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1 as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.

  4. Non-metabolic functions of glycolytic enzymes in tumorigenesis.

    Science.gov (United States)

    Yu, X; Li, S

    2017-05-11

    Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.

  5. Obesity-driven gut microbiota inflammatory pathways to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Agra eCavalcante-Silva

    2015-11-01

    Full Text Available The intimate interplay between immune system, metabolism and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signalling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.

  6. Neuroendocrine Regulation of Metabolism

    OpenAIRE

    Cornejo, Maria P.; Hentges, Shane T.; Maliqueo, Manuel; Coirini, Hector; Becu-Villalobos, Damasia; Elias, Carol F.

    2016-01-01

    Given the current environment in most developed countries, it is a challenge to maintain a good balance between calories consumed and calories burned, although maintenance of metabolic balance is key to good health. Therefore, understanding how metabolic regulation is achieved and how the dysregulation of metabolism affects health is an area of intense research. Most studies are focused on the hypothalamus, which is a brain area that acts as a key regulator of metabolism. Among the nuclei tha...

  7. Different-day and same-session combined strength and endurance training : adaptations in neuromuscular and cardiorespiratory performance, body composition, metabolic health and wellbeing in men and women

    OpenAIRE

    Eklund, Daniela

    2017-01-01

    This thesis investigated 1) acute neuromuscular and hormonal responses to combined strength and endurance loadings with different orders and their long-term adaptations (women), 2) adaptations in neuromuscular, hormonal, cardiorespiratory and health variables following 24 weeks of volume-equated protocols of combined training (men and women). Subjects were assigned to one of three groups: strength and endurance training on different days (DD: men n=21, women n=18), trainin...

  8. Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition

    DEFF Research Database (Denmark)

    Schönke, Milena; Björnholm, Marie; Chibalin, Alexander V

    2018-01-01

    Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however...... mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle...... from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed...

  9. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  10. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance

    DEFF Research Database (Denmark)

    Vollaard, Niels B J; Constantin-Teodosiu, Dimitru; Fredriksson, Katarina

    2009-01-01

    It has not been established which physiological processes contribute to endurance training-related changes (Delta) in aerobic performance. For example, the relationship between intramuscular metabolic responses at the intensity used during training and improved human functional capacity has not b...

  11. Middle-aged overweight South Asian men exhibit a different metabolic adaptation to short-term energy restriction compared with Europeans

    NARCIS (Netherlands)

    Bakker, L.E.; Guigas, B.; Schinkel, L.D. van; Zon, G.C. van der; Streefland, T.C.; Klinken, J.B. van; Jonker, J.T.; Lamb, H.J.; Smit, J.W.A.; Pijl, H.; Meinders, A.E.; Jazet, I.M.

    2015-01-01

    AIMS/HYPOTHESIS: South Asians have a higher risk of developing type 2 diabetes than Europeans. The underlying cause of this excess risk is still poorly understood but might be related to differences in the regulation of energy/nutrient-sensing pathways in metabolic tissues and subsequent changes in

  12. Improvements in health-related quality of life, cardio-metabolic health, and fitness in postmenopausal women after a supervised, multicomponent, adapted exercise program in a suited health promotion intervention: a multigroup study.

    Science.gov (United States)

    Godoy-Izquierdo, Débora; Guevara, Nicolás Mendoza Ladrón de; Toral, Mercedes Vélez; Galván, Carlos de Teresa; Ballesteros, Alberto Salamanca; García, Juan F Godoy

    2017-08-01

    This study explored the multidimensional outcomes that resulted from the adherence to regular exercise among previously sedentary postmenopausal women. The exercise was managed through a supervised, multicomponent, adapted approximately 20-week program in a suited health promotion intervention. A multigroup, mixed-design study with between-group (intervention, sedentary, and active women) and within-subject measures (baseline, postintervention, and 3- and 12-month follow-ups) was conducted using intention-to-treat methodology. The Cervantes Scale assessed health-related quality of life (HRQoL), and several indicators of cardio-metabolic status and fitness were also assessed. After the intervention, the participants experienced positive changes in short and long-term physical and mental health, with significant enhancements in several HRQoL dimensions, particularly mental well-being and menopause-related health and subdomains. Improvements were maintained or continued (eg, mental well-being) throughout the period, leading up to the 12-month follow-up. These outcomes were accompanied by significant improvements in cardio-metabolic status and fitness, including weight, body mass index, cardio-respiratory fitness, and flexibility. Our findings parallel previous empirical evidence showing the benefits associated with regular exercise, and add evidence to the association of positive outcomes in HRQoL with improvements in cardio-metabolic health and fitness status after the adoption of an active lifestyle.

  13. Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium

    Science.gov (United States)

    Cadmium is a toxic metal causing sublethal and chronic effects in crustaceans. Omic technologies offer unprecedented opportunities to better understand modes of toxicity by providing a holistic view of the molecular changes underlying physiological disruption. We sought to use ge...

  14. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    Science.gov (United States)

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  15. Thyroid Hormone Regulation of Metabolism

    Science.gov (United States)

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  16. Adaptation to thermotolerance in Rhizopus coincides with virulence as revealed by avian and invertebrate infection models, phylogeny, physiological and metabolic flexibility.

    Science.gov (United States)

    Kaerger, Kerstin; Schwartze, Volker U; Dolatabadi, Somayeh; Nyilasi, Ildikó; Kovács, Stella A; Binder, Ulrike; Papp, Tamás; Hoog, Sybren de; Jacobsen, Ilse D; Voigt, Kerstin

    2015-01-01

    Mucormycoses are fungal infections caused by the ancient Mucorales. They are rare, but increasingly reported. Predisposing conditions supporting and favoring mucormycoses in humans and animals include diabetic ketoacidosis, immunosuppression and haematological malignancies. However, comprehensive surveys to elucidate fungal virulence in ancient fungi are limited and so far focused on Lichtheimia and Mucor. The presented study focused on one of the most important causative agent of mucormycoses, the genus Rhizopus (Rhizopodaceae). All known clinically-relevant species are thermotolerant and are monophyletic. They are more virulent compared to non-clinically, mesophilic species. Although adaptation to elevated temperatures correlated with the virulence of the species, mesophilic strains showed also lower virulence in Galleria mellonella incubated at permissive temperatures indicating the existence of additional factors involved in the pathogenesis of clinical Rhizopus species. However, neither specific adaptation to nutritional requirements nor stress resistance correlated with virulence, supporting the idea that Mucorales are predominantly saprotrophs without a specific adaptation to warm blooded hosts.

  17. Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom

    International Nuclear Information System (INIS)

    Brima, Eid I.; Haris, Parvez I.; Jenkins, Richard O.; Polya, Dave A.; Gault, Andrew G.; Harrington, Chris F.

