WorldWideScience

Sample records for understanding mechanical systems

  1. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  2. How to understand quantum mechanics

    CERN Document Server

    Ralston, John P

    2018-01-01

    How to Understand Quantum Mechanics presents an accessible introduction to understanding quantum mechanics in a natural and intuitive way, which was advocated by Erwin Schroedinger and Albert Einstein. A theoretical physicist reveals dozens of easy tricks that avoid long calculations, makes complicated things simple, and bypasses the worthless anguish of famous scientists who died in angst. The author's approach is light-hearted, and the book is written to be read without equations, however all relevant equations still appear with explanations as to what they mean. The book entertainingly rejects quantum disinformation, the MKS unit system (obsolete), pompous non-explanations, pompous people, the hoax of the 'uncertainty principle' (it is just a math relation), and the accumulated junk-DNA that got into the quantum operating system by misreporting it. The order of presentation is new and also unique by warning about traps to be avoided, while separating topics such as quantum probability to let the Schroeding...

  3. Understand quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2000-01-01

    The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)

  4. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems

    Science.gov (United States)

    Rivera-Jacquez, Hector J.; Masunov, Artëm E.

    2018-06-01

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.

  5. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  6. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  7. Understanding the mechanisms of lung mechanical stress

    Directory of Open Access Journals (Sweden)

    C.S.N.B. Garcia

    2006-06-01

    Full Text Available Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area or strain (any forced change in length in relation to the initial length and shear stress (the stress component parallel to a given surface. The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

  8. Placebo analgesia: understanding the mechanisms

    OpenAIRE

    Medoff, Zev M; Colloca, Luana

    2015-01-01

    Expectations of pain relief drive placebo analgesia. Understanding how expectations of improvement trigger distinct biological systems to shape therapeutic analgesic outcomes has been the focus of recent pharmacologic and neuroimaging studies in the field of pain. Recent findings indicate that placebo effects can imitate the actions of real painkillers and promote the endogenous release of opioids and nonopioids in humans. Social support and observational learning also contribute to placebo a...

  9. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic

    International Nuclear Information System (INIS)

    Chave, T.

    2007-10-01

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  10. From genomes to metabolomes: Understanding mechanisms of symbiosis and cell-cell signaling using the archaeal system Ignicoccus-Nanoarchaeum

    Energy Technology Data Exchange (ETDEWEB)

    Podar, Mircea [Univ. of Tennessee, Knoxville, TN (United States). Biosciences Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hettich, Robert [Univ. of Tennessee, Knoxville, TN (United States). Biosciences Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Copie, Valerie [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Bothner, Brian [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry

    2016-12-16

    The main objective of this project was to use symbiotic Nanoarchaeaota, a group of thermophilic Archaea that are obligate symbionts/parasites on other Archaea, to develop an integrated multi-omic approach to study inter-species interactions as well as to understand fundamental mechanism that enable such relationships. As part of this grant we have achieved a number of important milestone on both technical and scientific levels. On the technical side, we developed immunofluorescence labeling and tracking methods to follow Nanoarchaeota in cultures and in environmental samples, we applied such methods in conjunction with flow cytometry to quantify and isolate uncultured representatives from the environment and characterized them by single cell genomics. On the proteomics side, we developed a more efficient and sensitive method to recover and semi-quantitatively measure membrane proteins, while achieving high total cellular proteome coverage (70-80% of the predicted proteome). Metabolomic analyses used complementary NMR and LC/GC mass spectrometry and led to the identification of novel lipids in these organisms as well as quantification of some of the major metabolites. Importantly, using several informatics approaches we were also able to integrate the transcriptomic, proteomic and metabolomic datasets, revealing aspects of the interspecies interaction that were not evident in the single omic analyses (manuscript in review). On the science side we determined that N. equitans and I. hospitalis are metabolically coupled and that N. equitans is strictly dependent on its host both for metabolic precursors and energetic needs. The actual mechanism by which small molecules move across the cell membrane remains unknown. The Ignicoccus host responds to the metabolic and energetic burned by upregulating of key primary metabolism steps and ATP synthesis. The two species have co-evolved, aspect that we determined by comparative genomics with other species of Ignicoccus

  11. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems. Readers may recall the first part of the paper in October issue of Coordinates. Here is the concluding part that focuses on the changing...

  12. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  13. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin

    Science.gov (United States)

    Wright, Elise P.; Padula, Matthew P.; Higgins, Vincent J.; Aldrich-Wright, Janice R.; Coorssen, Jens R.

    2014-01-01

    Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics. PMID:28250393

  14. Understanding Mechanical Design with Respect to Manufacturability

    Science.gov (United States)

    Mondell, Skyler

    2010-01-01

    At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.

  15. Understanding Mechanisms of Radiological Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  16. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems - firstly the land management paradigm and its influence on the land administration framework, secondly the role that the cadastre plays...... in contributing to sustainable development, thirdly the changing nature of ownership and the role of land markets, and lastly a land management vision that promotes land administration in support of sustainable development and spatial enablement of society. We present here the first part of the paper. The second...

  17. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  18. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  19. Shape understanding system machine understanding and human understanding

    CERN Document Server

    Les, Zbigniew

    2015-01-01

    This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.    

  20. Understanding biochar mechanisms for practical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Bruno [Halle-Wittenberg Univ. (Germany). Inst. fuer Agrar- und Ernaehrungeswissenschaften Bodenbiogeochemie; Kammann, Claudia [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Loewen, Achim (ed.) [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany); HAWK Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim, Holzminden, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik NEUtec

    2015-07-01

    The conference on ''understanding biochar mechanisms for practical implementation'' 2015 at the Geisenheim University aims at understanding biochar mechanism, that are crucial for beneficial and safety biochar technology implementation. Further issues are ecotoxicology, biochar in agriculture, horticulture, and animal husbandry. Practical issues concern analysis and characterization of technological processes, sustainable uses and certification, regulation and marketing aspects. The Conference is structured in 10 sessions.

  1. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  2. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  3. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  4. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  5. Quantum mechanics - a key to understanding magnetism

    International Nuclear Information System (INIS)

    Van Vleck, J.H.

    1978-01-01

    A translation is presented of J.H. van Vleck's lecture read at the 1977 Nobel Prize avarding ceremony. The basic results obtained using quantum mechanics in solving the problems of magnetism and especially paramagnetism are chronologically arranged. (Z.J.)

  6. Understanding gene functions and disease mechanisms

    DEFF Research Database (Denmark)

    Fuchs, Helmut; Aguilar-Pimentel, Juan Antonio; Amarie, Oana V.

    2018-01-01

    Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order...... to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas...

  7. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  8. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    Science.gov (United States)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  9. Abstractions for Mechanical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2012-01-01

    mechanical system. The tangential manifolds are generated using constants of motion, which can be derived from Noether's theorem. The transversal manifolds are subsequently generated on a reduced space, given by the Routhian, via action-angle coordinates. The method fully applies for integrable systems. We...

  10. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  11. Student understanding of time dependence in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Paul J. Emigh

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  12. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  13. Understanding terminological systems. I: Terminology and typology

    NARCIS (Netherlands)

    de Keizer, N. F.; Abu-Hanna, A.; Zwetsloot-Schonk, J. H.

    2000-01-01

    Terminological systems are an important research issue within the field of medical informatics. For precise understanding of existing terminological systems a referential framework is needed that provides a uniform terminology and typology of terminological systems themselves. In this article a

  14. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  15. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  16. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  17. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  18. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  19. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-09-15

    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  20. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  1. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  2. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals

    International Nuclear Information System (INIS)

    Dao, M.; Lu, L.; Asaro, R.J.; Hosson, J.T.M. de; Ma, E.

    2007-01-01

    Focusing on nanocrystalline (nc) pure face-centered cubic metals, where systematic experimental data are available, this paper presents a brief overview of the recent progress made in improving mechanical properties of nc materials, and in quantitatively and mechanistically understanding the underlying mechanisms. The mechanical properties reviewed include strength, ductility, strain rate and temperature dependence, fatigue and tribological properties. The highlighted examples include recent experimental studies in obtaining both high strength and considerable ductility, the compromise between enhanced fatigue limit and reduced crack growth resistance, the stress-assisted dynamic grain growth during deformation, and the relation between rate sensitivity and possible deformation mechanisms. The recent advances in obtaining quantitative and mechanics-based models, developed in line with the related transmission electron microscopy and relevant molecular dynamics observations, are discussed with particular attention to mechanistic models of partial/perfect-dislocation or deformation-twin-mediated deformation processes interacting with grain boundaries, constitutive modeling and simulations of grain size distribution and dynamic grain growth, and physically motivated crystal plasticity modeling of pure Cu with nanoscale growth twins. Sustained research efforts have established a group of nanocrystalline and nanostructured metals that exhibit a combination of high strength and considerable ductility in tension. Accompanying the gradually deepening understanding of the deformation mechanisms and their relative importance, quantitative and mechanisms-based constitutive models that can realistically capture experimentally measured and grain-size-dependent stress-strain behavior, strain-rate sensitivity and even ductility limit are becoming available. Some outstanding issues and future opportunities are listed and discussed

  3. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  4. Intact and Impaired Mechanisms of Action Understanding in Autism

    Science.gov (United States)

    Vivanti, Giacomo; McCormick, Carolyn; Young, Gregory S.; Abucayan, Floridette; Hatt, Naomi; Nadig, Aparna; Ozonoff, Sally; Rogers, Sally J.

    2016-01-01

    Typically developing children understand and predict others’ behavior by extracting and processing relevant information such as the logic of their actions within the situational constraints and the intentions conveyed by their gaze direction and emotional expressions. Children with autism have difficulties understanding and predicting others’ actions. With the use of eye tracking and behavioral measures, we investigated action understanding mechanisms used by 18 children with autism and a well-matched group of 18 typically developing children. Results showed that children with autism (a) consider situational constraints in order to understand the logic of an agent’s action and (b) show typical usage of the agent’s emotional expressions to infer his or her intentions. We found (c) subtle atypicalities in the way children with autism respond to an agent’s direct gaze and (d) marked impairments in their ability to attend to and interpret referential cues such as a head turn for understanding an agent’s intentions. PMID:21401220

  5. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  6. Understanding the biological mechanisms of Zika virus disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will use advanced biomolecular, genomics and proteomics techniques to explain the molecular mechanisms by which the Zika virus infects and persists in the human body, how it affects the human reproductive and central nervous system, and how the risk of fetal abnormalities can be better predicted in infected ...

  7. Japanese Children's Understanding of Notational Systems

    Science.gov (United States)

    Takahashi, Noboru

    2012-01-01

    This study examined Japanese children's understanding of two Japanese notational systems: "hiragana" and "kanji". In three experiments, 126 3- to 6-year-olds were asked to name words written in hiragana or kanji as they appeared with different pictures. Consistent with Bialystok ("Journal of Experimental Child…

  8. Recent progress on understanding the mechanisms of amyloid nucleation.

    Science.gov (United States)

    Chatani, Eri; Yamamoto, Naoki

    2018-04-01

    Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.

  9. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  10. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  11. Geochemistry and the Understanding of Groundwater Systems

    Science.gov (United States)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas

  12. Mechanisms influencing student understanding on an outdoor guided field trip

    Science.gov (United States)

    Caskey, Nourah Al-Rashid

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the benefits of this experience are ambiguous at best (Falk and Balling, 1982; Falk and Dierking, 1992; Kisiel, 2006.) Students on an outdoor guided field trip to a local nature park experienced a significant increase in their understanding of the rock cycle. The changes in the pre-field trip test and the post-field trip test as well as their answers in interviews showed a profound change in the students' understanding and in their interest in the subject matter. The use of the "student's voice" (Bamberger and Tal, 2008) was the motivation for data analysis. By using the students' voice, I was able to determine the mechanisms that might influence their understanding of a subject. The central concepts emerging from the data were: the outdoor setting; the students' interest; the social interaction. From these central concepts, a conceptual model was developed. The outdoor setting allows for the freedom to explore, touch, smell and movement. This, in turn, leads to an increased interest in subject matter. As the students are exploring, they are enjoying themselves and become more open to learning. Interest leads to a desire to learn (Dewey, 1975). In addition to allowing the freedom to explore and move, the outdoor setting creates the condition for social interaction. The students talk to each other as they walk; they have in-depth discourse regarding the subject matter---with the teachers, each other and with the guides. The guides have an extremely important role in the students' learning. The more successful guides not only act as experts, but also adjust to the students' needs and act or speak accordingly. The

  13. Quantum mechanics in complex systems

    Science.gov (United States)

    Hoehn, Ross Douglas

    . These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of

  14. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  15. Mechanics of bioinspired imaging systems

    Directory of Open Access Journals (Sweden)

    Zhengwei Li

    2016-01-01

    Full Text Available Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.

  16. Understanding quantum mechanics by measuring the properties of mesoscopic devices

    International Nuclear Information System (INIS)

    Webb, R.

    1993-01-01

    Measurements of the electrical transport and magnetic properties of micron-size scale insulators, metals, semi-metals, and semiconductors at low temperatures have uncovered a wealth of unexpected phenomena. The only way to understand these new properties is by invoking many of the postulates of quantum mechanics. The author has confirmed that the electron acts as a long-range phase-coherent wave and conventional classical forces are not as important as scalar and vector potentials in determining the response of the electron as it moves through its environment. This talk will focus on the measurement of the Aharonov-Bohm self-interference effects, nonlocal transport phenomena, and persistent currents in normal metal ring structures that have been observed in these nanostructures

  17. Our Evolving Understanding of the Mechanism of Quinolones

    Directory of Open Access Journals (Sweden)

    Arnaud Gutierrez

    2018-04-01

    Full Text Available The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.

  18. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms

    Science.gov (United States)

    Singh, Amit; Kar, Sujita Kumar

    2017-01-01

    Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT. PMID:28783929

  19. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine.

    Science.gov (United States)

    Gilgenkrantz, Hélène; Collin de l'Hortet, Alexandra

    2018-04-16

    Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  1. Control mechanisms in franchise systems

    OpenAIRE

    Hass, Jörg

    2012-01-01

    This dissertation answers the question which different control mechanisms exist in a franchise system. It is the first two-sided franchise empirical analysis, regarding all outlets of the franchise system (franchisees and company-owned) as well as the franchisor. On the theoretical side, this dissertation integrates the two main management theories: principal-agent-theory and transaction cost analysis. The results show that there are used different control mechanisms in a franchise sys...

  2. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  3. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  4. Understanding and Modeling Teams As Dynamical Systems

    Science.gov (United States)

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  5. Aerodynamic and Mechanical System Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix

    This thesis deals with mechanical multibody-systems applied to the drivetrain of a 500 kW wind turbine. Particular focus has been on gearbox modelling of wind turbines. The main part of the present project involved programming multibody systems to investigate the connection between forces, moments...

  6. Systematic approach to understanding the pathogenesis of systemic sclerosis.

    Science.gov (United States)

    Zuo, Xiaoxia; Zhang, Lihua; Luo, Hui; Li, Yisha; Zhu, Honglin

    2017-10-01

    Systemic sclerosis (SSc) is a complex heterogeneous autoimmune disease. Progressive organ fibrosis is a major contributor to SSc mortality. Despite extensive efforts, the underlying mechanism of SSc remains unclear. Efforts to understand the pathogenesis of SSc have included genomics, epigenetics, transcriptomic, proteomic and metabolomic studies in the last decade. This review focuses on recent studies in SSc research based on multi-omics. The combination of these technologies can help us understand the pathogenesis of SSc. This review aims to provide important information for disease identification, therapeutic targets and potential biomarkers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  8. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  9. Understanding the mechanisms of amorphous creep through molecular simulation.

    Science.gov (United States)

    Cao, Penghui; Short, Michael P; Yip, Sidney

    2017-12-26

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  10. Understanding human action: integrating meanings, mechanisms, causes, and contexts

    NARCIS (Netherlands)

    Keestra, M.; Repko, A.F.; Newell, W.H.; Szostak, R.

    2012-01-01

    Humans are capable of understanding an incredible variety of actions performed by other humans. Even though these range from primary biological actions like eating and fleeing, to acts in parliament or in poetry, humans generally can make sense of each other’s actions. Understanding other people’s

  11. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2015-01-01

    This book is a study of the interactions between different types of systems, their environment, and their subsystems.  The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life.  Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts.  The book includes many examples covering various types of systems.  The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.  ·         Shows how system knowledge may be applied in many different areas without the need for deep mathematical knowledge; ·         Demonstrates how to model and simulate s...

  12. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  13. Proactive maintenance for mechanical systems

    CERN Document Server

    Fitch, EC

    1992-01-01

    Written by Dr. E.C. Fitch, the book contains over 340 double column pages which include 400 figures and tables, a comprehensive bibliography, and index. There is no root cause of mechanical failure, known to the author, that has been ignored or left out. Nowhere in the world is this information put together in such a concise and comprehensive manner, and the book will serve as a reference and guide to designers, practising engineers, maintenance technicians, plant managers and operators who must design, maintain and operate fluid-dependent mechanical systems.

  14. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  15. Understanding the mechanism of base development of HSQ

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Chao, Weilun; Griedel, Brian; Liang, Xiaogan; Lewis, Mark; Hilken, Dawn; Olynick, Deirdre

    2009-06-16

    We study the dissolution mechanism of HSQ (hydrogen silsesquioxane) in base solutions with the addition of chloride salts to elucidate the development mechanism. Reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics points to two dose-dependent development mechanisms. Considering ion sizes, both hydrated and non-hydrated, and ion exchange, we propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and non-hydrated ion size leads to higher contrast developers, such as tetramethyl ammonium hydroxide (TMAH) with NaCl.

  16. Engaging Systems Understanding through Games (Invited)

    Science.gov (United States)

    Pfirman, S. L.; Lee, J. J.; Eklund, K.; Turrin, M.; O'Garra, T.; Orlove, B. S.

    2013-12-01

    The Polar Learning And Responding (PoLAR) Climate Change Education Partnership (CCEP), supported by the National Science Foundation's CCEP Phase II program, uses novel educational approaches to engage adult learners and to inform public understanding about climate change. Both previous studies and our experience show that games and game-like activities lead people to explore systems and motivate problem-solving. This presentation focuses on three games developed by the PoLAR team: a multiplayer card game, a strategy board game, and a serious game, and discusses them within the larger framework of research and evaluation of learning outcomes. In the multiplayer card game EcoChains: Arctic Crisis, players learn how to build marine food chains, then strategize ways to make them resilient to a variety of natural and anthropogenic events. In the strategy board game Arctic SMARTIC (Strategic MAnagement of Resources in TImes of Change), participants take on roles, set developmental priorities, and then negotiate to resolve conflicts and deal with climate change scenarios. In the serious game FUTURE COAST, players explore "what if" scenarios in a collaborative narrative environment. Grounded on the award-winning WORLD WITHOUT OIL, which employed a similar story frame to impart energy concepts and realities, FUTURE COAST uses voicemails from the future to impel players through complexities of disrupted systems and realities of human interactions when facing change. Launching February 2014, FUTURE COAST is played online and in field events; players create media designed to be spreadable through their social networks. As players envision possible futures, they create diverse communities of practice that synthesize across human-environment interactions. Playtests highlight how the game evokes systems thinking, and engages and problem-solves via narrative: * 'While I was initially unsure how I'd contribute to a group I'd never met, the project itself proved so engaging that I

  17. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  18. Entropy for Mechanically Vibrating Systems

    Science.gov (United States)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators

  19. Understanding cities as social-ecological systems

    CSIR Research Space (South Africa)

    Du Plessis, C

    2008-09-01

    Full Text Available This paper builds on earlier ecological approaches to urban development, as well as more recent thinking in the fields of sustainability science, resilience thinking and complexity theory, to propose a conceptual framework for understanding cities...

  20. Understanding the Mechanism behind Maternal Imprisonment and Adolescent School Dropout

    Science.gov (United States)

    Cho, Rosa M.

    2011-01-01

    This study empirically tested 3 mechanisms commonly suggested to disadvantage youths whose mothers are incarcerated in prison. An event history analysis of school dropout was conducted on a sample of 6,008 adolescents in a large city created by merging several Illinois state administrative data. Findings revealed that adolescents are indeed at…

  1. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  2. Understanding "Understanding" Flow for Network-Centric Warfare: Military Knowledge-Flow Mechanics

    National Research Council Canada - National Science Library

    Nissen, Mark

    2002-01-01

    Network-centric warfare (NCW) emphasizes information superiority for battlespace efficacy, but it is clear that the mechanics of how knowledge flows are just as important as those pertaining to the networks and communication...

  3. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  4. Time Perception Mechanisms at Central Nervous System.

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  5. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2017-01-01

    Systems are everywhere and we are surrounded by them. We are a complex amalgam of systems that enable us to interact with an endless array of external systems in our daily lives. They are electrical, mechanical, social, biological, and many other types that control our environment and our well-being. By appreciating how these systems function, will broaden our understanding of how our world works. Readers from a variety of disciplines will benefit from the knowledge of system behavior they will gain from this book and will be able to apply those principles in various contexts. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent based systems, optimization, and discrete events and procedures. The diverse range of examples provided in this book, will allow readers to: Apply system knowledge at work and in daily life without deep mathematical knowledge; Build models and simulate system behaviors on a personal computer; Opti...

  7. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  8. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    Science.gov (United States)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  9. Understanding mechanisms of autoimmunity through translational research in vitiligo

    Science.gov (United States)

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  10. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    Science.gov (United States)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and

  11. Life and Understanding: The Origins of "Understanding" in Self-Organizing Nervous Systems.

    Science.gov (United States)

    Yufik, Yan M; Friston, Karl

    2016-01-01

    This article is motivated by a formulation of biotic self-organization in Friston (2013), where the emergence of "life" in coupled material entities (e.g., macromolecules) was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems constitute a Markov blanket ; separating the internal states of a system from its surrounding states. In this article, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik and Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of "objects"; i.e., quasi-stable (stimulus bound) feature groupings that are conserved over multiple presentations (e.g., the experience of perceiving "apple" can be interrupted and resumed many times). Monitoring the variations in such groups enables the apprehension of behavior; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, "understanding" involves self-directed composition and manipulation of the ensuing "mental models" that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behavior of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex (Georgopoulos et al

  12. Toward mechanical systems biology in bone.

    Science.gov (United States)

    Trüssel, Andreas; Müller, Ralph; Webster, Duncan

    2012-11-01

    Cyclic mechanical loading is perhaps the most important physiological factor regulating bone mass and shape in a way which balances optimal strength with minimal weight. This bone adaptation process spans multiple length and time scales. Forces resulting from physiological exercise at the organ scale are sensed at the cellular scale by osteocytes, which reside inside the bone matrix. Via biochemical pathways, osteocytes orchestrate the local remodeling action of osteoblasts (bone formation) and osteoclasts (bone resorption). Together these local adaptive remodeling activities sum up to strengthen bone globally at the organ scale. To resolve the underlying mechanisms it is required to identify and quantify both cause and effect across the different scales. Progress has been made at the different scales experimentally. Computational models of bone adaptation have been developed to piece together various experimental observations at the different scales into coherent and plausible mechanisms. However additional quantitative experimental validation is still required to build upon the insights which have already been achieved. In this review we discuss emerging as well as state of the art experimental and computational techniques and how they might be used in a mechanical systems biology approach to further our understanding of the mechanisms governing load induced bone adaptation, i.e., ways are outlined in which experimental and computational approaches could be coupled, in a quantitative manner to create more reliable multiscale models of bone.

  13. Optical engineering: understanding optical system by experiments

    Science.gov (United States)

    Scharf, Toralf

    2017-08-01

    Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.

  14. Understanding The Resistance to Health Information Systems

    OpenAIRE

    David Ackah; Angelito E Alvarado; Heru Santoso Wahito Nugroho; Sanglar Polnok; Wiwin Martiningsih

    2017-01-01

    User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing...

  15. Understanding healthcare innovation systems: the Stockholm region case.

    Science.gov (United States)

    Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik

    2016-11-21

    Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public

  16. Understanding natural moisturizing mechanisms: implications for moisturizer technology.

    Science.gov (United States)

    Chandar, Prem; Nole, Greg; Johnson, Anthony W

    2009-07-01

    Dry skin and moisturization are important topics because they impact the lives of many individuals. For most individuals, dry skin is not a notable concern and can be adequately managed with current moisturizing products. However, dry skin can affect the quality of life of some individuals because of the challenges of either harsh environmental conditions or impaired stratum corneum (SC) dry skin protection processes resulting from various common skin diseases. Dry skin protection processes of the SC, such as the development of natural moisturizing factor (NMF), are complex, carefully balanced, and easily perturbed. We discuss the importance of the filaggrin-NMF system and the composition of NMF in both healthy and dry skin, and also reveal new insights that suggest the properties required for a new generation of moisturizing technologies.

  17. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    Science.gov (United States)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  18. Formal system of communication and understanding. II

    Energy Technology Data Exchange (ETDEWEB)

    Zsuzsanna, M

    1982-01-01

    For pt.I see IBID., no.5, p.252-8 (1982). In this article G. Pask's (1975) formal theory of dialogues and talk is summarized. Part II describes the talk-environment and modelling. The conscious systems and machine-intelligence are mainly dealt with. Finally a couple of cases with Pask's theory implemented are looked at. 7 references.

  19. Implementing An Image Understanding System Architecture Using Pipe

    Science.gov (United States)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  20. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  1. Production monitoring system for understanding product robustness

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    study is used to demonstrate how the monitoring system can be used to efficiently guide corrective action to improve product performance. It is claimed that the monitoring system can be used to dramatically cut the time taken to identify, planand execute corrective action related to typical quality......In the current quality paradigm, the performance of a product is kept within specification by ensuring that its parts are within specification. Product performance is then validated after final assembly. However, this does not control how robust the product performance is, i.e. how much...... it will vary between the specification limits. In this paper, a model for predicting product performance is proposed, taking into account design, assembly and process parameters live from production. This empowers production to maintain final product performance, instead of part quality. The PRECI‐IN case...

  2. Understanding The Resistance to Health Information Systems

    Directory of Open Access Journals (Sweden)

    David Ackah

    2017-07-01

    Full Text Available User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing, using facts selectively, distorting facts and  raising objections. The manifestation of passive resistance are agreeing verbally but not following through, failing to implement change, procrastinating/dragging feet, feigning ignorance, withholding information, suggestions, help or support, and standing by and allowing the change to fail.

  3. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  4. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    Science.gov (United States)

    Marshall, Paul; Bredy, Timothy W.

    2016-07-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.

  5. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  6. Does knowledge of seat design and whiplash injury mechanisms translate to understanding outcomes?

    Science.gov (United States)

    Ivancic, Paul C

    2011-12-01

    Review of whiplash injury mechanisms and effects of anti-whiplash systems including active head restraint (AHR) and Whiplash Protection System (WHIPS). This article provides an overview of previous biomechanical and epidemiological studies of AHR and WHIPS and investigates whether seat design and biomechanical knowledge of proposed whiplash injury mechanisms translates to understanding outcomes of rear crash occupants. In attempt to reduce whiplash injuries, some newer automobiles incorporate anti-whiplash systems such as AHR or WHIPS. During a rear crash, mechanically based systems activate by occupant momentum pressing into the seatback whereas electronically based systems activate using crash sensors and an electronic control unit linked to the head restraint. To investigate the effects of AHR and WHIPS on occupant responses including head and neck loads and motions, biomechanical studies of simulated rear crashes have been performed using human volunteers, mathematical models, crash dummies, whole cadavers, and hybrid cadaveric/surrogate models. Epidemiological studies have evaluated the effects of AHR and WHIPS on reducing whiplash injury claims and lessening subjective complaints of neck pain after rear crashes. RESULTS.: Biomechanical studies indicate that AHR and WHIPS reduced the potential for some whiplash injuries but did not completely eliminate the injury risk. Epidemiological outcomes indicate reduced whiplash injury claims or subjective complaints of crash-related neck pain between 43 and 75% due to AHR and between 21% and 49% due to WHIPS as compared to conventional seats and head restraints. Yielding energy-absorbing seats aim to reduce occupant loads and accelerations whereas AHRs aim to provide early head support to minimize head and neck motions. Continued objective biomechanical and epidemiological studies of anti-whiplash systems together with industry, governmental, and clinical initiatives will ultimately lead to reduced whiplash injuries

  7. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  8. Awareness Mechanisms in Groupware Systems

    OpenAIRE

    Byrne, Peter

    2004-01-01

    The main focus of this dissertation is to study the awareness mechanisms in groupware computing. The object of this study is to create a platform for testing awareness mechanisms in a general and empirical fashion. The platform will allow different awareness schemes to be enabled and disabled as required. The awareness mechanisms that will be supported in this project are the use of colour as a carrier of embodiment information, the use of radars and telepointers to present location awaren...

  9. Understanding Digital Learning from the Perspective of Systems Dynamics

    Science.gov (United States)

    Kok, Ayse

    2009-01-01

    The System Dynamics approach can be seen as a new way of understanding dynamical phenonema (natural, physical, biological, etc.) that occur in our daily lives taking into consideration not only single pairs of cause-effect variables, but the functioning of the system as a whole. This approach also provides the students with a new understanding in…

  10. Current understanding of interactions between nanoparticles and the immune system

    International Nuclear Information System (INIS)

    Dobrovolskaia, Marina A.; Shurin, Michael; Shvedova, Anna A.

    2016-01-01

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  11. Current understanding of interactions between nanoparticles and the immune system

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.gov [Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702 (United States); Shurin, Michael [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505 (United States); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506 (United States)

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  12. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  13. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    Entry into low earth orbit and beyond causes profound shifts in environmental conditions that have the potential to influence human productivity, long term health, and even survival. We now have evidence that microgravity, radiation and/or confinement in space can lead to demonstrably detrimental changes in the cardiovascular (e.g. vessel function, orthostatic intolerance), musculoskeletal (muscle atrophy, bone loss) and nervous (eye, neurovestibular) systems of astronauts. Because of both the limited number of astronauts who have flown (especially females) and the high degree of individual variability in the human population, important unanswered questions about responses to the space environment remain: What are the sex differences with respect to specific physiological systems? Are the responses age-dependent and/or reversible after return to Earth? Do observed detrimental changes that resemble accelerated aging progress continuously over time or plateau? What are the mechanisms of the biological responses? Answering these important questions certainly demands a multi-pronged approach, and the study of multicellular model organisms (such as rodents and flies) already has provided opportunities for exploring those questions in some detail. Recent long duration spaceflight experiments with rodents show that mice in space provide a mammalian model that uniquely combines the influence of reduced gravitational loading with increased physical activity. In addition, multiple investigators have shown that ground-based models that simulate aspects of spaceflight (including rodent hind limb unloading to mimic weightlessness and exposure to ionizing radiation), cause various transient and persistent detrimental consequences in multiple physiological systems. In general, we have found that adverse skeletal effects of simulated weightlessness and space radiation when combined, can be quantitatively, if not qualitatively, different from the influence of each environmental

  14. Degradation Mechanisms of Military Coating Systems

    National Research Council Canada - National Science Library

    Keene, L. T; Halada, G. P; Clayton, C. R; Kosik, W. E; McKnight, S. H

    2004-01-01

    This work describes the development and application of specialized characterization techniques used to study the environmental degradation mechanisms of organic coating systems employed by the United...

  15. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  16. Understanding Service-Oriented Systems Using Dynamic Analysis

    NARCIS (Netherlands)

    Espinha, T.; Zaidman, A.; Gross, H.G.

    2011-01-01

    When trying to understand a system that is based on the principles of Service-Oriented Architecture (SOA), it is typically not enough to understand the individual services in the architecture, but also the interactions between the services. In this paper, we present a technique based on dynamic

  17. Anticipatory Mechanisms in Evolutionary Living Systems

    Science.gov (United States)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence

  18. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  19. Unit mechanisms of fission gas release: Current understanding and future needs

    Science.gov (United States)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  20. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  1. ARGOS laser system mechanical design

    Science.gov (United States)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  2. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  3. Tracking Control of Nonlinear Mechanical Systems

    NARCIS (Netherlands)

    Lefeber, A.A.J.

    2000-01-01

    The subject of this thesis is the design of tracking controllers for certain classes of mechanical systems. The thesis consists of two parts. In the first part an accurate mathematical model of the mechanical system under consideration is assumed to be given. The goal is to follow a certain

  4. Statistical mechanics of program systems

    International Nuclear Information System (INIS)

    Neirotti, Juan P; Caticha, Nestor

    2006-01-01

    We discuss the collective behaviour of a set of operators and variables that constitute a program and the emergence of meaningful computational properties in the language of statistical mechanics. This is done by appropriately modifying available Monte Carlo methods to deal with hierarchical structures. The study suggests, in analogy with simulated annealing, a method to automatically design programs. Reasonable solutions can be found, at low temperatures, when the method is applied to simple toy problems such as finding an algorithm that determines the roots of a function or one that makes a nonlinear regression. Peaks in the specific heat are interpreted as signalling phase transitions which separate regions where different algorithmic strategies are used to solve the problem

  5. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations. (paper)

  6. Descriptive Analyses of Mechanical Systems

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Hansen, Claus Thorp

    2003-01-01

    Forord Produktanalyse og teknologianalyse kan gennmføres med et bredt socio-teknisk sigte med henblik på at forstå kulturelle, sociologiske, designmæssige, forretningsmæssige og mange andre forhold. Et delområde heri er systemisk analyse og beskrivelse af produkter og systemer. Nærværende kompend...

  7. Understanding Patterns for System-of-Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Nielsen, Claus Ballegård; Schmid, Klaus

    Creating a successful system of systems—one that meets the needs of its stakeholders today and can evolve and scale to sustain those stakeholders into the future—is a very complex engineering challenge. In a system of systems (SoS), one of the biggest challenges is in achieving cooperation and in...

  8. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  9. Understanding the molecular mechanisms of human microtia via a pig model of HOXA1 syndrome

    Directory of Open Access Journals (Sweden)

    Ruimin Qiao

    2015-06-01

    Full Text Available Microtia is a congenital malformation of the outer ears. Although both genetic and environmental components have been implicated in microtia, the genetic causes of this innate disorder are poorly understood. Pigs have naturally occurring diseases comparable to those in humans, providing exceptional opportunity to dissect the molecular mechanism of human inherited diseases. Here we first demonstrated that a truncating mutation in HOXA1 causes a monogenic disorder of microtia in pigs. We further performed RNA sequencing (RNA-Seq analysis on affected and healthy pig embryos (day 14.25. We identified a list of 337 differentially expressed genes (DEGs between the normal and mutant samples, shedding light on the transcriptional network involving HOXA1. The DEGs are enriched in biological processes related to cardiovascular system and embryonic development, and neurological, renal and urological diseases. Aberrant expressions of many DEGs have been implicated in human innate deformities corresponding to microtia-associated syndromes. After applying three prioritizing algorithms, we highlighted appealing candidate genes for human microtia from the 337 DEGs. We searched for coding variants of functional significance within six candidate genes in 147 microtia-affected individuals. Of note, we identified one EVC2 non-synonymous mutation (p.Asp1174Asn as a potential disease-implicating variant for a human microtia-associated syndrome. The findings advance our understanding of the molecular mechanisms underlying human microtia, and provide an interesting example of the characterization of human disease-predisposing variants using pig models.

  10. Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples

    Science.gov (United States)

    Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun

    2014-01-01

    System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…

  11. Understanding information retrieval systems management, types, and standards

    CERN Document Server

    Bates, Marcia J

    2011-01-01

    In order to be effective for their users, information retrieval (IR) systems should be adapted to the specific needs of particular environments. The huge and growing array of types of information retrieval systems in use today is on display in Understanding Information Retrieval Systems: Management, Types, and Standards, which addresses over 20 types of IR systems. These various system types, in turn, present both technical and management challenges, which are also addressed in this volume. In order to be interoperable in a networked environment, IR systems must be able to use various types of

  12. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  13. Whole body imaging system mechanism

    International Nuclear Information System (INIS)

    Carman, R.W.; Doherty, E.J.

    1980-01-01

    A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (U.K.)

  14. New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis

    Science.gov (United States)

    2015-11-01

    Award Number: W81XWH-12-1-0449 TITLE: New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis...COVERED 1Sep2012 - 31Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER New Drugs for Anemia Treatment Based on a New Understanding of the...cell formation in "Nan" (neonatal anemia ) mice, raising the level of red cells to almost normal. It also causes an increase in the numbers of splenic

  15. Dynamics of mechanical systems with variable mass

    CERN Document Server

    Belyaev, Alexander

    2014-01-01

    The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

  16. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance.

    Science.gov (United States)

    Qashqari, Hanadi; Al-Mars, Amany; Chaudhary, Adeel; Abuzenadah, Adel; Damanhouri, Ghazi; Alqahtani, Mohammed; Mahmoud, Maged; El Sayed Zaki, Maysaa; Fatima, Kaneez; Qadri, Ishtiaq

    2013-10-01

    Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    Science.gov (United States)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  18. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    Science.gov (United States)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  19. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  20. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    International Nuclear Information System (INIS)

    2014-01-01

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  1. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  2. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action.

    Science.gov (United States)

    Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D

    2014-07-05

    Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  4. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  5. Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment

    Directory of Open Access Journals (Sweden)

    Søren S. Olesen

    2017-12-01

    Conclusion:. Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.

  6. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics

    DEFF Research Database (Denmark)

    Louveau, Antoine; Plog, Benjamin A; Antila, Salli

    2017-01-01

    to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege...... and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems....

  7. On the mechanical behavior of the human biliary system

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Luo; Wenguang Li; Nigel Bird; Swee Boon Chin; NA Hill; Alan G Johnson

    2007-01-01

    This paper reviews the progress made in understanding the mechanical behaviour of the biliary system.Gallstones and diseases of the biliary tract affect more than 10% of the adult population. The complications of gallstones, i.e. acute pancreatitis and obstructive jandice, can be lethal, and patients with acalculous gallbladder pain often pose diagnostic difficulties and undergo repeated ultrasound scans and oral cholecystograms. Moreover, surgery to remove the gallbladder in these patients, in an attempt to relieve the symptoms, gives variable results. Extensive research has been carried out to understand the physiological and pathological functions of the biliary system, but the mechanism of the pathogenesis of gallstones and pain production still remain poorly understood. It is believed that the mechanical factors play an essential role in the mechanisms of the gallstone formation and biliary diseases. However, despite the extensive literature in clinical studies, only limited work has been carried out to study the biliary system from the mechanical point of view. In this paper, we discuss the state of art knowledge of the fluid dynamics of bile flow in the biliary tract, the solid mechanics of the gallbladder and bile ducts, recent mathematical and numerical modelling of the system,and finally the future challenges in the area.

  8. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  9. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  10. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Science.gov (United States)

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  11. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  12. A Mechanism for Anonymous Credit Card Systems

    Science.gov (United States)

    Tamura, Shinsuke; Yanase, Tatsuro

    This paper proposes a mechanism for anonymous credit card systems, in which each credit card holder can conceal individual transactions from the credit card company, while enabling the credit card company to calculate the total expenditures of transactions of individual card holders during specified periods, and to identify card holders who executed dishonest transactions. Based on three existing mechanisms, i.e. anonymous authentication, blind signature and secure statistical data gathering, together with implicit transaction links proposed here, the proposed mechanism enables development of anonymous credit card systems without assuming any absolutely trustworthy entity like tamper resistant devices or organizations faithful both to the credit card company and card holders.

  13. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  14. A systemic approach to understanding mental health and services.

    Science.gov (United States)

    Cohen, Mark

    2017-10-01

    In the UK mental health and associated NHS services face considerable challenges. This paper aims to form an understanding both of the complexity of context in which services operate and the means by which services have sought to meet these challenges. Systemic principles as have been applied to public service organisations with reference to interpersonal relations, the wider social culture and its manifestation in service provision. The analysis suggests that the wider culture has shaped service demand and the approaches adopted by services resulting in a number of unintended consequences, reinforcing loops, increased workload demands and the limited value of services. The systemic modelling of this situation provides a necessary overview prior to future policy development. The paper concludes that mental health and attendant services requires a systemic understanding and a whole system approach to reform. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Neutron reflectivity study of critical adsorption. Application to the understanding of environmental mechanisms

    International Nuclear Information System (INIS)

    Jestin, Jacques

    2001-01-01

    This study is within the scope of fundamental knowledge transfer to a field case-study, i.e. the understanding of the adsorption properties of binary mixtures against a wall in the case of soil pollution by liquid hydrocarbons. From the theoretical study of critical adsorption, which has been well described in the literature, we carried out experiments on model systems by using neutron techniques. Neutron reflectivity was then applied to the liquid-vapor interface of three different binary mixtures: perfluorohexane-hexane, deuterated methanol-cyclohexane and methanol-deuterated cyclohexane. The experimental data were analysed according to the theoretical prediction of Fisher and De Gennes, along with Liu and Fisher that suggested a power law decrease of the concentration profile (with an exponent equal to 0.52) followed by an exponential function. The characteristic exponent and the amplitude ratios for the methanol-cyclohexane mixtures were found fitted well with theoretical values for the three systems. Only the perfluorohexane-hexane mixture exhibited a particular behavior in the adsorption process that affected the power law amplitude value. This step allowed us to study non critical adsorption and to apply neutrons techniques, e.g. reflectivity and small angles neutrons scattering, to a water-2,5 dimethylpyridine mixture against silica, which is a model system for soils polluted by water/hydrocarbon mixtures. These experiments highlighted new experimental difficulties, which were not fully solved over this study, together with some problems in the analysis that would require specific modelling. Nevertheless, this study shows the capabilities of neutrons techniques to investigate some environmental mechanisms. Moreover, some of the results reported here can be used as a basis for future experiments. (author)

  16. Database management systems understanding and applying database technology

    CERN Document Server

    Gorman, Michael M

    1991-01-01

    Database Management Systems: Understanding and Applying Database Technology focuses on the processes, methodologies, techniques, and approaches involved in database management systems (DBMSs).The book first takes a look at ANSI database standards and DBMS applications and components. Discussion focus on application components and DBMS components, implementing the dynamic relationship application, problems and benefits of dynamic relationship DBMSs, nature of a dynamic relationship application, ANSI/NDL, and DBMS standards. The manuscript then ponders on logical database, interrogation, and phy

  17. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  18. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  19. Summary of the Orbiter mechanical systems

    Science.gov (United States)

    Kiker, J.; Hinson, K.

    1979-01-01

    Major mechanical systems of the Orbiter space vehicle are summarized with respect to general design details, manner of operation, expected performance, and, where applicable, unique features. A synopsis of data obtained during the five atmospheric flight tests of spacecraft OV-101 and status of the systems for the first orbital spacecraft STS-1 are presented.

  20. Ecological mechanisms for the coevolution of mating systems and defence.

    Science.gov (United States)

    Campbell, Stuart A

    2015-02-01

    The diversity of flowering plants is evident in two seemingly unrelated aspects of life history: sexual reproduction, exemplified by the stunning variation in flower form and function, and defence, often in the form of an impressive arsenal of secondary chemistry. Researchers are beginning to appreciate that plant defence and reproduction do not evolve independently, but, instead, may have reciprocal and interactive (coevolutionary) effects on each other. Understanding the mechanisms for mating-defence interactions promises to broaden our understanding of how ecological processes can generate these two rich sources of angiosperm diversity. Here, I review current research on the role of herbivory as a driver of mating system evolution, and the role of mating systems in the evolution of defence strategies. I outline different ecological mechanisms and processes that could generate these coevolutionary patterns, and summarize theoretical and empirical support for each. I provide a conceptual framework for linking plant defence with mating system theory to better integrate these two research fields.

  1. Degradation mechanisms of small scale piping systems

    International Nuclear Information System (INIS)

    Bartonicek, J.; Koenig, G.; Blind, D.

    1996-01-01

    Operational experience shows that many degradation mechanisms can have an effect on small-scale piping systems. We can see from the analyses carried out that the degradation which has occurred is primarily linked with the fact that these piping systems were classified as being of low safety relevance. This is mainly due to such components being classified into low safety relevance category at the design stage, as well as to the low level of operational monitoring. Since in spite of the variety of designs and operational modes the degradation mechanisms detected may be attributed to the piping systems, we can make decisive statements on how to avoid such degradation mechanisms. Even small-scale piping systems may achieve guaranteed integrity in such cases by taking the appropriate action. (orig.) [de

  2. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  3. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  4. Unit mechanisms of fission gas release: Current understanding and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas release during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  5. Hidden symmetries of integrable conformal mechanical systems

    International Nuclear Information System (INIS)

    Hakobyan, Tigran; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen

    2010-01-01

    We split the generic conformal mechanical system into a 'radial' and an 'angular' part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4 supersymmetric 'angular' Hamiltonian system one may construct a new system with full N=4 superconformal D(1,2;α) symmetry.

  6. Framework for understanding the patterns of student difficulties in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Emily Marshman

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students’ prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel as well as the “paradigm shift” from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  7. Framework for understanding the patterns of student difficulties in quantum mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  8. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  9. Epigenetics: Its Understanding Is Crucial to a Sustainable Healthcare System

    Directory of Open Access Journals (Sweden)

    Michelle Thunders

    2015-04-01

    Full Text Available Understanding the molecular impact of lifestyle factors has never been so important; a period in time where there are so many adults above retirement age has been previously unknown. As a species, our life expectancy is increasing yet the period of our lives where we enjoy good health is not expanding proportionately. Over the next 50 years we will need to almost double the percentage of GDP spent on health care, largely due to the increasing incidence of obesity related chronic diseases. A greater understanding and implementation of an integrated approach to health is required. Research exploring the impact of nutritional and exercise intervention on the epigenetically flexible genome is up front in terms of addressing healthy aging. Alongside this, we need a greater understanding of the interaction with our immune and nervous systems in preserving and maintaining health and cognition.

  10. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  11. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  12. A mechanical wave system to show waveforms similar to quantum mechanical wavefunctions in a potential

    International Nuclear Information System (INIS)

    Faletič, Sergej

    2015-01-01

    Interviews with students suggest that even though they understand the formalism and the formal nature of quantum theory, they still often desire a mental picture of what the equations describe and some tangible experience with the wavefunctions. Here we discuss a mechanical wave system capable of reproducing correctly a mechanical equivalent of a quantum system in a potential, and the resulting waveforms in principle of any form. We have successfully reproduced the finite potential well, the potential barrier and the parabolic potential. We believe that these mechanical waveforms can provide a valuable experience base for introductory students to start from. We aim to show that mechanical systems that are described with the same mathematics as quantum mechanical, indeed behave in the same way. We believe that even if treated purely as a wave phenomenon, the system provides much insight into wave mechanics. This can be especially useful for physics teachers and others who often need to resort to concepts and experience rather than mathematics when explaining physical phenomena. (paper)

  13. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  14. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  15. Nano-opto-electro-mechanical systems

    Science.gov (United States)

    Midolo, Leonardo; Schliesser, Albert; Fiore, Andrea

    2018-01-01

    A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from the field of optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, in both the classical and the quantum domains. This Perspective discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation and suggests potential avenues for further developments in this field.

  16. RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 2

    Science.gov (United States)

    2016-11-04

    earwax of pigs, dogs , cows, and humans. We find that earwax is shear-thinning for all these animals. This ability enables it to cling to the ear in low...self-cleaning.” Society for Integrative and Comparative Biology annual meeting, 2017.  P. Yang, D. Dao, R. Lehner, D. Hu, “ The hydrodynamics of...RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 2 An Anton Paarr MCR 501 rheometer was purchased in order to

  17. Understanding how orthopaedic surgery practices generate value for healthcare systems.

    Science.gov (United States)

    Olson, Steven A; Mather, Richard C

    2013-06-01

    Orthopaedic surgery practices can provide substantial value to healthcare systems. Increasingly, healthcare administrators are speaking of the need for alignment between physicians and healthcare systems. However, physicians often do not understand what healthcare administrators value and therefore have difficulty articulating the value they create in discussions with their hospital or healthcare organization. Many health systems and hospitals use service lines as an organizational structure to track the relevant data and manage the resources associated with a particular type of care, such as musculoskeletal care. Understanding service lines and their management can be useful for orthopaedic surgeons interested in interacting with their hospital systems. We provide an overview of two basic types of value orthopaedic surgeons create for healthcare systems: financial or volume-driven benefits and nonfinancial quality or value-driven patient care benefits. We performed a search of PubMed from 1965 to 2012 using the term "service line." Of the 351 citations identified, 18 citations specifically involved the use of service lines to improve patient care in both nursing and medical journals. A service line is a structure used in healthcare organizations to enable management of a subset of activities or resources in a focused area of patient care delivery. There is not a consistent definition of what resources are managed within a service line from hospital to hospital. Physicians can positively impact patient care through engaging in service line management. There is increasing pressure for healthcare systems and hospitals to partner with orthopaedic surgeons. The peer-reviewed literature demonstrates there are limited resources for physicians to understand the value they create when attempting to negotiate with their hospital or healthcare organization. To effectively negotiate for resources to provide the best care for patients, orthopaedic surgeons need to claim and

  18. Understanding Science: Frameworks for using stories to facilitate systems thinking

    Science.gov (United States)

    ElShafie, S. J.; Bean, J. R.

    2017-12-01

    Studies indicate that using a narrative structure for teaching and learning helps audiences to process and recall new information. Stories also help audiences retain specific information, such as character names or plot points, in the context of a broader narrative. Stories can therefore facilitate high-context systems learning in addition to low-context declarative learning. Here we incorporate a framework for science storytelling, which we use in communication workshops, with the Understanding Science framework developed by the UC Museum of Paleontology (UCMP) to explore the application of storytelling to systems thinking. We translate portions of the Understanding Science flowchart into narrative terms. Placed side by side, the two charts illustrate the parallels between the scientific process and the story development process. They offer a roadmap for developing stories about scientific studies and concepts. We also created a series of worksheets for use with the flowcharts. These new tools can generate stories from any perspective, including a scientist conducting a study; a character that plays a role in a larger system (e.g., foraminifera or a carbon atom); an entire system that interacts with other systems (e.g., the carbon cycle). We will discuss exemplar stories about climate change from each of these perspectives, which we are developing for workshops using content and storyboard models from the new UCMP website Understanding Global Change. This conceptual framework and toolkit will help instructors to develop stories about scientific concepts for use in a classroom setting. It will also help students to analyze stories presented in class, and to create their own stories about new concepts. This approach facilitates student metacognition of the learning process, and can also be used as a form of evaluation. We are testing this flowchart and its use in systems teaching with focus groups, in preparation for use in teacher professional development workshops.

  19. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  20. Understanding of the management information system based on MVC pattern

    Science.gov (United States)

    Chen, Sida

    2018-04-01

    With the development of the society, people have come to realize the significance of information, not only linguistically but also in the written form. To build an effective and efficient working flow, a new subject called Management Information System (MIS) came up. MIS is an integrated discipline, which utilizes comprehensive and systematical methods to manage information, and it enhances the work efficiency through building structured information platform. This paper demonstrates the Management Information System from shallow too deep with the understanding of MVC pattern, including its basic structure and application with ASP.NET. Also some discussions about its features are made in the last section.

  1. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  2. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  3. [Mechanized system for planning technological processes].

    Science.gov (United States)

    Pashchenko, V S; Shapiro, A M

    1977-01-01

    A mechanized system for the production processes planning involving the use of an electronic code device for data preparation on a punched tape of the "EPECT-IT" type, at the base of which there are classifiers of standard operations and transitions to individual design members, is considered. A fragment of the classifier and a skeleton diagram of the system are presented. It is pointed out that the use of the system helps improve the quality of the design work, as well as to yield considerable economic advantages. The system is in operation at some enterprises of the medical engineering industry.

  4. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Directory of Open Access Journals (Sweden)

    H. Mao

    2016-10-01

    Full Text Available Atmospheric mercury (Hg is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM, gaseous oxidized mercury (GOM, and particulate-bound mercury (PBM in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL, the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring–summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain–valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM

  5. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Science.gov (United States)

    Mao, Huiting; Cheng, Irene; Zhang, Leiming

    2016-10-01

    Atmospheric mercury (Hg) is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL), the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring-summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain-valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM/GEM increasing from the

  6. Integrated systems understanding using bayesian networks: measuring the effectiveness of a weapon system

    CSIR Research Space (South Africa)

    de Waal, A

    2006-02-27

    Full Text Available Complex systems can be described as systems-of-systems as they comprise a hierarchy of systems. The links between sub-systems are often obscure and non-linear and this results in a lack of a whole-systems view and appropriate understanding...