    2006-01-01

    Very little is known about arsenic (As) metabolism in healthy populations that are not exposed to high concentrations of As in their food or water. Here we present a study with healthy volunteers from three different ethnic groups, residing in Leicester, UK, which reveals statistically significant differences in the levels of total As in urine and fingernail samples. Urine (n = 63), hair (n = 36) and fingernail (n = 36) samples from Asians, Somali Black-Africans and Whites were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectroscopy (GF-AAS). The results clearly show that the total concentrations of As in urine and fingernail samples of a Somali Black-African population (urine 7.2 μg/g creatinine; fingernails 723.1 μg/kg) are significantly (P 0.05) in the level of As in the hair samples from these three groups; Somali Black-Africans (116.0 μg/kg), Asians (117.4 μg/kg) and Whites (141.2 μg/kg). Significantly different levels of total As in fingernail and urine and a higher percentage of urinary DMA in the Somali Black-Africans are suggestive of a different pattern of As metabolism in this ethnic group

  18. The purpose of adaptation

    OpenAIRE

    Gardner, Andy

    2017-01-01

    A central feature of Darwin’s theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasise the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically-testable predictions; discuss the population genetical basis for Darwin’s theory of the purpose of adaptation, with reference to the “fundamental theorem of natural selection”; and show that a deeper understanding of the purpose of adapta...

  19. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait

    Science.gov (United States)

    Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.

    2013-01-01

    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of

  20. Understanding Resilience Dimensions and Adaptive Strategies to the Impact of Recurrent Droughts in Borana Zone, Oromia Region, Ethiopia: A Grounded Theory Approach

    Directory of Open Access Journals (Sweden)

    Zewdie Birhanu

    2017-01-01

    Full Text Available Recurrent shocks and stresses are increasingly deteriorating pastoralist communities’ resilience capacities in many aspects. A context specific resilience framework is essential to strengthen pastoralist community’s resilience capacity towards the impact of recurrent drought. Hence, the present study was aimed to develop a context specific and data driven resilience building framework towards impacts of recurrent droughts in the case of Borana pastoralists in Ethiopia. Qualitative grounded theory approach was employed to guide the study process. The data were collected through focus group discussions and in-depth interviews in two drought affected districts of Borana Zone during October 2013. The analysis was assisted by ATLAS. ti 7.1.4. The analysis provided a context specific resilience building conceptual tool, which consists of, closely interconnected, eight dimensions operating at multiple capacities and levels: environment (underlying vulnerability factor; livestock, infrastructures/social services, and wealth (immediate causes and effects; community network/social capital, as well as governance, peace and security (support and enabling factors oriented, psychosocial, and human capital (as eventual outcomes and impacts. The resilience capacities of these pastoralist communities have been eroded, leaving them without sufficient and effective adaptive strategies. The emergent resilience framework can serve as a useful guidance to design context-specific interventions that makes the people and the system resilient to the impacts of recurrent droughts.

  1. Understanding hydrologic budgets, dynamics in an arid basin and explore spatial scaling properties using Process-based Adaptive Watershed Simulator (PAWS)

    Science.gov (United States)

    Fang, K.; Shen, C.; Salve, R.

    2013-12-01

    The Southern California hot desert hosts a fragile ecosystem as well as a range of human economic activities, primarily mining, energy production and recreation. This inland arid landscape is characterized by occasional intensive precipitation events and year-round strong potential evapotranspiration. In this landscape, water and especially groundwater is vital for ecosystem functions and human use. However, the impact of recent development on the sustainability of groundwater resources in the area has not been thoroughly investigated. We apply an integrated, physically-based hydrologic-land surface model, the Process-based Adaptive Watershed Simulator + Community Land Model (PAWS+CLM) to evaluate the sustainability of the groundwater resources in the area. We elucidate the spatio-temporal patterns of hydrologic fluxes and budgets. The modeling results indicate that mountain front recharge is the essential recharging mechanism for the alluvial aquifer. Although pumping activities do not exceed annual-average recharge values, they are still expected to contribute significantly to groundwater drawdown in business-as-usual scenario. The impact of groundwater withdrawals is significant on the desert ecosystem. The relative importance of groundwater flow on NPP rises significantly as compared to other ecosystems. We further evaluate the fractal scaling properties of soil moisture in this very arid system and found the relationship to be much more static in time than that found in a humid continental climate system. The scaling exponents can be predicted using simple functions of the mean. Therefore, multi-scale model based on coarse-resolution surrogate model is expected to perform well in this system. The modeling result is also important for assessing the groundwater sustainability and impact of human activities in the desert environment.

  2. Farmer innovation driven by needs and understanding: building the capacities of farmer groups for improved cooking stove construction and continued adaptation

    Science.gov (United States)

    Uckert, G.; Hafner, J.; Graef, F.; Hoffmann, H.; Kimaro, A.; Sererya, O.; Sieber, S.

    2017-12-01

    Enhancing food security is one of the main goals of subsistence farmers in Sub-Saharan Africa. This study investigates the implementation of improved loam-made cooking stoves and its contribution to coping and livelihood strategies. Controlled combustion, air as well as smoke flue, and heat insulation facilitate the more efficient fuel consumption of improved cooking stoves compared to traditional stoves—namely three stone fires. Although the majority of small-scale farmers in Sub-Saharan Africa rely on the free public good of firewood, the increasing time needed for collecting firewood implies high opportunity costs for productive members of the family. The primary outcomes for users of improved stoves are reduced fuel consumption, greater safety, saved time, and reduced smoke in the kitchen. The paper illustrates part of the output, outcome, and impact of a participatory action research approach for implementing improved cooking stoves. Special emphasis was put on enabling the villagers to construct their stoves without external support, hence having locally manufactured stoves made of mud, bricks, and dried grass. The impact pathway of improved cooking stoves followed the training-of-trainers concept, where members of the initially established farmer groups were trained to construct stoves on their own. Special focus was given to knowledge exchange and knowledge transfer in order to increase firewood efficiency and overall satisfaction of users of improved cook stoves. Encouraging the members to further adapt the stoves enabled them to scale-up the construction of improved cooked stoves into a business model and increase dissemination while creating income. Although many important benefits, like time and knowledge gain, were identified by the farmers after adoption of the new technology, we found adoption rates differed significantly between regions.

  3. Beta-adrenergic receptors are critical for weight loss but not for other metabolic adaptations to the consumption of a ketogenic diet in male mice

    Directory of Open Access Journals (Sweden)

    Nicholas Douris

    2017-08-01

    Conclusions: The response of β-less mice distinguishes at least two distinct categories of physiologic effects in mice consuming KD. In the liver, KD regulates peroxisome proliferator-activated receptor alpha (PPARα-dependent pathways through an action of FGF21 independent of the SNS and beta-adrenergic receptors. In sharp contrast, induction of interscapular brown adipose tissue (BAT and increased energy expenditure absolutely require SNS signals involving action on one or more β-adrenergic receptors. In this way, the key metabolic actions of FGF21 in response to KD have diverse effector mechanisms.

  4. Late gestation under- and overnutrition have differential impacts when combined with a post-natal obesogenic diet on glucose-lactate-insulin adaptations during metabolic challenges in adolescent sheep

    DEFF Research Database (Denmark)

    Khanal, Prabhat; Axel, Anne Marie Dixen; Kongsted, Anna Hauntoft

    2015-01-01

    for the last 6 weeks of gestation (term = 147 days) assigned to HIGH (N = 13; 150 and 110% of energy and protein requirements, respectively), NORM (N = 9; 100% of requirements) or LOW (N = 14; 50% of requirements) diets. The twin offspring were raised on high-carbohydrate-high-fat (HCHF; N = 35......: Prenatal malnutrition differentially impacted adaptations of particularly plasma lactate followed by glucose, cholesterol and insulin. This was most clearly expressed during PTT in fasted lambs and much less during ITT and GTT. In fasted lambs, propionate induced more dramatic increases in lactate than...... the greatest glucose-induced insulin secretory responses. CONCLUSION: Prenatal malnutrition differentially programmed glucose-lactate metabolic pathways and cholesterol homeostasis. Prenatal overnutrition predisposed for hyperglycaemia and hyperlactataemia, whereas undernutrition predisposed...