  7. Statistical mechanics of systems of unbounded spins

    Energy Technology Data Exchange (ETDEWEB)

    Lebowitz, J L [Yeshiva Univ., New York (USA). Belfer Graduate School of Science; Presutti, E [L' Aquila Univ. (Italy). Istituto di Matematica

    1976-11-01

    We develop the statistical mechanics of unbounded n-component spin systems interacting via potentials which are superstable and strongly tempered. The uniqueness of the equilibrium state is then proven for one component ferromagnetic spins whose free energy is differentiable with respect to the magnetic field.

  8. On quantum mechanics for macroscopic systems

    International Nuclear Information System (INIS)

    Primas, H.

    1992-01-01

    The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?

  9. Interagency mechanical operations group numerical systems group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  10. Understanding original antigenic sin in influenza with a dynamical system.

    Science.gov (United States)

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  11. Study on supporting system for operator's comprehensive understanding

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corp. has participated in the development of a system to support the process of operator's plant understanding by the use of information processing techniques such as artificial intelligence since 1994. Analysis and model formation of the process leading to operator's comprehensive understanding of plant (mental model) are undertaken attempting to determine the basic structure of the mental model available for the description of knowledge using the precedent survey and to observe how to utilize operator's own knowledge. After consideration of the way by which plant operators utilize their physical knowledges and the knowledges of physical observation in practice, a basic structure composed of 3 components a qualitative causal network, a hierarchical function model and 3 links joining the two was proposed for the mental model. A questionnaire survey on operator's statements was made and the contents were assigned in several categories for objective analysis. An unified form usable to make a data base was established. Further, we have a plan to develop the first proto-type system to promote operator's understanding by 1998. (M.N.)

  12. Research Experience for Undergraduates: Understanding the Arctic as a System

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  13. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  14. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  15. System Behaviour Charts Inform an Understanding of Biodiversity Recovery

    Directory of Open Access Journals (Sweden)

    Simon A. Black

    2015-01-01

    Full Text Available Practitioners working with species and ecosystem recovery typically deal with the complexity of, on one hand, lack of data or data uncertainties and, on the other hand, demand for critical decision-making and intervention. The control chart methods of commercial and industrial and environmental monitoring can complement an ecological understanding of wildlife systems including those situations which incorporate human activities and land use. Systems Behaviour Charts are based upon well-established control chart methods to provide conservation managers with an approach to using existing data and enable insight to aid timely planning of conservation interventions and also complement and stimulate research into wider scientific and ecological questions. When the approach is applied to existing data sets in well-known wildlife conservation cases, the subsequent Systems Behaviour Charts and associated analytical criteria demonstrate insights which would be helpful in averting problems associated with each case example.

  16. Systemic thinking fundamentals for understanding problems and messes

    CERN Document Server

    Hester, Patrick T

    2014-01-01

    Whether you’re an academic or a practitioner, a sociologist, a manager, or an engineer, one can benefit from learning to think systemically.  Problems (and messes) are everywhere and they’re getting more complicated every day.  How we think about these problems determines whether or not we’ll be successful in understanding and addressing them.  This book presents a novel way to think about problems (and messes) necessary to attack these always-present concerns.  The approach draws from disciplines as diverse as mathematics, biology, and psychology to provide a holistic method for dealing with problems that can be applied to any discipline. This book develops the systemic thinking paradigm, and introduces practical guidelines for the deployment of a systemic thinking approach.

  17. Mechanical design for TMX injector system

    International Nuclear Information System (INIS)

    Calderon, M.O.; Chen, F.F.K.; Denhoy, B.S.

    1977-01-01

    The injector system for the Tandem Mirror Experiment (TMX) contains the components required to create and maintain a high-temperature, high-density plasma. These components include a streaming-plasma gun in each of the plug tanks to form the target-plasma, 24 neutral-beam source modules for injecting neutral deuterium atoms to heat and replace losses from the plasma, and a gas box system that applies a streaming cold gas to the plasma to stabilize it. This paper discusses the mechanical design problems and solutions for this injector system

  18. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  19. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems.

    Science.gov (United States)

    Ye, Christine J; Regan, Sarah; Liu, Guo; Alemara, Sarah; Heng, Henry H

    2018-01-01

    In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis

  20. Understanding Organizational Memory from the Integrated Management Systems (ERP

    Directory of Open Access Journals (Sweden)

    Gilberto Perez

    2013-10-01

    Full Text Available With this research, in the form of a theoretical essay addressing the theme of Organizational Memory and Integrated Management Systems (ERP, we tried to present some evidence of how this type of system can contribute to the consolidation of certain features of Organizational Memory. From a theoretical review of the concepts of Human Memory, extending to the Organizational Memory and Information Systems, with emphasis on Integrated Management Systems (ERP we tried to draw a parallel between the functions and structures of Organizational Memory and features and characteristics of ERPs. The choice of the ERP system for this study was made due to the complexity and broad scope of this system. It was verified that the ERPs adequately support many functions of the Organizational Memory, highlighting the implementation of logical processes, practices and rules in business. It is hoped that the dialogue presented here can contribute to the advancement of the understanding of organizational memory, since the similarity of Human Memory is a fertile field and there is still much to be researched.

  1. Spoken Language Understanding Systems for Extracting Semantic Information from Speech

    CERN Document Server

    Tur, Gokhan

    2011-01-01

    Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, usin

  2. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    commission are to: * clarify the geometrical and dynamical concepts of fundamental astronomy within a relativistic framework, * provide adequate mathematical and physical formulations to be used in fundamental astronomy, * deepen the understanding of relativity among astronomers and students of astronomy, and * promote research needed to accomplish these tasks. The present book is intended to make a theoretical contribution to the efforts undertaken by this commission. The first three chapters of the book review the foundations of celestial mechanics as well as those of special and general relativity. Subsequent chapters discuss the theoretical and experimental principles of applied relativity in the solar system. The book is written for graduate students and researchers working in the area of gravitational physics and its applications inmodern astronomy. Chapters 1 to 3 were written by Michael Efroimsky and Sergei Kopeikin, Chapters 4 to 8 by Sergei Kopeikin, and Chapter 9 by George Kaplan. Sergei Kopeikin also edited the overall text. It hardly needs to be said that Newtonian celestial mechanics is a very broad area. In Chapter 1, we have concentrated on derivation of the basic equations, on explanation of the perturbed two-body problem in terms of osculating and nonosculating elements, and on discussion of the gauge freedom in the six-dimensional configuration space of the orbital parameters. The gauge freedom of the configuration space has many similarities to the gauge freedom of solutions of the Einstein field equations in general theory of relativity. It makes an important element of the Newtonian theory of gravity, which is often ignored in the books on classic celestial mechanics. Special relativity is discussed in Chapter 2. While our treatment is in many aspects similar to the other books on special relativity, we have carefully emphasised the explanation of the Lorentz and Poincaré transformations, and the appropriate transformation properties of geometric

  3. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic; Etude des mecanismes d'alteration par l'eau du verre R7T7 en milieu confine: comprehension et modelisation de la cinetique residuelle

    Energy Technology Data Exchange (ETDEWEB)

    Chave, T

    2007-10-15

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  4. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    Science.gov (United States)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and

  5. Systematic synergy modeling: understanding drug synergy from a systems biology perspective.

    Science.gov (United States)

    Chen, Di; Liu, Xi; Yang, Yiping; Yang, Hongjun; Lu, Peng

    2015-09-16

    Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose-response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and "omic"-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.

  6. Towards an understanding of resilience: responding to health systems shocks.

    Science.gov (United States)

    Hanefeld, Johanna; Mayhew, Susannah; Legido-Quigley, Helena; Martineau, Frederick; Karanikolos, Marina; Blanchet, Karl; Liverani, Marco; Yei Mokuwa, Esther; McKay, Gillian; Balabanova, Dina

    2018-04-01

    The recent outbreak of Ebola Virus Disease (EVD) in West Africa has drawn attention to the role and responsiveness of health systems in the face of shock. It brought into sharp focus the idea that health systems need not only to be stronger but also more 'resilient'. In this article, we argue that responding to shocks is an important aspect of resilience, examining the health system behaviour in the face of four types of contemporary shocks: the financial crisis in Europe from 2008 onwards; climate change disasters; the EVD outbreak in West Africa 2013-16; and the recent refugee and migration crisis in Europe. Based on this analysis, we identify '3 plus 2' critical dimensions of particular relevance to health systems' ability to adapt and respond to shocks; actions in all of these will determine the extent to which a response is successful. These are three core dimensions corresponding to three health systems functions: 'health information systems' (having the information and the knowledge to make a decision on what needs to be done); 'funding/financing mechanisms' (investing or mobilising resources to fund a response); and 'health workforce' (who should plan and implement it and how). These intersect with two cross-cutting aspects: 'governance', as a fundamental function affecting all other system dimensions; and predominant 'values' shaping the response, and how it is experienced at individual and community levels. Moreover, across the crises examined here, integration within the health system contributed to resilience, as does connecting with local communities, evidenced by successful community responses to Ebola and social movements responding to the financial crisis. In all crises, inequalities grew, yet our evidence also highlights that the impact of shocks is amenable to government action. All these factors are shaped by context. We argue that the '3 plus 2' dimensions can inform pragmatic policies seeking to increase health systems resilience.

  7. Will smart surveillance systems listen, understand and speak Slovene?

    Directory of Open Access Journals (Sweden)

    Simon Dobrišek

    2013-12-01

    Full Text Available The paper deals with the spoken language technologies that could enable the so-called smart (intelligent surveillance systems to listen, understand and speak Slovenian in the near future. Advanced computational methods of artificial perception and pattern recognition enable such systems to be at least to some extent aware of the environment, the presence of people and other phenomena that could be subject to surveillance. Speech is one such phenomenon that has the potential to be a key source of information in certain security situations. Technologies that enable automatic speech and speaker recognition as well as their psychophysical state by computer analysis of acoustic speech signals provide an entirely new dimension to the development of smart surveillance systems. Automatic recognition of spoken threats, screaming and crying for help, as well as a suspicious psycho-physical state of a speaker provide such systems to some extent with intelligent behaviour. The paper investigates the current state of development of these technologies and the requirements and possibilities of these systems to be used for the Slovenian spoken language, as well as different possible security application scenarios. It also addresses the broader legal and ethical issues raised by the development and use of such technologies, especially as audio surveillance is one of the most sensitive issues of privacy protection.

  8. A Framework for Understanding Post-Merger Information Systems Integration

    DEFF Research Database (Denmark)

    Alaranta, Maria; Kautz, Karlheinz

    2012-01-01

    This paper develops a theoretical framework for the integration of information systems (IS) after a merger or an acquisition. The framework integrates three perspectives: a structuralist, an individualist, and an interactive process perspective to analyze and understand such integrations....... The framework is applied to a longitudinal case study of a manufacturing company that grew through an acquisition. The management decided to integrate the production control IS via tailoring a new system that blends together features of existing IS. The application of the framework in the case study confirms...... several known impediments to IS integrations. It also identifies a number of new inhibitors, as well as known and new facilitators that can bring post-merger IS integration to a success. Our findings provide relevant insights to researching and managing post-merger IS integrations. They emphasize...

  9. Creativity Understandings, Evolution: from Genius to Creative Systems

    Directory of Open Access Journals (Sweden)

    Jūratė Černevičiūtė

    2014-10-01

    Full Text Available The understanding of creativity in the social sciencies became more complex with the course of time. The concepts of creative individual, creative process and environment are discussed. Looking at the environment, distinction was made on three levels: macro, meso and micro. The impact of environments on creativity is analyzed, focusing attention on the collective creativity as the positive micro-environmental factor for innovations. Insights are gained about the tendency to move from an exclusive, elite, narrow concept of creativity, measured by the creation of products and their abundance, towards a broader, democratic concept of everyday creativity of the most people. The conclusion is that the creative industries of the exceptional creativity of genius or talent and mysticism are gradually transformed to broader creativity as the governed system, emphasizing creativity links with internal elements of the system and with the social context.

  10. Three body mechanisms in hadron collisions. The A = 3 system

    International Nuclear Information System (INIS)

    Frascaria, R.

    1988-01-01

    Three-body mechanisms in hadron collisions, and the role of the A = 3 system are reviewed, and the excitation functions of the proton deuteron system in interactions at energies up to 2.9 GeV are discussed. Meson productions at large angles reveal structures due to the mesonic degrees of freedom in the interaction of the proton with the deuteron, exciting n * isobars in intermediate states. Propagation in the nuclei does not seem to change the properties of these isobars. The meson double scattering mechanism provides a way to understand coherent meson production in pd capture. It is difficult to say whether this coherent process corresponds to eigenstates of the A = 3 system. The sharing of the momentum transfer between the three nucleons renders impossible the observation of high momentum components in coherent proton captures. The possible contribution of the electromagnetic probe in hadron physics with a multi GeV electron accelerator is mentioned

  11. Monolithic Controlled Delivery Systems: Part I. Basic Characteristics and Mechanisms

    Directory of Open Access Journals (Sweden)

    Rumiana Blagoeva

    2006-04-01

    Full Text Available The article considers contemporary systems for controlled delivery of active agents, such as drugs, agricultural chemicals, pollutants and additives in the environment. A useful classification of the available controlled release systems (CRS is proposed according to the type of control (passive, active or self-preprogrammed and according to the main controlling mechanism (diffusion, swelling, dissolution or erosion. Special attention is given to some of the most used CRS - polymer monoliths. The structural and physical-chemical characteristics of CRS as well as the basic approaches to their production are examined. The basic mechanisms of controlled agent release are reviewed in detail and factors influencing the release kinetics are classified according to their importance. The present study can be helpful for understanding and applying the available mathematical models and for developing more comprehensive ones intended for design of new controlled delivery systems.

  12. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Vickie S., E-mail: wilson.vickie@epa.gov [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Keshava, Nagalakshmi [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Hester, Susan [National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Segal, Deborah; Chiu, Weihsueh [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States); Thompson, Chad M. [ToxStrategies, Inc., 23501 Cinco Ranch Blvd., Suite G265, Katy, TX 77494 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Washington, DC 20460 (United States)

    2013-09-15

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment.

  13. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    International Nuclear Information System (INIS)

    Wilson, Vickie S.; Keshava, Nagalakshmi; Hester, Susan; Segal, Deborah; Chiu, Weihsueh; Thompson, Chad M.; Euling, Susan Y.

    2013-01-01

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment

  14. New elements to understand hydrogen diffusion and trapping mechanisms in quenched and tempered HSLA martensitic steels

    International Nuclear Information System (INIS)

    Frappart, S.

    2011-01-01

    Hydrogen Embrittlement is a complex phenomenon responsible of metal degradation. It mainly depends on the material (chemical composition, heat treatment), the environment or the mechanical state. The main goal of this study is to give new elements to understand hydrogen diffusion and trapping mechanisms in High Strength Low Alloy martensitic steels used in the field of 'Oil and Gas' applications and nuclear industry. In this way, the purpose is to identify hydrogen trapping sites related to microstructural features as a basis for a better knowledge concerning hydrogen embrittlement. Thus, accurate electrochemical permeation set-up (with or without a mechanical state) were developed as well as a procedure to thoroughly analyze experimental data. An original approach on how to interpret electrochemical permeation results has been therefore performed. Afterward, the effect of different critical parameters has been assessed i.e. the membrane thickness, the surface state of the detection side as well as the microstructure and the mechanical state. The relationship between physical parameters associated to diffusion and trapping with the microstructure evolution will give rise to a first thought 'toward the embrittlement'

  15. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  16. Torsional vibrations of shafts of mechanical systems

    Science.gov (United States)

    Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.

    2018-03-01

    The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.

  17. Description of an open quantum mechanical system

    International Nuclear Information System (INIS)

    Rotter, I.; Forschungszentrum Rossendorf e.V.

    1994-05-01

    A model for the description of an open quantum mechanical many-particle system is formulated. It starts from the shell model and treats the continuous states by a coupled channels method. The mixing of the discrete shell model states via the continuum of decay channels results in the genuine decaying states of the system. These states are eigenstates of a non-Hermitean Hamilton operator the eigenvalues of which give both the energies and the widths of the states. All correlations between two particles which are caused by the two-particle residual interaction, are taken into account including those via the continuum. In the formalism describing the open quantum mechanical system, the coupling between the system and its environment appears nonlinearly. If the resonance states start to overlap, a redistribution of the spectroscopic values ('trapping effect') takes place. As a result, the complexity of the system is reduced at high level density, structures in space and time are formed. This redistribution describes, on the one hand, the transition from the well-known nuclear properties at low level density to those at high level density and fits, on the other hand, into the concept of selforganization. (orig.)

  18. Statistical mechanics of driven diffusive systems

    CERN Document Server

    Schmittmann, B

    1995-01-01

    Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension. Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail. Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these syst...

  19. Understanding Resilient Urban Futures: A Systemic Modelling Approach

    Directory of Open Access Journals (Sweden)

    Ralph Chapman

    2013-07-01

    Full Text Available The resilience of cities in response to natural disasters and long-term climate change has emerged as a focus of academic and policy attention. In particular, how to understand the interconnectedness of urban and natural systems is a key issue. This paper introduces an urban model that can be used to evaluate city resilience outcomes under different policy scenarios. The model is the Wellington Integrated Land Use-Transport-Environment Model (WILUTE. It considers the city (i.e., Wellington as a complex system characterized by interactions between a variety of internal urban processes (social, economic and physical and the natural environment. It is focused on exploring the dynamic relations between human activities (the geographic distribution of housing and employment, infrastructure layout, traffic flows and energy consumption, environmental effects (carbon emissions, influences on local natural and ecological systems and potential natural disasters (e.g., inundation due to sea level rise and storm events faced under different policy scenarios. The model gives insights that are potentially useful for policy to enhance the city’s resilience, by modelling outcomes, such as the potential for reduction in transportation energy use, and changes in the vulnerability of the city’s housing stock and transport system to sea level rise.

  20. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    Science.gov (United States)

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Statistical grand rounds: understanding the mechanism: mediation analysis in randomized and nonrandomized studies.

    Science.gov (United States)

    Mascha, Edward J; Dalton, Jarrod E; Kurz, Andrea; Saager, Leif

    2013-10-01

    In comparative clinical studies, a common goal is to assess whether an exposure, or intervention, affects the outcome of interest. However, just as important is to understand the mechanism(s) for how the intervention affects outcome. For example, if preoperative anemia was shown to increase the risk of postoperative complications by 15%, it would be important to quantify how much of that effect was due to patients receiving intraoperative transfusions. Mediation analysis attempts to quantify how much, if any, of the effect of an intervention on outcome goes though prespecified mediator, or "mechanism" variable(s), that is, variables sitting on the causal pathway between exposure and outcome. Effects of an exposure on outcome can thus be divided into direct and indirect, or mediated, effects. Mediation is claimed when 2 conditions are true: the exposure affects the mediator and the mediator (adjusting for the exposure) affects the outcome. Understanding how an intervention affects outcome can validate or invalidate one's original hypothesis and also facilitate further research to modify the responsible factors, and thus improve patient outcome. We discuss the proper design and analysis of studies investigating mediation, including the importance of distinguishing mediator variables from confounding variables, the challenge of identifying potential mediators when the exposure is chronic versus acute, and the requirements for claiming mediation. Simple designs are considered, as well as those containing multiple mediators, multiple outcomes, and mixed data types. Methods are illustrated with data collected by the National Surgical Quality Improvement Project (NSQIP) and utilized in a companion paper which assessed the effects of preoperative anemic status on postoperative outcomes.

  2. Similar verbal memory impairments in schizophrenia and healthy aging. Implications for understanding of neural mechanisms.

    Science.gov (United States)

    Silver, Henry; Bilker, Warren B

    2015-03-30

    Memory is impaired in schizophrenia patients but it is not clear whether this is specific to the illness and whether different types of memory (verbal and nonverbal) or memories in different cognitive domains (executive, object recognition) are similarly affected. To study relationships between memory impairments and schizophrenia we compared memory functions in 77 schizophrenia patients, 58 elderly healthy individuals and 41 young healthy individuals. Tests included verbal associative and logical memory and memory in executive and object recognition domains. We compared relationships of memory functions to each other and to other cognitive functions including psychomotor speed and verbal and spatial working memory. Compared to the young healthy group, schizophrenia patients and elderly healthy individuals showed similar severe impairment in logical memory and in the ability to learn new associations (NAL), and similar but less severe impairment in spatial working memory and executive and object memory. Verbal working memory was significantly more impaired in schizophrenia patients than in the healthy elderly. Verbal episodic memory impairment in schizophrenia may share common mechanisms with similar impairment in healthy aging. Impairment in verbal working memory in contrast may reflect mechanisms specific to schizophrenia. Study of verbal explicit memory impairment tapped by the NAL index may advance understanding of abnormal hippocampus dependent mechanisms common to schizophrenia and aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms

    Science.gov (United States)

    Hankin, Benjamin L.; Snyder, Hannah R.; Gulley, Lauren D.; Schweizer, Tina H.; Bijttebier, Patricia; Nelis, Sabine; Toh, Gim; Vasey, Michael W.

    2016-01-01

    It is well known that comorbidity is the rule, not the exception, for categorically defined psychiatric disorders, and this is also the case for internalizing disorders of depression and anxiety. This theoretical review paper addresses the ubiquity of comorbidity among internalizing disorders. Our central thesis is that progress in understanding this co-occurrence can be made by employing latent dimensional structural models that organize both psychopathology as well as vulnerabilities and risk mechanisms and by connecting the multiple levels of risk and psychopathology outcomes together. Different vulnerabilities and risk mechanisms are hypothesized to predict different levels of the structural model of psychopathology. We review the present state of knowledge based on concurrent and developmental sequential comorbidity patterns among common discrete psychiatric disorders in youth, and then we advocate for the use of more recent bifactor dimensional models of psychopathology (e.g., p factor, Caspi et al., 2014) that can help to explain the co-occurrence among internalizing symptoms. In support of this relatively novel conceptual perspective, we review six exemplar vulnerabilities and risk mechanisms, including executive function, information processing biases, cognitive vulnerabilities, positive and negative affectivity aspects of temperament, and autonomic dysregulation, along with the developmental occurrence of stressors in different domains, to show how these vulnerabilities can predict the general latent psychopathology factor, a unique latent internalizing dimension, as well as specific symptom syndrome manifestations. PMID:27739389

  4. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  5. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  6. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.; McGehee, Michael D.

    2016-01-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  7. System Enhancements for Mechanical Inspection Processes

    Science.gov (United States)

    Hawkins, Myers IV

    2011-01-01

    Quality inspection of parts is a major component to any project that requires hardware implementation. Keeping track of all of the inspection jobs is essential to having a smooth running process. By using HTML, the programming language ColdFusion, and the MySQL database, I created a web-based job management system for the 170 Mechanical Inspection Group that will replace the Microsoft Access based management system. This will improve the ways inspectors and the people awaiting inspection view and keep track of hardware as it is in the inspection process. In the end, the management system should be able to insert jobs into a queue, place jobs in and out of a bonded state, pre-release bonded jobs, and close out inspection jobs.

  8. Identification of general linear mechanical systems

    Science.gov (United States)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  9. Mechanical system diagnostics using vibration testing techniques

    Science.gov (United States)

    Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.

    1990-01-01

    The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.

  10. A stratified myeloid system, the challenge of understanding macrophage diversity.

    Science.gov (United States)

    Geissmann, F; Mass, E

    2015-12-01

    The present issue of 'Seminars in Immunology' addresses the topic of macrophage biology, 100 years after the death of Elie Metchnikoff (May 1845-July 1916). As foreseen by Metchnikoff, the roles of macrophages in the maintenance of homeostasis and immunity against pathogens have become a broad and active area of investigation. We now start to realize that the myeloid system includes a multiplicity of cell types with diverse developmental origins and functions. Therefore, the textbook picture of a plastic and multifunctional macrophage does not meet the requirements of our current knowledge anymore. Further development toward a quantitative and molecular understanding of myeloid cell biology in vivo and their roles in tissue homeostasis and remodeling will benefit from taking this complexity into account. A tentative model to help in this pursuit and account for myeloid cell and macrophage diversity is discussed below. Copyright © 2016. Published by Elsevier Ltd.

  11. Experimental qualification of mechanical and electrical sub-systems of a complex mechanism against fatigue failure

    International Nuclear Information System (INIS)

    Patri, Sudheer; Vijayashree, R.; Rajan Babu, V.; Suresh Kumar, S.; Chandramouli, S.; Meikandamurthy, C.; Prakash, V.; Rajan, K.K.; Srinivasan, G.

    2016-01-01

    Absorber rod drive mechanisms (ARDM) play an important role in ensuring safety of a reactor by rapid insertion of an Absorber rod (AR) during abnormal conditions. Various components/sub-systems of ARDMs, both mechanical and electrical, are subjected to different cyclic loadings during service life. Thus, qualifying these systems against fatigue is an important step for gaining confidence in their safe operation for the design life. ASME in Sec. III, Div. 1, Appendices (Para II - 1500) provides guidelines for the experimental evaluation of the capability of components to withstand cyclic loading. These rules are developed for static components like pressure vessels. Since no such rules are available for moving components like mechanisms, the same were adopted for the ARDMs, with an understanding that the effect of inertia loads of a moving component are to be accounted in the experiments. In application of these rules to a complex mechanisms such as ARDM, various special cases arise which are not addressed explicitly in the code. The paper describes the intelligent adoption of the fatigue life rules given in ASME to various special cases and their extension to electrical systems. The paper also outlines the experiments carried out for qualifying the ARDM against fatigue. (author)

  12. Ferrous archaeological analogues for the understanding of the multi-secular corrosion mechanisms in an anoxic environment

    International Nuclear Information System (INIS)

    Saheb-Djahromi, M.

    2009-12-01

    Understanding the long term corrosion mechanisms of iron in an anoxic environment is essential in the field of the radioactive waste storage. In France, it is planned to store high level nuclear wastes in a multi-barrier system containing a glassy matrix surrounded by a stainless steel container, embedded in a low-carbon steel over-container. This system would be placed in a deep geological repository, which would impose anoxic conditions. As it must be efficient for a period of several thousands of years, one should understand the alteration mechanisms that are expected to occur in such a long time. To this purpose, a specific approach is developed on ferrous archaeological analogues with thick corrosion layer formed in natural conditions. In this study, the corrosion mechanisms have been assessed by examining nails aged of 400 years coming from the archaeological site of Glinet, selected as a reference site. The first point was a fine characterisation of the entire corrosion system metal / corrosion products / medium, through the use of coupled multi-scale analytical tools. The first results showed that the samples were corroded in an anoxic calco-carbonated environment. Moreover, the coupling of X-ray micro-diffraction, Raman microspectroscopy and dispersive energy spectroscopy has enabled to identify three corrosion systems composed of iron carbonates, siderite and chukanovite, and magnetite. Depending on the phase's layout in the system, the electronic resistance of the corrosion layers has been established, from resistive to conductive. In a second stage, re-corroding experiments in laboratory were performed. Firstly, the electrochemical behaviour of the corrosion system has shown that water reduction at the metallic interface is negligible. Furthermore, reaction tracing with copper and deuterium has allowed identifying the electron consumptions sites mainly localised on the external part, and the precipitation sites on the internal part of the corrosion

  13. [Dominating motivation in systemic memory mechanisms].

    Science.gov (United States)

    Sudakov, K V

    2005-01-01

    The materials provided in the article support the key role of dominating motivation in the systemic processes of fixation and opening of memory mechanisms. The activating mechanisms of dominating motivations in the systemic architectonics of behavioural acts provide the basis for development of a multicomponent acceptor apparatus of an action outcomes broadly represented in various analysing brain sections. As result of enhancement of action outcomes on acceptors structures, molecular behaviour engrammes form within the functional systems. It is these molecular engrammes that are opened by dominating motivations in the same spatial-temporal sequence in which training takes place, and determine deliberate actions of animals. It was demonstrated that dominating motivation opens genetic information with an approximating-exploratory reaction under strong activation of early genes expression, in particular, of c-fos gene protein. Inherent motivation reactions are not blocked by inhibitors of proteins synthesis, by cycloheximide, in particular. In the process of training animals, i.e., satisfaction of the demands which are the basis of dominating motivations, expression of early genes in reduced, while expression of late genes is initiated. In this case, blockators of protein synthesis begin to produce strong inhibiting impact on behaviour of animals.

  14. Dynamical chaos: systems of classical mechanics

    International Nuclear Information System (INIS)

    Loskutov, A Yu

    2007-01-01

    This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol'd-Moser theory, the Poincare-Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems - unpredictability, irreversibility, and decay of temporal correlations - are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years - billiards with oscillating boundaries - are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate. (methodological notes)

  15. From chemical neuroanatomy to an understanding of the olfactory system

    Directory of Open Access Journals (Sweden)

    L. Oboti

    2011-10-01

    Full Text Available The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB. Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  16. From chemical neuroanatomy to an understanding of the olfactory system

    Science.gov (United States)

    Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.

    2011-01-01

    The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  17. Gender differences in conceptual understanding of Newtonian mechanics: a UK cross-institution comparison

    International Nuclear Information System (INIS)

    Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R

    2013-01-01

    We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps. (paper)

  18. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    Science.gov (United States)

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. 2013 APA, all rights reserved

  19. Teletactile System Based on Mechanical Properties Estimation

    Directory of Open Access Journals (Sweden)

    Mauro M. Sette

    2011-01-01

    Full Text Available Tactile feedback is a major missing feature in minimally invasive procedures; it is an essential means of diagnosis and orientation during surgical procedures. Previous works have presented a remote palpation feedback system based on the coupling between a pressure sensor and a general haptic interface. Here a new approach is presented based on the direct estimation of the tissue mechanical properties and finally their presentation to the operator by means of a haptic interface. The approach presents different technical difficulties and some solutions are proposed: the implementation of a fast Young’s modulus estimation algorithm, the implementation of a real time finite element model, and finally the implementation of a stiffness estimation approach in order to guarantee the system’s stability. The work is concluded with an experimental evaluation of the whole system.

  20. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods

    Science.gov (United States)

    Alsaleh, Mansour; Alomar, Noura; Alarifi, Abdulrahman

    2017-01-01

    Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users’ security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users’ behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals’ awareness of the consequences of security threats. By comparing participants’ behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users’ security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones. PMID:28297719

  1. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods.

    Directory of Open Access Journals (Sweden)

    Mansour Alsaleh

    Full Text Available Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users' security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users' behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals' awareness of the consequences of security threats. By comparing participants' behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users' security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones.

  3. Irreversible processes in quantum mechanical systems

    International Nuclear Information System (INIS)

    Talkner, P.

    1979-01-01

    Although the information provided by the evolution of the density matrix of a quantum system is equivalent with the knowledge of all observables at a given time, it turns out ot be insufficient to answer certain questions in quantum optics or linear response theory where the commutator of certain observables at different space-time points is needed. In this doctoral thesis we prove the existence of density matrices for common probabilities at multiple times and discuss their properties and their characterization independent of a special representation. We start with a compilation of definitions and properties of classical common probabilities and correlation functions. In the second chapter we give the definition of a quantum mechanical Markov process and derive the properties of propagators, generators and conditional probabilities as well as their mutual relations. The third chapter is devoted to a treatment of quantum mechanical systems in thermal equilibrium for which the principle of detailed balance holds as a consequence of microreversibility. We work out the symmetry properties of the two-sided correlation functions which turn out to be analogous to those in classical processes. In the final chapter we use the Gaussian behavior of the stationary correlation function of an oscillator and determine a class of Markov processes which are characterized by dissipative Lionville operators. We succeed in obtaining the canonical representation in a purely algebraic way by means of similarity transformations. Starting from this representation it is particularly easy to calculate the propagator and the correlation function. (HJ) 891 HJ/HJ 892 MKO

  4. Towards understanding the mechanisms and the kinetics of nanoparticle penetration through protective gloves

    International Nuclear Information System (INIS)

    Vinches, L; Boutrigue, N; Zemzem, M; Hallé, S; Peyrot, C; Lemarchand, L; Wilkinson, K J; Tufenkji, N

    2015-01-01

    Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health and safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling). (paper)

  5. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    Science.gov (United States)

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis

    Science.gov (United States)

    Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele

    2016-11-01

    Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).

  7. Understanding the mechanisms of familiar voice-identity recognition in the human brain.

    Science.gov (United States)

    Maguinness, Corrina; Roswandowitz, Claudia; von Kriegstein, Katharina

    2018-03-31

    Humans have a remarkable skill for voice-identity recognition: most of us can remember many voices that surround us as 'unique'. In this review, we explore the computational and neural mechanisms which may support our ability to represent and recognise a unique voice-identity. We examine the functional architecture of voice-sensitive regions in the superior temporal gyrus/sulcus, and bring together findings on how these regions may interact with each other, and additional face-sensitive regions, to support voice-identity processing. We also contrast findings from studies on neurotypicals and clinical populations which have examined the processing of familiar and unfamiliar voices. Taken together, the findings suggest that representations of familiar and unfamiliar voices might dissociate in the human brain. Such an observation does not fit well with current models for voice-identity processing, which by-and-large assume a common sequential analysis of the incoming voice signal, regardless of voice familiarity. We provide a revised audio-visual integrative model of voice-identity processing which brings together traditional and prototype models of identity processing. This revised model includes a mechanism of how voice-identity representations are established and provides a novel framework for understanding and examining the potential differences in familiar and unfamiliar voice processing in the human brain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts.

    Science.gov (United States)

    Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2018-01-01

    The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.

  9. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    Science.gov (United States)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  10. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Understanding the mechanical and acoustical characteristics of sand aggregates compacting under triaxial conditions

    Science.gov (United States)

    Hangx, Suzanne; Brantut, Nicolas

    2016-04-01

    failure being present but occurring to a relatively limited extent. Acoustic emission localization showed that failure was focussed along a broad shear plane. At higher confining pressure pervasive grain failure clearly accommodated compaction, though no strain localization was observed and failure appeared to be through cataclastic flow. Chemical environment, i.e. chemically inert decane vs. water as a pore fluid, had no significant effect on compaction in the strain rate range tested. Grain size distribution or grain shape also appeared to not affect the observed mechanical behaviour. Our results can be used to better understand the compaction behaviour of poorly consolidated sandstones. Future research will focus on understanding the effect of cementation on strain localization in deforming artificial Ottawa sandstone.

  12. A mobile care system with alert mechanism.

    Science.gov (United States)

    Lee, Ren-Guey; Chen, Kuei-Chien; Hsiao, Chun-Chieh; Tseng, Chwan-Lu

    2007-09-01

    Hypertension and arrhythmia are chronic diseases, which can be effectively prevented and controlled only if the physiological parameters of the patient are constantly monitored, along with the full support of the health education and professional medical care. In this paper, a role-based intelligent mobile care system with alert mechanism in chronic care environment is proposed and implemented. The roles in our system include patients, physicians, nurses, and healthcare providers. Each of the roles represents a person that uses a mobile device such as a mobile phone to communicate with the server setup in the care center such that he or she can go around without restrictions. For commercial mobile phones with Bluetooth communication capability attached to chronic patients, we have developed physiological signal recognition algorithms that were implemented and built-in in the mobile phone without affecting its original communication functions. It is thus possible to integrate several front-end mobile care devices with Bluetooth communication capability to extract patients' various physiological parameters [such as blood pressure, pulse, saturation of haemoglobin (SpO2), and electrocardiogram (ECG)], to monitor multiple physiological signals without space limit, and to upload important or abnormal physiological information to healthcare center for storage and analysis or transmit the information to physicians and healthcare providers for further processing. Thus, the physiological signal extraction devices only have to deal with signal extraction and wireless transmission. Since they do not have to do signal processing, their form factor can be further reduced to reach the goal of microminiaturization and power saving. An alert management mechanism has been included in back-end healthcare center to initiate various strategies for automatic emergency alerts after receiving emergency messages or after automatically recognizing emergency messages. Within the time

  13. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  14. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  15. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  16. Dynamics and control of mechanical systems in offshore engineering

    CERN Document Server

    He, Wei; How, Bernard Voon Ee; Choo, Yoo Sang

    2014-01-01

    Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides:                                                                                                                                 ...

  17. Understanding bicycling in cities using system dynamics modelling.

    Science.gov (United States)

    Macmillan, Alexandra; Woodcock, James

    2017-12-01

    Increasing urban bicycling has established net benefits for human and environmental health. Questions remain about which policies are needed and in what order, to achieve an increase in cycling while avoiding negative consequences. Novel ways of considering cycling policy are needed, bringing together expertise across policy, community and research to develop a shared understanding of the dynamically complex cycling system. In this paper we use a collaborative learning process to develop a dynamic causal model of urban cycling to develop consensus about the nature and order of policies needed in different cycling contexts to optimise outcomes. We used participatory system dynamics modelling to develop causal loop diagrams (CLDs) of cycling in three contrasting contexts: Auckland, London and Nijmegen. We combined qualitative interviews and workshops to develop the CLDs. We used the three CLDs to compare and contrast influences on cycling at different points on a "cycling trajectory" and drew out policy insights. The three CLDs consisted of feedback loops dynamically influencing cycling, with significant overlap between the three diagrams. Common reinforcing patterns emerged: growing numbers of people cycling lifts political will to improve the environment; cycling safety in numbers drives further growth; and more cycling can lead to normalisation across the population. By contrast, limits to growth varied as cycling increases. In Auckland and London, real and perceived danger was considered the main limit, with added barriers to normalisation in London. Cycling congestion and "market saturation" were important in the Netherlands. A generalisable, dynamic causal theory for urban cycling enables a more ordered set of policy recommendations for different cities on a cycling trajectory. Participation meant the collective knowledge of cycling stakeholders was represented and triangulated with research evidence. Extending this research to further cities, especially in low

  18. The meridian system and mechanism of acupuncture: a comparative review. Part 3: Mechanisms of acupuncture therapies.

    Science.gov (United States)

    Chang, Shyang

    2013-06-01

    The human body is a hierarchical organism containing many levels of mutually interacting oscillatory systems. From the viewpoint of traditional Chinese medicine, health is a state of harmony emergent from the interactions of these systems and disease is a state of discord. Hence, human diseases are considered as disturbed functions rather than changed structures. Indeed, the change from normal to abnormal structure may be beneficent rather than maleficent. For example, when one kidney becomes twice the normal size following the destruction of the other kidney, it is good and not bad for us because we might be dead otherwise. Therefore, in Part 3 of this three-part series, emphasis is mainly laid on the acupuncture mechanisms of treating disturbed physiological functions rather than disordered structures. At first, the basic tenets of conventional neuroscience and cardiology are reevaluated so that clear understanding of how nervous and cardiovascular systems work together can be obtained. Then, the general principles of diagnosis and treatment in traditional Chinese medicine from the integrative perspective of complex dynamic systems are proposed. Finally, mechanisms of acupuncture therapies for treating 14 different categories of disorders will be elucidated via the magneto-electric inductive effects of the meridian system. Copyright © 2013. Published by Elsevier B.V.

  19. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quantum mechanical simulation methods for studying biological systems

    International Nuclear Information System (INIS)

    Bicout, D.; Field, M.

    1996-01-01

    Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)

  1. Mechanisms and Functions within a National Innovation System

    Directory of Open Access Journals (Sweden)

    Joseph Gogodze

    2016-12-01

    Full Text Available In modern society, the competitive success of countries is increasingly dependent on the effective management of their national innovation system (NIS. Therefore, understanding the mechanisms behind NISs has become essential. After reviewing the current understanding of the NIS concept and the existing measurement models, this study proposes to consider the NIS as an intangible (underlying asset of a specific kind and identifies its seven fundamental components, which are extracted with a new measurement model, the Global Innovation Index (GII. This study employs the Structural Equation Modeling (SEM techniques to analyze the relationships among the components of an NIS. Our results support the existence of a causal link between the constituents of an NIS and provide several perspectives regarding NIS management opportunities. In particular, we find that the efficient management of institutional capital is a key determinant of innovation success for non-high-income countries.

  2. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaehee V. Shim

    2017-09-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

  3. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    , in general, the information reported here could be of interest in designing new catalysts and understanding the reaction mechanism of these and other metal-catalyzed hydrolysis reactions.

  4. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach.

    Science.gov (United States)

    Chen, Meimei; Yang, Fafu; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-12-16

    Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)-a famous traditional Chinese medicine formula-has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  5. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Meimei Chen

    2016-12-01

    Full Text Available Metabolic syndrome (MS is becoming a worldwide health problem. Wendan decoction (WDD—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  6. Analytical energy spectrum for hybrid mechanical systems

    International Nuclear Information System (INIS)

    Zhong, Honghua; Xie, Qiongtao; Lee, Chaohong; Guan, Xiwen; Gao, Kelin; Batchelor, Murray T

    2014-01-01

    We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum is obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level crossings, which correspond to two-fold energy degeneracy. (paper)

  7. Understanding the differing governance of EU emissions trading and renewable: feedback mechanisms and policy entrepreneurs

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2010-04-15

    This paper presents a comparative study of two central EU climate policies: the revised Emissions Trading System (ETS), and the revised Renewable Energy Directive (RES). Both were originally developed in the early 2000s and revised policies were adopted in December 2008. While the ETS from 2013 on will have a quite centralized and market-streamlined design, the revised RES stands forward as a more decentralized and technology-focused policy. Differing institutional feed-back mechanisms and related roles of policy entrepreneurs can shed considerable light on these policy differences. Due to member states' cautiousness and contrary to the preferences of the Commission, the initial ETS was designed as a rather decentralized and 'politicized' market system, creating a malfunctioning institutional dynamic. In the revision process, the Commission skillfully highlighted this ineffective dynamic to win support for a much more centralized and market-streamlined approach. In the case of RES, national technology-specific support schemes and the strong links between the renewable industry and member states promoted the converse outcome: decentralization and technology development. Members of the European Parliament utilized these mechanisms through policy networking, while the Commission successfully used developments within the global climate regime to induce some degree of centralization. (Author)

  8. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  9. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  10. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    Science.gov (United States)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  11. Mechanism of hyperinsulinemia after reticuloendothelial system phagocytosis.

    Science.gov (United States)

    Filkins, J P; Yelich, M R

    1982-02-01

    Endocytic loading of the reticuloendothelial system (RES) results in acute hyperinsulinemia and functional hyperinsulinism. Colloidal carbon blockade of the RES in rats resulted in elevations of both portal vein and systemic serum immunoreactive insulin and increases in the hepatic portal vein insulin glucose ratios. Two mechanisms for the hyperinsulinemia were evaluated: 1) decreased removal of insulin by the postendocytic liver and 2) increased secretion of insulin by the isolated perfused pancreas. Colloidal carbon blockade did not alter removal of 125I-insulin as evaluated in the isolated perfused rat liver. Pancreases from postendocytic donor rats when perfused according to the technique of Grodsky manifested enhanced insulin secretion. Macrophage culture-conditioned media enhanced glucose-mediated insulin secretion both as assayed in vivo and in the isolated perfused rat pancreas. The data suggest that postendocytic activated macrophages secrete a monokine that alters insulin release and thus produces the hyperinsulinemia of RES blockade. The acronym MIRA for macrophage insulin-releasing activity is proposed for the monokine.

  12. Understanding mechanisms of solid-state phase transformations by probing nuclear materials

    Science.gov (United States)

    Banerjee, Srikumar; Donthula, Harish

    2018-04-01

    In this review a few examples will be cited to illustrate that a study on a specific nuclear material sometimes lead to a better understanding of scientific phenomena of broader interests. Zirconium alloys offer some unique opportunities in addressing fundamental issues such as (i) distinctive features between displacive and diffusional transformations, (ii) characteristics of shuffle and shear dominated displacive transformations and (iii) nature of mixed-mode transformations. Whether a transformation is of first or higher order?" is often raised while classifying it. There are rare examples, such as Ni-Mo alloys, in which during early stages of ordering the system experiences tendencies for both first order and second order transitions. Studies on the order-disorder transitions under a radiation environment have established the pathway for the evolution of ordering. These studies have also identified the temperature range over which the chemically ordered state remains stable in steady state under radiation.

  13. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  14. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  15. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    Directory of Open Access Journals (Sweden)

    Kaustav Majumder

    2014-12-01

    Full Text Available There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE, are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  16. Towards Understanding the Catalytic Mechanism of Human Paraoxonase 1: Experimental and In Silico Mutagenesis Studies.

    Science.gov (United States)

    Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H

    2017-08-01

    Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.

  17. Understanding gas production mechanism and effectiveness of well stimulation in the Haynesville shale through reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.; Thompson, J.W.; Robinson, J.R. [Schlumberger, Houston, TX (United States)

    2010-07-01

    The Haynesville Shale Basin is one of the large and most active shale gas plays in the United States, with 185 horizontal rigs currently in place. The Haynesville Shale is a very tight source rock and resource play. The gas resources are being converted into gas reserves with horizontal wells and hydraulic fracture treatments. A complex fracture network created during well stimulation is the main factor in generating superior early well performance in the area. The key to making better wells in all the gas shale plays is to understand how to create more surface area during hydraulic stimulation jobs and preserve the surface area for as long as possible. This paper presented a unique workflow and methodology that has enabled analysis of production data using reservoir simulation to explain the shale gas production mechanism and the effectiveness of stimulation treatments along laterals. Since 2008, this methodology has been used to analyze production data from more than 30 horizontal wells in the Haynesville Shale. Factors and parameters relating to short and long term well performance were investigated, including pore pressure, rock matrix quality, natural fractures, hydraulic fractures, and complex fracture networks. Operators can use the simulation results to determine where and how to spend resources to produce better wells and to reduce the uncertainties of developing these properties. 19 refs., 1 tab., 17 figs.

  18. Application of microscopy methods to the understanding of mechanisms involved in ilmenite reduction by hydrogen

    International Nuclear Information System (INIS)

    De Vries, M.; Grey, I.; Fitzgerald, J.

    2003-01-01

    Full text: Titania pigment is one of the major drivers of the mineral sands industry with production of over 4 million tpa in 2002 for paints, plastics, paper and ceramics applications. The main feedstock for titania pigment production is ilmenite, FeTiO 3 . It is used either directly or after it has been upgraded to a higher titania content. The major commercial upgrading processes are electro smelting (titania slag) or high temperature char reduction followed by iron removal (synthetic rutile SR). Future ilmenite upgrading processes are likely to use low temperature hydrogen reduction according to reaction, followed by aeration of the metallic iron and acid leaching to produce a high grade SR (Nicholson et al, 2000). The commercial application of such a process requires a detailed knowledge of the kinetics of reaction. FeTiO 3 + H 2 = Fe(m) + TiO 2 + H 2 O. The kinetics of ilmenite reduction has been studied at CSIRO Minerals using a specially designed thermogravimetric apparatus built around a Cahn pressurised symmetrical beam balance. The kinetics have been measured as a function of different operating parameters such as temperature, gas velocity and pressure. The parameters were set so as to minimise mass transport effects and increase chemical reaction control and to ensure the reduction kinetics are outside the gas starvation region. Small samples were used that had been sintered at close to melting point to form large grains with low unconnected porosity. High flow rates of reactant gas were also used. The application of a range of microscopy techniques to the reduced samples at various stages of reaction conversion has been critical to the development of an understanding of the reaction mechanisms. From analysis of TEM, IFESEM and optical microscopy results it appears that initially, chemical reaction is rate controlling at the surface and as the reaction proceeds topochemically inwards then diffusion mechanisms increase their control. Reaction proceeds

  19. Developing a Frame of Reference for understanding configuration systems

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Edwards, Kasper

    2008-01-01

    This paper uses the theory of technical systems to develop a frame of reference of product configuration systems. Following a definition of the configuration task, product model and product configuration system the theory of technical systems are presented. Configuration systems are then related...

  20. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  1. Analysis and Behaviour Understanding of a Production System

    Directory of Open Access Journals (Sweden)

    Olga Ioana Amariei

    2009-10-01

    Full Text Available In production systems modelling usually acts to system simulation by discrete events. The present paper exemplifies this, using the Queuing System Simulation module of the WinQSB software

  2. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells.

    Science.gov (United States)

    Armstrong, Christine A; Tomita, Kazunori

    2017-03-01

    Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. © 2017 The Authors.

  3. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a...

  4. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a...

  5. Development of clean chemical mechanical polishing systems; Clean CMP system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, M.; Hosokawa, M. [Ebara Corp., Tokyo (Japan)

    1998-10-20

    Described herein are clean chemical mechanical polishing (CMP) systems developed by Ebara. A CMP system needs advanced peripheral techniques, in addition to those for grinding adopted by the conventional system, in order to fully exhibit its inherent functions. An integrated design concept is essential for the CMP steps, including slurry supplying, polishing, washing, process controlling and waste fluid treatment. The Ebara has adopted a standard concept `Clean CMP, dry-in and dry-out of wafers,` and provided world`s highest grades of techniques for inter-layer insulating film, shallow trench isolation, plug and wiring. The head for the polishing module is specially designed by FEM, to improve homogeneity of wafers from the center to edges. The dresser is also specially designed, to improve pad surface topolody after dressing. A slurry dipsersing method is developed to reduce slurry consumption. Various washing modules, designed to have the same external shape, can be allocated to various functions. 10 figs.

  6. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed; Lubineau, Gilles

    2014-01-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation

  7. Respiratory system mechanics during laparoscopic cholecystectomy.

    Science.gov (United States)

    Rizzotti, L; Vassiliou, M; Amygdalou, A; Psarakis, Ch; Rasmussen, T R; Laopodis, V; Behrakis, P

    2002-04-01

    The influence of laparoscopic cholecystectomy (LC) on the mechanical properties of the respiratory system (RS) was examined using multiple regression analysis (MRA). Measurements of airway pressure (PaO) and flow (V') were obtained from 32 patients at four distinct stages of the LC procedure: 1) Immediately before the application of pneumoperitoneum (PP) at supine position, 2) 5 min after the induction of PP at Trendelenburg position, 3) 5 min after the patients position at reverse Trendelenburg, and 4) 5 min after the end ofthe surgical procedure with the patient again in supine position. Evaluated parameters were the RS elastance (Ers), resistance (Rrs), impedance (Zrs), the angle theta indicating the balance between the elastic and resistive components of the impedance, as well as the end-expiratory elastic recoil pressure (EEP). Ers and Zrs increased considerably during PP and remained elevated immediately after abolishing PP Rrs, on the contrary, returned to pre-operative levels right after the operation. Change of body position from Trendelenburg (T) to reverseTrendelenburg (rT) mainly induced a significant change in theta, thus indicating an increased dominance of the elastic component of Zrs on changing fromT to rT. There was no evidence of increased End-Expiratory Pressure during PP

  8. Teaching Climate Change Using System Models: An Understanding Global Change Project Pilot Study

    Science.gov (United States)

    Bean, J. R.; Stuhlsatz, M.; Bracey, Z. B.; Marshall, C. R.

    2017-12-01

    Teaching and learning about historical and anthropogenic climate change in the classroom requires integrating instructional resources that address physical, chemical, and biological processes. The Understanding Global Change (UGC) framework and system models developed at the University of California Museum of Paleontology (UCMP) provide visualizations of the relationships and feedbacks between Earth system processes, and the consequences of anthropogenic activities on global climate. This schema provides a mechanism for developing pedagogic narratives that are known to support comprehension and retention of information and relationships. We designed a nine-day instructional unit for middle and high school students that includes a sequence of hands-on, inquiry-based, data rich activities combined with conceptual modeling exercises intended to foster students' development of systems thinking and their understanding of human influences on Earth system processes. The pilot unit, Sea Level Rise in the San Francisco Bay Area, addresses the human causes and consequences of sea level rise and related Earth system processes (i.e., the water cycle and greenhouse effect). Most of the content is not Bay Area specific, and could be used to explore sea level rise in any coastal region. Students completed pre and post assessments, which included questions about the connectedness of components of the Earth system and probed their attitudes towards participating in environmental stewardship activities. Students sequentially drew models representing the content explored in the activities and wrote short descriptions of their system diagrams that were collected by teachers for analysis. We also randomly assigned classes to engage in a very short additional intervention that asked students to think about the role that humans play in the Earth system and to draw themselves into the models. The study will determine if these students have higher stewardship scores and more frequently

  9. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Science.gov (United States)

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  10. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  11. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS.