  5. The aging influence on cardiorespiratory, metabolic, and energy expenditure adaptations in head-out aquatic exercises: Differences between young and elderly women.

    Science.gov (United States)

    Bartolomeu, Raul F; Barbosa, Tiago M; Morais, Jorge E; Lopes, Vítor P; Bragada, José A; Costa, Mário J

    2017-03-01

    The purpose of this study was to: (1) establish the relationship between acute physiological responses and musical cadence; and (2) compare physiologic responses between young and older women. Eighteen older (mean = 65.06 ± 5.77 years) and 19 young (mean = 22.16 ± 2.63 years) women underwent an intermittent and progressive protocol performing the head-out aquatic exercise the "rocking horse." Results showed that older women demonstrated lower mean heart rate, blood lactate concentration (bLa), and oxygen uptake (VO 2 ) at rest. Hierarchical linear modeling showed that variations in the rating of perceived effort and individual metabolic equivalent of task did not differ significantly by age group. However, during exercise, physiological responses of younger women were significantly different than for older women: in mean values, for each increased musical beat per minute, mean bLa was 0.003 mmol/l, VO 2 was 0.024 ml/kg/min, and energy expenditure was 0.0001 kcal/kg/min higher for younger women. This study shows that increases in musical cadence increased the cardiorespiratory, metabolic, and energy expenditure responses. However, these responses during increasing intensity seemed to differ between young and older women, with lower values for the elderly group, when performing head-out aquatic exercises.

  6. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs....

  7. Proteomic analysis of endothelial cold-adaptation

    Directory of Open Access Journals (Sweden)

    Zieger Michael AJ

    2011-12-01

    Full Text Available Abstract Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine

  8. Gene-based mapping and pathway analysis of metabolic traits in dairy cows.

    Directory of Open Access Journals (Sweden)

    Ngoc-Thuy Ha

    Full Text Available The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1 non-esterified fatty acids (NEFA, (2 beta-hydroxybutyrate (BHBA and (3 glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation.

  9. Left ventricular vascular and metabolic adaptations to high-intensity interval and moderate intensity continuous training: a randomized trial in healthy middle-aged men.

    Science.gov (United States)

    Eskelinen, Jari-Joonas; Heinonen, Ilkka; Löyttyniemi, Eliisa; Hakala, Juuso; Heiskanen, Marja A; Motiani, Kumail K; Virtanen, Kirsi; Pärkkä, Jussi P; Knuuti, Juhani; Hannukainen, Jarna C; Kalliokoski, Kari K

    2016-12-01

    High-intensity interval training (HIIT) has become popular, time-sparing alternative to moderate intensity continuous training (MICT), although the cardiac vascular and metabolic effects of HIIT are incompletely known. We compared the effects of 2-week interventions with HIIT and MICT on myocardial perfusion and free fatty acid and glucose uptake. Insulin-stimulated myocardial glucose uptake was decreased by training without any significantly different response between the groups, whereas free fatty acid uptake remained unchanged. Adenosine-stimulated myocardial perfusion responded differently to the training modes (change in mean HIIT: -19%; MICT: +9%; P = 0.03 for interaction) and was correlated with myocardial glucose uptake for the entire dataset and especially after HIIT training. HIIT and MICT induce similar metabolic and functional changes in the heart, although myocardial vascular hyperaemic reactivity is impaired after HIIT, and this should be considered when prescribing very intense HIIT for previously untrained subjects. High-intensity interval training (HIIT) is a time-efficient way of obtaining the health benefits of exercise, although the cardiac effects of this training mode are incompletely known. We compared the effects of short-term HIIT and moderate intensity continuous training (MICT) interventions on myocardial perfusion and metabolism and cardiac function in healthy, sedentary, middle-aged men. Twenty-eight healthy, middle-aged men were randomized to either HIIT or MICT groups (n = 14 in both) and underwent six cycle ergometer training sessions within 2 weeks (HIIT session: 4-6 × 30 s all-out cycling/4 min recovery, MICT session 40-60 min at 60% V̇O2 peak ). Cardiac magnetic resonance imaging (CMRI) was performed to measure cardiac structure and function and positron emission tomography was used to measure myocardial perfusion at baseline and during adenosine stimulation, insulin-stimulated glucose uptake (MGU) and fasting free

  10. Transcriptome Profiling Using Single-Molecule Direct RNA Sequencing Approach for In-depth Understanding of Genes in Secondary Metabolism Pathways of Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Qingshan Xu

    2017-07-01

    Full Text Available Characteristic secondary metabolites, including flavonoids, theanine and caffeine, are important components of Camellia sinensis, and their biosynthesis has attracted widespread interest. Previous studies on the biosynthesis of these major secondary metabolites using next-generation sequencing technologies limited the accurately prediction of full-length (FL splice isoforms. Herein, we applied single-molecule sequencing to pooled tea plant tissues, to provide a more complete transcriptome of C. sinensis. Moreover, we identified 94 FL transcripts and four alternative splicing events for enzyme-coding genes involved in the biosynthesis of flavonoids, theanine and caffeine. According to the comparison between long-read isoforms and assemble transcripts, we improved the quality and accuracy of genes sequenced by short-read next-generation sequencing technology. The resulting FL transcripts, together with the improved assembled transcripts and identified alternative splicing events, enhance our understanding of genes involved in the biosynthesis of characteristic secondary metabolites in C. sinensis.

  11. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  12. MudPIT profiling reveals a link between anaerobic metabolism and the alkaline adaptive response of Listeria monocytogenes EGD-e.

    Directory of Open Access Journals (Sweden)

    Rolf E Nilsson

    Full Text Available Listeria monocytogenes is a foodborne human pathogen capable of causing life-threatening disease in susceptible populations. Previous proteomic analysis we performed demonstrated that different strains of L. monocytogenes initiate a stringent response when subjected to alkaline growth conditions. Here, using multidimensional protein identification technology (MudPIT, we show that in L. monocytogenes EGD-e this response involves an energy shift to anaerobic pathways in response to the extracellular pH environment. Importantly we show that this supports a reduction in relative lag time following an abrupt transition to low oxygen tension culture conditions. This has important implications for the packaging of fresh and ready-to-eat foods under reduced oxygen conditions in environments where potential exists for alkaline adaptation.

  13. Mycobacterium tuberculosis Metabolism

    Science.gov (United States)

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  14. Copepods in ice-covered seas—Distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas

    Science.gov (United States)

    Conover, R. J.; Huntley, M.

    1991-07-01

    rhythms under or near the ice have also been observed for several species. In the Northern Hemisphere larger zooplanktonic species may take two, three, or possibly more years to reach maturity, but the grand strategy, apparently used by all, is to assure that their young have reached active feeding stages by the time of maximum primary production in the water column so that maximum growth, often, but not always, with emphasis on lipid storage, can occur during the often brief, but usually intense, summer bloom. The rate of growth of arctic or antarctic zooplankton is not so important as assuring a high level of fecundity when maturity comes. Overwintering is probably not a great hardship and diapause may not be a useful strategy because the environmental temperature is constantly near the freezing point of sea water, and basal metabolism accordingly low. Nonetheless, feeding behaviour and metabolic rates have strong seasonal signals. In the absence of other stimuli, light must be involved in the transformation from winter to summer metabolism and visa versa but the mechanisms still remain obscure.