    Science.gov (United States)

    Staudacher, Heidi M; Whelan, Kevin

    2017-08-01

    There is an intensifying interest in the interaction between diet and the functional GI symptoms experienced in IBS. Recent studies have used MRI to demonstrate that short-chain fermentable carbohydrates increase small intestinal water volume and colonic gas production that, in those with visceral hypersensitivity, induces functional GI symptoms. Dietary restriction of short-chain fermentable carbohydrates (the low fermentable oligosaccharide, disaccharide, monosaccharide and polyol (FODMAP) diet) is now increasingly used in the clinical setting. Initial research evaluating the efficacy of the low FODMAP diet was limited by retrospective study design and lack of comparator groups, but more recently well-designed clinical trials have been published. There are currently at least 10 randomised controlled trials or randomised comparative trials showing the low FODMAP diet leads to clinical response in 50%-80% of patients with IBS, in particular with improvements in bloating, flatulence, diarrhoea and global symptoms. However, in conjunction with the beneficial clinical impact, recent studies have also demonstrated that the low FODMAP diet leads to profound changes in the microbiota and metabolome, the duration and clinical relevance of which are as yet unknown. This review aims to present recent advances in the understanding of the mechanisms by which the low FODMAP diet impacts on symptoms in IBS, recent evidence for its efficacy, current findings regarding the consequences of the diet on the microbiome and recommendations for areas for future research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. The role of mechanics in biological and bio-inspired systems.

    Science.gov (United States)

    Egan, Paul; Sinko, Robert; LeDuc, Philip R; Keten, Sinan

    2015-07-06

    Natural systems frequently exploit intricate multiscale and multiphasic structures to achieve functionalities beyond those of man-made systems. Although understanding the chemical make-up of these systems is essential, the passive and active mechanics within biological systems are crucial when considering the many natural systems that achieve advanced properties, such as high strength-to-weight ratios and stimuli-responsive adaptability. Discovering how and why biological systems attain these desirable mechanical functionalities often reveals principles that inform new synthetic designs based on biological systems. Such approaches have traditionally found success in medical applications, and are now informing breakthroughs in diverse frontiers of science and engineering.

  13. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    Science.gov (United States)

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.

  14. Understanding the Dynamic System of Terrorist-Government Interaction

    Science.gov (United States)

    2003-03-01

    Figure 62. Model 5D Equation Level Screen Shot 3 167 Bibliography Bajaracharya, Arun, Stephen Olu Ogunlana, and Nguyen Luong Bach...Understanding the New Security Environment Readings and Interpretations. Guilford, Connecticut: Mc- Graw -Hill/Dushkin 2002 Laqueur, Walter. “Postmodern

  15. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  16. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  17. The meridian system and mechanism of acupuncture—A comparative review. Part 1: The meridian system

    Directory of Open Access Journals (Sweden)

    Shyang Chang

    2012-12-01

    Full Text Available In traditional Chinese medicine (TCM, acupuncture has been used to heal various diseases and physiologic malfunctions in clinical practice for more than 2500 years. Due to its efficacy, acupuncture has been recommended by the World Health Organization in 1980 as an effective alternative therapy for 43 different disorders. Over the past few decades, various theories of the meridian system and mechanisms have been proposed to explain how acupuncture might work. Most of these mechanisms, however, cannot yet explain conclusively why acupuncture is efficacious in treating so many different diseases. A plausible mechanism has been unavailable until recently. This is the first of a three-part series that aims to provide a comparative review of the aforementioned topics. Part 1 reviews the current indications for acupuncture, basic concepts of TCM, and the essence of the meridian system. To establish a mathematically rigorous framework of TCM, the chaotic wave theory of fractal continuum is proposed. This theory is then applied to characterize the essence of the meridian system. Parts 2 and 3 will review the possible mechanisms of acupuncture analgesia and acupuncture therapies, respectively, based on biochemical, bioelectromagnetic, chaotic wave, and neurophysiologic approaches. It is sincerely hoped that this series of review articles can promote an understanding of the meridian system and acupuncture mechanisms to help patients in a logical and passionate way.

  18. Understanding Organizational Memory from the Integrated Management Systems (ERP)

    OpenAIRE

    Gilberto Perez; Isabel Ramos

    2013-01-01

    With this research, in the form of a theoretical essay addressing the theme of Organizational Memory and Integrated Management Systems (ERP), we tried to present some evidence of how this type of system can contribute to the consolidation of certain features of Organizational Memory. From a theoretical review of the concepts of Human Memory, extending to the Organizational Memory and Information Systems, with emphasis on Integrated Management Systems (ERP) we tried to draw a parallel between ...

  19. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed

    2014-11-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation change the conductivity of ITO devices remains unclear. We propose a systematic micro-mechanics-based approach to clarify the relationship between degradation and changes in electrical resistance. By comparing experimentally measured channel crack densities to changes in electrical resistance returned by the different micro-mechanical schemes, we highlight the key role played by the residual conductivity in the interface between the ITO electrode and its substrate after delamination. We demonstrate that channel cracking alone does not explain the experimental observations. Our results indicate that delamination has to take place between the ITO electrode and the substrate layers and that the residual conductivity of this delaminated interface plays a major role in changes in electrical resistance of the degraded device. © 2014 Elsevier B.V.

  20. Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach

    Science.gov (United States)

    Ecohydrological connectivity is a system-level property that results from the linkages in the networks of water transport through ecosystems, by which feedback effects and other emergent system behaviors may be generated. We created a systems dynamic model that represents primary ecohydrological net...

  1. Understanding and Improving the Performance Consistency of Distributed Computing Systems

    NARCIS (Netherlands)

    Yigitbasi, M.N.

    2012-01-01

    With the increasing adoption of distributed systems in both academia and industry, and with the increasing computational and storage requirements of distributed applications, users inevitably demand more from these systems. Moreover, users also depend on these systems for latency and throughput

  2. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    Science.gov (United States)

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. An Integrative Systems Biology Approach to Understanding Pulmonary Diseases

    NARCIS (Netherlands)

    Auffray, Charles; Adcock, Ian M.; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J.

    2010-01-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain

  4. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  5. Constrained systems described by Nambu mechanics

    International Nuclear Information System (INIS)

    Lassig, C.C.; Joshi, G.C.

    1996-01-01

    Using the framework of Nambu's generalised mechanics, we obtain a new description of constrained Hamiltonian dynamics, involving the introduction of another degree of freedom in phase space, and the necessity of defining the action integral on a world sheet. We also discuss the problem of quantizing Nambu mechanics. (authors). 5 refs

  6. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  7. Brief Communication: Understanding disasters and early-warning systems

    Science.gov (United States)

    Castaños, H.; Lomnitz, C.

    2014-12-01

    This paper discusses some methodological questions on understanding disasters. Destructive earthquakes continue to claim thousands of lives. Tsunamis may be caused by recoil of the upper plate. Darwin's twin-epicenter hypothesis is applied to a theory of tsunamis. The ergodicity hypothesis may help to estimate the return periods of extremely rare events. A social science outline on the causation of the Tôhoku nuclear disaster is provided.

  8. Understanding Enterprise Systems' Impact(s) on Business Relationships

    Science.gov (United States)

    Ekman, Peter; Thilenius, Peter

    Enterprise systems (ESs), i.e. standardized applications supplied from software vendors such as SAP or Oracle, have been extensively employed by companies during the last decade. Today all Fortune 500 companies have, or are in the process of installing, this kind of information system (Seddon et al. 2003). A wide-spread denotation for these applications is enterprise resource planning (ERP) systems. But the broad utilization use of these software packages in business is rendering this labelling too narrow (Davenport 2000).

  9. Understanding Cooperative Learning in Context-aware Recommender Systems

    DEFF Research Database (Denmark)

    Jiang, Na; Tan, Chee-Wee; Wang, Weiquan

    2017-01-01

    Context-Aware Recommender Systems (CARSs) are becoming commonplace. Yet, there is a paucity of studies that investigates how such systems could affect usage behavior from a user-system interaction perspective. Building on the Social Interdependence Theory (SIT), we construct a research model...... of users’ promotive interaction with CARSs, which in turn, dictates the performance of such recommender systems. Furthermore, we introduce scrutability features as design interventions that can be harnessed by developers to mitigate the impact of users’ promotive interaction on the performance of CARSs....

  10. Safety of mechanical devices. Safety of automation systems

    International Nuclear Information System (INIS)

    Pahl, G.; Schweizer, G.; Kapp, K.

    1985-01-01

    The paper deals with the classic procedures of safety engineering in the sectors mechanical engineering, electrical and energy engineering, construction and transport, medicine technology and process technology. Particular stress is laid on the safety of automation systems, control technology, protection of mechanical devices, reactor safety, mechanical constructions, transport systems, railway signalling devices, road traffic and protection at work in chemical plans. (DG) [de

  11. Resources, attitudes and culture: an understanding of the factors that influence the functioning of accountability mechanisms in primary health care settings.

    Science.gov (United States)

    Cleary, Susan M; Molyneux, Sassy; Gilson, Lucy

    2013-08-16

    District level health system governance is recognised as an important but challenging element of health system development in low and middle-income countries. Accountability is a more recent focus in health system debates. Accountability mechanisms are governance tools that seek to regulate answerability between the health system and the community (external accountability) and/or between different levels of the health system (bureaucratic accountability). External accountability has attracted significant attention in recent years, but bureaucratic accountability mechanisms, and the interactions between the two forms of accountability, have been relatively neglected. This is an important gap given that webs of accountability relationships exist within every health system. There is a need to strike a balance between achieving accountability upwards within the health system (for example through information reporting arrangements) while at the same time allowing for the local level innovation that could improve quality of care and patient responsiveness. Using a descriptive literature review, this paper examines the factors that influence the functioning of accountability mechanisms and relationships within the district health system, and draws out the implications for responsiveness to patients and communities. We also seek to understand the practices that might strengthen accountability in ways that improve responsiveness--of the health system to citizens' needs and rights, and of providers to patients. The review highlights the ways in which bureaucratic accountability mechanisms often constrain the functioning of external accountability mechanisms. For example, meeting the expectations of relatively powerful managers further up the system may crowd out efforts to respond to citizens and patients. Organisational cultures characterized by supervision and management systems focused on compliance to centrally defined outputs and targets can constrain front line

  12. How does money memorize social interactions? Understanding time-homogeneity in monetary systems

    Science.gov (United States)

    Braun, Dieter; Schmitt, Matthias; Schacker, Andreas

    2013-03-01

    Understanding how money shapes and memorizes our social interactions is central to modern life. There are many schools of thought on as to how monetary systems contribute to crises or boom/bust cycles and how monetary policy can try to avert them. We find that statistical physics gives a refreshing perspective. We analyze how credit mechanisms introduce non-locality and time-heterogeneity to the monetary memory. Motivated by an analogy to particle physics, locality and time-homogeneity can be imposed to monetary systems. As a result, a full reserve banking system is complemented with a bi-currency system of non-bank assets (``money'') and bank assets (``antimoney''). Payment can either be made by passing on money or by receiving antimoney. As a result, a free floating exchange rate between non-bank assets and bank assets is established. Interestingly, this monetary memory allows for credit creation by the simultaneous transfer of money and antimoney at a negotiated exchange rate. We analyze this novel mechanism of liquidity transfer in a model of random social interactions, yielding analytical results for all relevant distributions and the price of liquidity under the conditions of a fully transparent credit market.

  13. Laboratory experiments for understanding mechanical properties of fractured granite under supercritical conditions

    Science.gov (United States)

    Kitamura, M.; Takahashi, M.; Takagi, K.; Hirano, N.; Tsuchiya, N.

    2017-12-01

    To extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to understand roles of factors on occurrences of the induced-earthquake (e.g., strength, crack density, and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012). Our purpose of this series of experiments is to clarify a relationship between the rock strength and the crack density under supercritical conditions. We conducted triaxial deformation test on intact granite rock strength under high-temperature (250 - 750°C), high-pressure (104 MPa) condition at a constant load velocity (0.1 μm/sec) using a gas-rig at AIST. We used Oshima granite, which has initially Young's modulus increased with decreasing the temperature from 32.3 GPa at 750°C to 57.4 GPa at 250°C. At 400 °C, the stress drop accelerated the deformation with 98 times faster velocity than that at load-point. In contrast, at 650°C and 750°C, the velocity during stress drop kept the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650°C. Highly dense cracked granite specimens were formed by a rapid decompression test (RDT) using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of fluid pressure within 1-2 sec from vapor/supercritical state (10 - 48 MPa, 550 °C) to ambient pressure. The specimens after RDT show numerous microcracks on X-ray CT images. The RDT imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s. The Poisson's ratio shows the negative values in dry and 0.5 in wet. In the meeting, we will present results of triaxial deformation test on such cracked granites

  14. Toward Understanding Mechanisms Controlling Urea Delivery in a Coastal Plain Watershed

    Science.gov (United States)

    Tzilkowski, S. S.; Buda, A. R.; Boyer, E. W.; Bryant, R. B.; May, E. B.

    2012-12-01

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver of coastal eutrophication, particularly through the development of harmful algal blooms. While several studies have documented elevated urea concentrations in tributaries draining to the Chesapeake Bay, little is known about the potential sources and flow pathways responsible for urea delivery from the landscape to surface waters, as well as how these sources and pathways might vary with changing seasons, antecedent conditions, and storm types. In this study, we investigated hydrologic controls on urea delivery in the Manokin River watershed through the analysis of urea concentration dynamics and hysteresis patterns during seven storm events that occurred in 2010 and 2011. The Manokin River is a Coastal Plain watershed (11.1 km2) on the Delmarva Peninsula that drains directly to the Chesapeake Bay and is characterized by extensive rural development coupled with intensive agriculture, particularly poultry production. Sampling was conducted through monthly grab sampling at baseflow conditions and by time-weighted, automated (Sigma) samplers during stormflow events. Monitored storms were chosen to represent a spectrum of antecedent conditions based on precipitation and groundwater levels in the area. Flushing from the landscape during events was found to be the predominant urea delivery mechanism, as urea concentrations increased 3-9 times above baseflow concentrations during storms. The timing and number of flushes, as well as the degree of increased concentrations were dependent on antecedent conditions and the characteristics of the storm event. For instance, during an intense (13.7 mm hr-1), short-duration (4 hrs) storm in August of 2010 when antecedent conditions were

  15. Understanding ERP system implementation in a hospital by analysing stakeholders

    NARCIS (Netherlands)

    Boonstra, A.; Govers, M.

    Implementing enterprise resource planning (ERP) systems requires significant organisational, as well as technical, changes. These will affect stakeholders with varying perspectives and interests in the system. This is particularly the case in health care, as a feature of this sector is that

  16. Understanding IoT systems: a life cycle approach

    NARCIS (Netherlands)

    Rahman, Leila Fatmasari; Ozcelebi, Tanir; Lukkien, Johan

    2018-01-01

    Internet of Things (IoT) systems and the corresponding network architectures are complex due to distributed services on many IoT devices collaboratively fulfilling common goals of IoT applications. System requirements for different types of IoT application domains are still not well-established. The

  17. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  18. Understanding human factors in cyber security as a dynamic system

    NARCIS (Netherlands)

    Young, H.J.; Vliet, A.J. van; Ven, J.G.S. van de; Jol, S.C.; Broekman, C.C.M.T.

    2018-01-01

    The perspective of human factors is largely missing from the wider cyber security dialogue and its scope is often limited. We propose a framework in which we consider cyber security as a state of a system. System change is brought on by an entity’s behavior. Interventions are ways of changing

  19. Postoperative Surgical Site Infections: Understanding the Discordance Between Surveillance Systems.

    Science.gov (United States)

    Ali-Mucheru, Mariam N; Seville, Maria T; Miller, Vickie; Sampathkumar, Priya; Etzioni, David A

    2018-04-18

    To characterize agreement in the ascertainment of surgical site infections (SSIs) between the National Surgical Quality Improvement Program (NSQIP), National Healthcare Safety Network (NHSN), and administrative data. The NSQIP, NHSN, and administrative data are the primary systems used to monitor and report SSIs for the purpose of quality control and benchmarking of hospitals and surgeons. These systems have different methods for identifying SSIs. We queried the NHSN, NSQIP, and administrative data systems for patients who had an operation at 1 of 4 hospitals within a single health system between January 2013 and September 2015. The detection of an SSI during a postoperative hospitalization was the outcome of analysis. Any SSI detected by one (or more) of these systems was analyzed by 2 reviewers to determine the presence of discrete elements of documentation constituting evidence of SSI. Concordance between the 3 systems (NHSN, NSQIP, and administrative data) was analyzed using Cohen's kappa. After application of appropriate exclusion criteria, a cohort of 9447 inpatient operations was analyzed. In total, 130 SSIs were detected by 1 or more of the 3 systems, with reported SSI rates of 0.5% (NHSN), 0.7% (administrative data), and 1.0% (NSQIP). Of these 130 SSIs, only 17 SSIs were reported by all 3 systems. The concordance between these 3 systems was moderate (kappa values NSQIP-NHSN = 0.50 [0.40-0.60], administrative-NHSN = 0.36 [0.24-0.47], and administrative-NSQIP = 0.47 [0.38-0.57]). Chart review found that reasons for discordance were related to issues of different criteria as well as inaccuracies. There is significant discordance in the determination of SSIs reported by the NHSN, NSQIP, and administrative data. The differences and limitations of each of these systems have to be recognized, especially when using these data for quality reports and pay for performance.

  20. Using interviews to understand the assignment mechanism in a nonexperimental study: the case of eighth grade algebra.

    Science.gov (United States)

    Rickles, Jordan H

    2011-10-01

    Many inquiries regarding the causal effects of policies or programs are based on research designs where the treatment assignment process is unknown, and thus valid inferences depend on tenuous assumptions about the assignment mechanism. This article draws attention to the importance of understanding the assignment mechanism in policy and program evaluation studies, and illustrates how information collected through interviews can develop a richer understanding of the assignment mechanism. Focusing on the issue of student assignment to algebra in 8th grade, I show how a preliminary data collection effort aimed at understanding the assignment mechanism is particularly beneficial in multisite observational studies in education. The findings, based on ten interviews and administrative data from a large school district, draw attention to the often ignored heterogeneity in the assignment mechanism across schools. These findings likely extend beyond the current research project in question to related educational policy issues such as ability grouping, tracking, differential course taking, and curricular intensity, as well as other social programs in which the assignment mechanism can differ across sites.

  1. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  2. Understanding genetic variation - the value of systems biology.

    Science.gov (United States)

    Hütt, Marc-Thorsten

    2014-04-01

    Pharmacology is currently transformed by the vast amounts of genome-associated information available for system-level interpretation. Here I review the potential of systems biology to facilitate this interpretation, thus paving the way for the emerging field of systems pharmacology. In particular, I will show how gene regulatory and metabolic networks can serve as a framework for interpreting high throughput data and as an interface to detailed dynamical models. In addition to the established connectivity analyses of effective networks, I suggest here to also analyze higher order architectural properties of effective networks. © 2013 The British Pharmacological Society.

  3. Understanding Information Systems Integration Deficiencies in Mergers and Acquisitions

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kettinger, William J.

    2017-01-01

    Information systems (IS) integration is a critical challenge for value-creating mergers and acquisitions. Appropriate design and implementation of IS integration is typically a precondition for enabling a majority of the anticipated business benefits of a combined organization. Often...

  4. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  5. Detection and Location of Structural Degradation in Mechanical Systems

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Damiano, B.; Phillips, L.D.

    1999-01-01

    The investigation of a diagnostic method for detecting and locating the source of structural degradation in a mechanical system is described in this paper. The diagnostic method uses a mathematical model of the mechanical system to determine relationships between system parameters and measurable spectral features. These relationships are incorporated into a neural network, which associates measured spectral features with system parameters. Condition diagnosis is performed by presenting the neural network with measured spectral features and comparing the system parameters estimated by the neural network to previously estimated values. Changes in the estimated system parameters indicate the location and severity of degradation in the mechanical system

  6. How Do Students in an Innovative Principle-Based Mechanics Course Understand Energy Concepts?

    Science.gov (United States)

    Ding, Lin; Chabay, Ruth; Sherwood, Bruce

    2013-01-01

    We investigated students' conceptual learning of energy topics in an innovative college-level introductory mechanics course, entitled Matter & Interactions (M&I) Modern Mechanics. This course differs from traditional curricula in that it emphasizes application of a small number of fundamental principles across various scales, involving…

  7. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach

    KAUST Repository

    Chen, Zhang-Fan

    2011-07-29

    Background: The barnacle Balanus amphitrite is a globally distributed biofouler and a model species in intertidal ecology and larval settlement studies. However, a lack of genomic information has hindered the comprehensive elucidation of the molecular mechanisms coordinating its larval settlement. The pyrosequencing-based transcriptomic approach is thought to be useful to identify key molecular changes during larval settlement. Methodology and Principal Findings: Using 454 pyrosequencing, we collected totally 630,845 reads including 215,308 from the larval stages and 415,537 from the adults; 23,451 contigs were generated while 77,785 remained as singletons. We annotated 31,720 of the 92,322 predicted open reading frames, which matched hits in the NCBI NR database, and identified 7,954 putative genes that were differentially expressed between the larval and adult stages. Of these, several genes were further characterized with quantitative real-time PCR and in situ hybridization, revealing some key findings: 1) vitellogenin was uniquely expressed in late nauplius stage, suggesting it may be an energy source for the subsequent non-feeding cyprid stage; 2) the locations of mannose receptors suggested they may be involved in the sensory system of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval settlement. Conclusions: Our results provide not only the basis of several new hypotheses about gene functions during larval settlement, but also the availability of this large transcriptome dataset in B. amphitrite for further exploration of larval settlement and developmental pathways in this important marine species. © 2011 Chen et al.

  8. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    Science.gov (United States)

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic

  9. Understanding Absorptive Capacities is an "Innovation Systems" Context

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    2004-01-01

    This paper seeks to broaden our understanding of the concept underlying absorptive capacity atthe macro -level, paying particular attention to the growth and development perspectives. Weprovide definitions of absorptive and technological capacity, external technology flows,productivity growth....... We also undertake to explain how the nature ofabsorptive capacity changes with stages of economic development, and the importance of thedifferent aspects of absorptive capability at different stages. The relationship is not a linear one:the benefits that accrue from marginal increases in absorptive...... capability change over time.Finally, we provide a tentative and preliminary conceptual argument of how the different stagesof absorptive capacity are related to productivity growth, economic growth and employmentcreation.Key words: New economy, absorptive capacity, knowledge...

  10. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  11. Understanding electrostatic charge behaviour in aircraft fuel systems

    Science.gov (United States)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  12. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics.

    Science.gov (United States)

    Louveau, Antoine; Plog, Benjamin A; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan

    2017-09-01

    Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.

  13. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng; Bougouffa, Salim; Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  14. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  15. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  16. A Framework for Identifying and Understanding Enterprise Systems Benefits

    DEFF Research Database (Denmark)

    Schubert, Petra; Williams, Susan P.

    2011-01-01

    Purpose – Identifying the benefits arising from implementations of enterprise systems and realizing business value remains a significant challenge for both research and industry. This paper aims to consolidate previous work. It presents a framework for investigating enterprise systems benefits...... into aspects and criteria plus an attributed appraisal value. The resulting scheme for the “three-level benefit codes” provides a greater level of detail about the nature of expected and realized benefits. Practical implications – The high level of detail and the code scheme comprising 60 different codes...... and the method for deriving the codes allows companies to identify and define benefits as well as to assess the outcome of enterprise systems implementation projects. Originality/value – The paper empirically develops an applicable benefits framework, which addresses the lack of detail of previous frameworks....

  17. Understanding Hawking radiation in the framework of open quantum systems

    International Nuclear Information System (INIS)

    Yu Hongwei; Zhang Jialin

    2008-01-01

    We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh and Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems

  18. Understanding large social-ecological systems: introducing the SESMAD project

    Directory of Open Access Journals (Sweden)

    Michael Cox

    2014-08-01

    Full Text Available This article introduces the Social-ecological systems meta-analysis database (SESMAD project, which is the project behind the case studies and synthetic articles contained in this special issue of the International Journal of the Commons. SESMAD is an internationally collaborative meta-analysis project that builds on previous seminally synthetic work on small-scale common-pool resource systems conducted at the Workshop in Political Theory and Policy Analysis at Indiana University. This project is guided by the following research question: can the variables found to be important in explaining outcomes on small-scale systems be scaled up to explain outcomes in large-scale environmental governance? In this special issue we report on our findings thus far through a set of case studies of large-scale environmental governance, a paper that describes our conceptual advances, and a paper that compares these five case studies to further examine our central research question.

  19. Advances in understanding of soil biogeochemical cycles: the mechanism of HS entry into the root interior

    Science.gov (United States)

    Aleksandrova, Olga

    2017-04-01

    Humic substances represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. As shown by some investigators [1-2], the phenomenon of the uptake of the whole humic particles by plant roots is a significant step of biogeochemical cycle of carbon in soils. The mechanism of HS entry the root interior remained unknown for a long time. However recently, the last one was discovered [3]. An advanced model [3] includes two hypotheses. These hypotheses are as follows: (1) each nano-size particle possesses a quantum image that can be revealed as a packet of electromagnetic waves; (2) the interaction of nano-size particle with the membrane (plasma membrane) of living cells, on which it is adsorbed, occurs via the development of the Rayleigh-Taylor (RT) instability on the membrane surface. An advanced model allows us to look insight some into some phenomena that were observed by experiments but remained not understood [2]. The authors [2] applied tritium autoradiography to wheat seedlings cultivated with tritium-labeled HS to consider the uptake of humic particles by plant roots. They found a significant increase in the content of some polar (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylcholine (PC)) and neutral (free fatty acids, FFA) lipids which were detected in the wheat seedlings treated with humic particles. Authors [2] pointed that lipids MGDG, DGDG, SQDG are crucial for functional and structural integrity of the photosystem complex. Therefore, a stimulating action of adsorbed humic particles evoked phenomena like photosynthesis in root cells that can be interpreted using an advanced model: humic particles being nano-size particles become adsorbed on the plant roots in soils, and influence their micro environment, where they are located, with the specific electromagnetic exposure. Another finding of authors consisted in the

  20. The Virtual Liver Network: systems understanding from bench to bedside.

    Science.gov (United States)

    Henney, Adriano; Coaker, Hannah

    2014-01-01

    Adriano Henney speaks to Hannah Coaker, Commissioning Editor. After achieving a PhD in medicine and spending many years in academic research in the field of cardiovascular disease, Adriano Henney was recruited by Zeneca Pharmaceuticals from a British Heart Foundation Senior Fellowship, where he led the exploration of new therapeutic approaches in atherosclerosis, specifically focusing on his research interests in vascular biology. Following the merger with Astra to form AstraZeneca, Henney became responsible for exploring strategic improvements to the company's approaches to pharmaceutical target identification and the reduction of attrition in early development, directing projects across research sites and across functional project teams in the USA, Sweden and the UK. This resulted in the creation of a new multidisciplinary department that focused on pathway mapping, modeling and simulation and supporting projects across research and development, which evolved into the establishment of the practice of systems biology within the company. Here, projects prototyped the application of mechanistic disease-modeling approaches in order to support the discovery of innovative new medicines, such as Iressa®. Since leaving AstraZeneca, Henney has continued his interest in systems biology, synthetic biology and systems medicine through his company, Obsidian Biomedical Consulting Ltd. He now directs a major €50 million German national flagship program – the Virtual Liver Network – which is currently the largest systems biology program in Europe.