  15. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  16. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....

  17. Acute and Long-Term Impact of High-Protein Diets on Endocrine and Metabolic Function, Body Composition, and Exercise-Induced Adaptations.

    Science.gov (United States)

    Morales, Flor E; Tinsley, Grant M; Gordon, Paul M

    2017-01-01

    High-protein diets have been shown to improve body composition through alterations in satiety, muscle protein synthesis, and the thermic effect of food. Given these findings, the purpose of this review is to discuss the integration of the specific hormonal and metabolic effects of high-protein diets following both acute and long-term usage, especially with regard to body composition. Full-text articles were obtained through PubMed by using the terms "high-protein diet and body composition," "high-protein diet and exercise," "high-protein diet risk," "high-protein diet side effects," "protein quality PDCAAS," "RDA for protein," and "daily protein recommendation." Articles were initially screened according to their title and abstract; careful evaluation of the full manuscripts was then used to identify relevant articles. The higher satiety exerted by high-protein diets is generated through increments in anorexigenic, as well as decrements in orexigenic hormones. Improvements in muscle mass are achieved by activation of muscle protein synthesis acting through the mTOR pathway. High thermic effect of food is caused due to necessary deamination, gluconeogenesis, and urea synthesis caused by high-protein diets. Interestingly, high-protein diets in both hypo- and normocaloric conditions have shown to improve body composition, whereas in combination with hypercaloric conditions does not seem to increase fat mass, when the excess energy comes from protein. High protein diets effectively improve body composition by acting through different pathways.

  18. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    KAUST Repository

    Abdallah, Abdallah

    2015-10-21

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  19. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1.

    Science.gov (United States)

    Rasko, David A; Ravel, Jacques; Økstad, Ole Andreas; Helgason, Erlendur; Cer, Regina Z; Jiang, Lingxia; Shores, Kelly A; Fouts, Derrick E; Tourasse, Nicolas J; Angiuoli, Samuel V; Kolonay, James; Nelson, William C; Kolstø, Anne-Brit; Fraser, Claire M; Read, Timothy D

    2004-01-01

    We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.

  20. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    Science.gov (United States)

    Abdallah, Abdallah M.; Hill-Cawthorne, Grant A.; Otto, Thomas D.; Coll, Francesc; Guerra-Assunção, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur; Malas, Tareq B.; Adroub, Sabir A.; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G.; Behr, Marcel A.; Bitter, Wilbert; Pain, Arnab

    2015-01-01

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains. PMID:26487098

  1. Measuring high-altitude adaptation.

    Science.gov (United States)

    Moore, Lorna G

    2017-11-01

    High altitudes (>8,000 ft or 2,500 m) provide an experiment of nature for measuring adaptation and the physiological processes involved. Studies conducted over the past ~25 years in Andeans, Tibetans, and, less often, Ethiopians show varied but distinct O 2 transport traits from those of acclimatized newcomers, providing indirect evidence for genetic adaptation to high altitude. Short-term (acclimatization, developmental) and long-term (genetic) responses to high altitude exhibit a temporal gradient such that, although all influence O 2 content, the latter also improve O 2 delivery and metabolism. Much has been learned concerning the underlying physiological processes, but additional studies are needed on the regulation of blood flow and O 2 utilization. Direct evidence of genetic adaptation comes from single-nucleotide polymorphism (SNP)-based genome scans and whole genome sequencing studies that have identified gene regions acted upon by natural selection. Efforts have begun to understand the connections between the two with Andean studies on the genetic factors raising uterine blood flow, fetal growth, and susceptibility to Chronic Mountain Sickness and Tibetan studies on genes serving to lower hemoglobin and pulmonary arterial pressure. Critical for future studies will be the selection of phenotypes with demonstrable effects on reproductive success, the calculation of actual fitness costs, and greater inclusion of women among the subjects being studied. The well-characterized nature of the O 2 transport system, the presence of multiple long-resident populations, and relevance for understanding hypoxic disorders in all persons underscore the importance of understanding how evolutionary adaptation to high altitude has occurred. NEW & NOTEWORTHY Variation in O 2 transport characteristics among Andean, Tibetan, and, when available, Ethiopian high-altitude residents supports the existence of genetic adaptations that improve the distribution of blood flow to vital

  2. Triglyceride metabolism in exercising muscle.

    Science.gov (United States)

    Watt, Matthew J; Cheng, Yunsheng

    2017-10-01

    Triglycerides are stored within lipid droplets in skeletal muscle and can be hydrolyzed to produce fatty acids for energy production through β-oxidation and oxidative phosphorylation. While there was some controversy regarding the quantitative importance of intramyocellular triglyceride (IMTG) as a metabolic substrate, recent advances in proton magnetic resonance spectroscopy and confocal microscopy support earlier tracer and biopsy studies demonstrating a substantial contribution of IMTG to energy production, particularly during moderate-intensity endurance exercise. This review provides an update on the understanding of IMTG utilization during exercise, with a focus on describing the key regulatory proteins that control IMTG breakdown and how these proteins respond to acute exercise and in the adaptation to exercise training. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fundamentals of cancer metabolism

    Science.gov (United States)

    DeBerardinis, Ralph J.; Chandel, Navdeep S.

    2016-01-01

    Tumors reprogram pathways of nutrient acquisition and metabolism to meet the bioenergetic, biosynthetic, and redox demands of malignant cells. These reprogrammed activities are now recognized as hallmarks of cancer, and recent work has uncovered remarkable flexibility in the specific pathways activated by tumor cells to support these key functions. In this perspective, we provide a conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis. Understanding these concepts will progressively support the development of new strategies to treat human cancer. PMID:27386546

  4. Crassulacean acid metabolism in submerged aquatic plants

    Science.gov (United States)

    Keeley, Jon E.; Sybesme, C.

    1984-01-01

    CO2-fixation in the dark is known to occur in various organs of many plants. However, only in species possessing crassulacean acid metabolism (CAM) does dark CO2-fixation contribute substantially to the carbon economy of the plant. Until very recently CAM was known only from terrestrial species, largely drought adapted succulents. The discovery of CAM in the submerged aquatic fern ally Isoetes howellii (Isoetaceae)(Keeley 1981) adds a new dimension to our understanding of crassulacean acid metabolism. In this paper I will summarize 1) the evidence of CAM in Isoetes howellii, 2) the data on the distribution of CAM in aquatic species, and 3) the work to date on the functional significance of CAM in aquatic species.

  5. Metabolic Panel

    Science.gov (United States)

    A metabolic panel is a group of tests that measures different chemicals in the blood. These tests are usually done on ... and liver. There are two types: basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP ...