  1. Model systems for understanding absorption tuning by opsin proteins

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brøndsted

    2009-01-01

    This tutorial review reports on model systems that have been synthesised and investigated for elucidating how opsin proteins tune the absorption of the protonated retinal Schiff base chromophore. In particular, the importance of the counteranion is highlighted. In addition, the review advocates...... is avoided, and it becomes clear that opsin proteins induce blueshifts in the chromophore absorption rather than redshifts....

  2. Speech Understanding in Air Intercept Controller Training System Design.

    Science.gov (United States)

    1979-01-01

    Street MD 700 Utica, NY 13503chief MI Field Unit Mr. J. Michael Nyc, Pres identP.O. Box 476 Marketing Consultants Interna tional , Inc.Fort Rucker, AL... Researc h Lab Systems and Information Sciences Lab ~aman Engi neering Division Texas Instruments ~fright-Patterson AFB P. 0. Box 5936 Dayton, OH

  3. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  4. Understanding the mechanism of sweet taste: synthesis of tritium labeled guanidineacetic acids

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, S.; Kellogg, M.S.; DuBois, G.E. (NutraSweet Company, Mt. Prospect, IL (United States)); Williams, D.S. (Amersham International plc, Cardiff (United Kingdom). Cardiff Labs.); Gresk, C.J.; Markos, C.S. (Searle Research and Development, Skokie, IL (United States))

    1992-08-01

    Syntheses of tritium labeled guanidineacetic acid sweetener and a tritiated photoaffinity labeling reagent via the catalytic hydrogenation of the dibromo intermediates are described. These labeled compounds were required for the investigation of sweet taste mechanism. (author).

  5. Understanding the mechanism of sweet taste: synthesis of tritium labeled guanidineacetic acids

    International Nuclear Information System (INIS)

    Nagarajan, S.; Kellogg, M.S.; DuBois, G.E.; Williams, D.S.

    1992-01-01

    Syntheses of tritium labeled guanidineacetic acid sweetener and a tritiated photoaffinity labeling reagent via the catalytic hydrogenation of the dibromo intermediates are described. These labeled compounds were required for the investigation of sweet taste mechanism. (author)

  6. Understanding recurrent crime as system-immanent collective behavior.

    Science.gov (United States)

    Perc, Matjaž; Donnay, Karsten; Helbing, Dirk

    2013-01-01

    Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between "criminals", "inspectors", and "ordinary people" as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies.

  7. Understanding recurrent crime as system-immanent collective behavior.

    Directory of Open Access Journals (Sweden)

    Matjaž Perc

    Full Text Available Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between "criminals", "inspectors", and "ordinary people" as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies.

  8. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik; Ouyang, Christine; Krysak, Marie; Trikeriotis, Markos; Cho, Kyoungyoung; Giannelis, Emmanuel P.; Ober, Christopher K.

    2013-01-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  9. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik

    2013-04-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  10. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  11. Silent Warning: Understanding the National Terrorism Advisory System

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited SILENT WARNING...PERFORMING OR GANIZATION NA:i\\ti E (S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 9. SP ONSORING /MONIT ORING AGENCY NAME(S) AND...Homeland Sectu’ity Advisory System, Boston Marathon bombing, Christmas Day bomber, tmderwear bomber, hum cane , cotmteiteiTO!’ism, CT AB

  12. Using realist synthesis to understand the mechanisms of interprofessional teamwork in health and social care.

    Science.gov (United States)

    Hewitt, Gillian; Sims, Sarah; Harris, Ruth

    2014-11-01

    Realist synthesis offers a novel and innovative way to interrogate the large literature on interprofessional teamwork in health and social care teams. This article introduces realist synthesis and its approach to identifying and testing the underpinning processes (or "mechanisms") that make an intervention work, the contexts that trigger those mechanisms and their subsequent outcomes. A realist synthesis of the evidence on interprofessional teamwork is described. Thirteen mechanisms were identified in the synthesis and findings for one mechanism, called "Support and value" are presented in this paper. The evidence for the other twelve mechanisms ("collaboration and coordination", "pooling of resources", "individual learning", "role blurring", "efficient, open and equitable communication", "tactical communication", "shared responsibility and influence", "team behavioural norms", "shared responsibility and influence", "critically reviewing performance and decisions", "generating and implementing new ideas" and "leadership") are reported in a further three papers in this series. The "support and value" mechanism referred to the ways in which team members supported one another, respected other's skills and abilities and valued each other's contributions. "Support and value" was present in some, but far from all, teams and a number of contexts that explained this variation were identified. The article concludes with a discussion of the challenges and benefits of undertaking this realist synthesis.

  13. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  14. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    Science.gov (United States)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  15. A modeling process to understand complex system architectures

    Science.gov (United States)

    Robinson, Santiago Balestrini

    2009-12-01

    In recent decades, several tools have been developed by the armed forces, and their contractors, to test the capability of a force. These campaign level analysis tools, often times characterized as constructive simulations are generally expensive to create and execute, and at best they are extremely difficult to verify and validate. This central observation, that the analysts are relying more and more on constructive simulations to predict the performance of future networks of systems, leads to the two central objectives of this thesis: (1) to enable the quantitative comparison of architectures in terms of their ability to satisfy a capability without resorting to constructive simulations, and (2) when constructive simulations must be created, to quantitatively determine how to spend the modeling effort amongst the different system classes. The first objective led to Hypothesis A, the first main hypotheses, which states that by studying the relationships between the entities that compose an architecture, one can infer how well it will perform a given capability. The method used to test the hypothesis is based on two assumptions: (1) the capability can be defined as a cycle of functions, and that it (2) must be possible to estimate the probability that a function-based relationship occurs between any two types of entities. If these two requirements are met, then by creating random functional networks, different architectures can be compared in terms of their ability to satisfy a capability. In order to test this hypothesis, a novel process for creating representative functional networks of large-scale system architectures was developed. The process, named the Digraph Modeling for Architectures (DiMA), was tested by comparing its results to those of complex constructive simulations. Results indicate that if the inputs assigned to DiMA are correct (in the tests they were based on time-averaged data obtained from the ABM), DiMA is able to identify which of any two

  16. Analysis and control of underactuated mechanical systems

    CERN Document Server

    Choukchou-Braham, Amal; Djemaï, Mohamed; Busawon, Krishna

    2014-01-01

    This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen—chain, tree, and isolated vertex—and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATL...

  17. Analysis of multiple instructional techniques on the understanding and retention of select mechanical topics

    Science.gov (United States)

    Fetsco, Sara Elizabeth

    There are several topics that introductory physics students typically have difficulty understanding. The purpose of this thesis is to investigate if multiple instructional techniques will help students to better understand and retain the material. The three units analyzed in this study are graphing motion, projectile motion, and conservation of momentum. For each unit students were taught using new or altered instructional methods including online laboratory simulations, inquiry labs, and interactive demonstrations. Additionally, traditional instructional methods such as lecture and problem sets were retained. Effectiveness was measured through pre- and post-tests and student opinion surveys. Results suggest that incorporating multiple instructional techniques into teaching will improve student understanding and retention. Students stated that they learned well from all of the instructional methods used except the online simulations.

  18. Mechanical systems development of integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.

    1997-07-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs

  19. Understanding the role of technology in health information systems.

    Science.gov (United States)

    Lewis, Don; Hodge, Nicola; Gamage, Duminda; Whittaker, Maxine

    2012-04-01

    Innovations in, and the use of emerging information and communications technology (ICT) has rapidly increased in all development contexts, including healthcare. It is believed that the use of appropriate technologies can increase the quality and reach of both information and communication. However, decisions on what ICT to adopt have often been made without evidence of their effectiveness; or information on implications; or extensive knowledge on how to maximise benefits from their use. While it has been stated that 'healthcare ICT innovation can only succeed if design is deeply informed by practice', the large number of 'failed' ICT projects within health indicates the limited application of such an approach. There is a large and growing body of work exploring health ICT issues in the developed world, and some specifically focusing on the developing country context emerging from Africa and India; but not for the Pacific Region. Health systems in the Pacific, while diverse in many ways, are also faced with many common problems including competing demands in the face of limited resources, staff numbers, staff capacity and infrastructure. Senior health managers in the region are commonly asked to commit money, effort and scarce manpower to supporting new technologies on proposals from donor agencies or commercial companies, as well as from senior staff within their system. The first decision they must make is if the investment is both plausible and reasonable; they must also secondly decide how the investment should be made. The objective of this article is three-fold: firstly, to provide a common 'language' for categorising and discussing health information systems, particularly those in developing countries; secondly, to summarise the potential benefits and opportunities offered by the use of ICT in health; and thirdly, to discuss the critical factors countries. Overall, this article aims to illuminate the potential role of information and communication

  20. Understanding Socio-Hydrology System in the Kissimmee River Basin

    Science.gov (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  1. Hospital Quality Systems - working mechanisms unraveled.

    NARCIS (Netherlands)

    Schoten, S. van; Groenewegen, P.; Wagner, C.

    2015-01-01

    Context: Quality systems were implemented in healthcare institutions to assure and improve the quality of care. Despite the fact that all Dutch hospitals have implemented a quality system, incidents persist to surface. How could this be explained? The current research was set out to gain thorough

  2. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    Science.gov (United States)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  3. Mediterranean savanna system: understanding and modeling of olive orchard.

    Science.gov (United States)

    Brilli, Lorenzo; Moriondo, Marco; Bindi, Marco

    2013-04-01

    Nowadays most of the studies on C and N exchange were focused on forest ecosystems and crop systems, while only few studies have been focused on so called "savanna systems". They are long-term agro-ecosystems (fruit trees, grapevines and olive trees, etc.) usually characterized by two different layers (ground vegetation and trees). Generally, there is a lack of knowledge about these systems due to their intrinsic structural complexity (different eco-physiological characteristics so as agricultural practices). However, given their long-term carbon storage capacity, these systems can play a fundamental role in terms of global C cycle. Among all of them, the role that olive trees can play in C sequestration should not be neglected, especially in Mediterranean areas where they typify the rural landscape and are widely cultivated (Loumou and Giourga, 2003). It is therefore fundamental modelling the C-fluxes exchanges coming from these systems through a tool able to well reproduce these dynamics in one of the most exposed areas to the risk of climate change (IPCC, 2007). In this work, 2 years of Net CO2 Ecosystem Exchange (NEE) measures from eddy covariance were used to test the biogeochemistry model DayCent. The study was conducted in a rain-fed olive orchard situated in Follonica, South Tuscany, Italy (42 ° 55'N, 10 ° 45'E), in an agricultural area near the coast. The instrumentation for flux measurement was placed 1.9 m above the canopy top (6.5 m from the ground) so that the footprint area, expressed as the area containing 90% of the observed flux, was almost entirely contained within the olive orchard limits (Brilli et al., in press). Ancillary slow sensors have included soil temperature profiles, global radiation, air temperature and humidity, rain gauge. Fluxes of sensible heat, latent heat, momentum and CO2 as well as ancillary data were derived at half-hourly time resolution. Specific soil (texture, current and historical land use and vegetation cover) and

  4. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  5. User Authentication Mechanisms for Remote Education Systems

    Directory of Open Access Journals (Sweden)

    Ekaterina Yurievna Gourina

    2013-02-01

    Full Text Available Systems of remote education (RE are now widespread. These systems are convenient in terms of simplicity, efficiency of education, costs, opportunities to study with a teacher when you are in different parts of the globe, to attend online lectures and seminars. The information circulating in this system is a source of making money for its owner, which of course does not want the system (and the information in it to be used by not authorized users. In this article methods of authentication in such systems is discussed, because you can put a firewall, encrypt data transmissions, etc., but if there will be free access to the server, where all the information is held — it will all be useless.

  6. The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone

    Directory of Open Access Journals (Sweden)

    Lee B Meakin

    2014-10-01

    Full Text Available Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading.Jiri Heřt introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gauges to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced.Experiments combining strain gauge instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats and mice has yielded significant insight into the control of strain-related adaptive (remodeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice which is now the model of choice for many studies. Together such studies have demonstrated that; over the physiological strain range, bone’s mechanically-adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles and that these are most effective when interrupted by short periods of

  7. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone

    Science.gov (United States)

    Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them

  8. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    Science.gov (United States)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  9. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  10. Greenhouse gases and solid waste management systems: Understanding the relationships

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, K.; Smith, P.A.

    1999-07-01

    In one of the first applications of life cycle analysis at the state level, the Minnesota Office of Environmental Assistance has assessed the resource conservation benefits and greenhouse gas impacts of the state's municipal solid waste (MSW) system. Using a life cycle inventory, the Phase 1 work estimated the resource conservation benefits of Minnesota's 1996 MSW reduction and management strategies. It compared the production processes used to obtain useful products from MSW with alternative production processes using virgin materials. The Phase 2 work, conducted under a grant from the US Environmental Protection Agency (USEPA), focused specifically on measuring the greenhouse gas implications of reduction, recycling, and management from 1991--1996. This phase expanded the analysis to included life cycle assessment and improvement. The work will be used in Minnesota's MSW policy and program development efforts, as well as in climate change mitigation planning.

  11. Understanding workplace violence: the value of a systems perspective.

    Science.gov (United States)

    Bentley, Tim A; Catley, Bevan; Forsyth, Darryl; Tappin, David

    2014-07-01

    Workplace violence is a leading form of occupational injury and fatality, but has received little attention from the ergonomics research community. The paper reports findings from the 2012 New Zealand Workplace Violence Survey, and examines the workplace violence experience of 86 New Zealand organisations and the perceptions of occupational health and safety professionals from a systems perspective. Over 50% of respondents reported violence cases in their organisation, with perpetrators evenly split between co-workers and external sources such as patients. Highest reported levels of violence were observed for agriculture, forestry and construction sectors. Highest risk factor ratings were reported for interpersonal and organisational factors, notably interpersonal communication, time pressure and workloads, with lowest ratings for environmental factors. A range of violence prevention measures were reported, although most organisations relied on single control measures, suggesting unmanaged violence risks were common among the sample. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    Science.gov (United States)

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  13. Group Theoretical Approach for Controlled Quantum Mechanical Systems

    National Research Council Canada - National Science Library

    Tarn, Tzyh-Jong

    2007-01-01

    The aim of this research is the study of controllability of quantum mechanical systems and feedback control of de-coherence in order to gain an insight on the structure of control of quantum systems...

  14. Mechanical strength and stiffness of biodegradable and titanium osteofixation systems

    NARCIS (Netherlands)

    Buijs, Gerrit J.; van der Houwen, Eduard B.; Bos, Rudulf R. M.; Verkerke, Gijsbertus J.

    Purpose: To present relevant mechanical data to simplify the selection of an osteofixation system for situations requiring immobilization in oral and maxillofacial surgery. Materials and Methods: Seven biodegradable and 2 titanium osteofixation systems were investigated. The plates and screws were

  15. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  16. Understanding the mechanical coupling between magma emplacement and the resulting deformation: the example of saucer-shaped sills

    Science.gov (United States)

    Galland, O.; Neumann, E. R.; Planke, S.

    2009-12-01

    The mechanical coupling between magma intrusions and the surrounding rocks plays a major role in the emplacement of volcanic plumbing systems. The deformation associated with magma emplacement has been widely studied, such as caldera inflation/deflation, volcano deformation during dike intrusion, and doming above laccoliths. However, the feedback processes, i.e. the effect of deformation resulting from intruding magma on the propagation of the intrusion itself, have rarely been studied. Saucer-shaped sills are adequate geological objects to understand such processes. Indeed, observation show that saucer-shaped sills are often associated with dome-like structures affecting the overlying sediments. In addition, there is a clear geometrical relation between the sills and the domes: the dome diameters are almost identical to those of saucers, and the tips of the inclined sheets of saucers are superimposed on the edges of the domes. In this presentation, we report on experimental investigations of the emplacement mechanisms of saucer-shaped sills and associated deformation. The model materials were (1) cohesive fine-grained silica flour, representing brittle crust, and (2) molten low-viscosity oil, representing magma. A weak layer located at the top of the injection inlet simulates strata. The main variable parameter is injection depth. During experiments, the surface of the model is digitalized through a structured light technique based on the moiré projection principle. Such a tool provides topographic maps of the surface of the model and allows a periodic (every 1.5 s) monitoring of the model topography. When the model magma starts intruding, a symmetrical dome rises above the inlet. Subsequently, the dome inflates and widens, and then evolves to a plateau-like feature, with nearly flat upper surface and steep sides. At the end of the experiments, the intruding liquid erupts at the edge of the plateau. The intrusions formed in the experiments are saucer-shaped sills

  17. Understanding the mechanism of nanotube synthesis for controlled production of specific (n,m) structures

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E.

    2010-02-11

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  18. Intelligent Acquisition System Used in Mechanical Laboratory

    Directory of Open Access Journals (Sweden)

    Rob Raluca

    2016-01-01

    Full Text Available The main purpose of this paper consists in determining of the parameters which characterize the functioning of the Teves MK 60 as an ABS-ESP braking laboratory stand. This braking system model is used by the Volkswagen Golf and Bora the since 2002. The braking laboratory stand is able to simulate many operations which are able to give information concerning the ABS-ESP braking system comparing to the classical braking system. An application designed in LabVIEW comes to acquire and to process in real time the electrical signals generated by the Teves MK 60 laboratory stand.

  19. Mechanical analysis of Chen chaotic system

    International Nuclear Information System (INIS)

    Liang, Xiyin; Qi, Guoyuan

    2017-01-01

    The Chen chaotic system is transformed into Kolmogorov type system, which is decomposed into four types of torques: inertial torque, internal torque, dissipation and external torque. By the combinations of different torques, five cases are studied to discover key factors of chaos generation and the physical meaning. The conversion among Hamiltonian energy, kinetic energy and potential energy is investigated in these five cases. The relationship between the energies and the parameters is studied. It concludes that the combination of these four types of torques is necessary conditions to produce chaos, and any combination of three types of torques cannot produce chaos in Chen system.

  20. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  1. Classical mechanics systems of particles and Hamiltonian dynamics

    CERN Document Server

    Greiner, Walter

    2010-01-01

    This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

  2. A dynamical system perspective to understanding badminton singles game play.

    Science.gov (United States)

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics

    Science.gov (United States)

    Zhu, Guangtian; Singh, Chandralekha

    2013-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…

  4. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  5. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose

  6. Massage therapy: understanding the mechanisms of action on blood pressure. A scoping review.

    Science.gov (United States)

    Nelson, Nicole L

    2015-10-01

    Massage therapy (MT) has shown potential in reducing blood pressure (BP); however, the psychophysiological pathways and structures involved in this outcome are unclear. The aims of this scoping review were twofold. (1) To summarize the current knowledge of the mechanisms of action of MT on BP. (2) To highlight the research gaps and challenges that researchers must overcome to further elucidate how MT attenuates BP. A scoping review was conducted to examine the evidence regarding the mechanisms of action of MT on BP. This review included the thematic analysis of 27 publications that considered the influence of MT on BP. Based on this analysis, six potential BP mediating pathways were identified Current theories suggest that MT exerts sympatholytic effects through physiologic and psychological mechanisms, improves hypothalamus-pituitary-adrenocortical axis function, and increases in blood flow, which, in turn, may improve endothelial function. Future study is needed, using more scientifically rigorous methodology, to fully elucidate the mechanism of action of MT. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  7. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  8. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  9. System dynamics an introduction for mechanical engineers

    CERN Document Server

    Seeler, Karl A

    2014-01-01

    This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control.  The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software.  Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations

  10. Understanding and quantifying foliar temperature acclimation for Earth System Models

    Science.gov (United States)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  11. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  12. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  13. New Insight in Understanding the mechanical responses of polymer glasses using molecular dynamic simulation

    Science.gov (United States)

    Zheng, Yexin; Wang, Shi-Qing; Tsige, Mesfin

    The Kremer-Grest bead-spring model has been the standard model in molecular dynamics simulation of polymer glasses. However, due to current computational limitations in accessing relevant time scales in polymer glasses in a reasonable amount of CPU time, simulation of mechanical response of polymer glasses in molecular dynamic simulations requires a much higher quenching rate and deformation rate than used in experiments. Despite several orders of magnitude difference in time scale between simulation and experiment, previous studies have shown that simulations can produce meaningful results that can be directly compared with experimental results. In this work we show that by tuning the quenching rate and deformation rate relative to the segmental relaxation times, a reasonable mechanical response shows up in the glassy state. Specifically, we show a younger glass prepared with a faster quenching rate shows glassy responses only when the imposed deformation rate is proportionally higher. the National Science Foundation (DMR-1444859 and DMR-1609977).

  14. An investigation and understanding of the mechanical response of Palmyrah timber

    International Nuclear Information System (INIS)

    Sobier, Hatim; Menzemer, C.C.; Srivatsan, T.S.

    2003-01-01

    The Palmyrah tree flourishes in tropical areas around South East Asia, and particularly in Sri Lanka. Palmyrah is an important economic resource for the region, and has found use in structural applications for both residential dwellings and commercial buildings. While there is a great deal of local field experience with Palmyrah, the mechanical properties have not been well characterized or understood. In an effort to assist engineers with the design and efficient use of the timber, a study was undertaken to evaluate the mechanical response of Palmyrah and develop estimates of design allowable properties. Properties evaluated include static bending strength, modulus, compression parallel and perpendicular to the grain, shear parallel to the grain and tensile strength parallel and perpendicular to the grain. In order to gain insight into the behavior of the wood, samples were examined using standard optical microscopy techniques. In addition, available fracture surfaces were examined using scanning electron microscopy

  15. [Use of laws of interelement interactions for understanding of mechanisms of various human diseases].

    Science.gov (United States)

    Barashkov, G K; Zaĭtseva, L I

    2008-01-01

    The review considers the basic laws of interaction of elements in real physiological conditions of metabolism. The law of replacement and two it consequences have been formulated taking into account a major principle of cybernetics, the feedback principle. A rule of a fractional threshold and the law of toxicity based on the Mertz's rules have been formulated. These laws have been used here for consideration of mechanisms of occurrence and development of apoptosis and also side-effects of statins. Study of bioinorganic mechanisms of different diseases is a erspective way for search of complex connections of metals and ligands, capable to interaction with initiators of chain reactions, and for a finding of substances--inhibitors these reactions.

  16. Understanding of mechanical properties of graphite on the basis of mesoscopic microstructure (review)

    International Nuclear Information System (INIS)

    Ishihara, M.; Shibata, T.; Takahashi, T.; Baba, S.; Hoshiya, T.

    2002-01-01

    With the aim of nuclear application of ceramics in the high-temperature engineering field, the authors have investigated the mesoscopic microstructure related to the mechanical and thermal properties of ceramics. In this paper, recent activities concerning mechanical properties, strength and Young's modulus are presented. In the strength research field, the brittle fracture model considering pore/grain mesoscopic microstructure was expanded so as to render possible an estimation of the strength under stress gradient conditions. Furthermore, the model was expanded to treat the pore/crack interaction effect. The performance of the developed model was investigated from a comparison with experimental data and the Weibull strength theory. In the field of Young's modulus research, ultrasonic wave propagation was investigated using the pore/wave interaction model. Three kinds of interaction modes are treated in the model. The model was applied to the graphite, and its applicability was investigated through comparison with experimental data. (authors)

  17. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  18. SUSY anomaly in quantum-mechanical systems

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1987-01-01

    Explicit examples of supersymmetric systems involving finite numbers of degrees of freedom where quantum supersymmetry algebra cannot be preserved on the classical level, are constructed. Resolving the ordering ambiguities in different ways leads either to a modified algebra or to a reduced algebra, or totally destroys supersymmetry

  19. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  20. A numerical toolkit to understand the mechanics of partially saturated granular materials

    OpenAIRE

    Roux , Jean-Noël

    2015-01-01

    ``Focus on Fluids'' section; International audience; The mechanisms by which a wetting, non-saturating liquid bestows macroscopic cohesion and strength to a granular material are usually not accessible to micromechanical investigations for saturations exceeding the pendular regime of isolated menisci, easily studied by discrete element models. The " JFM-Rapids " paper (vol. 762, R5, 2015) by Delenne, Richefeu and Radja¨ıRadja¨ı, exploiting a multiphase Lattice Boltzmann approach, pioneers the...