  6. Combined use of δ¹³C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit.

    Science.gov (United States)

    Yousfi, Salima; Serret, Maria Dolores; Márquez, Antonio José; Voltas, Jordi; Araus, José Luis

    2012-04-01

    • Accurate phenotyping remains a bottleneck in breeding for salinity and drought resistance. Here the combined use of stable isotope compositions of carbon (δ¹³C), oxygen (δ¹⁸O) and nitrogen (δ¹⁵N) in dry matter is aimed at assessing genotypic responses of durum wheat under different combinations of these stresses. • Two tolerant and two susceptible genotypes to salinity were grown under five combinations of salinity and irrigation regimes. Plant biomass, δ¹³C, δ¹⁸O and δ¹⁵N, gas-exchange parameters, ion and N concentrations, and nitrate reductase (NR) and glutamine synthetase (GS) activities were measured. • Stresses significantly affected all traits studied. However, only δ¹³C, δ¹⁸O, δ¹⁵N, GS and NR activities, and N concentration allowed for clear differentiation between tolerant and susceptible genotypes. Further, a conceptual model explaining differences in biomass based on such traits was developed for each growing condition. • Differences in acclimation responses among durum wheat genotypes under different stress treatments were associated with δ¹³C. However, except for the most severe stress, δ¹³C did not have a direct (negative) relationship to biomass, being mediated through factors affecting δ¹⁸O or N metabolism. Based upon these results, the key role of N metabolism in durum wheat adaptation to salinity and water stress is highlighted. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  7. Effects of Feeding Milk Replacer Ad Libitum or in Restricted Amounts for the First Five Weeks of Life on the Growth, Metabolic Adaptation, and Immune Status of Newborn Calves

    Science.gov (United States)

    Schäff, Christine T.; Gruse, Jeannine; Maciej, Josefine; Mielenz, Manfred; Wirthgen, Elisa; Hoeflich, Andreas; Schmicke, Marion; Pfuhl, Ralf; Jawor, Paulina; Stefaniak, Tadeusz

    2016-01-01

    The pre-weaning period is critical for calf health and growth, and intensive milk feeding programs may assist postnatal development by improving body growth and organ maturation. The aim of the present work was to study the effects of ad libitum milk replacer (MR) feeding on the growth, metabolic adaptation, health, and immune status of newborn calves. Twenty-eight newborn Holstein and Holstein x Charolais crossbred calves were fed ad libitum (ADLIB) or in restricted amounts (6 liters per day; RES) during the first five weeks of life. The MR intake in the ADLIB treatment was gradually reduced at weeks 6 and 7, and all calves then received 6 liters of MR per day until day 60. Blood samples were collected to measure the plasma concentrations of metabolites, insulin, insulin-like growth factor (IGF)-I and IGF binding proteins (IGFBP), immunoglobulins, and acute phase proteins. The expression of mRNA associated with both the somatotropic axis and gluconeogenic enzymes was measured in the liver on day 60. Intensive feeding improved MR intake and growth in ADLIB without influencing concentrate intake. Carcass weight, perirenal fat, and muscle mass were greater in ADLIB. Plasma concentrations of glucose, triglycerides, insulin, and IGF-I were greater, whereas plasma concentrations of β-hydroxybutyrate, total protein, albumin, urea, IGFBP-2 and -4, and fibrinogen were lower at distinct time points in ADLIB. The hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase was greater in ADLIB. Most metabolic and endocrine differences occurred during the MR feeding period, but a slightly greater concentrate intake was associated with increased plasma IGF-I and insulin at the end of the study. The immune and health status of the calves were not affected by MR feeding. However, increased plasma fibrinogen in the RES group suggested differences in the acute phase response. PMID:28036351

  8. Understanding adaptation decisions in Morocco's plains and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-04-21

    Apr 21, 2011 ... While their project activities address the information gap through training workshops, exchanges, and demonstrations, Chriyaa is encouraged that: “Local authorities and elected representatives are well aware of the potential impacts of climate change on their environments, and of the need for individual ...

  9. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    Science.gov (United States)

    McGill, Anne-Thea

    2014-01-01

    The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing 'common or garden' food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and

  10. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows.

    Science.gov (United States)

    Silva, P R B; Machado, K S; Da Silva, D N Lobão; Moraes, J G N; Keisler, D H; Chebel, R C

    2015-07-01

    The aim of this experiment was to determine effects of treating peripartum dairy cows with body condition score ≥3.75 with recombinant bovine somatotropin (rbST) on immune, inflammatory, and metabolic responses. Holstein cows (253±1d of gestation) were assigned randomly to 1 of 3 treatments: untreated control (n=53), rbST87.5 (n=56; 87.5mg of rbST), and rbST125 (n=57; 125mg of rbST). Cows in the rbST87.5 and rbST125 treatments received rbST weekly from -21 to 28d relative to calving. Growth hormone, insulin-like growth factor 1, haptoglobin, tumor necrosis factor α, nonesterified fatty acids, β-hydroxybutyrate, glucose, and cortisol concentrations were determined weekly from -21 to 21d relative to calving. Blood sampled weekly from -14 to 21d relative to calving was used for hemogram and polymorphonuclear leukocyte (PMNL) expression of adhesion molecules, phagocytosis, and oxidative burst. Cows were vaccinated with ovalbumin at -21, -7, and 7d relative to calving, and blood was collected weekly from -21 to 21d relative to calving to determine IgG anti-ovalbumin concentrations. A subsample of cows had liver biopsied -21, -7, and 7d relative to calving to determine total lipids, triglycerides, and glycogen content. Growth hormone concentrations prepartum (control=11.0±1.2, rbST87.5=14.1±1.2, rbST125=15.1±1.3ng/mL) and postpartum (control=14.4±1.1, rbST87.5=17.8±1.2, rbST125=21.8±1.1ng/mL) were highest for rbST125 cows. Cows treated with rbST had higher insulin-like growth factor 1 concentrations than control cows (control=110.5±4.5, rbST87.5=126.2±4.5, rbST125=127.2±4.5ng/mL) only prepartum. Intensity of L-selectin expression was higher for rbST125 than for control and rbST87.5 cows [control=3,590±270, rbST87.5=3,279±271, rbST125=4,371±279 geometric mean fluorescence intensity (GMFI)] in the prepartum period. The PMNL intensities of phagocytosis (control=3,131±130, rbST87.5=3,391±133, rbST125=3,673±137 GMFI) and oxidative burst (control=9,588±746

  11. The Role of the Immune System in Metabolic Health and Disease.

    Science.gov (United States)

    Zmora, Niv; Bashiardes, Stavros; Levy, Maayan; Elinav, Eran

    2017-03-07

    In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Mathematical Model of Metabolism and Regulation Provides a Systems-Level View of How Escherichia coli Responds to Oxygen

    Directory of Open Access Journals (Sweden)

    Michael eEderer

    2014-03-01

    Full Text Available The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation.

  13. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  14. Quantifying the adaptive cycle

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  15. Adaptive management

    DEFF Research Database (Denmark)

    Rist, Lucy; Campbell, Bruce Morgan; Frost, Peter

    2013-01-01

    a management framework, as well as of identified challenges and pathologies, are needed. Further discussion and systematic assessment of the approach is required, together with greater attention to its definition and description, enabling the assessment of new approaches to managing uncertainty, and AM itself.......Adaptive management (AM) emerged in the literature in the mid-1970s in response both to a realization of the extent of uncertainty involved in management, and a frustration with attempts to use modelling to integrate knowledge and make predictions. The term has since become increasingly widely used...... in scientific articles, policy documents and management plans, but both understanding and application of the concept is mixed. This paper reviews recent literature from conservation and natural resource management journals to assess diversity in how the term is used, highlight ambiguities and consider how...