  1. Understanding Freshness Perception from the Cognitive Mechanisms of Flavor: The Case of Beverages

    Science.gov (United States)

    Roque, Jérémy; Auvray, Malika; Lafraire, Jérémie

    2018-01-01

    Freshness perception has received recent consideration in the field of consumer science mainly because of its hedonic dimension, which is assumed to influence consumers’ preference and behavior. However, most studies have considered freshness as a multisensory attribute of food and beverage products without investigating the cognitive mechanisms at hand. In the present review, we endorse a slightly different perspective on freshness. We focus on (i) the multisensory integration processes that underpin freshness perception, and (ii) the top–down factors that influence the explicit attribution of freshness to a product by consumers. To do so, we exploit the recent literature on the cognitive underpinnings of flavor perception as a heuristic to better characterize the mechanisms of freshness perception in the particular case of beverages. We argue that the lack of consideration of particular instances of flavor, such as freshness, has resulted in a lack of consensus about the content and structure of different types of flavor representations. We then enrich these theoretical analyses, with a review of the cognitive mechanisms of flavor perception: from multisensory integration processes to the influence of top–down factors (e.g., attentional and semantic). We conclude that similarly to flavor, freshness perception is characterized by hybrid content, both perceptual and semantic, but that freshness has a higher-degree of specificity than flavor. In particular, contrary to flavor, freshness is characterized by specific functions (e.g., alleviation of oropharyngeal symptoms) and likely differs from flavor with respect to the weighting of each sensory contributor, as well as to its subjective location. Finally, we provide a comprehensive model of the cognitive mechanisms that underlie freshness perception. This model paves the way for further empirical research on particular instances of flavor, and will enable advances in the field of food and beverage cognition

  2. Understanding the Personality and Behavioral Mechanisms Defining Hypersexuality in Men Who Have Sex With Men.

    Science.gov (United States)

    Miner, Michael H; Romine, Rebecca Swinburne; Raymond, Nancy; Janssen, Erick; MacDonald, Angus; Coleman, Eli

    2016-09-01

    Hypersexuality has been conceptualized as sexual addiction, compulsivity, and impulsivity, among others, in the absence of strong empirical data in support of any specific conceptualization. To investigate personality factors and behavioral mechanisms that are relevant to hypersexuality in men who have sex with men. A sample of 242 men who have sex with men was recruited from various sites in a moderate-size mid-western city. Participants were assigned to a hypersexuality group or a control group using an interview similar to the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition. Self-report inventories were administered that measured the broad personality constructs of positive emotionality, negative emotionality, and constraint and more narrow constructs related to sexual behavioral control, behavioral activation, behavioral inhibition, sexual excitation, sexual inhibition, impulsivity, attention-deficit/hyperactivity disorder, and sexual behavior. Hierarchical logistic regression was used to determine the relation between these personality and behavioral variables and group membership. A hierarchical logistic regression controlling for age showed a significant positive relation between hypersexuality and negative emotionality and a negative relation with constraint. None of the behavioral mechanism variables entered this equation. However, a hierarchical multiple regression analysis predicting sexual behavioral control indicated that lack of such control was positively related to sexual excitation and sexual inhibition owing to the threat of performance failure and negatively related to sexual inhibition owing to the threat of performance consequences and general behavioral inhibition Hypersexuality was found to be related to two broad personality factors that are characterized by emotional reactivity, risk taking, and impulsivity. The associated lack of sexual behavior control is influenced by sexual

  3. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    OpenAIRE

    Epel, Elissa S.; Lithgow, Gordon J.

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the str...

  4. Understanding Freshness Perception from the Cognitive Mechanisms of Flavor: The Case of Beverages

    Directory of Open Access Journals (Sweden)

    Jérémy Roque

    2018-01-01

    Full Text Available Freshness perception has received recent consideration in the field of consumer science mainly because of its hedonic dimension, which is assumed to influence consumers’ preference and behavior. However, most studies have considered freshness as a multisensory attribute of food and beverage products without investigating the cognitive mechanisms at hand. In the present review, we endorse a slightly different perspective on freshness. We focus on (i the multisensory integration processes that underpin freshness perception, and (ii the top–down factors that influence the explicit attribution of freshness to a product by consumers. To do so, we exploit the recent literature on the cognitive underpinnings of flavor perception as a heuristic to better characterize the mechanisms of freshness perception in the particular case of beverages. We argue that the lack of consideration of particular instances of flavor, such as freshness, has resulted in a lack of consensus about the content and structure of different types of flavor representations. We then enrich these theoretical analyses, with a review of the cognitive mechanisms of flavor perception: from multisensory integration processes to the influence of top–down factors (e.g., attentional and semantic. We conclude that similarly to flavor, freshness perception is characterized by hybrid content, both perceptual and semantic, but that freshness has a higher-degree of specificity than flavor. In particular, contrary to flavor, freshness is characterized by specific functions (e.g., alleviation of oropharyngeal symptoms and likely differs from flavor with respect to the weighting of each sensory contributor, as well as to its subjective location. Finally, we provide a comprehensive model of the cognitive mechanisms that underlie freshness perception. This model paves the way for further empirical research on particular instances of flavor, and will enable advances in the field of food and

  5. Investigating and improving student understanding of quantum mechanical observables and their corresponding operators in Dirac notation

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2018-01-01

    In quantum mechanics, for every physical observable, there is a corresponding Hermitian operator. According to the most common interpretation of quantum mechanics, measurement of an observable collapses the quantum state into one of the possible eigenstates of the operator and the corresponding eigenvalue is measured. Since Dirac notation is an elegant notation that is commonly used in upper-level quantum mechanics, it is important that students learn to express quantum operators corresponding to observables in Dirac notation in order to apply the quantum formalism effectively in diverse situations. Here we focus on an investigation that suggests that, even though Dirac notation is used extensively, many advanced undergraduate and PhD students in physics have difficulty expressing the identity operator and other Hermitian operators corresponding to physical observables in Dirac notation. We first describe the difficulties students have with expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We then discuss how the difficulties found via written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of these concepts. The QuILT strives to help students become proficient in expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We also discuss the effectiveness of the QuILT based on in-class evaluations.

  6. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  7. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  8. Design and manufacturing of mechanical steering system for ...

    African Journals Online (AJOL)

    Design and manufacturing of mechanical steering system for parallel parking, zero turning radius, minimum turning radius with traditional turning. ... of the steering system are designed so as to meet all the configuration of steering system and to be well-matched to the power train, suspension system and body of the car.

  9. Mechanical decontamination techniques for floor drain systems

    International Nuclear Information System (INIS)

    Palau, G.L.

    1987-01-01

    The unprecedented nature of cleanup activities at Three Mile Island Unit 2 (TMI-2) following the 1979 accident has necessitated the development of new techniques to deal with radiation and contamination in the plant. One of these problems was decontamination of floor drain systems, which had become highly contaminated with various forms of dirt and sludge containing high levels of fission products and fuel from the damaged reactor core. The bulk of this contamination is loosely adherent to the drain pipe walls; however, significant amounts of contamination have become incorporated into pipe wall oxide and corrosion layers and embedded in microscopic pits and fissures in the pipe wall material. The need to remove this contamination was recognized early in the TMI-2 cleanup effort. A program consisting of development and laboratory testing of floor drain decontamination techniques was undertaken early in the cleanup with support from the Electric Power Research Institute (EPRI). Based on this initial research, two techniques were judged to show promise for use at TMI-2: a rotating brush hone system and a high-pressure water mole nozzle system. Actual use of these devices to clean floor drains at TMI-2 has yielded mixed decontamination results. The decontamination effectiveness that has been obtained is highly dependent on the nature of the contamination in the drain pipe and the combination of decontamination techniques used

  10. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  11. Mechanics of non-holonomic systems a new class of control systems

    CERN Document Server

    Soltakhanov, Sh Kh; Zegzhda, S A

    2009-01-01

    Mechanics of non-holonomic systems gives a deep insight into the theory and applications of Analytical Mechanics. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics.

  12. Understanding mobility degeneration mechanism in organic thin-film transistors (OTFT)

    Science.gov (United States)

    Wang, Wei; Wang, Long; Xu, Guangwei; Gao, Nan; Wang, Lingfei; Ji, Zhuoyu; Lu, Congyan; Lu, Nianduan; Li, Ling; Liu, Miwng

    2017-08-01

    Mobility degradation at high gate bias is often observed in organic thin film transistors. We propose a mechanism for this confusing phenomenon, based on the percolation theory with the presence of disordered energy landscape with an exponential density of states. Within a simple model we show how the surface states at insulator/organic interface trap a portion of channel carriers, and result in decrease of mobility as well as source/drain current with gate voltage. Depending on the competition between the carrier accumulation and surface trapping effect, two different carrier density dependences of mobility are obtained, in excellent agreement with experiment data.

  13. Understanding organometallic reaction mechanisms and catalysis experimental and computational tools computational and experimental tools

    CERN Document Server

    Ananikov, Valentin P

    2014-01-01

    Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper

  14. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  15. Understanding the Mechanical forces of Self-Expandable Metal Stents in the Biliary Ducts.

    Science.gov (United States)

    Isayama, Hiroyuki; Nakai, Yousuke; Hamada, Tsuyoshi; Matsubara, Saburo; Kogure, Hirofumi; Koike, Kazuhiko

    2016-12-01

    Self-expandable metallic stent (SEMS) was an effective biliary endoprosthesis. Mechanical properties of SEMS, radial and axial force (RF, AF), may play important roles in the bile duct after placement. RF was well known dilation force and influenced on the occurrence of migration. AF, newly proposed by this author, was defined as the recovery force when the SEMS vended. AF was related with the cause of bile duct kinking, pancreatitis, and cholecystitis due to the compression of the bile duct, orifice of the cystic duct, and pancreatic orifice. Ideal SEMS may show high RF and low AF.

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  17. 6th Conference on Design and Modeling of Mechanical Systems

    CERN Document Server

    Fakhfakh, Tahar; Daly, Hachmi; Aifaoui, Nizar; Chaari, Fakher

    2015-01-01

    This book offers a collection of original peer-reviewed contributions presented at the 6th International Congress on Design and Modeling of Mechanical Systems (CMSM’2015), held in Hammamet, Tunisia, from the 23rd to the 25th of March 2015. It reports on both recent research findings and innovative industrial applications in the fields of mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, and design and manufacturing of mechanical systems. Since its first edition in 2005, the CMSM Congress has been held every two years with the aim of bringing together specialists from universities and industry to present the state-of-the-art in research and applications, discuss the most recent findings and exchange and develop expertise in the field of design and modeling of mechanical systems. The CMSM Congress is jointly organized by three Tunisian research laboratories: the Mechanical Engineering Laboratory of th...

  18. Holostrain system: a powerful tool for experimental mechanics

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1992-09-01

    A portable holographic interferometer that can be used to measure displacements and strains in all kinds of mechanical components and structures is described. The holostrain system captures images on a TV camera that detects interference patterns produced by laser illumination. The video signals are digitized. The digitized interferograms are processed by a fast processing system. The output of the system are the strains or the stresses of the observed mechanical component or structure.

  19. Modified quantum mechanics of small composite systems

    International Nuclear Information System (INIS)

    Wolters, G.F.

    1986-12-01

    Boundary conditions on radial wave functions are considered for a particle bound by a central potential. It is argued that the usual condition at the origin needs modification for systems of small intrinsic size. This affects s-states, especially the ground state. With the obtained modification the virial theorem is imposed rather than derived. As an illustration the central rectangular well potential is treated and applied to the nucleon. Its soft electromagnetic structure can be largely explained while quark confinement holds despite moderate strength of the potential. A discussion follows. (Auth.)

  20. A systems approach to theoretical fluid mechanics: Fundamentals

    Science.gov (United States)

    Anyiwo, J. C.

    1978-01-01

    A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.

  1. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods

    Science.gov (United States)

    Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice

    2017-10-01

    In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.

  2. Understanding the Cognitive and Affective Mechanisms that Underlie Proxy Risk Perceptions among Caregivers of Asthmatic Children.

    Science.gov (United States)

    Shepperd, James A; Lipsey, Nikolette P; Pachur, Thorsten; Waters, Erika A

    2018-07-01

    Medical decisions made on behalf of another person-particularly those made by adult caregivers for their minor children-are often informed by the decision maker's beliefs about the treatment's risks and benefits. However, we know little about the cognitive and affective mechanisms influencing such "proxy" risk perceptions and about how proxy risk perceptions are related to prominent judgment phenomena. Adult caregivers of minor children with asthma ( N = 132) completed an online, cross-sectional survey assessing 1) cognitions and affects that form the basis of the availability, representativeness, and affect heuristics; 2) endorsement of the absent-exempt and the better-than-average effect; and 3) proxy perceived risk and unrealistic comparative optimism of an asthma exacerbation. We used the Pediatric Asthma Control and Communication Instrument (PACCI) to assess asthma severity. Respondents with higher scores on availability, representativeness, and negative affect indicated higher proxy risk perceptions and (for representativeness only) lower unrealistic optimism, irrespective of asthma severity. Conversely, respondents who showed a stronger display of the better-than-average effect indicated lower proxy risk perceptions but did not differ in unrealistic optimism. The absent-exempt effect was unrelated to proxy risk perceptions and unrealistic optimism. Heuristic judgment processes appear to contribute to caregivers' proxy risk perceptions of their child's asthma exacerbation risk. Moreover, the display of other, possibly erroneous, judgment phenomena is associated with lower caregiver risk perceptions. Designing interventions that target these mechanisms may help caregivers work with their children to reduce exacerbation risk.

  3. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Dongdong Gu

    2017-10-01

    Full Text Available Selective laser melting (SLM additive manufacturing (AM technology has become an important option for the precise manufacturing of complex-shaped metallic parts with high performance. The SLM AM process involves complicated physicochemical phenomena, thermodynamic behavior, and phase transformation as a high-energy laser beam melts loose powder particles. This paper provides multiscale modeling and coordinated control for the SLM of metallic materials including an aluminum (Al-based alloy (AlSi10Mg, a nickel (Ni-based super-alloy (Inconel 718, and ceramic particle-reinforced Al-based and Ni-based composites. The migration and distribution mechanisms of aluminium nitride (AlN particles in SLM-processed Al-based nanocomposites and the in situ formation of a gradient interface between the reinforcement and the matrix in SLM-processed tungsten carbide (WC/Inconel 718 composites were studied in the microscale. The laser absorption and melting/densification behaviors of AlSi10Mg and Inconel 718 alloy powder were disclosed in the mesoscale. Finally, the stress development during line-by-line localized laser scanning and the parameter-dependent control methods for the deformation of SLM-processed composites were proposed in the macroscale. Multiscale numerical simulation and experimental verification methods are beneficial in monitoring the complicated powder-laser interaction, heat and mass transfer behavior, and microstructural and mechanical properties development during the SLM AM process.

  4. Biomineralization of gold by Mucor plumbeus: The progress in understanding the mechanism of nanoparticles' formation.

    Science.gov (United States)

    Maliszewska, Irena; Tylus, Włodzimierz; Chęcmanowski, Jacek; Szczygieł, Bogdan; Pawlaczyk-Graja, Izabela; Pusz, Wojciech; Baturo-Cieśniewska, Anna

    2017-09-01

    This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017. © 2017 American Institute of Chemical Engineers.

  5. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms.

    Science.gov (United States)

    Zhang, Bingzi; Kaspar, Robert B; Gu, Shuang; Wang, Junhua; Zhuang, Zhongbin; Yan, Yushan

    2016-09-08

    Highly alkali-stable cationic groups are a critical component of hydroxide exchange membranes (HEMs). To search for such cations, we studied the degradation kinetics and mechanisms of a series of quaternary phosphonium (QP) cations. Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium [BTPP-(2,4,6-MeO)] was determined to have higher alkaline stability than the benchmark cation, benzyl trimethylammonium (BTMA). A multi-step methoxy-triggered degradation mechanism for BTPP-(2,4,6-MeO) was proposed and verified. By replacing methoxy substituents with methyl groups, a superior QP cation, methyl tris(2,4,6-trimethylphenyl)phosphonium [MTPP-(2,4,6-Me)] was developed. MTPP-(2,4,6-Me) is one of the most stable cations reported to date, with <20 % degradation after 5000 h at 80 °C in a 1 m KOD in CD3 OD/D2 O (5:1 v/v) solution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Getting the phenotypes right: an essential ingredient for understanding aetiological mechanisms underlying persistent violence and developing effective treatments

    Directory of Open Access Journals (Sweden)

    Sheilagh Hodgins

    2009-11-01

    Full Text Available In order to reduce societal levels of violence, it is essential to advance understanding of the neurobiological mechanisms involved in initiating and maintaining individual patterns of physical aggression. New technologies such as Magnetic Resonance Imagining and analyses of DNA provide tools for identifying these mechanisms. The reliability and validity of the results of studies using these tools depend not only on aspects of the technology, but also on the methodological rigour with which the studies are conducted, particularly with respect to characterizing the phenotype. The present article discusses five challenges confronting scientists who aim to advance understanding of the neurobiological mechanisms associated with persistent violence. These challenges are: (1 to develop evidence-based hypotheses and to design studies that test alternate hypotheses; (2 to recruit samples that are homogeneous with respect to variables that may be linked to neurobiological mechanisms underpinning violent behaviour; (3 to use reliable and valid measures in order to fully characterize participants so that the external validity of the results is evident; (4 to restrict the range of age of participants so as not to confuse developmental change with group differences; and (5 to take account of sex. Our goal is to contribute to elevating methodological standards in this new field of research and to thereby improve the validity of results and move closer to finding effective ways to reduce violence

  7. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  8. Understanding Coulomb Scattering Mechanism in Monolayer MoS2 Channel in the Presence of h-BN Buffer Layer.

    Science.gov (United States)

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2017-02-08

    As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS 2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO 2 ) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (α SC ) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO 2 provides the suppression of α SC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO 2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS 2 contact region.

  9. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways

    Directory of Open Access Journals (Sweden)

    A. Achiron

    2004-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system disease in which activated autoreactive T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and axonal loss. The etiology of MS, as well as the mechanisms associated with its unexpected onset, the unpredictable clinical course spanning decades, and the different rates of progression leading to disability over time, remains an enigma. We have applied gene expression microarrays technology in peripheral blood mononuclear cells (PBMC to better understand MS pathogenesis and better target treatment approaches. A signature of 535 genes were found to distinguish immunomodulatory treatment effects between 13 treated and 13 untreated MS patients. In addition, the expression pattern of 1109 gene transcripts that were previously reported to significantly differentiate between MS patients and healthy subjects were further analyzed to study the effect of cytokine-related pathways on disease pathogenesis. When relative gene expression for 26 MS patients was compared to 18 healthy controls, 30 genes related to various cytokine-associated pathways were identified. These genes belong to a variety of families such as interleukins, small inducible cytokine subfamily and tumor necrosis factor ligand and receptor. Further analysis disclosed seven cytokine-associated genes within the immunomodulatory treatment signature, and two cytokine-associated genes SCYA4 (small inducible cytokine A4 and FCAR (Fc fragment of IgA, CD89 that were common to both the MS gene expression signature and the immunomodulatory treatment gene expression signature. Our results indicate that cytokine-associated genes are involved in various pathogenic pathways in MS and also related to immunomodulatory treatment effects.

  10. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy.

    Science.gov (United States)

    Kim, Eunjung; Kim, Jae-Young; Smith, Matthew A; Haura, Eric B; Anderson, Alexander R A

    2018-03-01

    During the last decade, our understanding of cancer cell signaling networks has significantly improved, leading to the development of various targeted therapies that have elicited profound but, unfortunately, short-lived responses. This is, in part, due to the fact that these targeted therapies ignore context and average out heterogeneity. Here, we present a mathematical framework that addresses the impact of signaling heterogeneity on targeted therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway in lung cancer as an experimental model system and develop a network model of the pathway. We measure how inhibition of the pathway modulates protein phosphorylation as well as cell viability under different microenvironmental conditions. Training the model on this data using Monte Carlo simulation results in a suite of in silico cells whose relative protein activities and cell viability match experimental observation. The calibrated model predicts distributional responses to kinase inhibitors and suggests drug resistance mechanisms that can be exploited in drug combination strategies. The suggested combination strategies are validated using in vitro experimental data. The validated in silico cells are further interrogated through an unsupervised clustering analysis and then integrated into a mathematical model of tumor growth in a homogeneous and resource-limited microenvironment. We assess posttreatment heterogeneity and predict vast differences across treatments with similar efficacy, further emphasizing that heterogeneity should modulate treatment strategies. The signaling model is also integrated into a hybrid cellular automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As a proof of concept, we simulate tumor responses to targeted therapies in a spatially segregated tissue structure containing tumor

  11. Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates.

    Science.gov (United States)

    Yu, Mingzhe; Draskovic, Thomas I; Wu, Yiying

    2014-06-02

    The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.

  12. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2017-01-01

    reactions, namely, Strecker aldehydes, pyrroles, oxypolymers, and other impurities that may positively or negatively affect the oxidative stability and quality of marine PL. This review was undertaken to provide the industry and academia with an overview of the current understanding of the quality changes......There is a growing interest in using marine phospholipids (PL) as ingredient for food fortification due to their numerous health benefits. However, the use of marine PL for food fortification is a challenge due to the complex nature of the degradation products that are formed during the handling...... and storage of marine PL. For example, nonenzymatic browning reactions may occur between lipid oxidation products and primary amine group from phosphatidylethanolamine or amino acid residues that are present inmarine PL. Therefore, marine PL contain products from nonenzymatic browning and lipid oxidation...

  13. Understanding the Atomic Scale Mechanisms that Control the Attainment of Ultralow Friction and Wear in Carbon-Based Materials

    Science.gov (United States)

    2016-01-16

    materials to applications such as vibrating joints1,2, contacting and sliding surfaces in micro- and nanoelectromechanical systems for sensors and...Friction and Wear. R.W. Carpick, Midwest Mechanics 2014/2015 Invited Speaker , Iowa State University, Feb. 2015. 4. Invited. Atomic-Scale Processes...in Single Asperity Friction and Wear. R.W. Carpick, Midwest Mechanics 2014/2015 Invited Speaker , University of Minnesota, Feb. 2015. 5. Invited

  14. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    Science.gov (United States)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  15. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Zhinan; Zhang, Liangshun, E-mail: zhangls@ecust.edu.cn, E-mail: jlin@ecust.edu.cn; Wang, Liquan; Lin, Jiaping, E-mail: zhangls@ecust.edu.cn, E-mail: jlin@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-03-21

    A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation.

  16. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    Science.gov (United States)

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  17. Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism

    KAUST Repository

    Jiang, Jing; Zhang, Ben; Yu, Mufei; Li, Li; Neisser, Mark; Sung Chun, Jun; Giannelis, Emmanuel P.; Ober, Christopher K.

    2015-01-01

    © 2015 SPST. In the past few years, industry has made significant progress to deliver a stable high power EUV scanner and a 100 W light source is now being tested on the manufacuring scale. The success of a high power EUV source demands a fast and high resolution EUV resist. However, chemcially amplied resists encounter unprecedented challenges beyond the 22 nm node due to resolution, roughness and sensitivity tradeoffs. Unless novel solutions for EUV resists are proposed and further optimzed, breakthroughs can hardly be achieved. Oxide nanoparticle EUV (ONE) resists stablized by organic ligands were originally proposed by Ober et al. Recently this work attracts more and more attention due to its extraordinanry EUV sensitivity. This new class of photoresist utilizes ligand cleavage with a ligand exchange mechanism to switch its solubilty for dual-tone patterning. Therefore, ligand selection of the nanoparticles is extremely important to its EUV performance.

  18. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  19. The effects of bariatric surgery: will understanding its mechanism render the knife unnecessary?

    Science.gov (United States)

    Browning, Kirsteen N; Hajnal, Andras

    2014-01-01

    The incidence of obesity is increasing worldwide at a dramatic rate, accompanied by an associated increase in comorbid conditions. Bariatric surgery is the most effective treatment for morbid obesity with Roux-en-Y gastric bypass being the most commonly performed procedure, yet the underlying mechanisms by which it induces a wide-array of beneficial effects remains obscure. From basic science as well as clinical standpoints, there are several areas of current interest that warrant continued investigation. Several major focus areas have also emerged in current research that may guide future efforts in this field, particularly with regards to using novel, non-surgical approaches to mimic the success of bariatric surgery while minimizing its adverse side effects.

  20. Understanding Central Mechanisms of Acupuncture Analgesia Using Dynamic Quantitative Sensory Testing: A Review

    Directory of Open Access Journals (Sweden)

    Jiang-Ti Kong

    2013-01-01

    Full Text Available We discuss the emerging translational tools for the study of acupuncture analgesia with a focus on psychophysical methods. The gap between animal mechanistic studies and human clinical trials of acupuncture analgesia calls for effective translational tools that bridge neurophysiological data with meaningful clinical outcomes. Temporal summation (TS and conditioned pain modulation (CPM are two promising tools yet to be widely utilized. These psychophysical measures capture the state of the ascending facilitation and the descending inhibition of nociceptive transmission, respectively. We review the basic concepts and current methodologies underlying these measures in clinical pain research, and illustrate their application to research on acupuncture analgesia. Finally, we highlight the strengths and limitations of these research methods and make recommendations on future directions. The appropriate addition of TS and CPM to our current research armamentarium will facilitate our efforts to elucidate the central analgesic mechanisms of acupuncture in clinical populations.

  1. Understanding the Broad Substrate Repertoire of Nitroreductase Based on Its Kinetic Mechanism*

    Science.gov (United States)

    Pitsawong, Warintra; Hoben, John P.; Miller, Anne-Frances

    2014-01-01

    The oxygen-insensitive nitroreductase from Enterobacter cloacae (NR) catalyzes two-electron reduction of nitroaromatics to the corresponding nitroso compounds and, subsequently, to hydroxylamine products. NR has an unusually broad substrate repertoire, which may be related to protein dynamics (flexibility) and/or a simple non-selective kinetic mechanism. To investigate the possible role of mechanism in the broad substrate repertoire of NR, the kinetics of oxidation of NR by para-nitrobenzoic acid (p-NBA) were investigated using stopped-flow techniques at 4 °C. The results revealed a hyperbolic dependence on the p-NBA concentration with a limiting rate of 1.90 ± 0.09 s−1, indicating one-step binding before the flavin oxidation step. There is no evidence for a distinct binding step in which specificity might be enforced. The reduction of p-NBA is rate-limiting in steady-state turnover (1.7 ± 0.3 s−1). The pre-steady-state reduction kinetics of NR by NADH indicate that NADH reduces the enzyme with a rate constant of 700 ± 20 s−1 and a dissociation constant of 0.51 ± 0.04 mm. Thus, we demonstrate simple transient kinetics in both the reductive and oxidative half-reactions that help to explain the broad substrate repertoire of NR. Finally, we tested the ability of NR to reduce para-hydroxylaminobenzoic acid, demonstrating that the corresponding amine does not accumulate to significant levels even under anaerobic conditions. Thus E. cloacae NR is not a good candidate for enzymatic production of aromatic amines. PMID:24706760

  2. Collaboration Mechanism for Equipment Instruction of Multiple Energy Systems

    Science.gov (United States)

    Wang, Dong; Wang, Tuo; Wang, Qi; Zhang, Zhao; Zhao, Mingyu; Wang, Yinghui

    2018-01-01

    When multiple energy systems execute optimization instructions simultaneously, and the same equipment is Shared, the instruction conflict may occur. Aiming at the above problems, taking into account the control objectives of each system, the characteristics of different systems, such as comprehensive clean energy, energy efficiency, and peak filling, etc., designed the instruction coordination mechanism for the daemon. This mechanism mainly acts on the main station of the system, and form a final optimization instruction. For some specific scenarios, the collaboration mechanism of unlocking the terminal is supplemented. The mechanism determines the specific execution instructions based on the arrival time of the instruction. Finally, the experiment in Tianjin eco-city shows that this algorithm can meet the instruction and collaboration requirements of multi-energy systems, and ensure the safe operation of the equipment.

  3. Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system

    NARCIS (Netherlands)

    Knijnenburg, B.P.; Willemsen, M.C.

    2009-01-01

    In a recommender system that suggests options based on user attribute weights, the method of preference elicitation (PE) employed by a recommender system can influence users' satisfaction with the system, as well as the perceived usefulness and the understandability of the system. Specifically, we

  4. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  5. Understanding creep in sandstone reservoirs – theoretical deformation mechanism maps for pressure solution in granular materials

    NARCIS (Netherlands)

    Hangx, Suzanne; Spiers, Christopher

    Subsurface exploitation of the Earth’s natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are

  6. From Global Sustainability to Inclusive Education: Understanding urban children's ideas about the food system

    Science.gov (United States)

    Calabrese Barton, Angela; Koch, Pamela D.; Contento, Isobel R.; Hagiwara, Sumi

    2005-08-01

    The purpose of this paper is to report our findings from a qualitative study intended to develop our understandings of: what high-poverty urban children understand and believe about food and food systems; and how such children transform and use that knowledge in their everyday lives (i.e. how do they express their scientific literacies including content understandings, process understandings, habits of mind in these content areas). This qualitative study is part of a larger study focused on understanding and developing science and nutritional literacies among high-poverty urban fourth-grade through sixth-grade students and their teachers and caregivers.

  7. The Statistical Mechanics of Dilute, Disordered Systems

    Science.gov (United States)

    Blackburn, Roger Michael

    Available from UMI in association with The British Library. Requires signed TDF. A graph partitioning problem with variable inter -partition costs is studied by exploiting its mapping on to the Ashkin-Teller spin glass. The cavity method is used to derive the TAP equations and free energy for both extensively connected and dilute systems. Unlike Ising and Potts spin glasses, the self-consistent equation for the distribution of effective fields does not have a solution solely made up of delta functions. Numerical integration is used to find the stable solution, from which the ground state energy is calculated. Simulated annealing is used to test the results. The retrieving activity distribution for networks of boolean functions trained as associative memories for optimal capacity is derived. For infinite networks, outputs are shown to be frozen, in contrast to dilute asymmetric networks trained with the Hebb rule. For finite networks, a steady leaking to the non-retrieving attractor is demonstrated. Simulations of quenched networks are reported which show a departure from this picture: some configurations remain frozen for all time, while others follow cycles of small periods. An estimate of the critical capacity from the simulations is found to be in broad agreement with recent analytical results. The existing theory is extended to include noise on recall, and the behaviour is found to be robust to noise up to order 1/c^2 for networks with connectivity c.

  8. Seismic analysis of mechanical systems at Pickering NGS

    International Nuclear Information System (INIS)

    Ghobarah, A.

    1995-11-01

    The objective of this study is to assess the seismic withstand capacity of selected safety-related mechanical systems associated with the Pressure Relief Duct (PRD) at the Pickering A Nuclear Generating Station. These systems are attached to the PRD and include the Emergency Coolant Injection System piping, the Vacuum Ducts, the Emergency Water Storage System, the PRD expansion joint seals and the PRD to Reactor Building joint seals. The input support motion to the mechanical systems is taken to be the seismic response of the PRD determined in an earlier study using various levels of predetermined ground response spectrum envelope. (author). 12 refs., 13 tabs., 48 figs

  9. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    International Nuclear Information System (INIS)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P.; Van Sark, W.G.J.H.M.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  10. Engagement in Training as a Mechanism to Understanding Fidelity of Implementation of the Responsive Classroom Approach.

    Science.gov (United States)

    Wanless, Shannon B; Rimm-Kaufman, Sara E; Abry, Tashia; Larsen, Ross A; Patton, Christine L

    2015-11-01

    Fidelity of implementation of classroom interventions varies greatly, a reality that is concerning because higher fidelity of implementation relates to greater effectiveness of the intervention. We analyzed 126 fourth and fifth grade teachers from the treatment group of a randomized controlled trial of the Responsive Classroom® (RC) approach. Prior to training in the intervention, we assessed factors that had the potential to represent a teacher's readiness to implement with fidelity. These included teachers' observed emotional support, teacher-rated use of intervention practices, teacher-rated self-efficacy, teacher-rated collective responsibility, education level, and years of experience, and they were not directly related to observed fidelity of implementation 2 years later. Further analyses indicated, however, that RC trainers' ratings of teachers' engagement in the initial weeklong RC training mediated the relation between initial observed emotional support and later observed fidelity of implementation. We discuss these findings as a way to advance understanding of teachers' readiness to implement new interventions with fidelity.

  11. Accelerating Our Understanding of Supernova Explosion Mechanism via Simulations and Visualizations with GenASiS

    Energy Technology Data Exchange (ETDEWEB)

    Budiardja, R. D. [University of Tennessee, Knoxville (UTK); Cardall, Christian Y [ORNL; Endeve, Eirik [ORNL

    2015-01-01

    Core-collapse supernovae are among the most powerful explosions in the Universe, releasing about 1053 erg of energy on timescales of a few tens of seconds. These explosion events are also responsible for the production and dissemination of most of the heavy elements, making life as we know it possible. Yet exactly how they work is still unresolved. One reason for this is the sheer complexity and cost of a self-consistent, multi-physics, and multi-dimensional core-collapse supernova simulation, which is impractical, and often impossible, even on the largest supercomputers we have available today. To advance our understanding we instead must often use simplified models, teasing out the most important ingredients for successful explosions, while helping us to interpret results from higher fidelity multi-physics models. In this paper we investigate the role of instabilities in the core-collapse supernova environment. We present here simulation and visualization results produced by our code GenASiS.

  12. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control.

    Science.gov (United States)

    Reis, Janine; Swayne, Orlando B; Vandermeeren, Yves; Camus, Mickael; Dimyan, Michael A; Harris-Love, Michelle; Perez, Monica A; Ragert, Patrick; Rothwell, John C; Cohen, Leonardo G

    2008-01-15

    Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.

  13. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma.

    Science.gov (United States)

    Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg

    2017-07-01

    In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A General Explanation-Based Learning Mechanism and Its Application to Narrative Understanding.

    Science.gov (United States)

    1987-12-01

    Forbus. and Alan Frisch for also serving on my inal committee and providing helpful comments. . .- Woo- Kyoung Ahn for being a great cognitive science...up the Michelin guide and got in her car. When the system processes the action that Willa has picked up the Michelin guide. it considers that tae next...following is the new Kveah narrative written by one subject in the instance group. Bill. Kim . John and Marv were all business associates. Bill wanted

  15. Composite Control of the n–link Chained Mechanical Systems

    Czech Academy of Sciences Publication Activity Database

    Zikmund, Jiří

    2008-01-01

    Roč. 44, č. 5 (2008), s. 664-684 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * exact linearization * underactuated mechanical systems Subject RIV: BC - Control Systems Theory Impact factor: 0.281, year: 2008

  16. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  17. Structural Understanding of the Glutathione-dependent Reduction Mechanism of Glutathionyl-Hydroquinone Reductases*

    Science.gov (United States)

    Green, Abigail R.; Hayes, Robert P.; Xun, Luying; Kang, ChulHee

    2012-01-01

    Glutathionyl-hydroquinone reductases (GS- HQRs) are a newly identified group of glutathione transferases, and they are widely distributed in bacteria, halobacteria, fungi, and plants. GS-HQRs catalyze glutathione (GSH)-dependent reduction of glutathionyl-hydroquinones (GS-hydroquinones) to hydroquinones. GS-hydroquinones can be spontaneously formed from benzoquinones reacting with reduced GSH via Michael addition, and GS-HQRs convert the conjugates to hydroquinones. In this report we have determined the structures of two bacterial GS-HQRs, PcpF of Sphingobium chlorophenolicum and YqjG of Escherichia coli. The two structures and the previously reported structure of a fungal GS-HQR shared many features and displayed complete conservation for all the critical residues. Furthermore, we obtained the binary complex structures with GS-menadione, which in its reduced form, GS-menadiol, is a substrate. The structure revealed a large H-site that could accommodate various substituted hydroquinones and a hydrogen network of three Tyr residues that could provide the proton for reductive deglutathionylation. Mutation of the Tyr residues and the position of two GSH molecules confirmed the proposed mechanism of GS-HQRs. The conservation of GS-HQRs across bacteria, halobacteria, fungi, and plants potentiates the physiological role of these enzymes in quinone metabolism. PMID:22955277

  18. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    Science.gov (United States)

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  19. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  20. Investigating and improving student understanding of the probability distributions for measuring physical observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    A solid grasp of the probability distributions for measuring physical observables is central to connecting the quantum formalism to measurements. However, students often struggle with the probability distributions of measurement outcomes for an observable and have difficulty expressing this concept in different representations. Here we first describe the difficulties that upper-level undergraduate and PhD students have with the probability distributions for measuring physical observables in quantum mechanics. We then discuss how student difficulties found in written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the probability distributions of measurement outcomes for physical observables. The QuILT strives to help students become proficient in expressing the probability distributions for the measurement of physical observables in Dirac notation and in the position representation and be able to convert from Dirac notation to position representation and vice versa. We describe the development and evaluation of the QuILT and findings about the effectiveness of the QuILT from in-class evaluations. (paper)

  1. Study and understanding of the ageing mechanisms in lead-calcium alloys

    International Nuclear Information System (INIS)

    Rossi, F.

    2006-12-01

    The data available in the literature about ageing and over-ageing of lead-calcium alloys are often incomplete and inconsistent. It is undoubtedly due to the experimental difficulties encountered to observe the structure transformations which are numerous. As a result there is a certain confusion among the results of the different authors. Moreover, small variations in the process parameters and chemical composition may have some influence on the alloy behaviour. This work enabled us to obtain a set of TTT diagrams, more realistic and accurate than the ones available in the literature. Experimental techniques developed (particularly the preservation of the cold chain with is essential for the guaranty of the results repeatability), enabled particularly the study of the first transformations and better control the five stages of ageing and over-ageing. Our work have enabled to determine precisely the kinetics and the mechanisms of the transformations. This work constitutes a thorough analysis of the ageing and over-ageing of theses alloys. (author)

  2. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Lewis, David A

    2008-09-01

    Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.

  3. Toward understanding the mechanics of hovering in insects, hummingbirds and bats

    Science.gov (United States)

    Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth

    2016-11-01

    We present results on the dynamical characteristics of two different mechanisms of hovering, corresponding to the behavior of hummingbirds and bats. Using a Lagrangian formulation, we have developed a dynamical model of a body (trunk) and two rectangular wings. The trunk has 3 degrees of freedom (x, z and pitch angle) and each wing has 3 modes of actuation: flapping, pronation/supination, and wingspan extension/flexion (only present for bats). Wings can be effectively massless (hummingbird and insect wings) or relatively massive (important in the case of bats). The aerodynamic drag and lift forces are calculated using a quasi-steady blade-element model. The regions of state space in which hovering is possible are computed by over an exhaustive range of parameters. The effect of wing mass is to shrink the phase space available for viable hovering and, in general, to require higher wingbeat frequency. Moreover, by exploring hovering energy requirements, we find that the pronation angle of the wings also plays a critical role. For bats, who have relatively heavy wings, we show wing extension and flexion is critical in order to maintain a plausible hovering posture with reasonable power requirements. Comparisons with biological data show good agreement with our model predictions.

  4. Final Report: Improving the understanding of the coupled thermal-mechanical-hydrologic behavior of consolidating granular salt

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States); Lampe, Brandon [Univ. of New Mexico, Albuquerque, NM (United States); Mills, Melissa [Univ. of New Mexico, Albuquerque, NM (United States); Paneru, Laxmi [Univ. of New Mexico, Albuquerque, NM (United States); Lynn, Timothy [Univ. of New Mexico, Albuquerque, NM (United States); Piya, Aayush [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-09

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositories in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report

  5. Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms.

    Science.gov (United States)

    Csősz, Éva; Deák, Eszter; Kalló, Gergő; Csutak, Adrienne; Tőzsér, József

    2017-01-06

    Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness among patients with diabetes. The appearance and the severity of the symptoms correlate with the duration of diabetes and poor blood glucose level management. Diabetic retinopathy is also categorized as a chronic low-level inflammatory disease; the high blood glucose level promotes the accumulation of the advanced glycation end products and leads to the stimulation of monocytes and macrophages. Examination of protein level alterations in tears using state-of the art proteomics techniques have identified several proteins as possible biomarkers for the different stages of the diabetic retinopathy. Some of the differentially expressed tear proteins have a role in the barrier function of tears linking the diabetic retinopathy with another eye complication of diabetes, namely the diabetic keratopathy resulting in impaired wound healing. Understanding the molecular events leading to the eye complications caused by hyperglycemia may help the identification of novel biomarkers as well as therapeutic targets in order to improve quality of life of diabetic patients. Diabetic retinopathy (DR), the leading cause of blindness among diabetic patients can develop without any serious symptoms therefore the early detection is crucial. Because of the increasing prevalence there is a high need for improved screening methods able to diagnose DR as soon as possible. The non-invasive collection and the relatively high protein concentration make the tear fluid a good source for biomarker discovery helping the early diagnosis. In this work we have reviewed the administration of advanced proteomics techniques used in tear biomarker studies and the identified biomarkers with potential to improve the already existing screening methods for DR detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Understanding Evapotranspiration Trends and their Driving Mechanisms: An investigation across CONUS based on numerical modeling

    Science.gov (United States)

    Parr, D.; Wang, G.; Fu, C.

    2015-12-01

    As shown by climate models, increasing global temperatures and enhanced greenhouse gas concentration such as CO2 have had major effects on the dynamics of the hydrologic cycle and the surface energy budget, in particular, on evapotranspiration (ET). ET has significant decadal variations whether it be regionally or globally and variations of ET have major environmental and socioeconomic impacts. A number of recent studies have found a global increase in annual mean ET around 7mm per year per decade from about 1982 to the late 1990s. These results correspond with what is expected from an intensification of the hydrological cycle. However, the increasing ET trend did not continue after 1998 and from 1998-2008 this global trend was replaced with a decreasing trend of similar magnitude. This study uses numerical modeling to investigate if similar changing ET trends emerge in the continental U.S and part of northern Mexico. After validating model simulated evaporative fluxes and comparing spatial patterns to the aforementioned studies, various changing trends of different signs are identified across the U.S., and specific regions with strong signals of change are chosen for further examination with the purpose of identifying the root causes of these changing trends and which variables are most influential towards change. Experimental simulations conducted to isolate the most influential factors towards ET reveal that precipitation amount as well as its characteristics have the greatest impact on the ET trends discovered, with other factors like wind and air temperatures displaying less influence over inter-annual trends. This study helps better understand terrestrial ET and it's interactions which will help facilitate better predictions of change in surface climate such as heatwaves and droughts as well as impacts on water resources.

  7. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  8. First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion

    Science.gov (United States)

    Surendralal, Sudarsan; Todorova, Mira; Finnis, Michael W.; Neugebauer, Jörg

    2018-06-01

    Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes. To demonstrate the performance and the opportunities opened by this approach, we study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on this insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.

  9. Designing incentive market mechanisms for improving restructured power system reliabilities

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Wu, Qiuwei

    2011-01-01

    state. The reliability management of producers usually cannot be directly controlled by the system operators in a restructured power system. Producers may have no motivation to improve their reliabilities, which can result in serious system unreliability issues in the new environment. Incentive market...... mechanisms for improving the restructured power system reliabilities have been designed in this paper. In the proposed incentive mechanisms, penalty will be implemented on a producer if the failures of its generator(s) result in the variation of electricity prices. Incentive market mechanisms can motivate......In a restructured power system, the monopoly generation utility is replaced by different electricity producers. There exists extreme price volatility caused by random failures by generation or/and transmission systems. In these cases, producers' profits can be much higher than those in the normal...

  10. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  11. Thiol-ene/methacrylate systems for mechanical damping

    Science.gov (United States)

    McNair, Olivia; Senyurt, Askim; Wei, Huanyu; Gould, Trent; Piland, Scott; Hoyle, Charles; Savin, Daniel

    2010-03-01

    Ternary thiol-ene-methacrylate (TEMA) networks as materials for mechanical energy damping are unique to the sports world. Using a photoinitiation process, TEMA systems are formed via an initial thiol-ene step-growth mechanism along with traditional radical polymerization of acrylate and ene monomers. Final networks have two-part morphologies: acrylate homopolymer sectors imbedded in a multi-component mesh. Several (TEMA) systems have been synthesized and analyzed via thermal and mechanical probing. Initial studies on these ternary systems have shown excellent properties compared to traditional ethylene vinyl alcohol (EVA) copolymers. For example, PEMA networks exhibit glass transition temperatures 33 K higher than EVA, resulting in improved damping at room temperature. This research will help develop relationships between tan delta, glass transition and their effects on mechanical energy damping for ternary (TEMA) systems.

  12. Extreme Environment Sampling System Deployment Mechanism, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Venus or Comet mission architectures may feature robotic sampling systems comprised of a Sampling Tool and Deployment Mechanism. Since 2005, Honeybee has been...

  13. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    Science.gov (United States)

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop

  14. The importance of DNA superstructure units for the understanding of the radiation action mechanism

    International Nuclear Information System (INIS)

    Regel, K.

    1985-04-01

    A molecular radiation action model is presented. It relates the physical parameters of the radiation interaction in tissue and of the DNA structure in mammalian cells to their dose survival curves. Using this model it is possible to explain many of the radiation effects in cells, including such ones which were not clearly understood as yet. Both the kind of the basic parameters and the 'efficiency' of the model suggest that it describes real properties of mammalian cells. However, in finding out the radiation action mechanism we had to fill up two gaps in our knowledge concerning the radiation action in organisms. The first gap is characterized by the question: Are there any DNA structures (sites) in mammalian cells on the basis of which a radiation action model can be established which is valid in all the cell cycle stages. This question is answered by comparisons of the magnitude of DNA parameters measured in suitable experiments with those calculated from a hypothetical model of DNA organization in mammalian cells. The second gap in knowledge is filled up by testing the hypothesis that certain patterns of double-strand breaks (DSBs) in the membrane attached superstructure units (MASSUs) of a cell cause its inactivation. The dependence of the dose survival curves on the cell cycle can be explained in the following way: Dose survival curves of G1, G2 and mitotic cells are changed because of the cyclically altering volume of the MASSU compartments. Its change during the S stage is mainly determined by the growing fraction of replicated MASSUs. The high radiation resistance of late S cells probably results from the ability of mammalian cells to establish one intact sister genome from both sister genomes containing heavily damaged MASSUs joint in the attachment points. This ability is explained by the interference of DSB repair, sister chromatid exchange and DNA degradation. (author)

  15. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    Science.gov (United States)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  16. Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability.

    Science.gov (United States)

    Zheng, Zhaoliang; Chang, Zhuo; Xu, Guang-Kui; McBride, Fiona; Ho, Alexandra; Zhuola, Zhuola; Michailidis, Marios; Li, Wei; Raval, Rasmita; Akhtar, Riaz; Shchukin, Dmitry

    2017-01-24

    The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.

  17. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  18. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  19. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  20. MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS

    Directory of Open Access Journals (Sweden)

    D. N. Mironov

    2011-01-01

    Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.

  1. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  2. Thai student existing understanding about the solar system model and the motion of the stars

    Science.gov (United States)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  3. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    Science.gov (United States)

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  4. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  5. Chaotic mechanics in systems with impacts and friction

    CERN Document Server

    Blazejczyk-Okolewska, Barbara; Kapitaniak, Tomasz; Wojewoda, Jerzy

    1999-01-01

    This book is devoted to the theory of chaotic oscillations in mechanical systems. Detailed descriptions of the basic types of nonlinearity - impacts and dry friction - are presented. The properties of such behavior are discussed, and the numerical and experimental results obtained by the authors are presented.The dynamic properties of systems described here can be useful in the proper design and use of mechanics where such behavior still creates problems.This book will be very useful for anyone with a fundamental knowledge of nonlinear mechanics who is beginning research in the field.

  6. Applied Bohmian mechanics from nanoscale systems to cosmology

    CERN Document Server

    Mompart, Jordi

    2012-01-01

    Most textbooks explain quantum mechanics as a story where each step follows naturally from the one preceding it. However, the development of quantum mechanics was exactly the opposite. It was a zigzagging route full of personal disputes where scientists were forced to abandon well-established classical concepts and to explore new and imaginative routes. This book demonstrates the huge practical utility of another of these routes in explaining quantum phenomena in various research fields. Bohmian mechanics -- the formulation of the quantum theory pioneered by Louis de Broglie and David Bohm -- offers an alternative mathematical formulation of quantum phenomena in terms of quantum trajectories. It sheds light on the limits and extensions of our present understanding of quantum mechanics toward other paradigms such as relativity or cosmology.

  7. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  8. Fabrication of mechanical system of the FPM capsule puller

    International Nuclear Information System (INIS)

    Sudirdjo, Hari; Prasetya, Hendra

    2000-01-01

    A mechanical system of the FPM capsule puller has been fabricated, which has a function to pull the irradiated FPM capsule. The construction of the system consist of driving motor equipped with reduction gear, spindle, and puller wire. The system has puller stroke of 700 mm, therefore the puller will be terminated at the outside of the reactor core. A function test had been done and shows that the system has fulfilled the requirements

  9. Conditional density matrix: systems and subsystems in quantum mechanics

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.

    2003-01-01

    A new quantum mechanical notion - Conditional Density Matrix - is discussed and is applied to describe some physical processes. This notion is a natural generalization of von Neumann density matrix for such processes as divisions of quantum systems into subsystems and reunifications of subsystems into new joint systems. Conditional Density Matrix assigns a quantum state to a subsystem of a composite system on condition that another part of the composite system is in some pure state

  10. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  11. Fundamental link between system theory and statistical mechanics

    International Nuclear Information System (INIS)

    Atmanspacher, H.; Scheingraber, H.

    1987-01-01

    A fundamental link between system theory and statistical mechanics has been found to be established by the Kolmogorov entropy. By this quantity the temporal evolution of dynamical systems can be classified into regular, chaotic, and stochastic processes. Since K represents a measure for the internal information creation rate of dynamical systems, it provides an approach to irreversibility. The formal relationship to statistical mechanics is derived by means of an operator formalism originally introduced by Prigogine. For a Liouville operator L and an information operator M tilde acting on a distribution in phase space, it is shown that i[L, M tilde] = KI (I = identity operator). As a first consequence of this equivalence, a relation is obtained between the chaotic correlation time of a system and Prigogine's concept of a finite duration of presence. Finally, the existence of chaos in quantum systems is discussed with respect to the existence of a quantum mechanical time operator

  12. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  13. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  14. Tampering detection system using quantum-mechanical systems

    Science.gov (United States)

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  15. Tampering detection system using quantum-mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  16. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes

    Directory of Open Access Journals (Sweden)

    Jolene Michelle Helena

    2018-04-01

    Full Text Available Deoxyribonucleic acid (DNA is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.

  17. AMBIENT CARBONATION of MINING RESIDUES: Understanding the Mechanisms and Optimization of Direct Carbon Dioxide Mineral Sequestration

    Science.gov (United States)

    Assima, G. P.; Larachi, F.; Molson, J. W.; Beaudoin, G.

    2013-12-01

    The huge amounts (GTs) of ultramafic mining residues (UMRs) produced by mining activities around the world and accumulated in multi-square-kilometer stockpiles are stimulating a vivid interest regarding their possible use as a stable and permanent sink for CO2. Virtually costless and often found crushed and / or ground, UMRs are being considered as ideal candidates for atmospheric CO2 mitigation. The present work, therefore, explores the potential of several UMRs available in Quebec (Thetford Mines, Asbestos, Nunavik, Amos, Otish Mountains), for carbonation under ambient conditions, as a cost-effective alternative to remove low-concentration CO2 from the atmosphere and alleviate global warming. Several experimental reactors have been built to specifically simulate various climatic changes at the laboratory scale. The impact of various environmental conditions to which the residues are subjected to in their storage location, including temperature variations, precipitation, flooding, drought, changing water saturation, oxygen gradient and CO2 diffusion have been thoroughly studied. Dry and heavy-rain periods are unsuitable for efficient CO2 sequestration. Low liquid saturation within UMRs pores favors carbonation by combining fast percolation of gaseous CO2, rapid dissemination of CO2 dissolved species and creation of highly reactive sites throughout the mining residue pile. Partly saturated samples were also found to exhibit lower gaseous CO2 breakthrough times across the mining residues. Warm periods significantly accelerate the rate of CO2 uptake as compared to cold periods, which, in contrast are characterized by heat generation levels that could possibly be exploited by low temperature geothermal systems. A temperature rise from 10 to 40 °C was accompanied by a ten-fold increase in initial reaction rate. The carbonation reaction caused a rise in UMRs temperature up to 4.9°C during experiments at a 10°C. The presence of oxygen in the reaction medium induces

  18. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  19. Quasivelocities and Optimal Control for underactuated Mechanical Systems

    International Nuclear Information System (INIS)

    Colombo, L.; Martin de Diego, D.

    2010-01-01

    This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.

  20. Mechanical design for a large fusion laser system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1979-01-01

    The Nova Mechanical Systems Group at LLL is responsible for the design, fabrication, and installation of all laser chain components, for the stable support structure that holds them, and for the beam lines that transport the laser beam to the target system. This paper is an overview of the group's engineering effort, emphasizing new developments