  16. Multidimensional optimality of microbial metabolism

    NARCIS (Netherlands)

    Schuetz, Robert; Zamboni, Nicola; Zampieri, Mattia; Heinemann, Matthias; Sauer, Uwe

    2012-01-01

    Although the network topology of metabolism is well known, understanding the principles that govern the distribution of fluxes through metabolism lags behind. Experimentally, these fluxes can be measured by (13)C-flux analysis, and there has been a long-standing interest in understanding this

  17. The emerging roles of microRNAs in cancer metabolism.

    Science.gov (United States)

    Chan, Brian; Manley, Jacob; Lee, Jae; Singh, Shree Ram

    2015-01-28

    The major goal of cancer therapy is to destroy cancer cells without harming normal cells. However, because cancer cells have incredible heterogeneity and adaptability, it is difficult to target them therapeutically. Metabolic reprogramming has emerged as a common feature of cancer. Ever since microRNAs (miRNAs) have been found to influence metabolism, researchers have been trying to address the connection between cancer cells and specific miRNAs. Many of the well-known miRNAs relate to crucial genes that can impact metabolic pathways, both negatively and positively. With a better understanding of how different pathways are affected, the roles of miRNAs will be more transparent, which could lead to the discovery of new ideas about the concept of tumorigenesis and other cancer-related topics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. β-Cell adaptation in pregnancy.

    Science.gov (United States)

    Baeyens, L; Hindi, S; Sorenson, R L; German, M S

    2016-09-01

    Pregnancy in placental mammals places unique demands on the insulin-producing β-cells in the pancreatic islets of Langerhans. The pancreas anticipates the increase in insulin resistance that occurs late in pregnancy by increasing β-cell numbers and function earlier in pregnancy. In rodents, this β-cell expansion depends on secreted placental lactogens that signal through the prolactin receptor. Then at the end of pregnancy, the β-cell population contracts back to its pre-pregnancy size. In the current review, we focus on how glucose metabolism changes during pregnancy, how β-cells anticipate these changes through their response to lactogens and what molecular mechanisms guide the adaptive compensation. In addition, we summarize current knowledge of β-cell adaptation during human pregnancy and what happens when adaptation fails and gestational diabetes ensues. A better understanding of human β-cell adaptation to pregnancy would benefit efforts to predict, prevent and treat gestational diabetes. © 2016 John Wiley & Sons Ltd.

  19. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    KAUST Repository

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  20. Homeoviscous adaptation and the regulation of membrane lipids

    DEFF Research Database (Denmark)

    Ernst, Robert; Ejsing, Christer S; Antonny, Bruno

    2016-01-01

    Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold. This ada......Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold...... such as neurons maintain unique lipid compositions with specific physicochemical properties. To date little is known about the sensory mechanisms regulating the acyl chain profile in such specialized cells or during adaptive responses. Here we summarize our current understanding of lipid metabolic networks...

  1. Iron metabolism in man.

    Science.gov (United States)

    von Drygalski, Annette; Adamson, John W

    2013-09-01

    Iron metabolism in man is a highly regulated process designed to provide iron for erythropoiesis, mitochondrial energy production, electron transport, and cell proliferation. The mechanisms of iron handling also protect cells from the deleterious effects of free iron, which can produce oxidative damage of membranes, proteins, and lipids. Over the past decade, several important molecules involved in iron homeostasis have been discovered, and their function has expanded our understanding of iron trafficking under normal and pathological conditions. Physiologic iron metabolism is strongly influenced by inflammation, which clinically leads to anemia. Although hepcidin, a small circulating peptide produced by the liver, has been found to be the key regulator of iron trafficking, molecular pathways of iron sensing that control iron metabolism and hepcidin production are still incompletely understood. With this review, we provide an overview of the current understanding of iron metabolism, the recently discovered regulators of iron trafficking, and a focus on the effects of inflammation on the process.

  2. NAD+metabolism: Bioenergetics, signaling and manipulation for therapy.

    Science.gov (United States)

    Yang, Yue; Sauve, Anthony A

    2016-12-01

    We survey the historical development of scientific knowledge surrounding Vitamin B3, and describe the active metabolite forms of Vitamin B3, the pyridine dinucleotides NAD + and NADP + which are essential to cellular processes of energy metabolism, cell protection and biosynthesis. The study of NAD + has become reinvigorated by new understandings that dynamics within NAD + metabolism trigger major signaling processes coupled to effectors (sirtuins, PARPs, and CD38) that reprogram cellular metabolism using NAD + as an effector substrate. Cellular adaptations include stimulation of mitochondrial biogenesis, a process fundamental to adjusting cellular and tissue physiology to reduced nutrient availability and/or increased energy demand. Several mammalian metabolic pathways converge to NAD + , including tryptophan-derived de novo pathways, nicotinamide salvage pathways, nicotinic acid salvage and nucleoside salvage pathways incorporating nicotinamide riboside and nicotinic acid riboside. Key discoveries highlight a therapeutic potential for targeting NAD + biosynthetic pathways for treatment of human diseases. A recent emergence of understanding that NAD + homeostasis is vulnerable to aging and disease processes has stimulated testing to determine if replenishment or augmentation of cellular or tissue NAD + can have ameliorative effects on aging or disease phenotypes. This experimental approach has provided several proofs of concept successes demonstrating that replenishment or augmentation of NAD + concentrations can provide ameliorative or curative benefits. Thus NAD + metabolic pathways can provide key biomarkers and parameters for assessing and modulating organism health. Copyright © 2016. Published by Elsevier B.V.

  3. A novel ex vivo method for measuring whole brain metabolism in model systems.

    Science.gov (United States)

    Neville, Kathryn E; Bosse, Timothy L; Klekos, Mia; Mills, John F; Weicksel, Steven E; Waters, James S; Tipping, Marla

    2018-02-15

    Many neuronal and glial diseases have been associated with changes in metabolism. Therefore, metabolic reprogramming has become an important area of research to better understand disease at the cellular level, as well as to identify targets for treatment. Model systems are ideal for interrogating metabolic questions in a tissue dependent context. However, while new tools have been developed to study metabolism in cultured cells there has been less progress towards studies in vivo and ex vivo. We have developed a method using newly designed tissue restraints to adapt the Agilent XFe96 metabolic analyzer for whole brain analysis. These restraints create a chamber for Drosophila brains and other small model system tissues to reside undisrupted, while still remaining in the zone for measurements by sensor probes. This method generates reproducible oxygen consumption and extracellular acidification rate data for Drosophila larval and adult brains. Single brains are effectively treated with inhibitors and expected metabolic readings are observed. Measuring metabolic changes, such as glycolytic rate, in transgenic larval brains demonstrates the potential for studying how genotype affects metabolism. Current methodology either utilizes whole animal chambers to measure respiration, not allowing for targeted tissue analysis, or uses technically challenging MRI technology for in vivo analysis that is not suitable for smaller model systems. This new method allows for novel metabolic investigation of intact brains and other tissues ex vivo in a quick, and simplistic way with the potential for large-scale studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.

    Science.gov (United States)

    Gentric, Géraldine; Mieulet, Virginie; Mechta-Grigoriou, Fatima

    2017-03-20

    In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.

  5. Characterization of the metabolic requirements in yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Debjit Ray

    Full Text Available The diploid yeast Saccharomyces cerevisiae undergoes mitosis in glucose-rich medium but enters meiosis in acetate sporulation medium. The transition from mitosis to meiosis involves a remarkable adaptation of the metabolic machinery to the changing environment to meet new energy and biosynthesis requirements. Biochemical studies indicate that five metabolic pathways are active at different stages of sporulation: glutamate formation, tricarboxylic acid cycle, glyoxylate cycle, gluconeogenesis, and glycogenolysis. A dynamic synthesis of macromolecules, including nucleotides, amino acids, and lipids, is also observed. However, the metabolic requirements of sporulating cells are poorly understood. In this study, we apply flux balance analyses to uncover optimal principles driving the operation of metabolic networks over the entire period of sporulation. A meiosis-specific metabolic network is constructed, and flux distribution is simulated using ten objective functions combined with time-course expression-based reaction constraints. By systematically evaluating the correlation between computational and experimental fluxes on pathways and macromolecule syntheses, the metabolic requirements of cells are determined: sporulation requires maximization of ATP production and macromolecule syntheses in the early phase followed by maximization of carbohydrate breakdown and minimization of ATP production in the middle and late stages. Our computational models are validated by in silico deletion of enzymes known to be essential for sporulation. Finally, the models are used to predict novel metabolic genes required for sporulation. This study indicates that yeast cells have distinct metabolic requirements at different phases of meiosis, which may reflect regulation that realizes the optimal outcome of sporulation. Our meiosis-specific network models provide a framework for an in-depth understanding of the roles of enzymes and reactions, and may open new avenues

  6. [Bone Cell Biology Assessed by Microscopic Approach. A mathematical approach to understand bone remodeling].

    Science.gov (United States)

    Kameo, Yoshitaka; Adachi, Taiji

    2015-10-01

    It is well known that bone tissue can change its outer shape and internal structure by remodeling according to a changing mechanical environment. However, the mechanism of bone functional adaptation induced by the collaborative metabolic activities of bone cells in response to mechanical stimuli remains elusive. In this article, we focus on the hierarchy of bone structure and function from the microscopic cellular level to the macroscopic tissue level. We provide an overview of a mathematical approach to understand the adaptive changes in trabecular morphology under the application of mechanical stress.

  7. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  8. Metabolic Reprogramming in Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Raquel Guimaraes Coelho

    2018-03-01

    Full Text Available Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer.

  9. Metabolic Reprogramming in Thyroid Carcinoma

    Science.gov (United States)

    Coelho, Raquel Guimaraes; Fortunato, Rodrigo S.; Carvalho, Denise P.

    2018-01-01

    Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer. PMID:29629339

  10. Deciphering the salinity adaptation mechanism in Penicilliopsis clavariiformis AP, a rare salt tolerant fungus from mangrove.

    Science.gov (United States)

    Kashyap, Prem Lal; Rai, Anuradha; Singh, Ruchi; Chakdar, Hillol; Kumar, Sudheer; Srivastava, Alok Kumar

    2016-07-01

    Penicilliopsis clavariiformis AP, a rare salt tolerant fungus reported for the first time from India was identified through polyphasic taxonomy. Scanning electron microscopy showed that the fungus has unique features such as biverticillate penicilli bearing masses of oval to ellipsoidal conidia. The fungus has been characterized for salt tolerance and to understand the relevance of central carbon metabolism in salt stress adaptation. It showed optimal growth at 24 °C and able to tolerate up to 10% (w/v) NaCl. To understand the mechanism of adaptation to high salinity, activities of the key enzymes regulating glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle were investigated under normal (0% NaCl) and saline stress environment (10% NaCl). The results revealed a re-routing of carbon metabolism away from glycolysis to the pentose phosphate pathway (PPP), served as a cellular stress-resistance mechanism in fungi under saline environment. The detection and significant expression of fungus genes (Hsp98, Hsp60, HTB, and RHO) under saline stress suggest that these halotolerance conferring genes from the fungus could have a role in fungus protection and adaptation under saline environment. Overall, the present findings indicate that the rearrangement of the metabolic fluxes distribution and stress related genes play an important role in cell survival and adaptation under saline environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  12. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Chemistry of Drug Metabolism. Drug metabolism is a chemical process, where enzymes play a crucial role in the conversion of one chemical species to another. The major family of enzymes associated with these metabolic reactions is the cytochrome P450 family. The structural features and functional activity of these ...

  13. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Directory of Open Access Journals (Sweden)

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  14. Characterization of recombinant B. abortus strain RB51SOD toward understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51.

    Science.gov (United States)

    Zhu, Jianguo; Larson, Charles B; Ramaker, Megan Ann; Quandt, Kimberly; Wendte, Jered M; Ku, Kimberly P; Chen, Fang; Jourdian, George W; Vemulapalli, Ramesh; Schurig, Gerhardt G; He, Yongqun

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  15. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  16. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism

    DEFF Research Database (Denmark)

    Casanovas, Albert; Sprenger, Richard R; Tarasov, Kirill

    2015-01-01

    Elucidating how and to what extent lipid metabolism is remodeled under changing conditions is essential for understanding cellular physiology. Here, we analyzed proteome and lipidome dynamics to investigate how regulation of lipid metabolism at the global scale supports remodeling of cellular...... differential turnover of lipid droplet-associated triacylglycerols and sterol esters during respiratory growth, that sphingolipid metabolism is regulated in a previously unrecognized growth stage-specific manner, and that endogenous synthesis of unsaturated fatty acids constitutes an in vivo upstream activator...... of peroxisomal biogenesis, via the heterodimeric Oaf1/Pip2 transcription factor. Our work demonstrates the pivotal role of lipid metabolism in adaptive processes and provides a resource to investigate its regulation at the cellular level....

  17. Understanding Carbohydrates

    Science.gov (United States)

    ... Size: A A A Listen En Español Understanding Carbohydrates How much and what type of carbohydrate foods ... glucose levels in your target range. Explore: Understanding Carbohydrates Glycemic Index and Diabetes Learn about the glycemic ...

  18. Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression

    DEFF Research Database (Denmark)

    Makarova, Olga; MacLean, Allyson M.; Nicolaisen, Mogens

    2015-01-01

    Phytoplasmas are intracellular insect-transmitted phytopathogenic bacteria with small genomes. To understand how Aster Yellows phytoplasma strain witches' broom (AY-WB) adapts to their hosts, we performed qRT-PCR analysis of 179 in silico functionally annotated AY-WB genes that are likely to have...... a role in host adaptation. 74 genes were up-regulated in insects and included genes involved in stress response, phospholipid synthesis, malate and pyruvate metabolism, hemolysin and transporter genes, multiple copies of thymidylate kinase, sigma factor and Zn-proteases genes. In plants, 34 genes...

  19. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.

    Science.gov (United States)

    Shen, Tie; Rui, Bin; Zhou, Hong; Zhang, Ximing; Yi, Yin; Wen, Han; Zheng, Haoran; Wu, Jihui; Shi, Yunyu

    2013-01-27

    The ability of a microorganism to adapt to changes in the environment, such as in nutrient or oxygen availability, is essential for its competitive fitness and survival. The cellular objective and the strategy of the metabolic response to an extreme environment are therefore of tremendous interest and, thus, have been increasingly explored. However, the cellular objective of the complex regulatory structure of the metabolic changes has not yet been fully elucidated and more details regarding the quantitative behaviour of the metabolic flux redistribution are required to understand the systems-wide biological significance of this response. In this study, the intracellular metabolic flux ratios involved in the central carbon metabolism were determined by fractional (13)C-labeling and metabolic flux ratio analysis (MetaFoR) of the wild-type E. coli strain JM101 at an oxidative environment in a chemostat. We observed a significant increase in the flux through phosphoenolpyruvate carboxykinase (PEPCK), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (MEZ) and serine hydroxymethyltransferase (SHMT). We applied an ε-constraint based multi-objective optimization to investigate the trade-off relationships between the biomass yield and the generation of reductive power using the in silico iJR904 genome-scale model of E. coli K-12. The theoretical metabolic redistribution supports that the trans-hydrogenase pathway should not play a direct role in the defence mounted by E. coli against oxidative stress. The agreement between the measured ratio and the theoretical redistribution established the significance of NADPH synthesis as the goal of the metabolic reprogramming that occurs in response to oxidative stress. Our work presents a framework that combines metabolic flux ratio analysis and multi-objective optimization to investigate the metabolic trade-offs that occur under varied environmental conditions. Our results led to the proposal that the metabolic response of E

  20. Flood adaptive traits and processes : An overview

    NARCIS (Netherlands)

    Voesenek, Laurentius A C J|info:eu-repo/dai/nl/074850849; Bailey-Serres, Julia

    2015-01-01

    Unanticipated flooding challenges plant growth and fitness in natural and agricultural ecosystems. Here we describe mechanisms of developmental plasticity and metabolic modulation that underpin adaptive traits and acclimation responses to waterlogging of root systems and submergence of aerial

  1. Adaptability Responding Effectively to Change

    CERN Document Server

    (CCL), Center for Creative Leadership; Calarco, Allan

    2011-01-01

    In today's business world, the complexity and pace of change can be daunting. Adaptability has become recognized as a necessary skill for leaders to develop to be effective in this environment. Even so, leaders rarely know what they can do to become more adaptable and foster adaptability in others. This guidebook contributes to a greater understanding of adaptability and the cognitive, emotional, and dispositional flexibility it requires. Leaders will learn how to develop their adaptability and to become more effective for themselves, the people they lead, and their organizations.

  2. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  3. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and distributed...

  4. RESISTANT HYPERTENSION IN A PATIENT WITH METABOLIC SYNDROME

    OpenAIRE

    O. M. Drapkina; J. S. Sibgatullina

    2016-01-01

    Clinical case of resistant hypertension in a patient with metabolic syndrome is presented. Features of hypertension in metabolic syndrome and features of metabolic syndrome in women of pre- and postmenopausal age are also considered. Understanding the features of metabolic syndrome in women, as well as features of hypertension and metabolic syndrome will improve the results of treatment in patients with resistant hypertension.

  5. ADAPT Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Diagnostics and Prognostics Testbed (ADAPT) Project Lead: Scott Poll Subject Fault diagnosis in electrical power systems Description The Advanced...

  6. Prenatal factors contribute to the emergence of kwashiorkor or marasmus in severe undernutrition: evidence for the predictive adaptation model.

    Directory of Open Access Journals (Sweden)

    Terrence E Forrester

    Full Text Available Severe acute malnutrition in childhood manifests as oedematous (kwashiorkor, marasmic kwashiorkor and non-oedematous (marasmus syndromes with very different prognoses. Kwashiorkor differs from marasmus in the patterns of protein, amino acid and lipid metabolism when patients are acutely ill as well as after rehabilitation to ideal weight for height. Metabolic patterns among marasmic patients define them as metabolically thrifty, while kwashiorkor patients function as metabolically profligate. Such differences might underlie syndromic presentation and prognosis. However, no fundamental explanation exists for these differences in metabolism, nor clinical pictures, given similar exposures to undernutrition. We hypothesized that different developmental trajectories underlie these clinical-metabolic phenotypes: if so this would be strong evidence in support of predictive adaptation model of developmental plasticity.We reviewed the records of all children admitted with severe acute malnutrition to the Tropical Metabolism Research Unit Ward of the University Hospital of the West Indies, Kingston, Jamaica during 1962-1992. We used Wellcome criteria to establish the diagnoses of kwashiorkor (n = 391, marasmus (n = 383, and marasmic-kwashiorkor (n = 375. We recorded participants' birth weights, as determined from maternal recall at the time of admission. Those who developed kwashiorkor had 333 g (95% confidence interval 217 to 449, p<0.001 higher mean birthweight than those who developed marasmus.These data are consistent with a model suggesting that plastic mechanisms operative in utero induce potential marasmics to develop with a metabolic physiology more able to adapt to postnatal undernutrition than those of higher birthweight. Given the different mortality risks of these different syndromes, this observation is supportive of the predictive adaptive response hypothesis and is the first empirical demonstration of the advantageous effects of such a

  7. Dealing with hunger: Metabolic stress responses in tumors

    Directory of Open Access Journals (Sweden)

    Michael A Reid

    2013-01-01

    Full Text Available Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.

  8. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    Human Drug Metabolism, An Introduction, Second Edition provides an accessible introduction to the subject and will be particularly invaluable to those who already have some understanding of the life sciences...

  9. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  10. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  11. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.

    Science.gov (United States)

    Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2013-12-17

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.

  12. Adaptation Stories

    International Development Research Centre (IDRC) Digital Library (Canada)

    By Reg'

    formed a real foundation for endogenous, and, therefore, sustainable, strategies for adaptation to climate change. The stories reinforce what we already knew: that successful adaptation must come from the people who are living on the front lines, facing the many problems caused by climate change and climate variation.

  13. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Dietary restriction of mice on a high-fat diet induces substrate efficiency and improves metabolic health.

    Science.gov (United States)

    Duivenvoorde, Loes P M; van Schothorst, Evert M; Bunschoten, Annelies; Keijer, Jaap

    2011-08-01

    High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on an ad libitum basis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.

  15. Understanding classification

    NARCIS (Netherlands)

    Subianto, M.

    2009-01-01

    In practical data analysis, the understandability of models plays an important role in their acceptance. In the data mining literature, however, understandability plays is hardly ever mentioned. If it is mentioned, it is interpreted as meaning that the models have to be simple. In this thesis we

  16. Apolipoprotein B metabolism: tracer kinetics, models, and metabolic studies.

    Science.gov (United States)

    Burnett, John R; Barrett, P Hugh R

    2002-04-01

    The study of apolipoprotein (apo) B metabolism is central to our understanding of lipoprotein metabolism. However, the assembly and secretion of apoB-containing lipoproteins is a complex process. Specialized techniques, developed and applied to in vitro and in vivo studies of apoB metabolism, have provided insights into the mechanisms involved in the regulation of this process. Moreover, these studies have important implications for understanding both the pathophysiology as well as the therapeutic options for the dyslipidemias. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the applications of kinetic analysis and multicompartmental modeling to the study of apoB metabolism. New developments and significant advances over the last decade are discussed.

  17. Quantifying phenotypic flexibility as the response to a high-fat challenge test in different states of metabolic health

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Erk, M.J. van; Dutman, A.E.; Stroeve, J.H.M.; Steeg, E. van de; Bijlsma, S.; Kooistra, T.; Ommen, B. van; Wopereis, S.

    2015-01-01

    Metabolism maintains homeostasis at chronic hypercaloric conditions, activating postprandial response mechanisms, which come at the cost of adaptation processes such as energy storage, eventually with negative health consequences. This study quantified the metabolic adaptation capacity by studying

  18. Embodied understanding.

    Science.gov (United States)

    Johnson, Mark

    2015-01-01

    Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism a