WorldWideScience

Sample records for understanding light scalar

  1. Nature of the light scalar mesons

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.; Fernandez, F.; Silvestre-Brac, B.

    2005-01-01

    Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual qq structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional qq states. A strong diquark-antidiquark component is found for several states. The consideration of a glueball as dictated by quenched lattice QCD drives a coherent picture of the isoscalar mesons

  2. Phenomenology of the Equivalence Principle with Light Scalars

    OpenAIRE

    Damour, Thibault; Donoghue, John F.

    2010-01-01

    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the "dilaton charge" of atomic systems for each of these. Two combinatio...

  3. The light scalar mesons as tetraquarks

    Directory of Open Access Journals (Sweden)

    Gernot Eichmann

    2016-02-01

    Full Text Available We present a numerical solution of the four-quark Bethe–Salpeter equation for ground-state scalar tetraquarks with JPC=0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe–Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson–meson correlations. Diquark–antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ∼350 MeV which is comparable to that of the σ/f0(500. The masses of its multiplet partners κ and a0/f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of ‘meson molecules’.

  4. Light Higgs from Scalar See-Saw in Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal

    2012-01-01

    We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models......We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models...

  5. Atomic precision tests and light scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  6. Thermal inflation with a thermal waterfall scalar field coupled to a light spectator scalar field

    Science.gov (United States)

    Dimopoulos, Konstantinos; Lyth, David H.; Rumsey, Arron

    2017-05-01

    A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is dependent on a light spectator scalar field. Using the δ N formalism, the "end of inflation" scenario is investigated in order to ascertain whether this model is able to produce the dominant contribution to the primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter space, with particular emphasis on key observational signatures. For natural values of the parameters, the model is found to yield a sharp prediction for the scalar spectral index and its running, well within the current observational bounds.

  7. Cosmic variance in inflation with two light scalars

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Brahma, Suddhasattwa; Deutsch, Anne-Sylvie; Shandera, Sarah, E-mail: bpb165@psu.edu, E-mail: suddhasattwa.brahma@gmail.com, E-mail: asdeutsch@psu.edu, E-mail: shandera@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA, 16802 (United States)

    2016-05-01

    We examine the squeezed limit of the bispectrum when a light scalar with arbitrary non-derivative self-interactions is coupled to the inflaton. We find that when the hidden sector scalar is sufficiently light ( m ∼< 0.1 H ), the coupling between long and short wavelength modes from the series of higher order correlation functions (from arbitrary order contact diagrams) causes the statistics of the fluctuations to vary in sub-volumes. This means that observations of primordial non-Gaussianity cannot be used to uniquely reconstruct the potential of the hidden field. However, the local bispectrum induced by mode-coupling from these diagrams always has the same squeezed limit, so the field's locally determined mass is not affected by this cosmic variance.

  8. Light-Like Shockwaves in Scalar-Tensor Theories

    Directory of Open Access Journals (Sweden)

    Bence Racskó

    2018-02-01

    Full Text Available Both electromagnetic shock-waves and gravitational waves propagate with the speed of light. If they carry significant energy-momentum, this will change the properties of the space-time they propagate through. This can be described in terms of the junction conditions between space-time regions separated by a singular, null hypersurface. We derived generic junction conditions for Brans-Dicke theory in the Jordan frame, exploring a formalism based on a transverse vector, rather than normal, which can be applied to any type of hypersurfaces. In the particular case of a non-null hypersurface we obtain a generalised Lanczos equation, in which the jump of the extrinsic curvature is sourced by both the distributional energy-momentum tensor and by the jump in the transverse derivative of the scalar. In the case of null hypersurfaces, the distributional source is decomposed into surface density, current and pressure. The latter, however, ought to vanish by virtue of the scalar junction condition.

  9. Signal for a light singlet scalar at the LHC

    Science.gov (United States)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  10. Light Scalar Mesons in Central Production at COMPASS

    CERN Document Server

    Austregesilo, A.

    2016-01-01

    COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a $190\\,$GeV$/c$ positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.

  11. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    Science.gov (United States)

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  12. A light scalar-HLQBS interplay and a HLQBS weak decay test

    International Nuclear Information System (INIS)

    Kozlov, G.A.

    1993-01-01

    The interplay between a light scalar boson (Higgs) and a heavy-light quark bound system (HLQBS) in the flavour-changing of the heavy quarks is presented. The estimations of the transition form-factors in the weak leptonic decays of the pseudoscalar HLQBS are proposed. (orig.)

  13. The light-cone gauge at two loops: The scalar anomalous dimension

    International Nuclear Information System (INIS)

    Capper, D.M.; Suzuki, A.T.; Jones, D.R.T.

    1985-01-01

    We demonstrate that the light-cone gauge is a feasible tool for multi-loop computations by using it to evaluate the two-loop scalar anomalous dimension, γsup((2)), in a general gauge theory. In the special case of supersymmetry we obtain agreement with previous results which were derived using nonlight-cone techniques. (orig.)

  14. Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions Upsilon ->gamma A(0)

    NARCIS (Netherlands)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Petigura, E.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolku, P.; Piatenko, T.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, J. R.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Yi, J. I.; Anderson, J.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Simard, M.; Taras, P.; Nicholson, H.; De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Schroeder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.

    2009-01-01

    We search for evidence of a light scalar boson in the radiative decays of the Υ(2S) and Υ(3S) resonances: Υ(2S,3S)→γA0, A0→μ+μ−. Such a particle appears in extensions of the standard model, where a light CP-odd Higgs boson naturally couples strongly to b quarks. We find no evidence for such

  15. Light-Cone Expansion of the Dirac Sea in the Presence of Chiral and Scalar Potentials

    OpenAIRE

    Finster, Felix

    1998-01-01

    We study the Dirac sea in the presence of external chiral and scalar/pseudoscalar potentials. In preparation, a method is developed for calculating the advanced and retarded Green's functions in an expansion around the light cone. For this, we first expand all Feynman diagrams and then explicitly sum up the perturbation series. The light-cone expansion expresses the Green's functions as an infinite sum of line integrals over the external potential and its partial derivatives. The Dirac sea is...

  16. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  17. Sensitivity of the SHiP experiment to a light scalar particle mixing with the Higgs

    CERN Document Server

    Lanfranchi, Gaia

    2017-01-01

    This conceptual study shows the ultimate sensitivity of the SHiP experiment for the search of a light scalar particle mixing with the Higgs for a dataset corresponding to 5-years of SHiP operation at a nominal intensity of 4 1013 protons on target per second. The sensitivity as a function of the length of the vessel and of its distance from the target as well as a function of the background contamination is also studied.

  18. Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials

    Science.gov (United States)

    Finster, Felix

    2000-10-01

    We study the Dirac sea in the presence of external chiral and scalar/pseudoscalar potentials. In preparation, a method is developed for calculating the advanced and retarded Green's functions in an expansion around the light cone. For this, we first expand all Feynman diagrams and then explicitly sum up the perturbation series. The light-cone expansion expresses the Green's functions as an infinite sum of line integrals over the external potential and its partial derivatives. The Dirac sea is decomposed into a causal and a noncausal contribution. The causal contribution has a light-cone expansion which is closely related to the light-cone expansion of the Green's functions; it describes the singular behavior of the Dirac sea in terms of nested line integrals along the light cone. The noncausal contribution, on the other hand, is, to every order in perturbation theory, a smooth function in position space.

  19. A Fiberoptic Scalar Irradiance Microsensor - Application for Spectral Light Measurements in Sediments

    DEFF Research Database (Denmark)

    LASSEN, C.; PLOUG, H.; JØRGENSEN, BB

    1992-01-01

    in sediments was measured at 100-mu-m spatial resolution. Light was available for photosynthesis near the sediment surface at a higher intensity and a different spectral composition than could be expected from the illumination. By the combination of oxygen microelectrodes and the present fibre......The manufacturing of a new spherical fibreoptic microsensor is described. The microsensor measures scalar irradiance, i.e. the spherically integrated light at a point in space. The light collector of the probe was a 70-mu-m diffusing sphere cast on the tip of a 125-mu-m wide optical fibre tapered......-optic microsensor it is now possible to study the depth distribution of microbenthic photosynthesis in relation to the available photosynthetically active radiation at less-than-or-equal-to 100-mu-m resolution....

  20. A very light CP-odd scalar in the Two-Higgs-Doublet Model

    CERN Document Server

    Larios, F; Yuan, C P; CERN. Geneva

    2001-01-01

    We show that a general two-Higgs-doublet model (THDM) with a very light CP-odd scalar (A) can be compatible with the rho parameter, Br(b --> s\\gamma), R_b, A_b, (g-2) of muon, Br(Upsilon --> A gamma), and the direct search via the Yukawa process at LEP. For its mass around 0.2 GeV, the muon (g-2) and Br(Upsilon --> A \\gamma) data require tan(beta) to be about 1. Consequently, A can behave like a fermiophobic CP-odd scalar and predominantly decay into a photon pair ("gamma gamma"), which registers in detectors of high energy collider experiments as a single photon signature when the momentum of A is large. We compute the partial decay width of Z --> A A A and the production rate of f \\bar{f} --> Z A A --> Z +"gamma gamma", f^' {\\bar f} --> W^{\\pm} A A --> W^\\pm + "gamma gamma" and f \\bar f --> H^+ H^- --> W^+ W^- A A --> W^+ W^- + "gamma gamma" at high energy colliders such as LEP, Tevatron, LHC, and future Linear Colliders. Other production mechanisms of a light A, such as gg --> h --> AA --> "gamma gamma", a...

  1. Light Penetration and Light-Intensity in Sandy Marine-Sediments Measured with Irradiance and Scalar Irradiance Fiberoptic Microprobes Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; LASSEN, C.; JØRGENSEN, BB

    1994-01-01

    Fiber-optic microprobes for determining irradiance and scalar irradiance were used for light measurements in sandy sediments of different particle size. Intense scattering caused a maximum integral light intensity [photon scalar irradiance, E0(400 to 700 rim) and E0(700 to 880 nm)] at the sediment...... diffuse. Our results demonstrate the importance of measuring scalar irradiance when the role of light in photobiological processes in sediments, e.g. microbenthic photosynthesis, is investigated....... surface ranging from 180 % of incident collimated light in the coarsest sediment (250 to 500 mum grain size) up to 280 % in the finest sediment ( 1 mm in the coarsest sediments. Below 1 mm, light was attenuated exponentially with depth in all sediments. Light attenuation coefficients decreased...

  2. Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory

    Science.gov (United States)

    Usselman, Austin

    We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one

  3. Experimental constraints on light scalar field models in cosmology and particle physics (SNLS and CMS experiments)

    International Nuclear Information System (INIS)

    Neveu, Jeremy

    2014-01-01

    The nature of dark energy and dark matter is still unknown today. Light scalar field models have been proposed to explain the late-time accelerated expansion of the Universe and the apparent abundance of non-baryonic matter. In the first part of this thesis, the Galileon theory, a well-posed modified gravity theory preserving the local gravitation thanks to the Vainshtein screening effect, is accurately tested against recent cosmological data. Observational constraints are derived on the model parameters using cosmological distance and growth rate of structure measurements. A good agreement is observed between data and theory predictions. The Galileon theory appears therefore as a promising alternative to the cosmological constant scenario. In the second part, the dark matter question is explored through an extra-dimension theory containing massive and stable scalar fields called Branons. Branon production is searched for in the proton-proton collisions that were collected by the Compact Muon Solenoid experiment in 2012 at the Large Hadron Collider. Events with a single photon and transverse missing energy are selected in this data set and compared to the Standard Model and instrumental background estimates. No signature of new physics is observed, so experimental limits on the Branon model parameters are derived. This thesis concludes with some ideas to reach an unified description of both models in the frame of extra-dimension theories. (author) [fr

  4. Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors.

    Science.gov (United States)

    Arvanitaki, Asimina; Dimopoulos, Savas; Van Tilburg, Ken

    2016-01-22

    The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an amplitude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.

  5. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton

    Science.gov (United States)

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-01

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10-12 eV (i.e., range larger than a few 1 05 m ), we improve existing constraints by one order of magnitude to |α |baryon number and to |α |baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10-12 eV , the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  6. Detection prospects of light NMSSM Higgs pseudoscalar via cascades of heavier scalars from vector boson fusion and Higgs-strahlung

    Science.gov (United States)

    Bomark, N.-E.; Moretti, S.; Roszkowski, L.

    2016-10-01

    A detection at the large hadron collider of a light Higgs pseudoscalar would, if interpreted in a supersymmetric framework, be a smoking gun signature of non-minimal supersymmetry. In this work in the framework of the next-to-minimal supersymmetric standard model we focus on vector boson fusion and Higgs-strahlung production of heavier scalars that subsequently decay into pairs of light pseudoscalars. We demonstrate that although these channels have in general very limited reach, they are viable for the detection of light pseudoscalars in some parts of parameter space and can serve as an important complementary probe to the dominant gluon-fusion production mode. We also demonstrate that in a Higgs factory these channels may reach sensitivities comparable to or even exceeding the gluon fusion channels at the Large Hadron Collider, thus possibly rendering this our best option to discover a light pseudoscalar. It is also worth mentioning that for the singlet dominated scalar this may be the only way to measure its couplings to gauge bosons. Especially promising are channels where the initial scalar is radiated off a W as these events have relatively high rates and provide substantial background suppression due to leptons from the W. We identify three benchmark points that well represent the above scenarios. Assuming that the masses of the scalars and pseudoscalars are already measured in the gluon-fusion channel, the event kinematics can be further constrained, hence significantly improving detection prospects. This is especially important in the Higgs-strahlung channels with rather heavy scalars, and results in possible detection at 200 fb-1 for the most favoured parts of the parameter space.

  7. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton.

    Science.gov (United States)

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-06

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10^{-12}  eV (i.e., range larger than a few 10^{5}  m), we improve existing constraints by one order of magnitude to |α|difference between the baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10^{-12}  eV, the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  8. Scalar perturbation in warm tachyon inflation in LQC in light of Plank and BICEP2

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-12-12

    We study warm-tachyon inflationary universe model in the context of the effective field theory of loop quantum cosmology. In slow-roll approximation the primordial perturbation spectrums for this model are calculated. We also obtain the general expressions of the tensor-to-scalar ratio and scalar spectral index. We develop this model by using exponential potential, the characteristics of this model are presented in great details. The parameters of the model are restricted by recent observational data from Planck, WMAP9 and BICEP2.

  9. 125 GeV Higgs from a not so light Technicolor Scalar

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2013-01-01

    Assuming that the observed Higgs-like resonance at the Large Hadron Collider is a technicolor isosinglet scalar (the technicolor Higgs), we argue that the standard model top-induced radiative corrections reduce its dynamical mass towards the desired experimental value. We then discuss conditions...

  10. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    Science.gov (United States)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  11. Multipartite interacting scalar dark matter in the light of updated LUX data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhaditya; Ghosh, Purusottam; Poulose, Poulose, E-mail: subhab@iitg.ernet.in, E-mail: p.ghosh@iitg.ernet.in, E-mail: poulose@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2017-04-01

    We explore constraints on multipartite dark matter (DM) framework composed of singlet scalar DM interacting with the Standard Model (SM) through Higgs portal coupling. We compute relic density and direct search constraints including the updated LUX bound for two component scenario with non-zero interactions between two DM components in Z{sub 2} × Z{sub 2}{sup '} framework in comparison with the one having O(2) symmetry. We point out availability of a significantly large region of parameter space of such a multipartite model with DM-DM interactions.

  12. Scalar mesons and radiative vector meson decays

    International Nuclear Information System (INIS)

    Gokalp, A.; Ylmaz, O

    2002-01-01

    The light scalar mesons with vacuum quantum numbers J p =0 ++ have fundamental importance in understanding low energy QCD phenomenology and the symmetry breaking mechanisms in QCD. The nature and quark substructure of the best known scalar mesons, isoscalar σ(500), f0(980) and isovector a0(980) have been a subject of continuous controversy. The radioactive decay of neutral vector mesons ρ, w and φ into a single photon and a pair of neutral pseudoscalar mesons have been studied in order to obtain information on the nature of these scalar mesons. For such studies, it is essential that a reliable understanding of the mechanisms for these decays should be at hand. In this work, we investigate the particularly interesting mechanism of the exchange of scalar mesons for the radiative vector meson decays by analysing the experimental results such as measured decay rates and invariant mass spectra and compare them with the theoretical prediction of different reaction mechanisms

  13. Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: Are σ and κ tetraquarks?

    International Nuclear Information System (INIS)

    Prelovsek, Sasa; Draper, Terrence; Liu, Keh-Fei; Lang, Christian B.; Limmer, Markus; Mathur, Nilmani; Mohler, Daniel

    2010-01-01

    We investigate whether the lightest scalar mesons σ and κ have a large tetraquark component qqqq, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with J PC =0 ++ and I=0,2,1/2,3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with chirally improved quarks and the quenched simulation with overlap quarks, finding qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected contractions. The time dependence of the eigenvalues at the finite temporal extent of the lattice is explored also analytically. In all the channels, we unavoidably find the lowest scattering states π(k)π(-k) or K(k)π(-k) with back-to-back momentum k=0,2π/L,.... However, we find an additional light state in the I=0 and I=1/2 channels, which may be interpreted as the observed resonances σ and κ with a sizable tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.

  14. Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: Are σ and κ tetraquarks?

    Science.gov (United States)

    Prelovsek, Sasa; Draper, Terrence; Lang, Christian B.; Limmer, Markus; Liu, Keh-Fei; Mathur, Nilmani; Mohler, Daniel

    2010-11-01

    We investigate whether the lightest scalar mesons σ and κ have a large tetraquark component q¯q¯qq, as is strongly supported by many phenomenological studies. A search for possible light tetraquark states with JPC=0++ and I=0,2,1/2,3/2 on the lattice is presented. We perform the two-flavor dynamical simulation with chirally improved quarks and the quenched simulation with overlap quarks, finding qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected contractions. The time dependence of the eigenvalues at the finite temporal extent of the lattice is explored also analytically. In all the channels, we unavoidably find the lowest scattering states π(k)π(-k) or K(k)π(-k) with back-to-back momentum k=0,2π/L,…. However, we find an additional light state in the I=0 and I=1/2 channels, which may be interpreted as the observed resonances σ and κ with a sizable tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.

  15. Higgs Discovery in the Presence of Light CP-Odd Scalars

    Energy Technology Data Exchange (ETDEWEB)

    Lisanti, Mariangela; Wacker, Jay G.; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the Higgs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC.

  16. Search for scalar dark matter via pseudoscalar portal interactions in light of the Galactic Center gamma-ray excess

    Science.gov (United States)

    Yang, Kwei-Chou

    2018-01-01

    In light of the observed Galactic center gamma-ray excess, we investigate a simplified model, for which the scalar dark matter interacts with quarks through a pseudoscalar mediator. The viable regions of the parameter space, that can also account for the relic density and evade the current searches, are identified, if the low-velocity dark matter annihilates through an s -channel off shell mediator mostly into b ¯b , and/or annihilates directly into two hidden on shell mediators, which subsequently decay into the quark pairs. These two kinds of annihilations are s wave. The projected monojet limit set by the high luminosity LHC sensitivity could constrain the favored parameter space, where the mediator's mass is larger than the dark matter mass by a factor of 2. We show that the projected sensitivity of 15-year Fermi-LAT observations of dwarf spheroidal galaxies can provide a stringent constraint on the most parameter space allowed in this model. If the on shell mediator channel contributes to the dark matter annihilation cross sections over 50%, this model with a lighter mediator can be probed in the projected PICO-500L experiment.

  17. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  18. Search for light scalar top-quark pair production in final states with two leptons with the ATLAS detector in $\\sqrt{s}$ = 7 TeV proton-proton collisions

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-11-30

    A search is presented for the pair production of light scalar top quarks in $\\sqrt{s}$ = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. This analysis uses the full data sample collected during 2011 that corresponds to a total integrated luminosity of 4.7 fb$^{-1}$. Light scalar top quarks are searched for in events with two opposite-sign leptons ($e, \\mu$), large missing transverse momentum and at least one jet in the final state. No excess over Standard Model expectations is found, and the results are interpreted under the assumption that the light scalar top decays to a b-quark in addition to an on-shell chargino whose decay occurs through a virtual W boson. If the chargino mass is 106 GeV, light scalar top quark masses up to 130 GeV are excluded for neutralino masses below 70 GeV.

  19. Phenomenology of a very light scalar (100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Jackson D.; Foot, Robert; Volkas, Raymond R. [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, VIC 3010 (Australia)

    2014-02-27

    In this paper we investigate the phenomenology of a very light scalar, h, with mass 100 MeV scalar extension of the SM. We point out apparently unresolved uncertainties in the branching ratios and lifetime of h in a crucial region of parameter space for LHC phenomenology. Bounds from LEP, meson decays and fixed target experiments are reviewed. We also examine prospects at the LHC. For m{sub h}≲m{sub B} the dominant production mechanism is via meson decay; our main result is the calculation of the differential p{sub T} spectrum of h scalars originating from B mesons and the subsequent prediction of up to thousands of moderate (triggerable) p{sub T} displaced dimuons possibly hiding in the existing dataset at ATLAS/CMS or at LHCb. We also demonstrate that the subdominant Vh production channel has the best sensitivity for m{sub h}≳m{sub B} and that future bounds in this region could conceivably compete with those of LEP.

  20. Zero modes and the vacuum problem: A study of scalar adjoint matter in two-dimensional Yang-Mills theory via light-cone quantization

    International Nuclear Information System (INIS)

    Kalloniatis, A.C.

    1996-01-01

    SU(2) Yang-Mills theory coupled to massive adjoint scalar matter is studied in 1+1 dimensions using discretized light-cone quantization. This theory can be obtained from pure Yang-Mills theory in 2+1 dimensions via dimensional reduction. On the light cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum-mechanical potential governing the dynamical gauge mode. Because of a condensation of the lowest momentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory, however, the barrier height appears too small to make any impact in this model. Although the theory is superrenormalizable on naive power-counting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The solution of this problem is discussed. copyright 1996 The American Physical Society

  1. Local structure of scalar flux in turbulent passive scalar mixing

    Science.gov (United States)

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  2. Understanding vision: students’ use of light and optics resources

    International Nuclear Information System (INIS)

    Jones, Dyan L; Zollman, Dean

    2014-01-01

    We present a qualitative study designed to examine how students construct an understanding of the human eye and vision from their knowledge of light and optics. As would be expected, vast differences are shown to exist between pre- and post-instruction students in terms of not only resource use, but also willingness to transfer their existing knowledge. However, we have found that appropriate scaffolding can facilitate resource activation and guide students to construct an understanding of vision and vision defects. (paper)

  3. A theory of scalar mesons

    International Nuclear Information System (INIS)

    Hooft, G. t'; Isidori, G.; Maiani, L.; Polosa, A.D.; Riquer, V.

    2008-01-01

    We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges

  4. Experimental evidence for a light and broad scalar resonance in D+ → π-π+π+ decay

    International Nuclear Information System (INIS)

    Aitala, E.M.; Amato, S.; Anjos, J.C.

    2000-11-01

    From a sample of 1172±61 D + → π -π+ π + decays, we find Γ(D + → π - π + π + )/Γ(D + → K - π + π + ) 0.0311 ± 0.0018 -0.0026 +0.0016 . Using a coherent amplitude analysis to fit the Dalitz plot of these decays, we find strong evidence that a scalar resonance of mass 478 -23 +24 ± 17 MeV/c 2 and width 324 -40 +42 ± 21 MeV/c 2 accounts for approximately half of all decays. (author)

  5. The phenomenology of scalar colour octets

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1995-01-01

    The phenomenology of color scalar octet particles is discussed. Namely, the discovery potential of scalar octets at LEP, FNAL and LHC is discussed. It appears that new hadrons composed from scalar colour octets are rather longlived (Γ≤O(10) keV). The current experimental data don't contradict to the existence of light (M∼O(1) GeV) scalar octets. Light scalar colour octets give additional contribution to the QCD β-function and allow to improve agreement between deep inelastic and LEP data. 10 refs.; 2 figs

  6. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Sayed Wrya; Saaidi, Khaled [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Sheikhahmadi, Haidar [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Institute for Advance Studies in Basic Sciences (IASBS) Gava Zang, Zanjan (Iran, Islamic Republic of); Aghamohammadi, Ali [Sanandaj Branch Islamic Azad University, Sanandaj (Iran, Islamic Republic of)

    2016-02-15

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ{sub m}{sup 2} ≤ 1, the χ{sub T}{sup 2} function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω{sub m0}, ω{sub 1}, β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ{sup 2} based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  7. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    International Nuclear Information System (INIS)

    Rabiei, Sayed Wrya; Saaidi, Khaled; Sheikhahmadi, Haidar; Aghamohammadi, Ali

    2016-01-01

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ m 2 ≤ 1, the χ T 2 function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω m0 , ω 1 , β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ 2 based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  8. Searching for light Higgs scalar boson in the next generation of electron-positron collider at LEP

    International Nuclear Information System (INIS)

    Chukwumah, G.C.

    1985-11-01

    The e + e - -collider facilities at LEP II, with the cm energy √S in the range 100-170 GeV may be able to detect ''light'' Higgs bosons, assuming a high luminosity. In this paper, we have calculated production cross-sections of a light Higgs boson H 0 in association with the neutral gauge boson Z 0 , for varying ranges of the cm energy expected to be available to LEP II and VLEEP (Novosibirsk) and for various values of the light Higgs mass. It is found out that production cross-sections are sizeable in comparison with those for the very massive Higgs bosons in proton-anti(proton) super-colliders, Tevatron, Spp-barS and SSC, respectively. The implication of this feature is pointed out. Further, prospects for light Higgs production in association with the charged gauge boson, W - in ultra energetic neutrino beams are examined. (author)

  9. Understanding interference experiments with polarized light through photon trajectories

    International Nuclear Information System (INIS)

    Sanz, A.S.; Davidovic, M.; Bozic, M.; Miret-Artes, S.

    2010-01-01

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.

  10. Scalar tetraquark candidates on the lattice

    International Nuclear Information System (INIS)

    Berlin, Joshua

    2017-01-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a 0 (980), an isovector in the nonet of light scalars (J P =0 + ). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a 0 (980) and f 0 (980) feature a surprising mass degeneracy. For this reasons the a 0 (980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  11. Scalar tetraquark candidates on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Joshua

    2017-07-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a{sub 0}(980), an isovector in the nonet of light scalars (J{sup P}=0{sup +}). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a{sub 0}(980) and f{sub 0}(980) feature a surprising mass degeneracy. For this reasons the a{sub 0}(980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  12. Search for Di-Muon Decays of a Light Scalar Higgs Boson in Radiative Upsilon(1S) Decays

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Vindhyawasini [Indian Inst. of Technology (IIT), Guwahati (India)

    2013-08-01

    We search for di-muon decays of a low-mass Higgs boson (A0) in the fully reconstructed decay chain of Υ(2S, 3S ) → π+π-Υ(1S ), Υ(1S ) → γA0, A0 → μ+μ+. The A0 is predicted by several extensions of the Standard Model (SM), including the Next-to-Minimal Supersymmetric Standard Model (NMSSM). NMSSM introduces a CP-odd light Higgs boson whose mass could be less than 10 GeV/c2. The data samples used in this analysis contain 92.8 × 106 Υ(2S ) and 116.8 × 106 Υ(3S ) events collected by the BABAR detector. The Υ(1S ) sample is selected by tagging the pion pair in the Υ(2S, 3S ) → π+π-Υ(1S ) transitions. We find no evidence for A0 production and set 90% confidence level (C.L.) upper limits on the product branching fraction B(Υ(1S ) → γA0) × B(A0 → μ+μ-) in the range of (0.28 - 9.7) × 10-6 for 0.212 ≤ mA0 ≤ 9.20 GeV/c2. We also combine our results with previous BABAR results of Υ(2S, 3S ) → γA0, A0 → μ+μ- to set limits on the effective coupling ( fΥ) of the b-quark to the A0, f 2 Υ × B(A0 → μ+μ-), at the level of (0.29- 40) × 10-6 for 0.212 ≤ mA0 ≤ 9.2 GeV/c2.

  13. Experimental status of scalar and tensor mesons

    International Nuclear Information System (INIS)

    Von Dombrowski, S.

    1997-01-01

    The recent discoveries of a 0 (1450) and f 0 (1370)/f 0 (1500) in antiproton-proton annihilation at rest shed new light on the interpretation of light scalar mesons. The properties of f 0 (1500) match the expectations of a scalar glueball mixed with nearby qq states. New decay modes of the ξ(2230) are reported in radiative J/Ψ decays, pointing also towards a (tensor) glueball nature of this state. Results from different experiments are discussed and compared. (orig.)

  14. Excluding scalar gluons

    International Nuclear Information System (INIS)

    Koller, K.; Krasemann, H.

    1979-08-01

    We investigate the Dalitz plot population and thrust angular distribution for the Orthoquarkonium decay Q anti Q → 3 scalar gluons. The Dalitz plot for scalar gluons is populated in corners where events are 2 jet like and this disagrees with existing Upsilon data. The scalar gluon thrust angular distribution is also in striking disagreement with the UPSILON data and so scalar gluons are completely ruled out. (orig.)

  15. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  16. Accelerating Universe and the Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Yasunori Fujii

    2012-10-01

    Full Text Available To understand the accelerating universe discovered observationally in 1998, we develop the scalar-tensor theory of gravitation originally due to Jordan, extended only minimally. The unique role of the conformal transformation and frames is discussed particularly from a physical point of view. We show the theory to provide us with a simple and natural way of understanding the core of the measurements, Λobs ∼ t0−2 for the observed values of the cosmological constant and today’s age of the universe both expressed in the Planckian units. According to this scenario of a decaying cosmological constant, Λobs is this small only because we are old, not because we fine-tune the parameters. It also follows that the scalar field is simply the pseudo Nambu–Goldstone boson of broken global scale invariance, based on the way astronomers and astrophysicists measure the expansion of the universe in reference to the microscopic length units. A rather phenomenological trapping mechanism is assumed for the scalar field around the epoch of mini-inflation as observed, still maintaining the unmistakable behavior of the scenario stated above. Experimental searches for the scalar field, as light as ∼ 10−9 eV, as part of the dark energy, are also discussed.

  17. Scalar quarkonium masses

    International Nuclear Information System (INIS)

    Lee, W.; Weingarten, D.

    1996-01-01

    We evaluate the valence approximation to the mass of scalar quarkonium for a range of different parameters. Our results strongly suggest that the infinite volume continuum limit of the mass of ss scalar quarkonium lies well below the mass of f J (1710). The resonance f 0 (1500) appears to the best candidate for ss scalar quarkonium. (orig.)

  18. Black holes with surrounding matter in scalar-tensor theories.

    Science.gov (United States)

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P

    2013-09-13

    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  19. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  20. Leptonic Dark Matter with Scalar Dilepton Mediator

    OpenAIRE

    Ma, Ernest

    2018-01-01

    A simple and elegant mechanism is proposed to resolve the problem of having a light scalar mediator for self-interacting dark matter and the resulting disruption to the cosmic microwave background (CMB) at late times by the former's enhanced Sommerfeld production and decay. The crucial idea is to have Dirac neutrinos with the conservation of U(1) lepton number extended to the dark sector. The simplest scenario consists of scalar or fermion dark matter with unit lepton number accompanied by a ...

  1. Relaxation and kinetics in scalar field theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  2. Symmetry breaking and scalar bosons

    International Nuclear Information System (INIS)

    Gildener, E.; Weinberg, S.

    1976-01-01

    There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions

  3. Development of a tool to facilitate the understanding of radiation applying analogy between radiation and light

    International Nuclear Information System (INIS)

    Yamada, Koji

    2016-01-01

    Invisibility of radiation might hamper people's understanding on radiation. To overcome this invisibility a new tool, which could visualize the characteristics of radiation and the effects of decontamination by replacing invisible radiation to visible light based on the physical analogy between radiation and light, has been developed. Light emitting diode (LED) is adopted as light source in lieu of radionuclide. Iluminometer is used instead of dosimeter as detector to enable the quantitative measurement of illumination intensity. All these functions are equipped in a compact case made of acrylic resin plates. Contamination condition could be represented by turning on LED lights and decontamination condition could be represented by turning off LED light. Both spot and areal contamination conditions could be simulated by changing the shape and arrangement of LED lights. Inside space of the case is partitioned to two sub-spaces with an acrylic plate which simulates the outer wall of building. One sub-space stands for indoor space and the other outdoor space. This tool using light could facilitate the intuitive understanding as follows; (1) physical characteristics of radiation such as attenuation by distance and shielding by substance, (2) concept of decontamination and its effects, and (3) exposure dose concept. Besides this tool has been developed another tool which could demonstrate the wide range of radiation doses in a shape of intensity of light by the combination of LED lights and shading filters. These tools are very effective and fascinating teaching material or risk communication device for supporting the intuitive understanding of radiation and decontamination by people. (author)

  4. The understanding of the students about the nature of light in recursive curriculum

    Directory of Open Access Journals (Sweden)

    Geide Rosa Coelho

    2010-01-01

    Full Text Available We report an inquiry on the development of students' understanding about the nature of light. The study happened in a learning environment with a recursive and spiral Physics syllabus. We investigated the change in students' understanding about the nature of light during their 3rd year in High School, and the level of understanding about this subject achieved by students at the end of this year. To assess the students' understanding, we developed an open questionnaire form and a set of hierarchical categories, consisting of five different models about the nature of light. The questionnaire was used to access the students´ understanding at the beginning and at the end of the third level of the recursive curriculum. The results showed that students have a high level of prior knowledge, and also that the Physics learning they experienced had enhanced their understanding, despite the effects are not verified in all the Physics classes. By the end of the third year, most of the students explain the nature of light using or a corpuscular electromagnetic model or a dual electromagnetic model, but some students use these models with inconsistencies in their explanations.

  5. Minimally coupled scalar field cosmology in anisotropic ...

    Indian Academy of Sciences (India)

    2017-01-03

    Jan 3, 2017 ... So far, a large class of scalar field dark energy mod- els have been ... gains a lot of interest, under the light of the recently announced Planck Probe ...... Figure 1. wm vs. t for c2 = 1, V0 = 1 and some values of λ and α. Figure 2.

  6. Are there hidden scalars in LHC Higgs results?

    International Nuclear Information System (INIS)

    Arhrib, A.; Ferreira, P.M.; Santos, Rui

    2014-01-01

    The Higgs boson recently discovered at the Large Hadron Collider has shown to have couplings to the remaining particles well within what is predicted by the Standard Model. The search for other new heavy scalar states has so far revealed to be fruitless, imposing constraints on the existence of new scalar particles. However, it is still possible that any existing heavy scalars would preferentially decay to final states involving the light Higgs boson thus evading the current LHC bounds on heavy scalar states. Moreover, decays of the heavy scalars could increase the number of light Higgs bosons being produced. Since the number of light Higgs bosons decaying to Standard Model particles is within the predicted range, this could mean that part of the light Higgs bosons could have their origin in heavy scalar decays. This situation would occur if the light Higgs couplings to Standard Model particles were reduced by a concomitant amount. Using a very simple extension of the SM — the two-Higgs doublet model — we show that in fact we could already be observing the effect of the heavy scalar states even if all results related to the Higgs are in excellent agreement with the Standard Model predictions

  7. Scalar dark matter: real vs complex

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2017-03-27

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  8. Scalar dark matter: real vs complex

    International Nuclear Information System (INIS)

    Wu, Hongyan; Zheng, Sibo

    2017-01-01

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  9. Scalar-vector bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)

    2016-01-22

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  10. SU(2) with fundamental fermions and scalars

    Science.gov (United States)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna

    2018-03-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

  11. Charged composite scalar dark matter

    Science.gov (United States)

    Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas

    2017-11-01

    We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

  12. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy.

    Science.gov (United States)

    Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther

    2017-09-20

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.

  13. Understanding Xeroderma Pigmentosum Complementation Groups Using Gene Expression Profiling after UV-Light Exposure.

    Science.gov (United States)

    Bowden, Nikola A; Beveridge, Natalie J; Ashton, Katie A; Baines, Katherine J; Scott, Rodney J

    2015-07-14

    Children with the recessive genetic disorder Xeroderma Pigmentosum (XP) have extreme sensitivity to UV-light, a 10,000-fold increase in skin cancers from age 2 and rarely live beyond 30 years. There are seven genetic subgroups of XP, which are all resultant of pathogenic mutations in genes in the nucleotide excision repair (NER) pathway and a XP variant resultant of a mutation in translesion synthesis, POLH. The clinical symptoms and severity of the disease is varied across the subgroups, which does not correlate with the functional position of the affected protein in the NER pathway. The aim of this study was to further understand the biology of XP subgroups, particularly those that manifest with neurological symptoms. Whole genome gene expression profiling of fibroblasts from each XP complementation group was assessed before and after UV-light exposure. The biological pathways with altered gene expression after UV-light exposure were distinct for each subtype and contained oncogenic related functions such as perturbation of cell cycle, apoptosis, proliferation and differentiation. Patients from the subgroups XP-B and XP-F were the only subgroups to have transcripts associated with neuronal activity altered after UV-light exposure. This study will assist in furthering our understanding of the different subtypes of XP which will lead to better diagnosis, treatment and management of the disease.

  14. Scalar Potential Model progress

    Science.gov (United States)

    Hodge, John

    2007-04-01

    Because observations of galaxies and clusters have been found inconsistent with General Relativity (GR), the focus of effort in developing a Scalar Potential Model (SPM) has been on the examination of galaxies and clusters. The SPM has been found to be consistent with cluster cellular structure, the flow of IGM from spiral galaxies to elliptical galaxies, intergalactic redshift without an expanding universe, discrete redshift, rotation curve (RC) data without dark matter, asymmetric RCs, galaxy central mass, galaxy central velocity dispersion, and the Pioneer Anomaly. In addition, the SPM suggests a model of past expansion, past contraction, and current expansion of the universe. GR corresponds to the SPM in the limit in which a flat and static scalar potential field replaces the Sources and Sinks such as between clusters and on the solar system scale which is small relative to the distance to a Source. The papers may be viewed at http://web.infoave.net/˜scjh/ .

  15. Scalar multi-wormholes

    International Nuclear Information System (INIS)

    Egorov, A I; Kashargin, P E; Sushkov, Sergey V

    2016-01-01

    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats. (paper)

  16. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  17. Search for scalar top and scalar bottom quarks at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2002-01-01

    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of sqrt(s) = 192 - 209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 93.0 GeV for this decay mode, if the mass difference between the scalar top quark a...

  18. SU (2) with fundamental fermions and scalars

    DEFF Research Database (Denmark)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  19. Constraining extended scalar sectors at the LHC and beyond

    Science.gov (United States)

    Ilnicka, Agnieszka; Robens, Tania; Stefaniak, Tim

    2018-04-01

    We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.

  20. Search for scalar mesons

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1989-01-01

    The search for I = 0 0 ++ mesons is described. The crucial role played by the states in the 1 GeV region is highlighted. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. The authors briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 references, 6 figures, 1 table

  1. Scalar and vector Galileons

    International Nuclear Information System (INIS)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2017-01-01

    An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Hamiltonian bounded from below, as long as the action is not degenerate, the Galileon construction is a way to avoid pathologies both at the classical and quantum levels. Galileon actions are, therefore, of great interest in many branches of physics, specially in high energy physics and cosmology. This proceedings contribution presents the generalities of the construction of both scalar and vector Galileons following two different but complimentary routes. (paper)

  2. Scalar mass relations and flavor violations in supersymmetric theories

    International Nuclear Information System (INIS)

    Cheng, Hsin-Chia; California Univ., Berkeley, CA

    1996-01-01

    Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1% accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p → K 0 μ + , weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as μ → eγ. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs

  3. A new mechanistic understanding of light-limitation in the seagrass Zostera muelleri.

    Science.gov (United States)

    Davey, Peter A; Pernice, Mathieu; Ashworth, Justin; Kuzhiumparambil, Unnikrishnan; Szabó, Milán; Dolferus, Rudy; Ralph, Peter J

    2018-03-01

    In this study we investigated the effect of light-limitation (∼20 μmol photons m -2  s -1 ) on the southern hemisphere seagrass, Zostera muelleri. RNA sequencing, chlorophyll fluorometry and HPLC techniques were used to investigate how the leaf-specific transcriptome drives changes in photosynthesis and photo-pigments in Z. muelleri over 6 days. 1593 (7.51%) genes were differentially expressed on day 2 and 1481 (6.98%) genes were differentially expressed on day 6 of the experiment. Differential gene expression correlated with significant decreases in rETR Max , I k , an increase in Yi (initial photosynthetic quantum yield of photosystem II), and significant changes in pigment composition. Regulation of carbohydrate metabolism was observed along with evidence that abscisic acid may serve a role in the low-light response of this seagrass. This study provides a novel understanding of how Z. muelleri responds to light-limitation in the marine water column and provides potential molecular markers for future conservation monitoring efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  5. Ecological effects of light pollution: how can we improve our understanding using light loggers on individual animals?

    NARCIS (Netherlands)

    Dominoni, DM

    2017-01-01

    Light pollution has become an important theme of both scientificresearch and policy-making. Although in recent years we have seen a boost ofresearch on this topic, there is still surprisingly little knowledge on the levels ofartificial light at night that wild animals really experience. I made use

  6. Scalar contribution to the BFKL kernel

    International Nuclear Information System (INIS)

    Gerasimov, R. E.; Fadin, V. S.

    2010-01-01

    The contribution of scalar particles to the kernel of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is calculated. A great cancellation between the virtual and real parts of this contribution, analogous to the cancellation in the quark contribution in QCD, is observed. The reason of this cancellation is discovered. This reason has a common nature for particles with any spin. Understanding of this reason permits to obtain the total contribution without the complicated calculations, which are necessary for finding separate pieces.

  7. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  8. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  9. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  10. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  11. Understanding energy efficient lighting as an outcome of dynamics of social practices

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise

    2017-01-01

    In policy-making, reducing energy consumption from lighting is largely treated as a matter of optimizing products. However, since lighting is a highly cultural and socio-material phenomenon, this article argues that current ways of using light cannot be attributed to the properties of the light s...

  12. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  13. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-01

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  14. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.

    Science.gov (United States)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-07

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two

  15. Scalar cosmological perturbations

    International Nuclear Information System (INIS)

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  16. Anyone for non-scalarity?

    OpenAIRE

    Duffley, Patrick; Larrivée, Pierre

    2010-01-01

    This paper examines the status of scalarity in the analysis of the meaning of the English determiner any. The latter’s position as a prime exemplar of the category of polarity-sensitive items has led it to be generally assumed to have scalar meaning. Scalar effects are absent however from a number of common uses of this word. This suggests that any does not involve scales as part of its core meaning, but produces them as a derived interpretative property. The role of three factors in the deri...

  17. Hierarchal scalar and vector tetrahedra

    International Nuclear Information System (INIS)

    Webb, J.P.; Forghani, B.

    1993-01-01

    A new set of scalar and vector tetrahedral finite elements are presented. The elements are hierarchal, allowing mixing of polynomial orders; scalar orders up to 3 and vector orders up to 2 are defined. The vector elements impose tangential continuity on the field but not normal continuity, making them suitable for representing the vector electric or magnetic field. Further, the scalar and vector elements are such that they can easily be used in the same mesh, a requirement of many quasi-static formulations. Results are presented for two 50 Hz problems: the Bath Cube, and TEAM Problem 7

  18. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  19. Astrophysical constraints on singlet scalars at LHC

    Science.gov (United States)

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  20. Astrophysical constraints on singlet scalars at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  1. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  2. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  3. Spherically symmetric scalar field collapse

    Indian Academy of Sciences (India)

    2013-03-01

    Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.

  4. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation.

    Science.gov (United States)

    Bumajdad, Ali; Madkour, Metwally

    2014-04-28

    Although TiO2 is one of the most efficient photocatalysts, with the highest stability and the lowest cost, there are drawbacks that hinder its practical applications like its wide band gap and high recombination rate of the charge carriers. Consequently, many efforts were directed toward enhancing the photocatalytic activity of TiO2 and extending its response to the visible region. To head off these attempts, modification of TiO2 with noble metal nanoparticles (NMNPs) received considerable attention due to their role in accelerating the transfer of photoexcited electrons from TiO2 and also due to the surface plasmon resonance which induces the photocatalytic activity of TiO2 under visible light irradiation. This insightful perspective is devoted to the vital role of TiO2 photocatalysis and its drawbacks that urged researchers to find solutions such as modification with NMNPs. In a coherent context, we discussed here the characteristics which qualify NMNPs to possess a great enhancement effect for TiO2 photocatalysis. Also we tried to understand the reasons behind this effect by means of photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra, and Density Functional Theory (DFT) calculations. Then the mechanism of action of NMNPs upon deposition on TiO2 is presented. Finally we introduced a survey of the behaviour of these noble metal NPs on TiO2 based on the particle size and the loading amount.

  5. Inflation and the Higgs Scalar

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-05

    This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.

  6. Properties of the scalar glueball

    International Nuclear Information System (INIS)

    Lanik, J.

    1984-01-01

    A detailed analysis of an effective Lagrangian model for cupling between a scalar glueball and pseudoscalar mesons is given. This coupling is shown to satisfy the SU(2)xSU(2) rule. The model is consistent with the glueball assignment for the scalar gsub(s)(1240) particle. Moreover, the SU(2)xSU(2) coupling rule explained also the existing experimental data for decays of the tensor glueball candidate THETA(1640) into pseudoscalar mesons

  7. Integrable scalar cosmologies

    International Nuclear Information System (INIS)

    Fré, P.; Sorin, A.S.; Trigiante, M.

    2014-01-01

    The question whether the integrable one-field cosmologies classified in a previous paper by Fré, Sagnotti and Sorin can be embedded as consistent one-field truncations into Extended Gauged Supergravity or in N=1 supergravity gauged by a superpotential without the use of D-terms is addressed in this paper. The answer is that such an embedding is very difficult and rare but not impossible. Indeed, we were able to find two examples of integrable models embedded in supergravity in this way. Both examples are fitted into N=1 supergravity by means of a very specific and interesting choice of the superpotential W(z). The question whether there are examples of such an embedding in Extended Gauged Supergravity remains open. In the present paper, relying on the embedding tensor formalism we classified all gaugings of the N=2 STU model, confirming, in the absence on hypermultiplets, the uniqueness of the stable de Sitter vacuum found several years ago by Fré, Trigiante and Van Proeyen and excluding the embedding of any integrable cosmological model. A detailed analysis of the space of exact solutions of the first supergravity-embedded integrable cosmological model revealed several new features worth an in-depth consideration. When the scalar potential has an extremum at a negative value, the Universe necessarily collapses into a Big Crunch notwithstanding its spatial flatness. The causal structure of these Universes is quite different from that of the closed, positive curved, Universe: indeed, in this case the particle and event horizons do not coincide and develop complicated patterns. The cosmological consequences of this unexpected mechanism deserve careful consideration

  8. Triplet scalars and dark matter at the LHC

    International Nuclear Information System (INIS)

    Fileviez Perez, Pavel; Patel, Hiren H.; Ramsey-Musolf, Michael J.; Wang, Kai

    2009-01-01

    We investigate the predictions of a simple extension of the standard model where the Higgs sector is composed of one SU(2) L doublet and one real triplet. We discuss the general features of the model, including its vacuum structure, theoretical and phenomenological constraints, and expectations for Higgs collider studies. The model predicts the existence of a pair of light charged scalars and, for vanishing triplet vacuum expectation value, contains a cold dark matter candidate. When the latter possibility occurs, the charged scalars are long-lived, leading to a prediction of distinctive single charged track with missing transverse energy or double charged track events at the large hadron collider. The model predicts a significant excess of two-photon events compared to SM expectations due to the presence of a light charged scalar.

  9. Spontaneous Scalarization: Dead or Alive?

    Science.gov (United States)

    Berti, Emanuele; Crispino, Luis; Gerosa, Davide; Gualtieri, Leonardo; Horbatsch, Michael; Macedo, Caio; Okada da Silva, Hector; Pani, Paolo; Sotani, Hajime; Sperhake, Ulrich

    2015-04-01

    In 1993, Damour and Esposito-Farese showed that a wide class of scalar-tensor theories can pass weak-field gravitational tests and exhibit nonperturbative strong-field deviations away from General Relativity in systems involving neutron stars. These deviations are possible in the presence of ``spontaneous scalarization,'' a phase transition similar in nature to spontaneous magnetization in ferromagnets. More than twenty years after the original proposal, binary pulsar experiments have severely constrained the possibility of spontaneous scalarization occurring in nature. I will show that these experimental constraints have important implications for the torsional oscillation frequencies of neutron stars and for the so-called ``I-Love-Q'' relations in scalar-tensor theories. I will also argue that there is still hope to observe strong scalarization effects, despite the strong experimental bounds on the original mechanism. In particular, I will discuss two mechanisms that could produce strong scalarization in neutron stars: anisotropy and multiscalarization. This work was supported by NSF CAREER Award PHY-1055103.

  10. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  11. Understanding the central kinematics of globular clusters with simulated integrated-light IFU observations

    Science.gov (United States)

    Bianchini, Paolo; Norris, Mark A.; van de Ven, Glenn; Schinnerer, Eva

    2015-10-01

    The detection of intermediate-mass black holes in the centres of globular clusters is highly controversial, as complementary observational methods often deliver significantly different results. In order to understand these discrepancies, we develop a procedure to simulate integral field unit (IFU) observations of globular clusters: Simulating IFU Star Cluster Observations (SISCO). The inputs of our software are realistic dynamical models of globular clusters that are then converted in a spectral data cube. We apply SISCO to Monte Carlo cluster simulations with a realistic number of stars and concentrations. Using independent realizations of a given simulation we are able to quantify the stochasticity intrinsic to the problem of observing a partially resolved stellar population with integrated-light spectroscopy. We show that the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in the velocity dispersion measurements up to ≃40 per cent around the expected value, preventing any sound assessment of the central kinematic and a sensible interpretation of the presence/absence of an intermediate-mass black hole. Moreover, we illustrate that, in our mock IFU observations, the average kinematic tracer has a mass of ≃0.75 M⊙, only slightly lower than the mass of the typical stars examined in studies of resolved line-of-sight velocities of giant stars. Finally, in order to recover unbiased kinematic measurements we test different masking techniques that allow us to remove the spaxels dominated by bright stars, bringing the scatter down to a level of only a few per cent. The application of SISCO will allow us to investigate state-of-the-art simulations as realistic observations.

  12. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  13. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence

    International Nuclear Information System (INIS)

    Ya-Ming, Liu; Zhao-Hui, Liu; Hai-Feng, Han; Jing, Li; Han-Feng, Wang; Chu-Guang, Zheng

    2009-01-01

    The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number S t is less than 1.0, it reaches the minimal value when S t is around 1.0, then it increases if S t increases further. However, the scalar dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, p , are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and now structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when S t is around 1.0. (fundamental areas of phenomenology (including applications))

  14. On Scalar Energy: Mathematical Formulation

    International Nuclear Information System (INIS)

    Hathout, A.M.

    2011-01-01

    A new kind of electromagnetic waves (EMW), which exists only in vacuum of the empty space, will be discussed and mathematically formulated in this paper. The mathematical existence of this energy was first proposed in a series of groundbreaking equations by Scottish Mathematician, James Clerk Maxwell, in the mid of 1800 and 39;s. This energy is called scalar energy. It is characterized by both particle and wave like. The waves of this energy are called longitudinal EMW to distinguish them from transverse EM, the kind we are familiar with in our daily life. Teslas name of this energy is scalar energy or zero point energy. It is aimed at this paper to explain more details and to verify the scalar EM concept in vacuum.

  15. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2016-01-01

    Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  16. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  17. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  18. Scalar potentials and the Dirac equation

    International Nuclear Information System (INIS)

    Bergerhoff, B.; Soff, G.

    1994-01-01

    The Dirac equation is solved for various types of scalar potentials. Energy eigenvalues and normalized bound-state wave functions are calculated analytically for a scalar 1/r-potential as well as for a mixed scalar and Coulomb 1/r-potential. Also continuum wave functions for positive and negative energies are derived. Similarly, we investigate the solutions of the Dirac equation for a scalar square-well potential. Relativistic wave functions for scalar Yukawa and exponential potentials are determined numerically. Finally, we also discuss solutions of the Dirac equation for scalar linear and quadratic potentials which are frequently used to simulate quark confinement. (orig.)

  19. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    International Nuclear Information System (INIS)

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-01-01

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.

  20. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  1. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  2. Event horizon and scalar potential

    International Nuclear Information System (INIS)

    Duruisseau, J.P.; Tonnelat, M.A.

    1977-01-01

    The introduction of a scalar potential with a more general scheme than General Relativity eliminates the event horizon. Among possible solutions, the Schwarzschild one represents a singular case. A study of the geodesic properties of the matching with an approximated interior solution are given. A new definition of the gravitational mass and chi function is deduced. (author)

  3. Scalar particles in superstring models

    International Nuclear Information System (INIS)

    Binetruy, P.

    1989-01-01

    The role played by scalar fields in superstring models is reviewed, with an emphasis on recent developments. The case of the dilaton and moduli fields is discussed in connection with the issues of spacetime duality and supersymmetry breaking. Constraints on the Higgs sector are reviewed in the different classes of models

  4. Geometry of the Scalar Sector

    CERN Document Server

    Alonso, Rodrigo; Manohar, Aneesh V.

    2016-01-01

    The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...

  5. Manifolds of positive scalar curvature

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)

    2002-08-15

    This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.

  6. Nuclear planetology: understanding planetary mantle and crust formation in the light of nuclear and particle physics

    Science.gov (United States)

    Roller, Goetz

    2017-04-01

    The Hertzsprung-Russell (HR) diagram is one of the most important diagrams in astronomy. In a HR diagram, the luminosity of stars and/or stellar remnants (white dwarf stars, WD's), relative to the luminosity of the sun, is plotted versus their surface temperatures (Teff). The Earth shows a striking similarity in size (radius ≈ 6.371 km) and Teff of its outer core surface (Teff ≈ 3800 K at the core-mantle-boundary) with old WD's (radius ≈ 6.300 km) like WD0346+246 (Teff ≈ 3820 K after ≈ 12.7 Ga [1]), which plot in the HR diagram close to the low-mass extension of the stellar population or main sequence. In the light of nuclear planetology [2], Earth-like planets are regarded as old, down-cooled and differentiated black dwarfs (Fe-C BLD's) after massive decompression, the most important nuclear reactions involved being 56Fe(γ,α)52Cr (etc.), possibly responsible for extreme terrestrial glaciations events ("snowball" Earth), together with (γ,n), (γ,p) and fusion reactions like 12C(α,γ)16O. The latter reaction might have caused oxidation of the planet from inside out. Nuclear planetology is a new research field, tightly constrained by a coupled 187Re-232Th-238U systematics [3-5]. By means of nuclear/quantum physics and taking the theory of relativity into account, it aims at understanding the thermal and chemical evolution of Fe-C BLD's after gravitational contraction (e.g. Mercury) or Fermi-pressure controlled collapse (e.g. Earth) events after massive decompression, leading possibly to an r-process event, towards the end of their cooling period [2]. So far and based upon 187Re-232Th-238U nuclear geochronometry, the Fe-C BLD hypothesis can successfully explain the global terrestrial MORB 232Th/238U signature [5]. Thus, it may help to elucidate the DM (depleted mantle), EMI (enriched mantle 1), EMII (enriched mantle 2) or HIMU (high U/Pb) reservoirs [6], and the 187Os/188Os isotopic dichotomy in Archean magmatic rocks and sediments [7]. Here I present a

  7. Masses of scalar and axial-vector B mesons revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Yang [Academia Sinica, Institute of Physics, Taipei (China); Yu, Fu-Sheng [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-10-15

    The SU(3) quark model encounters a great challenge in describing even-parity mesons. Specifically, the q anti q quark model has difficulties in understanding the light scalar mesons below 1 GeV, scalar and axial-vector charmed mesons and 1{sup +} charmonium-like state X(3872). A common wisdom for the resolution of these difficulties lies on the coupled channel effects which will distort the quark model calculations. In this work, we focus on the near mass degeneracy of scalar charmed mesons, D{sub s0}{sup *} and D{sub 0}{sup *0}, and its implications. Within the framework of heavy meson chiral perturbation theory, we show that near degeneracy can be qualitatively understood as a consequence of self-energy effects due to strong coupled channels. Quantitatively, the closeness of D{sub s0}{sup *} and D{sub 0}{sup *0} masses can be implemented by adjusting two relevant strong couplings and the renormalization scale appearing in the loop diagram. Then this in turn implies the mass similarity of B{sub s0}{sup *} and B{sub 0}{sup *0} mesons. The P{sub 0}{sup *}P{sub 1}{sup '} interaction with the Goldstone boson is crucial for understanding the phenomenon of near degeneracy. Based on heavy quark symmetry in conjunction with corrections from QCD and 1/m{sub Q} effects, we obtain the masses of B{sup *}{sub (s)0} and B{sup '}{sub (s)1} mesons, for example, M{sub B{sub s{sub 0{sup *}}}} = (5715 ± 1) MeV + δΔ{sub S}, M{sub B}{sup {sub '{sub s{sub 1}}}} = (5763 ± 1) MeV + δΔ{sub S} with δΔ{sub S} being 1/m{sub Q} corrections. We find that the predicted mass difference of 48 MeV between B{sup '}{sub s1} and B{sub s0}{sup *} is larger than that of 20-30 MeV inferred from the relativistic quark models, whereas the difference of 15 MeV between the central values of M{sub B}{sup {sub '{sub s{sub 1}}}} and M{sub B}{sup {sub '{sub 1}}} is much smaller than the quark model expectation of 60-100 MeV. Experimentally, it is important to have a precise

  8. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    Science.gov (United States)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  9. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  10. Passive Scalar Evolution in Peripheral Region

    OpenAIRE

    Lebedev, V. V.; Turitsyn, K. S.

    2003-01-01

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  11. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    Science.gov (United States)

    Zemcov, Michael; SPHEREx Science Team

    2018-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the

  12. Comparison between two scalar field models using rotation curves of spiral galaxies

    Science.gov (United States)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  13. Right handed neutrinos in scalar leptonic interactions

    International Nuclear Information System (INIS)

    Fleury, N.; Barroso, M.; Magalhaes, M.E.; Martins Simoes, J.A.

    1985-01-01

    In this note we propose that right handed neutrinos can behave as singlets. Their interaction properties could be revealed through scalar couplings. Signatures and branching ratios for this hypothesis are discussed. In particular we discuss angular asymmetries in ν μ e #-> # ν e μ due to scalar exchange and z 0 decay in two scalars

  14. Search for Scalar Leptons and Scalar Quarks at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    Scalar partners of quarks and leptons, predicted in supersymmetric models, are searched for in e^+e^- collisions at centre-of-mass energies between 192GeV and 209GeV at LEP. No evidence for any such particle is found in a data sample of 450 pb^-1. Upper limits on their production cross sections are set and lower limits on their masses are derived in the framework of the Minimal Supersymmetric Standard Model.

  15. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.

    Science.gov (United States)

    van Bremen, Tobias; Send, Thorsten; Sasse, Philipp; Bruegmann, Tobias

    2017-08-01

    Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.

  16. Phenomenological signatures of additional scalar bosons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Buddenbrock, Stefan von; Kar, Deepak; Mellado, Bruce; Reed, Robert G.; Ruan, Xifeng [University of the Witwatersrand, School of Physics, Johannesburg, Wits (South Africa); Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-Based Particle Physics, Jhunsi, Allahabad (India); Cornell, Alan S.; Kumar, Mukesh [University of the Witwatersrand, National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, Johannesburg, Wits (South Africa); Mandal, Tanumoy [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2016-10-15

    We investigate the search prospects for new scalars beyond the standard model at the large hadron collider (LHC). In these studies two real scalars S and χ have been introduced in a two Higgs-doublet model (2HDM), where S is a portal to dark matter (DM) through its interaction with χ, a DM candidate and a possible source of missing transverse energy (E{sub T}{sup miss}). Previous studies focussed on a heavy scalar H decay mode H → hχχ, which was studied using an effective theory in order to explain a distortion in the Higgs boson (h) transverse momentum spectrum (von Buddenbrock et al. in arXiv:1506.00612 [hep-ph], 2015). In this work, the effective decay is understood more deeply by including a mediator S, and the focus is changed to H → hS, SS with S → χχ. Phenomenological signatures of all the new scalars in the proposed 2HDM are discussed in the energy regime of the LHC, and their mass bounds have been set accordingly. Additionally, we have performed several analyses with final states including leptons and E{sub T}{sup miss}, with H → 4W, t(t)H → 6 W and A → ZH channels, in order to understand the impact these scalars have on current searches. (orig.)

  17. Search for scalar top quarks decaying into scalar tau leptons with ATLAS at sqrt{s} =8 TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00358725; Colijn, Auke Pieter

    2017-10-06

    This thesis presents a search for Supersymmetry carried out in a particular scenario arising from the Gauge Mediated Supersymmetry breaking mechanism that assumes a massless gravitino as lightest supersymmetric particle, a scalar tau lepton as next-to-lightest supersymmetric particle and the top squark as the lightest among the quark superpartners. The analysis is performed using the data collected by ATLAS at a centre-of-mass energy √s = 8 TeV during 2012 data taking, for a total of 20.3 fb−1 of integrated luminosity of proton-proton collisions. Scalar top quark candidates are searched for in events with either two light leptons, one hadronically decaying tau and one light lepton or two hadronically decaying taus in the final state. No significant excess over the Standard Model expectation is found and the results are interpreted as 95% confidence lower limits not top squark and scalar tau masses. Depending on the scalar tau mass, lower limits between 490 and 650 GeV are placed on the top squark mass wit...

  18. CP violating scalar Dark Matter

    Science.gov (United States)

    Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.

    2016-12-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  19. Partial twisting for scalar mesons

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki

    2014-01-01

    The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given

  20. Scalar-tensor linear inflation

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.

  1. Scalar field cosmology in three-dimensions

    International Nuclear Information System (INIS)

    Oliveira Neto, G.

    2001-01-01

    We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)

  2. XXZ scalar products and KP

    International Nuclear Information System (INIS)

    Foda, O.; Wheeler, M.; Zuparic, M.

    2009-01-01

    Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP τ function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.

  3. XXZ scalar products and KP

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: foda@ms.unimelb.edu.au; Wheeler, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mwheeler@ms.unimelb.edu.au; Zuparic, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mzup@ms.unimelb.edu.au

    2009-10-21

    Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP {tau} function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.

  4. Random scalar fields and hyperuniformity

    Science.gov (United States)

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  5. Scalar perturbations and conformal transformation

    International Nuclear Information System (INIS)

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  6. Developing Selective Oxidation Catalysts of Light Alkanes:. from Fundamental Understanding to Rational Design

    Science.gov (United States)

    Fu, Gang; Yi, Xiaodong; Huang, Chuanjing; Xu, Xin; Weng, Weizheng; Xia, Wensheng; Wan, Hui-Lin

    Selective oxidation of light alkanes remains to be a great challenge for the wider use of alkanes as feedstocks. To achieve high activity and at the same time high selectivity, some key issues have to be addressed: (1) the stability of the desired products with respect to the reactants; (2) the roles of the active components in the catalysts, the structure and the functionality of the active centers; (3) the reducibility of the metal cations, the Lewis acid sites and their synergic effects with the basic sites of the lattice oxygen anions; (4) spatial isolation of the active centers; and (5) the mechanisms for the formation and transformation of the intermediates and their kinetic controls. In this contribution, we took selective oxidation of propane to acrolein as our target reaction, and reviewed mainly our own work, trying to provide some thinking and answers to these five questions.

  7. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  8. Cabibbo-Kobayashi-Maskawa-favored B decays to a scalar meson and a D meson

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Tian; Li, Ying [Yantai University, Department of Physics, Yantai (China); Liu, Xin [Jiangsu Normal University, School of Physics and Electronic Engineering, Xuzhou (China)

    2017-12-15

    In this work, we attempt to study the Cabibbo-Kobayashi-Maskawa-favored B → anti DS (''S'' denoting the scalar meson) decays within the perturbative QCD approach at the leading order and the leading power. Although the light scalar mesons are widely perceived as primarily the four-quark bound states, in practice it is hard for us to make quantitative predictions based on the four-quark picture for light scalars. Hence, we calculate the decays with light scalars in the two-quark model. For the decays with scalar mesons above 1 GeV, we have explored two possible scenarios, depending on whether the light scalars are treated as the lowest lying q anti q states or four-quark particles. In total, we calculated the branching fractions of 72 decay modes, and most of them are in the range 10{sup -4}-10{sup -7}, which are measurable in the on-going LHCb experiment and the forthcoming Belle-II experiment. Moreover, since in the standard model these decays occur only through tree operators and have no CP asymmetries, any deviation will be a signal of new physics beyond the standard model. Despite large uncertainties induced by nonperturbative parameters and corrections of high order and high power, our results and discussions will be useful for the on-going LHCb and the forthcoming Belle-II experiments. (orig.)

  9. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  10. Understanding cancer patients' reflections on good nursing care in light of Antonovsky's theory.

    Science.gov (United States)

    Kvåle, Kirsti; Synnes, Oddgeir

    2013-12-01

    Data from an empirical study about cancer patients' perception of good caring are analysed in the light of Antonovsky's theory. The aim was to reflect on whether and how health personnel by giving good care, can function as vital resources at cancer patients disposal in activating their General Resistance Resources (GRRs) in a stressful life situation, and by that contribute to promotion and maintenance of their sense of coherence. A hermeneutical approach was chosen for analysing the data. The informants were cancer patients in an oncology ward in a regional hospital in Norway. Twenty patients were interviewed, ten women and ten men. The patients had various cancer diagnoses at different stages and had different prognoses. The findings indicate that most of the patients succeeded in activating their GRRs in dealing with the stressor. Nurses, doctors, family and friends can be seen to function as vital resources at their disposal when needed. Most likely good caring supported the patient's promotion and maintenance of the components of meaningfulness, comprehensibility and manageability which form the concept sense of coherence (SOC). Health personnel can support the patients' meaningfulness by listening to the patients' stories about what still gives them meaning in life and their comprehensibility by giving good information. Alleviation of physical suffering may promote and maintain their manageability. Because all three components are intertwined, it is important to focus on all of them when caring for cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Factorization for radiative heavy quarkonium decays into scalar Glueball

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruilin [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao Tong University,Dongchuan RD 800, Shanghai 200240 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Zhongguancun E. St. 55, Beijing 100190 (China); CAS Center for Excellence in Particle Physics,Institute of High Energy Physics, Chinese Academy of Sciences,Yuquan RD 19B, Beijing 100049 (China)

    2015-09-24

    We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ψ, ψ(2S) and Υ(nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f{sub 0}(1370), f{sub 0}(1500) and f{sub 0}(1710).

  12. Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the $\\gamma\\gamma jj$ final state in $pp$ collisions at $\\sqrt{s}=13$ TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; Abouzeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar Saavedra, Juan Antonio; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara Caroline; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allaire, Corentin; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Alvarez Piqueras, Damian; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Ambroz, Luca; Amelung, Christoph; Amidei, Dante Eric; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque Espinosa, Juan Pedro; Araujo Ferraz, Victor; Araujo Pereira, Rodrigo; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkin, Ryan Justin; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Baluch Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Keith; Bakker, Pepijn Johannes; Bakshi Gupta, Debottam; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barbe, William Mickael; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tylor Colt; Barklow, Timothy; Barlow, Nick; Barnea, Rotem; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Helge Christoph; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas Alfons; Begalli, Marcia; Begel, Michael; Behera, Arabinda; Behr, Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, Juerg; Berlendis, Simon Paul; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Bertsche, Carolyn; Besjes, Geert-jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel Andreas; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin Hylton; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas; Buescher, Daniel; Buescher, Volker; Buschmann, Eric; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabras, Grazia; Cabrera Urban, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina Maria; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Calvetti, Milene; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Cao, Yumeng; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carra, Sonia; Carrillo Montoya, German David; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Jue; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, I-huan; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Clark, Allan G; Clark, Michael Ryan; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Conde Muino, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, Francois; Cortes-Gonzalez, Arely; Costa, Maria Jose; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael Ann; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Croft, Vincent; Crosetti, Giovanni; Cueto Gomez, Ana Rosario; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; Cuth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dahbi, Salah-eddine; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; D'amen, Gabriele; Dandoy, Jeffrey Rogers; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dartsi, Olympia; Dattagupta, Aparajita; Daubney, Thomas; D'Auria, Saverio; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Della Pietra, Massimo; della Volpe, Domenico; Dell'Acqua, Andrea; Dell'Asta, Lidia; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; Demarco, David; Demers, Sarah; Demichev, Mikhail; Denisov, Sergey; Denysiuk, Denys; D'eramo, Louis; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; De Almeida Dias, Flavia; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fido; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donini, Julien; D'Onofrio, Monica; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dreyer, Etienne; Dris, Manolis; Du, Yanyan; Duarte Campderros, Jorge; Dubinin, Filipp; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Duehrssen, Michael; Dulsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; Dueren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel John; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; FARRELL, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Woiciech; Feickert, Matthew; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipcic, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy Mac Gregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores, Lucas Macrorie; Flores Castillo, Luis; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; Foerster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia Maria; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz Pawel; Gadatsch, Stefan; Gadomski, Szymon; Gadow, Paul Philipp; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram; Gamboa Goni, Rodrigo; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gasnikova, Ksenia; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Helene; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gessner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag Ingemar; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giulini, Maddalena; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian Maximilian Volker; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Goncalo, Ricardo; Goncalves Gama, Rafael; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia Lynne; Gonzalez de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Goshaw, Alfred; Goessling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Jorn; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guerguichon, Antinea; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gugel, Ralf; Gui, Bin; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gurbuz, Saime; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageboeck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Hanke, Paul; Hansen, Eva; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew Straiton; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon Frank-thomas; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernandez Jimenez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higon-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter Howard; Horii, Yasuyuki; Horton, Arthur James; Horyn, Lesya Anna; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hrynevich, Aliaksei; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis; Huo, Peng; Hupe, Andre Marc; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche Speiser, Franziska; Introzzi, Gianluca; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakel, Gunnar; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Goeran; Javadov, Namig; Javurek, Tomas; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jezequel, Stephane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Junggeburth, Johannes Josef; Juste Rozas, Aurelio; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanjir, Luka; Kano, Yuya; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis Fawn; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John Stakely; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James Andrew; Keoshkerian, Houry; Kepka, Oldrich; Kersten, Susanne; Kersevan, Borut Paul; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kiehn, Moritz; Kilby, Callum Robert; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith B F G; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koehler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Natalia; Koeneke, Karsten; Koenig, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Konstantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krueger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, Joern Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laudrain, Antoine; Law, Alexander Thomas; Laycock, Paul; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi Paul; Leblanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee JR, Lawrence; Lee, Shih-Chang; Lefebvre, Benoit; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Leight, William Axel; Leisos, Antonios; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Simon; Lin, Tai-hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Little, Jared David; Liu, Bo; Liu, Hongbin; Liu, Hao; Liu, Jianbei; Liu, Jesse Kar Kee; Liu, Kun; Liu, Minghui; Liu, Peilian; Liu, Yanwen; Liu, Yanlin; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez Lopez, Jorge Andres; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Losel, Philipp Jonathan; Lou, Xinchou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Fred; Lukas, Wolfgang; Luminari, Lamberto; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, LianLiang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Jumpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maidantchik, Carmen; Maier, Thomas; Maio, Amelia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandic, Igor; Maneira, Jose; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Marceca, Gino; March Ruiz, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel Edison; Marroquim, Fernando; Marshall, Zach; Martensson, Ulf Fredrik Mikael; Marti i Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez Perez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Maettig, Peter; Maurer, Julien; Macek, Bostjan; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Tom; McClymont, Laurie Iain; McDonald, Emily; Mcfayden, Joshua Angus; Mchedlidze, Gvantsa; McKay, Madalyn Ann; McMahon, Steve; Mcnamara, Peter Charles; Mcnicol, Christopher John; McPherson, Robert; Meadows, Zachary Alden; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jochen; Meyer, Jean-Pierre; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuz, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh Pradip; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjoernmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; Moenig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llacer, Maria; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paraschos; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey Andre; Munoz Sanchez, Francisca Javiela; Murin, Pavel; Murray, Bill; Murrone, Alessia; Muskinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myers, John; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara Jean May; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Yan Wing; Nguyen, Hoang Dai Nghia; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; BIN NORJOHARUDDEEN, Nurfikri; Novak, Tadej; Novgorodova, Olga; Novotny, Radek; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Abreu Juliao Ochoa De Castro, Maria Ines; Ochoa, Jean-pierre; O'Connor, Kelsey; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver, Jason Lea; Olsson, Mats Joakim Robert; Olszewski, Andrzej; Olszowska, Jolanta; O'Neil, Dugan; Onofre, Antonio; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; O'Rourke, Abigail Alexandra; Orr, Robert; Osculati, Bianca; O'Shea, Val; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, Jose Guillermo; Pani, Priscilla; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parida, Bibhuti; Parker, Adam Jackson; Parker, Kerry Ann; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Costa Batalha Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Sotto-Maior Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Reinhild; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Pham, Thu; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pitt, Michael; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia Maria; Pospisil, Stanislav; Potamianos, Karolos Jozef; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-maitland, Michaela; Qureshi, Anum; Radeka, Veljko; Radhakrishnan, Sooraj Krishnan; Rados, Petar Kevin; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel Mauricio; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristic, Branislav; Ritsch, Elmar; Riu, Imma; Rivera Vergara, Juan Cristobal; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Rodriguez Vera, Ana Maria; Roe, Shaun; Rogan, Christopher Sean; Rohne, Ole; Roehrig, Rainer; Roloff, Jennifer Kathryn; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rossini, Lorenzo; Rosten, Jonatan Hans; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Ruehr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather Lynn; Rutherfoord, John; Ruthmann, Nils; Ruttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakharov, Alexander; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval Usme, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, Joao; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savard, Pierre; Savic, Natascha; Sawada, Ryu; Sawyer, Craig; Sawyer, Lee; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Timothy Paul; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Schaefer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillaci, Zachary Michael; Schillo, Christian; Schioppa, Enrico Junior; Schioppa, Marco; Schleicher, Katharina; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Scyboz, Ludovic Michel; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, Jose; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen Jacob; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shahinian, Jeffrey David; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Sharma, Abhishek; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, Jose Manuel; Silva, Manuel Jr; Silverstein, Samuel; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjoelin, Joergen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffa, Aaron Michael; Soffer, Abner; Sogaard, Andreas; Su, Daxian; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila- Serrano, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Weimin; Sopczak, Andre; Sopkova, Filomena; Sosa Corral, David Eduardo; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin Charles; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spano, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon Holtsberg; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Staerz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara Kristina; Strauss, Michael; Strizenec, Pavol; Stroehmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, Dms; Sultanov, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian J; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc Bao; Tackmann, Kerstin; Kinghorn-taenzer, Joseph Peter; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarek Abouelfadl Mohamed, Ahmed; Tarem, Shlomit; Tarna, Grigore; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren Brian; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timothee; Thiele, Fabian; Thomas, Juergen; Thompson, Stan; Thompson, Paul; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokar, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia; Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocme, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Vallier, Alexis Roger Louis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez Arenas, Gerardo Alexis; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Von Buddenbrock, Stefan Erich; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Sfiligoj, Tina; Vuillermet, Raphael; Vukotic, Ilija; Zenis, Tibor; Zivkovic, Lidija; Wagner, Peter; Wagner, Wolfgang; Wagner-kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Ann Miao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jin; Wang, Jike; Wang, Qing; Wang, Renjie; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stephen Albert; Weber, Sebastian Mario; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Pippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas Daniel; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Hanlin; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yajima, Kazuki; Yallup, David Paul; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Siqi; Yang, Yi-lin; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau, Kaven; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Christopher John; Young, Charles; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie Pui Yan; Bin Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, George; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Zerwas, Dirk; Zhang, Dongliang; Zhang, Dengfeng; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Ruiqi; Zhang, Rui; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zhulanov, Vladimir; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; Zorbas, Theodoros Georgio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-07-10

    This Letter presents a search for exotic decays of the Higgs boson to a pair of new (pseudo)scalar particles, $H\\to aa$, with a mass in the range 20--60 GeV, and where one of the $a$ bosons decays into a pair of photons and the other to a pair of gluons. The search is performed in event samples enhanced in vector-boson fusion Higgs boson production by requiring two jets with large invariant mass in addition to the Higgs boson candidate decay products. The analysis is based on the full dataset of $pp$ collisions at $\\sqrt{s}= 13$ TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 36.7 fb$^{-1}$. The data are in agreement with the Standard Model predictions and an upper limit at the 95% confidence level is placed on the production cross section times the branching ratio for the decay $H\\to aa\\to \\gamma\\gamma gg$. This limit ranges from 3.1 pb to 9.0 pb depending on the mass of the $a$ boson.

  13. Understanding the role of ultra-thin polymeric interlayers in improving efficiency of polymer light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Jim; Wang, Xuhua; Bradley, Donal D. C.; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, South Kensington Campus, Imperial College London, London SW7 2AZ (United Kingdom); Wright, Edward N.; Walker, Alison B. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-05-28

    F8BT PLED luminance on the difference, δ, in the highest occupied to lowest unoccupied molecular orbital energy gap between the light emitting polymer and a semiconducting polymeric IL, with δ consequently the most important parameter determining efficiency. Understanding the exponential effect that wider energy gap IL materials have on exciton quenching may allow δ to be used to better guide PLED structure design.

  14. Non-perturbative Calculation of the Scalar Yukawa Theory in Four-Body Truncation

    International Nuclear Information System (INIS)

    Li, Yang; Maris, P.; Vary, J. P.; Karmanov, V. A.

    2015-01-01

    The quenched scalar Yukawa theory is solved in the light-front Tamm–Dancoff approach including up to four constituents (one scalar nucleon, three scalar pions). The Fock sector dependent renormalization is implemented. By studying the Fock sector norms, we find that the lowest two Fock sectors dominate the state even in the large-coupling region. The one-body sector shows convergence with respect to the Fock sector truncation. However, the four-body norm exceeds the three-body norm at the coupling α≈1.7 . (author)

  15. Ab initio approach to the non-perturbative scalar Yukawa model

    OpenAIRE

    Li, YangDepartment of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Karmanov, V.A.(Lebedev Physical Institute, Leninsky Prospekt 53, Moscow, 119991, Russia); Maris, P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA); Vary, J.P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA)

    2015-01-01

    We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the $n$-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling $\\alpha \\approx 1.7$. As we approach the coupling $\\alpha \\appr...

  16. Entropic quantization of scalar fields

    International Nuclear Information System (INIS)

    Ipek, Selman; Caticha, Ariel

    2015-01-01

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation

  17. Entropic quantization of scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  18. The search for scalar mesons

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1988-09-01

    The search of I = 0 0 ++ mesons is described. We highlight the crucial role played by the states in the 1 GeV region. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. We briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 refs., 6 figs., 1 tab

  19. Understanding the curriculum the light of training guiding health in Brazil.

    Science.gov (United States)

    Moraes, Bibiana Arantes; Costa, Nilce Maria da Silva

    2016-06-01

    To analyze Pedagogical Projects Courses (PPCs) from the healthcare field in light of the National Curriculum Standards (NCS) policies on healthcare training. Exploratory descriptive study of qualitative approach, in which were carried out analyzes of PPPs of Nursing, Pharmacy, Medicine, Nutrition and Dentistry of a federal university in the Midwest region of Brazil. As technical analysis of documentary sources, adopted the content analysis in the thematic mode. The analysis of PPC showed the general aspects of PPC as the course features the historical percursso and construction, professional skills and competences required for professional performance and the guiding principles of formation characterized by technical, professional practice, articulation theory/ practice, interdisciplinarity and ethical / social training. PPC presented is consistent with the proposals set out in DCN and carry training policies in health in Brazil, providing adequate training for health professionals, the demands of the population and the National Health System. Analisar os Projetos Pedagógicos de Cursos (PPC) da área da saúde à luz das Diretrizes Curriculares Nacionais (DCN) e das políticas indutoras de formação em saúde do Brasil. Pesquisa descritiva exploratória de abordagem qualitativa, na qual foram realizadas análises dos PPC dos cursos de Enfermagem, Farmácia, Medicina, Nutrição e Odontologia de uma instituição federal de ensino superior da região Centro-Oeste do Brasil. Como técnica de análises das fontes documentais, adotou-se a análise de conteúdo, na modalidade temática. As análises dos PPC evidenciaram os aspectos gerais dos PPC como as características do curso, o percursso histórico e sua construção, habilidades e competências profissionais requeridas para o desempenho profissional e os princípios norteadores da formação caracterizados pela técnica, prática profissional, articulação teoria/prática, interdisciplinaridade e formação

  20. Scalar Similarity for Relaxed Eddy Accumulation Methods

    Science.gov (United States)

    Ruppert, Johannes; Thomas, Christoph; Foken, Thomas

    2006-07-01

    The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.

  1. Scalar-tetrad theories of gravity

    International Nuclear Information System (INIS)

    Hayward, J.

    1981-01-01

    A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity. (author)

  2. Scalar field mass in generalized gravity

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  3. Quark-gluon mixing in scalar mesons

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Nazaryan, A.E.

    1986-01-01

    Scalar mesons are considered within the quark-gluon mixing model. It is shown that there exists decouplet of scalar particles consisting of S* (975), ε (1400), S*' (1700), δ (980) and κ (1350) resonances. It has turned out that the long ago known S* (975)-resonance is a nearly pure glouball. A good description of all available experimental data on scalar meson decays is obtained

  4. On scalar condensate baryogenesis model

    International Nuclear Information System (INIS)

    Kiriloval, D.P.; Valchanov, T.V.

    2004-09-01

    We discuss the scalar field condensate baryogenesis model, which is among the baryogenesis scenarios preferred today, compatible with inflation. According to that model a complex scalar field φ, carrying baryon charge B≠0 is generated at inflation. The baryon excess in the Universe results from the φ decay at later stages of Universe evolution (T 15 GeV). We updated the model's parameters range according to the current observational cosmological constraints and analyzed numerically φ evolution after the inflationary stage till its decay φ → qq-barlγ. During that period oscillated with a decreasing amplitude due to Universe expansion and particle production processes due to the coupling of the field to fermions gφf 1 f 2 . It was shown that particle creation processes play an essential role for evolution and its final value. It may lead to a considerable decrease of the field's amplitude for large g and/or large H values, which reflects finally into strong damping of the baryon charge carried by the condensate. The analysis suggests that for a natural range of the model's parameters the observed value of the baryon asymmetry can be obtained and the model can serve as a successful baryogenesis model, compatible with inflation. (author)

  5. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    Science.gov (United States)

    Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.

    2011-12-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as

  6. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    International Nuclear Information System (INIS)

    Taveira, R M R; Silva, C B da; Pereira, J C F

    2011-01-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ('nibbling') motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Re λ = 120 to Re λ = 160 (da Silva and Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the 'scalar interface' and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by I , in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface 0.1y I /λ to 1y I /λand boosting them as far as -2.5y I /η θ C .

  7. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  8. Flapping model of scalar mixing in turbulence

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1991-01-01

    Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects

  9. Low energy constraints and scalar leptoquarks⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.

  10. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  11. Scalar resonances as two-quark states

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1984-01-01

    On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)

  12. Emotional Abuse: How the Concept Sheds Light on the Understanding of Psychological Harassment (in Quebec

    Directory of Open Access Journals (Sweden)

    Steve Harvey

    2005-11-01

    Full Text Available This paper reviews the concept of emotional abuse in the workplace and applies relevant findings and concepts to psychological harassment as defined in the legislation enacted in Quebec beginning June 1, 2004. It is noted that the terms are highly related by definition and that a clear similarity exists. Accordingly, a prospective look is taken at the challenges involved in the understanding and application of psychological harassment based on seven dimensions commonly studied and referred to in the academic literature on emotional abuse. The conclusion is that the determination of psychological harassment involves a multidimensional consideration of factors and that this gives rise to several challenges in applying the new legislation.Cet article s’intéresse au concept d’abus émotif au travail et à son application à des problèmes de harcèlement psychologique, tel que défini par la législation promulguée au Québec en juin 2004. Les définitions des deux termes sont rapprochées ce qui suggère qu’il s’agit de problèmes similaires. À des fins de prospective, l’article étudie les implications pratiques de l’application au harcèlement psychologique des sept dimensions associées à l’abus émotif dans la littérature scientifique. L’article arrive à la conclusion qu’un diagnostic de harcèlement psychologique requiert la prise en compte de facteurs multidimensionnels, ce qui soulève des difficultés multiples en ce qui a trait à l’application de la législation récente.Este artículo se interesa al concepto de abuso emotivo en el trabajo y a su aplicación a los problemas de acoso psicológico, según la definición que figura en la legislación promulgada en Québec en junio del 2004. Las definiciones de los dos términos son próximas lo que sugiere que se trata de problemas similares. Con fines prospectivos, el artículo estudia las implicaciones prácticas de la aplicación de siete dimensiones asociadas al

  13. Scalar dark matter in leptophilic two-Higgs-doublet model

    Science.gov (United States)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  14. Goldstone pion and other mesons using a scalar confining interaction

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1994-01-01

    A covariant wave equation for q bar q interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks (π,ρ, and low lying excited states) and heavy quarks (ρ c , J/Ψ, and low lying excited states) are presented and discussed

  15. Scalar formalism for quantum electrodynamics

    International Nuclear Information System (INIS)

    Hostler, L.C.

    1985-01-01

    A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full quantum electrodynamics based on the relativistic Klein--Gordon--type wave equation ]Pi/sub μ/Pi/sub μ/+m 2 +ie sigma x (E +iB)]phi = 0, Pi/sub μ/ equivalent-i partial/sub μ/-eA/sub μ/, for spin- 1/2 particles [J. Math. Phys. 23, 1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, phi is a 2 x 1 Pauli spinor and sigma/sub a/, a = 1,2,3, are the usual 2 x 2 Pauli spin matrices. The irreducible self-energy parts are compared to those of conventional quantum electrodynamics

  16. Anomalous coupling of scalars to gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre

    2010-10-15

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  17. Anomalous coupling of scalars to gauge fields

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-10-01

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  18. Scalar field dark matter in hybrid approach

    NARCIS (Netherlands)

    Friedrich, Pavel; Prokopec, Tomislav

    2017-01-01

    We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated to the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in

  19. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    International Nuclear Information System (INIS)

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-01-01

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory

  20. A note on perfect scalar fields

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  1. Phenomenology of supersymmetry with scalar sequestering

    International Nuclear Information System (INIS)

    Perez, Gilad; Roy, Tuhin S.; Schmaltz, Martin

    2009-01-01

    The defining feature of scalar sequestering is that the minimal supersymmetric standard model squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition--scalar masses vanish while gaugino and Higgsino masses are unsuppressed--is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B μ term also drives the Higgs soft masses to -|μ| 2 . Thus the supersymmetric contribution to the Higgs mass matrix from the μ term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (μ > or approx. TeV) than scalar Higgses (m A ∼few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.

  2. Microalgal Photosynthesis and Spectral Scalar Irradiance in Coastal Marine-Sediments of Limfjorden, Denmark

    DEFF Research Database (Denmark)

    LASSEN, C.; PLOUG, H.; JØRGENSEN, BB

    1992-01-01

    (bacteriochlorophyll a). Infrared scalar irradiance reached 200% of incident light intensity at 0.0-0.3-mm depth and IR penetration was independent of the development of a cyanobacterial surface film. At high incident light intensity, 740 muEinst m-2 s-1, the photosynthetic efficiency at 1.0-mm depth was 10-fold...... higher than in the uppermost 0.0-0.6 mm of the sediment. The lower boundary of the euphotic zone (detectable gross photosynthesis) was at a mean light level of greater-than-or-equal-to 7.5 muEinst m-2 s-1.......Scalar irradiance and oxygenic photosynthesis were measured simultaneously at 100-mum spatial resolution by a fiber-optic scalar irradiance microsensor and an oxygen microelectrode spaced 120 mum apart. Marine microbial mats on sandy sediments along the coast of Limfjorden, Denmark, were dominated...

  3. Universal Behavior in Excited Heavy-Light and Light-Light Mesons

    OpenAIRE

    Olsson, M. G.

    1996-01-01

    A common pattern of large orbital and radial excitations in heavy-light and light-light mesons is demonstrated. Within a general potential model the Regge slopes of the light degrees of freedom for these mesons are shown to be in the ratio of two. The possibility of ``tower'' degeneracy occurs only with pure scalar confinement.

  4. On the stability of the asymptotically free scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, A M. [Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha (Qatar); Physics Department, Faculty of Science, Mansoura University, Egypt. amshalab@qu.edu.qa (Egypt)

    2015-03-30

    Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.

  5. Effects of premixed flames on turbulence and turbulent scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Lipatnikov, A.N.; Chomiak, J. [Department of Applied Mechanics, Chalmers University of Technology, 412 75 Goeteborg (Sweden)

    2010-02-15

    Experimental data and results of direct numerical simulations are reviewed in order to show that premixed combustion can change the basic characteristics of a fluctuating velocity field (the so-called flame-generated turbulence) and the direction of scalar fluxes (the so-called countergradient or pressure-driven transport) in a turbulent flow. Various approaches to modeling these phenomena are discussed and the lack of a well-elaborated and widely validated predictive approach is emphasized. Relevant basic issues (the transition from gradient to countergradient scalar transport, the role played by flame-generated turbulence in the combustion rate, the characterization of turbulence in premixed flames, etc.) are critically considered and certain widely accepted concepts are disputed. Despite the substantial progress made in understanding the discussed effects over the past decades, these basic issues strongly need further research. (author)

  6. Light-by-light scattering and muon's anomalous magnetic moment

    International Nuclear Information System (INIS)

    Pauk, Vladyslav

    2014-01-01

    A study of hadron production by photons opens unique ways to address a number of fundamental problems in strong interaction physics as well as fundamental questions in Quantum Field Theory. In particular, an understanding of two-photon processes is of crucial importance for constraining the hadronic uncertainties in precision measurements and in searches for new physics. The process of γ * γ * fusion (by quasi-real photons γ or virtual photons γ * ) into leptons and hadrons has been observed and studied in detail at nearly all high-energy colliders. From the theoretical point of view two-photon processes are very complicated. One of approaches which may be efficiently used to study non-perturbative features of two-photon production is based on a dispersion theory. Using general properties of relativistic quantum field theory we relate in this work the forward light-by-light scattering to energy weighted integrals of the γ * γ fusion cross sections. The first type of new relations derived in this work have the form of exact super-convergence sum rules. The second type involves the effective constants of the low-energy photon-photon interaction and allow to define them in terms of two-photon production cross sections. We subsequently test and verify these sum rules exactly at tree and one-loop level in scalar and spinor QED. Furthermore, we test the criterium of the tree-level unitarity imposed by the sum rules on the example of the massive spin-1 QED. Next, we apply the sum rules for the forward light-by-light scattering process within the context of the φ 4 quantum field theory. Within this theory, we present a stringent causality criterion and apply it to a particular non-perturbative resummation of graphs. Applied to the γ * γ production of mesons, the superconvergence sum rules lead to intricate relations between theγγ decay widths and the γ * γ transition form factors for (pseudo-) scalar, axial-vector and tensor mesons. We discuss the

  7. Adaptive scalarization methods in multiobjective optimization

    CERN Document Server

    Eichfelder, Gabriele

    2008-01-01

    This book presents adaptive solution methods for multiobjective optimization problems based on parameter dependent scalarization approaches. Readers will benefit from the new adaptive methods and ideas for solving multiobjective optimization.

  8. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  9. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  10. Oscillating scalar fields in extended quintessence

    Science.gov (United States)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  11. Covariant formulation of scalar-torsion gravity

    Science.gov (United States)

    Hohmann, Manuel; Järv, Laur; Ualikhanova, Ulbossyn

    2018-05-01

    We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary function of the torsion scalar and a scalar field, f (T ,ϕ ) , thus encompassing the cases of f (T ) gravity and a nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines the spin connection associated with a given tetrad. We discuss how the spin connection equation can be solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize the theory to an arbitrary number of scalar fields.

  12. Cosmic inflation constrains scalar dark matter

    Directory of Open Access Journals (Sweden)

    Tommi Tenkanen

    2015-12-01

    Full Text Available In a theory containing scalar fields, a generic consequence is a formation of scalar condensates during cosmic inflation. The displacement of scalar fields out from their vacuum values sets specific initial conditions for post-inflationary dynamics and may lead to significant observational ramifications. In this work, we investigate how these initial conditions affect the generation of dark matter in the class of portal scenarios where the standard model fields feel new physics only through Higgs-mediated couplings. As a representative example, we will consider a $ Z_2 $ symmetric scalar singlet $ s $ coupled to Higgs via $ \\lambda \\Phi ^\\dagger \\Phi s^2 $. This simple extension has interesting consequences as the singlet constitutes a dark matter candidate originating from non-thermal production of singlet particles out from a singlet condensate, leading to a novel interplay between inflationary dynamics and dark matter properties.

  13. Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination

    Science.gov (United States)

    Pitts, J. Brian

    2016-02-01

    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz

  14. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  15. Symmetry Breaking in a random passive scalar

    Science.gov (United States)

    Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto

    2017-11-01

    We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.

  16. μ- conversion via doubly charged Higgs scalar

    International Nuclear Information System (INIS)

    Picciotto, C.E.; Zahir, M.S.

    1982-10-01

    A new mechanism is used to calculate μ - → e + conversion in nuclei, based on the existence of a doubly charged Higgs scalar. The scalar is part of a triplet which generates the spontaneous breakdown of B-L symmetry in an extension of the standard model, as proposed by Gelmini and Roncadelli. We find a limit for conversion rates which is comparable to those of earlier calculations

  17. Leading quantum gravitational corrections to scalar QED

    OpenAIRE

    Bjerrum-Bohr, N. E. J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The n...

  18. Symmetries of noncommutative scalar field theory

    International Nuclear Information System (INIS)

    De Goursac, Axel; Wallet, Jean-Christophe

    2011-01-01

    We investigate symmetries of the scalar field theory with a harmonic term on the Moyal space with the Euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can also be restored at the quantum level by restricting the symplectic structures to a particular orbit.

  19. Quantization of scalar-spinor instanton

    International Nuclear Information System (INIS)

    Inagaki, H.

    1977-04-01

    A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles

  20. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    International Nuclear Information System (INIS)

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  1. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  2. Self-gravitating black hole scalar wigs

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  3. Scalar electron production in e+e- annihilation

    International Nuclear Information System (INIS)

    Kuroda, M.; Kobayashi, T.; Yamada, S.; Ishikawa, K.

    1983-05-01

    The single scalar electron production process e + e - -> esup(+-) + Photino + scalar electron (scalar electron -> esup(-+) + Photino), with the detection of e + as well as e - , provides a clean method to detect scalar electrons when their masses are not lighter than the beam energy. We made a complete calculation of the process and evaluated the production cross sections. (orig.)

  4. Scalar production in models with 1 and 2 Higgs doublets

    International Nuclear Information System (INIS)

    Campos Carvalho, F.L. de.

    1991-03-01

    A standard electroweak interaction model is studied based on the introduction of an additional scalar doublet which rises two neutral scalars, one pseudoscalar and two charged scalars. The doublet introduction gives the possibility to implement constraints issued by the supersymmetry, restricting therefore those scalar masses. (L.C.J.A.)

  5. Stability of a collapsed scalar field and cosmic censorship

    International Nuclear Information System (INIS)

    Abe, S.

    1988-01-01

    The static and asymptotically flat solution to the Einstein-massless-scalar model with spherical symmetry describes the spacetime with a naked singularity when it has a nonvanishing scalar charge. We show that such a solution is unstable against the spherical scalar monopole perturbation. This suggests the validity of the cosmic censorship hypothesis in the spherical collapse of the scalar field

  6. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    Science.gov (United States)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  7. Passive scalar transport mediated by laminar vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, R H; Rodríguez, G, E-mail: rohernan@ing.uchile.cl [LEAF-NL, Depto. Ingeniería Civil Mecánica, Universidad de Chile, Casilla 2777, Santiago (Chile)

    2017-04-15

    Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances. (paper)

  8. Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data

    Science.gov (United States)

    Yulong Zhang; Conghe Song; Ge Sun; Lawrence E. Band; Asko Noormets; Quanfa Zhang

    2015-01-01

    Light use efficiency (LUE) is a key biophysical parameter characterizing the ability of plants to convert absorbed light to carbohydrate. However, the environmental regulations on LUE, especially moisture stress, are poorly understood, leading to large uncertainties in primary productivity estimated by LUE models. The objective of this study is to investigate the...

  9. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Science.gov (United States)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  10. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    International Nuclear Information System (INIS)

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  11. Fundamental and composite scalars from extra dimensions

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Diaz-Cruz, J.L.; Hernandez-Sanchez, J.; Noriega-Papaqui, R.

    2007-01-01

    We discuss a scenario consisting of an effective 4D theory containing fundamental and composite fields. The strong dynamics sector responsible for the compositeness is assumed to be of extra dimensional origin. In the 4D effective theory the SM fermion and gauge fields are taken as fundamental fields. The scalar sector of the theory resembles a bosonic topcolor in the sense there are two scalar Higgs fields, a composite scalar field and a fundamental gauge-Higgs unification scalar. A detailed analysis of the scalar spectrum is presented in order to explore the parameter space consistent with experiment. It is found that, under the model assumptions, the acceptable parameter space is quite constrained. As a part of our phenomenological study of the model, we evaluate the branching ratio of the lightest Higgs boson and find that our model predicts a large FCNC mode h→tc, which can be as large as O(10 -3 ). Similarly, a large BR for the top FCNC decay is obtained, namely BR(t→c+H)≅10 -4

  12. Can dark matter be a scalar field?

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, J.F.; Malatrasi, J.L.G. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Campus Experimental de Itapeva—R. Geraldo Alckmin, 519, Itapeva, SP (Brazil); Pereira, S.H. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Departamento de Física e Química, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410—Guaratinguetá, SP (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com, E-mail: malatrasi440@gmail.com, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom)

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads to m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.

  13. Neutral Scalar Higgs searches using Vector Boson Fusion at ATLAS

    CERN Document Server

    De Jong, J K; Pinfold, J L

    2005-01-01

    The Higgs boson is the last undiscovered particle predicted by the Standard Model. Its discovery is key to our understanding of the electroweak symmetry breaking process and the origin of mass. The primary purpose of the ATLAS detector at the Large Hadron Collider is the discovery of this particle. This thesis evaluates the discovery potential of the ATLAS experiment for a Heavy Neutral Scalar Higgs boson, $\\text{M}_{H} \\ge 170 ~\\text{\\GEVCC}$, produced through vector boson fusion and decaying through the four physics channels : H$\\rightarrow$ZZ$\\rightarrow l^{+}l^{-}$+jj and H$\\rightarrow$WW$\\rightarrow l\

  14. Long-lived quintessential scalar hair

    International Nuclear Information System (INIS)

    Caldwell, Robert R; Yu Pengpeng

    2006-01-01

    We investigate static configurations of a vacuumless scalar field as 'hair' on a black hole. The vacuumless field has run-away behaviour, meaning the scalar potential vanishes only at infinite field strength, and is also responsible for a cosmic acceleration horizon. The classic no-hair theorems do not prevent the existence of static configurations, in the form of a spherical domain wall, trapped between the two horizons. We study the properties of such configurations and show that, although the configurations are ultimately unstable, long-lived solutions are possible. We make a perturbation study to estimate the instability time scale, which can be as large as 6 x 10 7 times the black hole crossing time. We identify classes of observers who can never observe the scalar field become unstable, because they pass beyond the cosmological event horizon in a time interval shorter than the instability time scale

  15. Leading quantum gravitational corrections to scalar QED

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  16. Scalar one-loop integrals for QCD

    International Nuclear Information System (INIS)

    Ellis, R. Keith; Zanderighi, Giulia

    2008-01-01

    We construct a basis set of infra-red and/or collinearly divergent scalar one-loop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4-2ε dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/ε 2 ,1/ε 1 and 1/ε 0 as complex numbers for an arbitrary tadpole, bubble, triangle or box integral

  17. Transient accelerating scalar models with exponential potentials

    International Nuclear Information System (INIS)

    Cui Wen-Ping; Zhang Yang; Fu Zheng-Wen

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient. We find that, although a decelerating era will return in the future, when extrapolating the model back to earlier stages (z ≳ 4), scalar dark energy becomes dominant over matter. So these models do not have the desired tracking behavior, and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology. When couplings between the scalar field and matter are introduced, the models still have the same problem; only the time when deceleration returns will be varied. To achieve re-deceleration, one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  18. Anisotropic scalar field with cosmological time

    International Nuclear Information System (INIS)

    Kleber, A.; Teixeira, A.F.F.

    1978-04-01

    A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite

  19. Astrophysical constraints on scalar field models

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.

    2005-01-01

    We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model

  20. Scalar fields: at the threshold of astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, F S [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio C-3, Cd. Universitaria, A. P. 2-82, 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    In this manuscript the potential existence of self-gravitating complex scalar field configurations is explored. Stable boson stars are presented as potential black hole candidates, and the strengths and weaknesses of such idea are described. On the other hand, Newtonian boson systems are also studied because they are the bricks of the structure within the scalar field dark matter model or the Bose condensate dark matter; the collapse of density fluctuations is described; also the interaction between two structures is shown to allow solitonic behavior, which in turn allows the formation of ripples of dark matter. The processes related to potential observations are also discussed.

  1. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    Science.gov (United States)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  2. Light Absorption in Coralline Algae (Rhodophyta: A Morphological and Functional Approach to Understanding Species Distribution in a Coral Reef Lagoon

    Directory of Open Access Journals (Sweden)

    Román M. Vásquez-Elizondo

    2017-09-01

    Full Text Available Red coralline algae are a cosmopolitan group with the ability to precipitate CaCO3 within the walls of their vegetative cells. The resultant carbonate structure is key for explaining their ecological success, as it provides protection against herbivores and resistance to water motion. However, its potential contribution to enhance thallus light absorption efficiency through multiple light scattering on algal skeleton, similar to the effect documented for scleractinian corals, has not been yet investigated. Here, we initiate this analysis, characterizing thallus optical properties of three coralline species, which differed in pigment content and thallus mass area (TMA, gDW m−2. The three species, the rhodolith Neogoniolithon sp., the crustose coralline alga (CCA, Lithothamnion sp., and the articulated alga Amphiroa tribulus, represent the more distinctive coralline growth-forms and are able to colonize contrasting light environments in Caribbean coral reefs. The thicker thalli of the rhodoliths were the most efficient light collectors, as evidenced by their higher pigment absorption efficiency (a*Chla; m2 mgChla−1 and photosynthetic rates per unit area. This could explain rhodolith success in oligotrophic, highly illuminated reef environments. In contrast, the thinner thalli of the CCA, a low-light specialist, showed the highest metabolic rates normalized to mass and the highest light absorption efficiencies per unit mass (a*M; m2 gdw−1. Therefore, the ecological success of the CCA in cryptic habitats within the reef cannot be explained only by its low-light physiology, but also by its capacity to reduce the structural costs of their thalli, and thus of its new growth. Lastly, the ecological success of Amphiroa tribulus, which displayed intermediate values for the efficiency of light absorption, metabolic rates and TMA, was explained by its ability to construct the largest light collectors (algal canopies thanks to the presence of flexible

  3. WIMP Dark Matter and Unitarity-Conserving Inflation via a Gauge Singlet Scalar

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; McDonald, John

    2015-07-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n s imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.

  4. A Review on Experimental Measurements for Understanding Efficiency Droop in InGaN-Based Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Lai Wang

    2017-10-01

    Full Text Available Efficiency droop in GaN-based light emitting diodes (LEDs under high injection current density perplexes the development of high-power solid-state lighting. Although the relevant study has lasted for about 10 years, its mechanism is still not thoroughly clear, and consequently its solution is also unsatisfactory up to now. Some emerging applications, e.g., high-speed visible light communication, requiring LED working under extremely high current density, makes the influence of efficiency droop become more serious. This paper reviews the experimental measurements on LED to explain the origins of droop in recent years, especially some new results reported after 2013. Particularly, the carrier lifetime of LED is analyzed intensively and its effects on LED droop behaviors are uncovered. Finally, possible solutions to overcome LED droop are discussed.

  5. An improved mixing model providing joint statistics of scalar and scalar dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Daniel W. [Department of Energy Resources Engineering, Stanford University, Stanford, CA (United States); Jenny, Patrick [Institute of Fluid Dynamics, ETH Zurich (Switzerland)

    2008-11-15

    For the calculation of nonpremixed turbulent flames with thin reaction zones the joint probability density function (PDF) of the mixture fraction and its dissipation rate plays an important role. The corresponding PDF transport equation involves a mixing model for the closure of the molecular mixing term. Here, the parameterized scalar profile (PSP) mixing model is extended to provide the required joint statistics. Model predictions are validated using direct numerical simulation (DNS) data of a passive scalar mixing in a statistically homogeneous turbulent flow. Comparisons between the DNS and the model predictions are provided, which involve different initial scalar-field lengthscales. (author)

  6. Metric reconstruction from Weyl scalars

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, Bernard F; Price, Larry R [Department of Physics, PO Box 118440, University of Florida, Gainesville, FL 32611 (United States)

    2005-08-07

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations.

  7. Metric reconstruction from Weyl scalars

    International Nuclear Information System (INIS)

    Whiting, Bernard F; Price, Larry R

    2005-01-01

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations

  8. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  9. Dark energy in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.

    2007-12-15

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  10. Kundt spacetimes minimally coupled to scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)

    2017-06-15

    We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)

  11. Free massless scalar fields in two dimensions

    International Nuclear Information System (INIS)

    Hadjiivanov, L.K.

    1980-01-01

    A common Fock space for two free massless scalar fields, nonlocal with respect to each other, is constructed. The operators corresponding to the two formal charges are correctly defined and it is shown that they generate translationally invariant states from the vacuum

  12. Reconstructing bidimensional scalar field theory models

    International Nuclear Information System (INIS)

    Flores, Gabriel H.; Svaiter, N.F.

    2001-07-01

    In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)

  13. Scalar fields nonminimally coupled to pp waves

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2005-01-01

    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity

  14. Kerr black holes with scalar hair.

    Science.gov (United States)

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  15. Experiments on scalar mixing and transport

    International Nuclear Information System (INIS)

    Warhaft, Z.

    1993-01-01

    The author provides an overview of his recent work on passive (temperature) scalar mixing in both homogeneous and inhomogeneous turbulent flows. He shows that for homogeneous grid generated turbulence, in the presence of a linear temperature profile, the probability density function (pdf) of the temperature fluctuations has broad exponential tails, while the pdf of velocity is Gaussian. However, in the absence of a scalar gradient the pdf of temperature is Gaussian. This new result sheds insight into the fundamentals of turbulent mixing as well as to the nature of the velocity field. It is also shown that the spectrum of the temperature fluctuations has a scaling region that is consistent with Kolmogorov scaling although a similar scaling region is absent for the velocity field in this low Reynolds number flow. Finally, results concerning the mixing and dispersion of scalars in a jet are shown. Although initially the scalar mixing is strongly dependent on input conditions, the mixing is shown to be rapid and the correlation coefficient asymptotes to unity by x/D ∼ 20

  16. Update on scalar singlet dark matter

    NARCIS (Netherlands)

    Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.

    2013-01-01

    One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for

  17. Exploring extra dimensions with scalar fields

    Science.gov (United States)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  18. Dark energy in scalar-tensor theories

    International Nuclear Information System (INIS)

    Moeller, J.

    2007-12-01

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  19. Gravitational peculiarities of a scalar field

    International Nuclear Information System (INIS)

    Kleber, A.; Fonseca Teixeira, A.F. da

    1979-11-01

    The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author) [pt

  20. Vast Antimatter Regions and Scalar Condensate Baryogenesis

    OpenAIRE

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-01-01

    The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.

  1. Scalar Condensation of Holographic Superconductors using ...

    Indian Academy of Sciences (India)

    Abstract. We study holographic superconductors analytically by using the Ginzburg–Landau action with the γ-quartic term | |4. Our results show that γ-term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of γ. But the other increases with ...

  2. Athermal fiber laser for the SWARM absolute scalar magnetometer

    Science.gov (United States)

    Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.

    2017-11-01

    The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.

  3. Vector and scalar charmonium resonances with lattice QCD

    International Nuclear Information System (INIS)

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa

    2015-01-01

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state χ c0 (1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at χ c0 (1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia

  4. Addendum to ‘Understanding risks in the light of uncertainty: low-probability, high-impact coastal events in cities’

    Science.gov (United States)

    Galarraga, Ibon; Sainz de Murieta, Elisa; Markandya, Anil; María Abadie, Luis

    2018-02-01

    This addendum adds to the analysis presented in ‘Understanding risks in the light of uncertainty: low-probability, high-impact coastal events in cities’ Abadie et al (2017 Environ. Res. Lett. 12 014017). We propose to use the framework developed earlier to enhance communication and understanding of risks, with the aim of bridging the gap between highly technical risk management discussion to the public risk aversion debate. We also propose that the framework could be used for stress-testing resilience.

  5. Scalar Implicatures: The psychological reality of scales

    Directory of Open Access Journals (Sweden)

    Alex de Carvalho

    2016-10-01

    Full Text Available Scalar implicatures, the phenomena where a sentence like The pianist played some Mozart sonatas is interpreted as The pianist did not play all Mozart sonatas have been given two different analyses. Neo-Griceans claim that this interpretation is based on lexical scales (e.g. , where the stronger term (e.g. all implies the weaker term (e.g. some, but the weaker term (e.g., some implicates the negation of the stronger term (i.e., some = not all. Post-Griceans deny that this is the case and offer a context-based inferential account for scalar implicatures. While scalar implicatures have been extensively investigated, with results apparently in favor of post-Gricean accounts, the psychological reality of lexical scales has not been put to the test. This is what we have done in the present experiment, with a lexical decision task using lexical scales in a masked priming paradigm. While Post-Gricean accounts do not attribute any role for lexical scales in the computation of scalar implicatures, Neo-Gricean accounts suggest that lexical scales are the core mechanism behind the computation of scalar implicatures, and predict that weaker terms in a scale should prime stronger terms more than the reverse because stronger words are necessary to the interpretation of weaker words, while stronger words can be interpreted independently of weaker words. Our results provided evidence in favor of the psychological existence of scales, leading to the first clear experimental support for the Neo-Gricean account.

  6. Dissipation element analysis of turbulent scalar fields

    International Nuclear Information System (INIS)

    Wang Lipo; Peters, Norbert

    2008-01-01

    Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field Φ'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δφ ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δφ ' as well. A compensation-defect model is put forward in this work to show the dependence of Δφ ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.

  7. Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); Franzin, Edgardo [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Serra, Matteo [Dipartimento di Matematica, Sapienza Università di Roma,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-01-20

    We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d+2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.

  8. Minimal extension of the standard model scalar sector

    International Nuclear Information System (INIS)

    O'Connell, Donal; Wise, Mark B.; Ramsey-Musolf, Michael J.

    2007-01-01

    The minimal extension of the scalar sector of the standard model contains an additional real scalar field with no gauge quantum numbers. Such a field does not couple to the quarks and leptons directly but rather through its mixing with the standard model Higgs field. We examine the phenomenology of this model focusing on the region of parameter space where the new scalar particle is significantly lighter than the usual Higgs scalar and has small mixing with it. In this region of parameter space most of the properties of the additional scalar particle are independent of the details of the scalar potential. Furthermore the properties of the scalar that is mostly the standard model Higgs can be drastically modified since its dominant branching ratio may be to a pair of the new lighter scalars

  9. Falling into the Light-using music and poetry as complementary modes of understanding falls in old age

    DEFF Research Database (Denmark)

    Evron, Lotte; Clausen, Nina

    that a broader understanding of falls in old age in the health care system might help health professionals to understand the complexity of falls and by this inspire older persons to prevent falls in different ways. Using poetry and music in our performance we seek to open up for a broader understanding of falls......: irresponsible behavior, disease, destiny, desire to remain independent in old age, appearing elegant/aesthetical and being physical active. One of the interviews was selected and transformed it into a poem (2-3). The poem was then translated into music by the second author. First we present the six...... understandings of falls in old age then we read the poem and finally a musical interpretation of the poem is performed by song and cello. The music is written for soprano and cello and created with direct inspiration from the poem. The fall is reproduced in a series of descending tones coming back as a "chorus...

  10. The Rainich problem for coupled gravitational and scalar meson fields

    International Nuclear Information System (INIS)

    Hyde, J.M.

    1975-01-01

    The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr

  11. A Riemannian scalar measure for diffusion tensor images

    NARCIS (Netherlands)

    Astola, L.J.; Fuster, A.; Florack, L.M.J.

    2010-01-01

    We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI.

  12. The twelve-flavor β-function and dilaton tests of the sextet scalar

    Directory of Open Access Journals (Sweden)

    Fodor Zoltan

    2018-01-01

    Full Text Available We discuss near-conformal gauge theories beyond the standard model (BSM where interesting results on the twelve-flavor β-function of massless fermions in the fundamental representation of the SU(3 color gauge group and dilaton tests of the light scalar with two massless fermions in the two-index symmetric tensor (sextet representation can be viewed as parts of the same BSM paradigm under investigation. The clear trend in the decreasing size of β-functions at fixed renormalized gauge coupling is interpreted as a first indicator how the conformal window (CW is approached in correlation with emergent near-conformal light scalars. BSM model building close to the CW will be influenced by differing expectations on the properties of the emergent light 0++ scalar either as a σ-particle of chiral symmetry breaking (ΧS B, or as a dilaton of scale symmetry breaking. The twelve-flavor β-function emerges as closest to the CW, perhaps near-conformal, or perhaps with an infrared fixed point (IRFP at some unexplored strong coupling inside the CW. It is premature to speculate on dilaton properties of the twelveflavor model since the near-conformal realization remains an open question. However, it is interesting and important to investigate dilaton tests of the light sextet scalar whose β-function is closest to the CW in the symmetry breaking phase and emerges as the leading candidate for dilaton tests of the light scalar. We report results from high precision analysis of the twelve-flavor β-function [1] refuting its published IRFP [2, 3]. We present our objections to recent claims [4, 5] for non-universal behavior of staggered fermions used in our analysis. We also report our first analysis of dilaton tests of the light 0++ scalar in the sextet model and comment on related post-conference developments. The dilaton test is the main thrust of this conference contribution including presentation #405 on the nf = 12 β-function and presentation #260 on dilaton

  13. The Scalar, Vector and Tensor Fields in Theory of Elasticity and Plasticity

    Directory of Open Access Journals (Sweden)

    František FOJTÍK

    2014-06-01

    Full Text Available This article is devoted to an analysis of scalar, vector and tensor fields, which occur in the loaded and deformed bodies. The aim of this article is to clarify and simplify the creation of an understandable idea of some elementary concepts and quantities in field theories, such as, for example equiscalar levels, scalar field gradient, Hamilton operator, divergence, rotation and gradient of vector or tensor and others. Applications of those mathematical terms are shown in simple elasticity and plasticity tasks. We hope that content of our article might help technicians to make their studies of necessary mathematical chapters of vector and tensor analysis and field theories easier.

  14. Emotions in conflicts: understanding emotional processes sheds light on the nature and potential resolution of intractable conflicts.

    Science.gov (United States)

    Halperin, Eran; Tagar, Michal Reifen

    2017-10-01

    In recent years, researchers have been making substantial advances in understanding the central role of emotions in intractable conflict. We now know that discrete emotions uniquely shape policy preferences in conflict through their unique emotional goals and action tendencies in all stages of conflict including conflict management, conflict resolution and reconciliation. Drawing on this understanding, recent research also points to emotion regulation as a path to reduce conflict and advance peace, exploring both direct and indirect strategies of emotion regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  16. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo.

    Directory of Open Access Journals (Sweden)

    Junqian Pan

    Full Text Available Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4. Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H" with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors

  17. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo.

    Science.gov (United States)

    Pan, Junqian; Chen, Haimei; Guo, Baolin; Liu, Chang

    2017-01-01

    Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31

  18. Anisotropic inflation from charged scalar fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem

    2011-01-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities

  19. Scalar geons in Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, V.I. [Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia—CSIC, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: viafonso@df.ufcg.edu.br, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)

    2017-08-01

    The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r ≈ 2 M , while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.

  20. Scalar fields in black hole spacetimes

    Science.gov (United States)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  1. Euclidean wormholes with minimally coupled scalar fields

    International Nuclear Information System (INIS)

    Ruz, Soumendranath; Modak, Bijan; Debnath, Subhra; Sanyal, Abhik Kumar

    2013-01-01

    A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)

  2. Search for scalar electrons at PEP

    International Nuclear Information System (INIS)

    Wilson, R.J.

    1983-08-01

    Experimental results from e + e - reactions at the Positron Electron Project (PEP) using the High Resolution Spectrometer (HRS) are presented. Events with two electrons, and no other charged particles, in the final state are studied. Limits are given for the production of scalar-electrons predicted by models based on supersymmetry. In particular the pair production of such particles through s-channel single photon annihilation and t-channel inelastic scattering is considered. The data are well described by quantum electrodynamics (QED) but we observe one event which is also consistent with a supersymmetric model. Using this single event we find that the mass, M/sub se/, of these scalar-electrons es excluded, to 95% CL, in the range 1.8 less than or equal to M/sub se/ less than or equal to 14.2 GeV/c 2 . A description of the HRS detector is given with particular emphasis on the electronic trigger system

  3. Charged black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying; Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China)

    2015-09-10

    We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstrøm (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS{sub 2}×Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black p-branes with scalar hair.

  4. Scalar field cosmologies with inverted potentials

    Energy Technology Data Exchange (ETDEWEB)

    Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)

    2015-10-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.

  5. On Climbing Scalars in String Theory

    CERN Document Server

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  6. Scalar field cosmologies with inverted potentials

    International Nuclear Information System (INIS)

    Boisseau, B.; Giacomini, H.; Polarski, D.

    2015-01-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF

  7. Measurement of the proton scalar polarizabilities at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Mornacchi, Edoardo [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: A2-Collaboration

    2016-07-01

    The electric (α{sub E{sub 1}}) and magnetic (β{sub M1}) scalar polarizabilities are fundamental properties related to the internal structure of the nucleon. They play a crucial role not only in our understanding of the nucleon, but also in other areas such as atomic physics, where they provide e.g. corrections to the Lamb Shift. In order to determine the scalar polarizabilities of the proton, the beam asymmetry Σ{sub 3} was measured, for the first time for the Compton scattering, below the pion photoproduction threshold. The measurement was performed at the MAMI accelerator facility in Mainz. The linearly polarized primary photons impinged on a liquid hydrogen target and the outgoing particles were detected in a nearly 4π detector setup, composed by Crystall Ball and TAPS calorimeters. In this talk the results on the Compton scattering beam asymmetry Σ{sub 3} and their influence on the extraction of α{sub E{sub 1}} and β{sub M1} are discussed.

  8. A subleading power operator basis for the scalar quark current

    Science.gov (United States)

    Chang, Cyuan-Han; Stewart, Iain W.; Vita, Gherardo

    2018-04-01

    Factorization theorems play a crucial role in our understanding of the strong interaction. For collider processes they are typically formulated at leading power and much less is known about power corrections in the λ ≪ 1 expansion. Here we present a complete basis of power suppressed operators for a scalar quark current at O({λ}^2) in the amplitude level power expansion in the Soft Collinear Effective Theory, demonstrating that helicity selection rules significantly simplify the construction. This basis applies for the production of any color singlet scalar in q\\overline{q} annihilation (such as b\\overline{b}\\to H ). We also classify all operators which contribute to the cross section at O({λ}^2) and perform matching calculations to determine their tree level Wilson coefficients. These results can be exploited to study power corrections in both resummed and fixed order perturbation theory, and for analyzing the factorization properties of gauge theory amplitudes and cross sections at subleading power.

  9. Primordial perturbations in multi-scalar inflation

    Energy Technology Data Exchange (ETDEWEB)

    Abedi, Habib; Abbassi, Amir M., E-mail: h.abedi@ut.ac.ir, E-mail: amabasi@khayam.ut.ac.ir [Department of Physics, University of Tehran, North Kargar Ave, Tehran (Iran, Islamic Republic of)

    2017-07-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolutions. Then we focus on obtaining derivatives of number of e-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  10. The Effective Hamiltonian in the Scalar Electrodynamics

    CERN Document Server

    Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K

    2002-01-01

    On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.

  11. Scalar and pseudoscalar susceptibilities in nuclei

    International Nuclear Information System (INIS)

    Ericson, Magda; Chanfray, Guy; Chanfray, Guy

    2003-01-01

    We study the two QCD susceptibilities of the nuclear medium in the linear σ model. The magnitude of the scalar one increases due to the mixing with the softer modes of the nucleon-hole excitations. The pseudoscalar susceptibility, follows the density evolution of the quark condensate and thus decreases in magnitude. At normal nuclear matter density the two susceptibilities become much close than in the vacuum, a consequence of the partial chiral symmetry restoration. (author)

  12. Universal behavior in excited heavy-light and light-light mesons

    International Nuclear Information System (INIS)

    Olsson, M.G.

    1997-01-01

    A common pattern of large orbital and radial excitations in heavy-light and light-light mesons is demonstrated. For a general potential model with linear confinement the Regge slopes of the light degrees of freedom for these mesons are shown to be in the ratio of 2. The possibility of 'tower' degeneracy occurs only with pure scalar confinement. copyright 1997 The American Physical Society

  13. Scalar mesons in φ radiative decay

    International Nuclear Information System (INIS)

    Close, F.E.; Isgur, N.; Kumano, S.

    1992-06-01

    Existing predictions for the branching ratio for φ → KK γ via φ → S γ (where S denotes one of the scalar mesons f o (975) and a o (980)) vary by several orders of magnitude. Given the importance of these processes for both hadron spectroscopy and charge-parity-violation studies at φ factories (where φ→ K o K-bar o γ poses a possible background problem), this state of affairs is very undesirable. We show that the variety of predictions is due in part to errors and in part to differences in modelling. The latter variation leads us to argue that the radiative decays of these scalar states are interesting in their own right and may offer unique insights into the nature of the scalar mesons. As a byproduct we find that the branching ratio for φ → K o K-bar o γ is approx. -7 ) and will pose no significant background to proposed studies of CP-violation. (Author)

  14. In a search for scalar gluonium

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1979-01-01

    The problem of a scalar meson coupled strongly to gluons is discussed. Radiative decays of the J/psi are taken as a source of gluons. The aim of the paper is to calculate the GITA(J/psi→σγ) decay width where σ is the presumed scalar luonium. QCD sum rules was used to find both , (where Gsub(μν)sup(a) is the gluon field strength tensor and αsub(s) is the quark-gluon coupling constant) and GITA(J/psi→σγ) in terms of . The final prediction for the width is expected to be valid within a factor of two and gives GITA(J/psi→σγ→ two pions in S wave + γ) approximately equal to 25 eV for Msub(σ)=700 MeV. Nonperturbative QCD naturally explains the observed asymmetry between scalar and pseudoscalar states in the radiative decays of the J/psi. Some general remarks on gluonium in QCD are made

  15. Anisotropic hydrodynamics with a scalar collisional kernel

    Science.gov (United States)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  16. Scalar field Green functions on causal sets

    International Nuclear Information System (INIS)

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  17. A DNS study of turbulent mixing of two passive scalars

    International Nuclear Information System (INIS)

    Juneja, A.; Pope, S.B.

    1996-01-01

    We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a open-quote open-quote triple-delta function close-quote close-quote jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation. copyright 1996 American Institute of Physics

  18. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  19. Searches for scalar top and scalar bottom quarks at LEP2

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb^-1 taken at sqrt{s} = 161, 170, and 172~GeV and 5.7 pb^-1 taken at sqrt{s} = 130 and 136~GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels stop --> c chi, stop --> b l snu, and sbottom --> b chi. For the channel stop --> c chi a limit of 67 GeV/c^2 has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the stop and the chi of at least 10 GeV/c^2. For the channel stop --> b l snu the mixing-angle independent scalar top limit is 70 GeV/c^2, assuming a mass difference between the stop and the snu of at least 10 GeV/c^2. For the channel sbottom --> b chi, a limit of 73 GeV/c^2 has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. T...

  20. Searches for scalar top and scalar bottom quarks at LEP2

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-11-01

    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb-1 taken at sqrt(s) = 161, 170, and 172 GeV and 5.7 pb-1 taken at sqrt(s) = 130 and 136 GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels t~-->cχ, t~-->blν~, and b~-->bχ. For the channel t~-->cχ a limit of 67 GeV/c2has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the t~ and the χ of at least 10 GeV/c2. For the channel t~-->blν~ the mixing-angle independent scalar top limit is 70 GeV/c2, assuming a mass difference between the t~ and the ν~ of at least 10 GeV/c2. For the channel b~-->bχ, a limit of 73 GeV/c2has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. This limit is valid if the mass difference between the b~ and the χ is at least 10 GeV/c2.

  1. The role of scalar product and Wigner distribution in optical and quantum mechanical measurements

    International Nuclear Information System (INIS)

    Wodkiewicz, K.

    1984-01-01

    In this paper we present a unified approach to the phase-space description of optical and quantum measurements. We find that from the operational point of view the notion of a time dependent spectrum of light and a joint measurement of position and momentum in quantum mechanics can be formulated in one common approach in which the scalar product, the Wigner function and the phase-space proximity are closely related to a realistic measuring process

  2. arXiv Supplying Dark Energy from Scalar Field Dark Matter

    CERN Document Server

    Gogberashvili, Merab

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  3. Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-12-15

    We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)

  4. The scalar-photon 3-point vertex in massless quenched scalar QED

    International Nuclear Information System (INIS)

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  5. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  6. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  7. Test of scalar meson structure in φ radiative decays

    International Nuclear Information System (INIS)

    Kumano, S.

    1992-12-01

    We show that φ radiative decays into scalar mesons [f 0 (975), a 0 (980) ≡ S] can provide important clues on the internal structures of these mesons. Radiative decay widths vary widely: B.R. = 10 -4 -10 -6 depending on the substructures (qq-bar, qqq-barq-bar, KK-bar, glueball). Hence, we could discriminate among various models by measuring these widths at future φ factories. The understanding of these meson structures is valuable not only in hadron spectroscopy but also in nuclear physics in connection with the widely-used but little-understood σ meson. We also find that the decay φ→S γ →K 0 K-bar 0 γ is not strong enough to pose a significant background problem for studying CP violation via φ→K 0 K-bar 0 at the φ factories. (author)

  8. Extended BPH renormalization of cutoff scalar field theories

    International Nuclear Information System (INIS)

    Chalmers, G.

    1996-01-01

    We show through the use of diagrammatic techniques and a newly adapted BPH renormalization method that general momentum cutoff scalar field theories in four dimensions are perturbatively renormalizable. Weinberg close-quote s convergence theorem is used to show that operators in the Lagrangian with dimension greater than four, which are divided by powers of the cutoff, produce perturbatively only local divergences in the two-, three-, and four-point correlation functions. The naive use of the convergence theorem together with the BPH method is not appropriate for understanding the local divergences and renormalizability of these theories. We also show that the renormalized Green close-quote s functions are the same as in ordinary Φ 4 theory up to corrections suppressed by inverse powers of the cutoff. These conclusions are consistent with those of existing proofs based on the renormalization group. copyright 1996 The American Physical Society

  9. On the power law of passive scalars in turbulence

    Science.gov (United States)

    Gotoh, Toshiyuki; Watanabe, Takeshi

    2015-11-01

    It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.

  10. Propagators for a scalar field in a homogeneous expanding universe, 1

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Tanabe, Kenji.

    1975-11-01

    In view of a recent interest in the quantum field-theoretical creation of particles in a big-bang universe (which, via the problem how their vacuum state should be defined, will be connected with their propagators whose structure depends also on that of the universe), our previous formulae for bi-scalar Green's functions corresponding to a massless scalar field in the radiation- and matter-dominated stages of the Friedmann universe with flat 3-space are extended in a classical level. One is to derive the formulae for a massive scalar field in the same universe, and another lies in deriving the ones applicable to the respective stages of a closed universe with spherical topology. As an application, we discuss a massless scalar field (e.g., photons or gravitons defined suitably) and its physical property in the cases where its source distribution is spatially uniform and where that is of a delta-singularity. It is shown that the energy-momentum tensor in the first case is formally the same as a perfect fluid whose sound velocity relative to the light velocity is unity, while the tensor in the second case leads naturally to Robertson's formula for the apparent luminosity of a receding galaxy. The behavior of photons or gravitons generated from a turbulent medium in an early universe is also dealt with. (auth.)

  11. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  12. Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra

    International Nuclear Information System (INIS)

    Aoyama, Shogo

    2014-01-01

    The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra

  13. Gaussian processes and constructive scalar field theory

    International Nuclear Information System (INIS)

    Benfatto, G.; Nicolo, F.

    1981-01-01

    The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)

  14. Renormalization group study of scalar field theories

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Hasenfratz, P.

    1986-01-01

    An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)

  15. Global integrability of cosmological scalar fields

    Science.gov (United States)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  16. Force field refinement from NMR scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  17. Scalar-tensor cosmology with cosmological constant

    International Nuclear Information System (INIS)

    Maslanka, K.

    1983-01-01

    The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)

  18. Pre-inflation physics and scalar perturbations

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2005-01-01

    The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data

  19. Mesons, PANDA and the scalar glueball

    International Nuclear Information System (INIS)

    Parganlija, Denis

    2014-01-01

    The non-perturbative nature of Quantum Chromodynamics (QCD) at low energies has prompted the expectation that the gauge-bosons of QCD – gluons – might give rise to compound objects denoted as glueballs. Experimental signals for glueballs have represented a matter of research for various collaborations in the last decades; future research in this direction is a main endeavour planned by the PANDA Collaboration at FAIR. Hence in this article I review some of the outstanding issues in the glueball search, particularly with regard to the ground state – the scalar glueball, and discuss the relevance for PANDA at FAIR.

  20. Global integrability of cosmological scalar fields

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek

    2008-01-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain

  1. Search for Scalar Top and Scalar Bottom Quarks at $\\sqrt{s}$ = 189 GeV at LEP

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 182 pb-1 at a centre-of-mass energy of 189 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 90.3 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. In the worst case, when the scalar top quark decouples from the Z boson, the lower limit is 87.2 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. From a search for the scalar bottom quark, a mass limit of 88.6 GeV was obtained if the mass difference between the scalar bottom...

  2. Shadows of Kerr Black Holes with Scalar Hair.

    Science.gov (United States)

    Cunha, Pedro V P; Herdeiro, Carlos A R; Radu, Eugen; Rúnarsson, Helgi F

    2015-11-20

    Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.

  3. Passive scalar transport in peripheral regions of random flows

    International Nuclear Information System (INIS)

    Chernykh, A.; Lebedev, V.

    2011-01-01

    We investigate statistical properties of the passive scalar mixing in random (turbulent) flows assuming its diffusion to be weak. Then at advanced stages of the passive scalar decay, its unmixed residue is primarily concentrated in a narrow diffusive layer near the wall and its transport to the bulk goes through the peripheral region (laminar sublayer of the flow). We conducted Lagrangian numerical simulations of the process for different space dimensions d and revealed structures responsible for the transport, which are passive scalar tongues pulled from the diffusive boundary layer to the bulk. We investigated statistical properties of the passive scalar and of the passive scalar integrated along the wall. Moments of both objects demonstrate scaling behavior outside the diffusive boundary layer. We propose an analytic scheme for the passive scalar statistics, explaining the features observed numerically.

  4. Anomalous scaling of passive scalars in rotating flows.

    Science.gov (United States)

    Rodriguez Imazio, P; Mininni, P D

    2011-06-01

    We present results of direct numerical simulations of passive scalar advection and diffusion in turbulent rotating flows. Scaling laws and the development of anisotropy are studied in spectral space, and in real space using an axisymmetric decomposition of velocity and passive scalar structure functions. The passive scalar is more anisotropic than the velocity field, and its power spectrum follows a spectral law consistent with ~ k[Please see text](-3/2). This scaling is explained with phenomenological arguments that consider the effect of rotation. Intermittency is characterized using scaling exponents and probability density functions of velocity and passive scalar increments. In the presence of rotation, intermittency in the velocity field decreases more noticeably than in the passive scalar. The scaling exponents show good agreement with Kraichnan's prediction for passive scalar intermittency in two dimensions, after correcting for the observed scaling of the second-order exponent.

  5. Light-by-light scattering and muon's anomalous magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Pauk, Vladyslav

    2014-07-01

    A study of hadron production by photons opens unique ways to address a number of fundamental problems in strong interaction physics as well as fundamental questions in Quantum Field Theory. In particular, an understanding of two-photon processes is of crucial importance for constraining the hadronic uncertainties in precision measurements and in searches for new physics. The process of γ{sup *}γ{sup *} fusion (by quasi-real photons γ or virtual photons γ{sup *}) into leptons and hadrons has been observed and studied in detail at nearly all high-energy colliders. From the theoretical point of view two-photon processes are very complicated. One of approaches which may be efficiently used to study non-perturbative features of two-photon production is based on a dispersion theory. Using general properties of relativistic quantum field theory we relate in this work the forward light-by-light scattering to energy weighted integrals of the γ{sup *}γ fusion cross sections. The first type of new relations derived in this work have the form of exact super-convergence sum rules. The second type involves the effective constants of the low-energy photon-photon interaction and allow to define them in terms of two-photon production cross sections. We subsequently test and verify these sum rules exactly at tree and one-loop level in scalar and spinor QED. Furthermore, we test the criterium of the tree-level unitarity imposed by the sum rules on the example of the massive spin-1 QED. Next, we apply the sum rules for the forward light-by-light scattering process within the context of the φ{sup 4} quantum field theory. Within this theory, we present a stringent causality criterion and apply it to a particular non-perturbative resummation of graphs. Applied to the γ{sup *}γ production of mesons, the superconvergence sum rules lead to intricate relations between theγγ decay widths and the γ{sup *}γ transition form factors for (pseudo-) scalar, axial-vector and tensor

  6. On the Hadronic light-by-light contribution to the muon g - 2

    Science.gov (United States)

    Bijnens, Johan

    2018-05-01

    This talk is about the hadronic light-by-light contribution to the muon anomalous magnetic moment, mainly our old work but including some newer results as well. It concentrates on the model calculations. Most attention is paid to pseudo-scalar exchange and the pion loop contribution. Scalar, a1-exchange and other contributions are shortly discussed as well. For the π0-exchange a possible large cancellation between connected and disconnected diagrams is expected.

  7. Expressions for optical scalars and deflection angle at second order in terms of curvature scalars

    Science.gov (United States)

    Crisnejo, Gabriel; Gallo, Emanuel

    2018-04-01

    We present formal expressions for the optical scalars in terms of the curvature scalars in the weak gravitational lensing regime at second order in perturbations of a flat background without mentioning the extension of the lens or their shape. Also, by considering the thin lens approximation for static and axially symmetric configurations we obtain an expression for the second-order deflection angle which generalizes our previous result presented by Gallo and Moreschi [Phys. Rev. D 83, 083007 (2011)., 10.1103/PhysRevD.83.083007]. As applications of these formulas we compute the optical scalars for some known family of metrics, and we recover expressions for the deflection angle. In contrast to other works in the subject, our formalism allows a straightforward identification of how the different components of the curvature tensor contribute to the optical scalars and deflection angle. We also discuss in what sense the Schwarzschild solution can be thought as a true thin lens at second order.

  8. On conditional scalar increment and joint velocity-scalar increment statistics

    International Nuclear Information System (INIS)

    Zhang Hengbin; Wang Danhong; Tong Chenning

    2004-01-01

    Conditional velocity and scalar increment statistics are usually studied in the context of Kolmogorov's refined similarity hypotheses and are considered universal (quasi-Gaussian) for inertial-range separations. In such analyses the locally averaged energy and scalar dissipation rates are used as conditioning variables. Recent studies have shown that certain local turbulence structures can be captured when the local scalar variance (φ 2 ) r and the local kinetic energy k r are used as the conditioning variables. We study the conditional increments using these conditioning variables, which also provide the local turbulence scales. Experimental data obtained in the fully developed region of an axisymmetric turbulent jet are used to compute the statistics. The conditional scalar increment probability density function (PDF) conditional on (φ 2 ) r is found to be close to Gaussian for (φ 2 ) r small compared with its mean and is sub-Gaussian and bimodal for large (φ 2 ) r , and therefore is not universal. We find that the different shapes of the conditional PDFs are related to the instantaneous degree of non-equilibrium (production larger than dissipation) of the local scalar. There is further evidence of this from the conditional PDF conditional on both (φ 2 ) r and χ r , which is largely a function of (φ 2 ) r /χ r , a measure of the degree of non-equilibrium. The velocity-scalar increment joint PDF is close to joint Gaussian and quad-modal for equilibrium and non-equilibrium local velocity and scalar, respectively. The latter shape is associated with a combination of the ramp-cliff and plane strain structures. Kolmogorov's refined similarity hypotheses also predict a dependence of the conditional PDF on the degree of non-equilibrium. Therefore, the quasi-Gaussian (joint) PDF, previously observed in the context of Kolmogorov's refined similarity hypotheses, is only one of the conditional PDF shapes of inertial range turbulence. The present study suggests that

  9. Black hole accretion discs and screened scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Anne-Christine; Jha, Rahul [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk [Centre for Particle Theory, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2016-10-01

    We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in ''Weyl' coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.

  10. Scalar Hairy Black Holes in Four Dimensions are Unstable

    Science.gov (United States)

    Ganchev, Bogdan; Santos, Jorge E.

    2018-04-01

    We present a numerical analysis of the stability properties of the black holes with scalar hair constructed by Herdeiro and Radu. We prove the existence of a novel gauge where the scalar field perturbations decouple from the metric perturbations, and analyze the resulting quasinormal mode spectrum. We find unstable modes with characteristic growth rates which for uniformly small hair are almost identical to those of a massive scalar field on a fixed Kerr background.

  11. Spectra of turbulently advected scalars that have small Schmidt number

    Science.gov (United States)

    Hill, Reginald J.

    2017-09-01

    Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.

  12. Scalar Hairy Black Holes in Four Dimensions are Unstable.

    Science.gov (United States)

    Ganchev, Bogdan; Santos, Jorge E

    2018-04-27

    We present a numerical analysis of the stability properties of the black holes with scalar hair constructed by Herdeiro and Radu. We prove the existence of a novel gauge where the scalar field perturbations decouple from the metric perturbations, and analyze the resulting quasinormal mode spectrum. We find unstable modes with characteristic growth rates which for uniformly small hair are almost identical to those of a massive scalar field on a fixed Kerr background.

  13. Action Spectra of Microalgal Photosynthesis and Depth Distribution of Spectral Scalar Irradiance in a Coastal Marine Sediment of Limfjorden, Denmark

    DEFF Research Database (Denmark)

    PLOUG, H.; LASSEN, C.; JØRGENSEN, BB

    1993-01-01

    for photosynthesis and spectral scalar irradiance, E0, were measured directly in the sediment at a spatial resolution of 0.1 mm by the use of oxygen and light microsensors. The action spectrum for the diatoms was similar to the attenuation spectrum of the scalar irradiance, K0, in the diatom layer with Chl...... to calculate the spectral quality for photosynthesis of the 400-700 nm light to which the two populations were exposed. This spectral quality was compared to that of the light incident on the sediment surface. Due to preferential extinction of wavelengths, at which their photosynthetically active pigments had...... populations, and that total light intensity and the chemical microenvironment are probably more important factors....

  14. Boundaries immersed in a scalar quantum field

    International Nuclear Information System (INIS)

    Actor, A.A.; Bender, I.

    1996-01-01

    We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)

  15. Bern-Kosower rule for scalar QED

    International Nuclear Information System (INIS)

    Daikouji, K.; Shino, M.; Sumino, Y.

    1996-01-01

    We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field theory: we derive a set of rules for calculating S-matrix elements for any processes at any order of the coupling constant. A gauge-invariant set of diagrams in general is first written in the world line path-integral expression. Then we integrate over x(τ), and the resulting expression is given in terms of a correlation function on the world line left-angle x(τ)x(τ ' )right-angle. Simple rules to decompose the correlation function into basic elements are obtained. A gauge transformation known as the integration by parts technique can be used to reduce the number of independent terms before integration over proper-time variables. The surface terms can be omitted provided the external scalars are on shell. Also, we clarify correspondence to the conventional Feynman rule, which enabled us to avoid any ambiguity coming from the infinite dimensionality of the path-integral approach. copyright 1996 The American Physical Society

  16. Toward a Strongly Interacting Scalar Higgs Particle

    International Nuclear Information System (INIS)

    Shalaby, Abouzeid M.; El-Houssieny, M.

    2008-01-01

    We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism

  17. Dark matter search and the scalar quark contents of the nucleon

    International Nuclear Information System (INIS)

    Dinter, Simon; Drach, Vincent; Jansen, Karl

    2011-09-01

    We present lattice QCD simulation results from the European Twisted Mass Collaboration (ETMC) for the light, strange and charm quark contents of the nucleon. These quantities are important ingredients to estimate the cross-section for the detection of WIMPs as Dark Matter candidates. By employing a particular lattice QCD formulation, i.e. twisted mass fermions, accurate results of the light and strange scalar contents of the nucleon can be obtained. In addition, we provide a bound for the charm quark content of the nucleon. (orig.)

  18. Dark matter search and the scalar quark contents of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-09-15

    We present lattice QCD simulation results from the European Twisted Mass Collaboration (ETMC) for the light, strange and charm quark contents of the nucleon. These quantities are important ingredients to estimate the cross-section for the detection of WIMPs as Dark Matter candidates. By employing a particular lattice QCD formulation, i.e. twisted mass fermions, accurate results of the light and strange scalar contents of the nucleon can be obtained. In addition, we provide a bound for the charm quark content of the nucleon. (orig.)

  19. Decoding the hologram: Scalar fields interacting with gravity

    Science.gov (United States)

    Kabat, Daniel; Lifschytz, Gilad

    2014-03-01

    We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.

  20. Scalar self-interactions loosen constraints from fifth force searches

    International Nuclear Information System (INIS)

    Gubser, Steven S.; Khoury, Justin

    2004-01-01

    The mass of a scalar field mediating a fifth force is tightly constrained by experiments. We show, however, that adding a quartic self-interaction for such a scalar makes most tests much less constraining: the nonlinear equation of motion masks the coupling of the scalar to matter through the chameleon mechanism. We discuss consequences for fifth force experiments. In particular, we find that, with quartic coupling of order unity, a gravitational strength interaction with matter is allowed by current constraints. We show that our chameleon scalar field results in experimental signatures that could be detected through modest improvements of current laboratory set-ups

  1. Stability of a Noncanonical Scalar Field Model during Cosmological Date

    Directory of Open Access Journals (Sweden)

    Z. Ossoulian

    2016-01-01

    Full Text Available Using the noncanonical model of scalar field, the cosmological consequences of a pervasive, self-interacting, homogeneous, and rolling scalar field are studied. In this model, the scalar field potential is “nonlinear” and decreases in magnitude with increasing the value of the scalar field. A special solution of the nonlinear field equations of ϕ that has time dependency as fixed point is obtained. The fixed point relies on the noncanonical term of action and γ-parameter; this parameter appeared in energy density of scalar field redshift. By means of such fixed point the different eigenvalues of the equation of motion will be obtained. In different epochs in the evolution of the Universe for different values of q and n, the potentials as a function of scalar field are attained. The behavior of baryonic perturbations in linear perturbation scenario as a considerable amount of energy density of scalar field at low redshifts prevents the growth of perturbations in the ordinary matter fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic gravitational fields, in either the radiation or matter dominant or scalar field dominated epoch.

  2. Scalar field collapse in Gauss-Bonnet gravity

    Science.gov (United States)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  3. Scalar field collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a ''scalar-Einstein-Gauss-Bonnet'' theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon. (orig.)

  4. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    International Nuclear Information System (INIS)

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-01-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar

  5. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    Science.gov (United States)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  6. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C. [Institute of Applied Physics, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 2/4, 48149 Muenster (Germany); Ahles, M.; Petter, J. [Institute of Applied Physics, Technische Universitaet Darmstadt, Hochschulstr. 6, 64289 Darmstadt (Germany)

    2002-10-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  7. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    International Nuclear Information System (INIS)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C.; Ahles, M.; Petter, J.

    2002-01-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. The Scalar-Tensor Theory of Gravitation

    International Nuclear Information System (INIS)

    Ibanez, J

    2003-01-01

    Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical

  9. Information-Theoretic Approach May Shed a Light to a Better Understanding and Sustaining the Integrity of Ecological-Societal Systems under Changing Climate

    Science.gov (United States)

    Kim, J.

    2016-12-01

    Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).

  10. Self-accelerating universe in scalar-tensor theories after GW170817

    Science.gov (United States)

    Crisostomi, Marco; Koyama, Kazuya

    2018-04-01

    The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.

  11. $SU(2)$ gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum

    CERN Document Server

    Arthur, Rudy; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the scalar and pseudoscalar spectrum of the $SU(2)$ gauge theory with $N_f=2$ flavours of fermions in the fundamental representation using non perturbative lattice simulations. We provide first benchmark estimates of the mass of the lightest $0(0^{+})$ ($\\sigma$), $0(0^{-})$ ($\\eta'$) and $1(0^+)$ ($a_0$) states, including estimates of the relevant disconnected contributions. We find $m_{a_0}/F_{\\rm{PS}}= 16.7(4.9)$, $m_\\sigma/F_{\\rm{PS}}=19.2(10.8)$ and $m_{\\eta'}/F_{\\rm{PS}} = 12.8(4.7)$. These values for the masses of light scalar states provide crucial information for composite extensions of the Standard Model from the unified Fundamental Composi te Higgs-Technicolor theory \\cite{Cacciapaglia:2014uja} to models of composite dark matter.

  12. Production of inert scalars at the high energy e+e− colliders

    International Nuclear Information System (INIS)

    Hashemi, Majid; Krawczyk, Maria; Najjari, Saereh; Żarnecki, Aleksander Filip

    2016-01-01

    We investigate the phenomenology of the light charged and neutral scalars in Inert Doublet Model at future e + e − colliders with center of mass energies of 0.5 and 1 TeV, and integrated luminosity of 500 fb −1 . The analysis covers two production processes, e + e − →H + H − and e + e − →AH, and consists of signal selections, cross section determinations as well as dark matter mass measurements. Several benchmark points are studied with focus on H ± →W ± H and A→ZH decays. It is concluded that the signal will be well observable in different final states allowing for mass determination of all new scalars with statistical precision of the order of few hundred MeV.

  13. Search for scalar-tensor gravity theories with a non-monotonic time evolution of the speed-up factor

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, A [Dept Fisica, Universidad de Murcia, E30071-Murcia (Spain); Serna, A [Dept Fisica, Computacion y Comunicaciones, Universidad Miguel Hernandez, E03202-Elche (Spain); Alimi, J-M [Lab. de l' Univers et de ses Theories (LUTH, CNRS FRE2462), Observatoire de Paris-Meudon, F92195-Meudon (France)

    2002-08-21

    We present a method to detect, in the framework of scalar-tensor gravity theories, the existence of stationary points in the time evolution of the speed-up factor. An attractive aspect of this method is that, once the particular scalar-tensor theory has been specified, the stationary points are found through a simple algebraic equation which does not contain any integration. By applying this method to the three classes of scalar-tensor theories defined by Barrow and Parsons, we have found several new cosmological models with a non-monotonic evolution of the speed-up factor. The physical interest of these models is that, as previously shown by Serna and Alimi, they predict the observed primordial abundance of light elements for a very wide range of baryon density. These models are then consistent with recent CMB and Lyman-{alpha} estimates of the baryon content of the universe.

  14. Scalar modes of the relic gravitons

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    In conformally flat background geometries the long wavelength gravitons can be described in the fluid approximation and they induce scalar fluctuations both during inflation and in the subsequent radiation-dominated epoch. While this effect is minute and suppressed for a de Sitter stage of expansion, the fluctuations of the energy-momentum pseudo-tensor of the graviton fluid lead to curvature perturbations that increase with time all along the post-inflationary evolution. An explicit calculation of these effects is presented for a standard thermal history and it is shown that the growth of the curvature perturbations caused by the long wavelength modes is approximately compensated by the slope of the power spectra of the energy density, pressure and anisotropic stress of the relic gravitons.

  15. Abelian scalar theory at large global charge

    Energy Technology Data Exchange (ETDEWEB)

    Loukas, Orestis [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern (Switzerland)

    2017-09-15

    We elaborate on Abelian complex scalar models, which are dictated by natural actions (all couplings are of order one), at fixed and large global U(1) charge in an arbitrary number of dimensions. The ground state vertical stroke v right angle is coherently constructed by the zero modes and the appearance of a centrifugal potential is quantum mechanically verified. Using the path integral formulation we systematically analyze the quantum fluctuations around vertical stroke v right angle in order to derive an effective action for the Goldstone mode, which becomes perturbatively meaningful when the charge is large. In this regime we explicitly show, by computing the first few loop corrections, that the whole construction is stable against quantum effects, in the sense that any higher derivative couplings to Goldstone's tree-level action are suppressed by appropriate powers of the large charge. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Energy-momentum tensor in scalar QED

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1988-01-01

    We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE

  17. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  18. Duality property for a hermitian scalar field

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1975-01-01

    A general hermitian scalar Wightman field is considered. On the Hilbert space of physical states ''natural'' domains for certain complex Lorentz transformations are constructed, and a theorem relating these transformations to the TCP symmetry is stated and proved. Under the additional assumption that the field is ''locally'' essentially self-adjoint, duality is considered for the algebras generated by spectral projections of smeared fields. For a class of unbounded regions duality is proved, and for certain bounded regions ''local'' extensions of the algebras are constructed which satisfy duality. The relationship of the arguments presented to the Tomita--Takesaki theory of modular Hilbert algebras is discussed. A separate analysis for the free field is also given. (auth)

  19. Vacuum instability in scalar field theories

    International Nuclear Information System (INIS)

    McKane, A.J.

    1978-09-01

    Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)

  20. Observability of inert scalars at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Majid [Shiraz University, Physics Department, College of Sciences, Shiraz (Iran, Islamic Republic of); Najjari, Saereh [University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2017-09-15

    In this work we investigate the observability of inert doublet model scalars at the LHC operating at the center of mass energy of 14 TeV. The signal production process is pp → AH{sup ±} → ZHW{sup ±}H leading to two different final states of l{sup +}l{sup -}HjjH and l{sup +}l{sup -}Hl{sup ±}νH based on the hadronic and leptonic decay channels of the W boson. All the relevant background processes are considered and an event selection is designed to distinguish the signal from the large Standard Model background. We found that signals of the selected search channels are well observable at the LHC with an integrated luminosity of 300 fb{sup -1}. (orig.)

  1. Scalar Dark Matter From Theory Space

    Energy Technology Data Exchange (ETDEWEB)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  2. The BEH mechanism and its scalar bosons

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In the beginning of the 1960’s, the long range interactions within our universe were well understood from the laws of classical general relativity, Einstein’s generalisation of Newtonian gravity, and of quantum electrodynamics, the quantum version of Maxwell’s electromagnetic theory. But there was no hints of how to formulate consistent fundamental theories of short range interactions. A solution to this problem was proposed by Robert Brout and me, and independently by Peter Higgs. I shall explain our motivations for constructing this BEH mechanism and discuss its content. I will comment on how the magnificent ATLAS and CMS discovery at CERN of the scalar boson predicted by the mechanism confirms its validity and may have implications on structures at yet unexplored energies.

  3. Grassmann scalar fields and asymptotic freedom

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-03-01

    The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.

  4. Massive scalar field evolution in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)

    2017-01-30

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  5. Scalar dark matter from theory space

    International Nuclear Information System (INIS)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2004-01-01

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass O(100 GeV), the second region has a candidate with a mass greater than O(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible weakly interacting massive particle

  6. Deformations of vector-scalar models

    Science.gov (United States)

    Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash

    2018-02-01

    Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

  7. Unique Fock quantization of scalar cosmological perturbations

    Science.gov (United States)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  8. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  9. Higgs scalar in heavy-vector-meson decays

    International Nuclear Information System (INIS)

    Frampton, P.H.; Wada, W.W.

    1979-01-01

    For both UPSILON (9.5,b-barb) and T (t-bart), the decay into Higgs scalar plus photon is calculated, employing a triangle-diagram estimate for the dependence of this decay matrix element on the Higgs-scalar mass. This mass dependence gives a significant supression, but the decay should still be readily observable, if energetically allowed

  10. A Numerical Algorithm to find All Scalar Feedback Nash Equilibria

    NARCIS (Netherlands)

    Engwerda, J.C.

    2013-01-01

    Abstract: In this note we generalize a numerical algorithm presented in [9] to calculate all solutions of the scalar algebraic Riccati equations that play an important role in finding feedback Nash equilibria of the scalar N-player linear affine-quadratic differential game. The algorithm is based on

  11. Regular and Chaotic Regimes in Scalar Field Cosmology

    Directory of Open Access Journals (Sweden)

    Alexey V. Toporensky

    2006-03-01

    Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.

  12. Asymptotically safe and free chiral theories with and without scalars

    DEFF Research Database (Denmark)

    Mølgaard, E.; Sannino, Francesco

    2017-01-01

    We unveil the dynamics of four-dimensional chiral gauge-Yukawa theories featuring several scalar degrees of freedom transforming according to distinct representations of the underlying gauge group. We consider generalized Georgi-Glashow and Bars-Yankielowicz theories. We determine, to the maximum...... of chiral gauge theories with scalars....

  13. Extending Chiral Perturbation Theory with an Isosinglet Scalar

    DEFF Research Database (Denmark)

    Hansen, Martin; Langaeble, Kasper; Sannino, Francesco

    2017-01-01

    We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology...

  14. The scalar curvature problem on the four dimensional half sphere

    CERN Document Server

    Ben-Ayed, M; El-Mehdi, K

    2003-01-01

    In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.

  15. Scalar field dark matter: behavior around black holes

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D., E-mail: alejandro@ifm.umich.mx, E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2011-06-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast.

  16. Scalar field dark matter: behavior around black holes

    International Nuclear Information System (INIS)

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D.

    2011-01-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast

  17. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    Science.gov (United States)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a

  18. Initial-boundary-value problem of the self-gravitating scalar field in the Bondi-Sachs gauge

    International Nuclear Information System (INIS)

    Frittelli, Simonetta; Gomez, Roberto

    2007-01-01

    It is shown that, in the Bondi-Sachs gauge that fixes the speed of incoming light rays to the value 1, the Einstein equations coupled to a scalar field in spherical symmetry are cast into a symmetric-hyperbolic system of equations for the scalar field, lapse and shift as fundamental variables. In this system of equations, the lapse and shift are incoming characteristic fields, and the scalar field has three components: incoming, outgoing and static. A constraint-preserving boundary condition is prescribed by imposing the projection of the Einstein equation normal to the boundary at the outer value of the radial coordinate. The boundary condition specifies one of the two incoming metric fields. The remaining incoming metric field and the incoming scalar field component need to be specified arbitrarily. Numerical simulations of the scattering of the scalar field by a black hole in the nonlinear regime are presented that illustrate interesting facts about black-hole physics and the behavior of the characteristic variables of the problem

  19. Bending of light in quantum gravity.

    Science.gov (United States)

    Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre

    2015-02-13

    We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle.

  20. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Science.gov (United States)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  1. Exact spinor-scalar bound states in a quantum field theory with scalar interactions

    International Nuclear Information System (INIS)

    Shpytko, Volodymyr; Darewych, Jurij

    2001-01-01

    We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields

  2. Search for the first generation scalar leptoquarks with D0

    International Nuclear Information System (INIS)

    Cothenet, A.

    2004-05-01

    This work was dedicated to the search for pairs of first generation scalar leptoquarks one decaying into ej and the other into νj. The experimental data used (175,6 pb -1 ) is that collected during the run-II of the D0 experiment at Tevatron. The production cross-sections of scalar leptoquark pairs has been assessed at a 95% confidence level for different values of the mass. The comparison of these values with theoretical values has led us to state that for a branching ratio β = 0.5 the existence of scalar leptoquarks with a mass lower than 194 GeV is not possible. For a branching ratio β = 1, some scalar leptoquarks with mass < 238 GeV may be excluded while for β = 0.5, some scalar leptoquarks with mass < 213 GeV are excluded

  3. On symmetry inheritance of nonminimally coupled scalar fields

    Science.gov (United States)

    Barjašić, Irena; Smolić, Ivica

    2018-04-01

    We present the first symmetry inheritance analysis of fields non-minimally coupled to gravity. In this work we are focused on the real scalar field ϕ with nonminimal coupling of the form ξφ2 R . Possible cases of symmetry noninheriting fields are constrained by the properties of the Ricci tensor and the scalar potential. Examples of such spacetimes can be found among those which are ‘dressed’ with the stealth scalar field, a nontrivial scalar field configuration with the vanishing energy–momentum tensor. We classify the scalar field potentials which allow symmetry noninheriting stealth field configurations on top of the exact solutions of the Einstein’s gravitational field equation with the cosmological constant.

  4. Scalar hairy black holes and solitons in asymptotically flat spacetimes

    International Nuclear Information System (INIS)

    Nucamendi, Ulises; Salgado, Marcelo

    2003-01-01

    A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture

  5. Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity

    International Nuclear Information System (INIS)

    Barnaby, Neil; Namba, Ryo; Peloso, Marco

    2011-01-01

    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars φ are naturally coupled to gauge fields through cφF F-tilde . In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the ''vacuum'' perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling c of the pseudo-scalar inflaton to any gauge field must be smaller than about 10 2 M p −1

  6. Scalar and joint velocity-scalar PDF modelling of near-wall turbulent heat transfer

    International Nuclear Information System (INIS)

    Pozorski, Jacek; Waclawczyk, Marta; Minier, Jean-Pierre

    2004-01-01

    The temperature field in a heated turbulent flow is considered as a dynamically passive scalar. The probability density function (PDF) method with down to the wall integration is explored and new modelling proposals are put forward, including the explicit account for the molecular transport terms. Two variants of the approach are considered: first, the scalar PDF method with the use of externally-provided turbulence statistics; and second, the joint (stand-alone) velocity-scalar PDF method where a near-wall model for dynamical variables is coupled with a model for temperature. The closure proposals are formulated in the Lagrangian setting and resulting stochastic evolution equations are solved with a Monte Carlo method. The near-wall region of a heated channel flow is taken as a validation case; the second-order thermal statistics are of a particular interest. The PDF computation results agree reasonably with available DNS data. The sensitivity of results to the molecular Prandtl number and to the thermal wall boundary condition is accounted for

  7. Effective long wavelength scalar dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2017-05-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.

  8. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories.

    Science.gov (United States)

    Doneva, Daniela D; Yazadjiev, Stoytcho S

    2018-03-30

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  9. Scalar Dissipation Modeling for Passive and Active Scalars: a priori Study Using Direct Numerical Simulation

    Science.gov (United States)

    Selle, L. C.; Bellan, Josette

    2006-01-01

    Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate

  10. Nonverbal arithmetic in humans: light from noise.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R; Gelman, Rochel; Latham, Peter

    2007-10-01

    Animal and human data suggest the existence of a cross-species system of analog number representation (e.g., Cordes, Gelman, Gallistel, & Whalen, 2001; Meeck & Church, 1983), which may mediate the computation of statistical regularities in the environment (Gallistel, Gelman, & Cordes, 2006). However, evidence of arithmetic manipulation of these nonverbal magnitude representations is sparse and lacking in depth. This study uses the analysis of variability as a tool for understanding properties of these combinatorial processes. Human subjects participated in tasks requiring responses dependent upon the addition, subtraction, or reproduction of nonverbal counts. Variance analyses revealed that the magnitude of both inputs and answer contributed to the variability in the arithmetic responses, with operand variability dominating. Other contributing factors to the observed variability and implications for logarithmic versus scalar models of magnitude representation are discussed in light of these results.

  11. Low energy parameters of the K K-bar and ππ scalar-isoscalar interactions

    International Nuclear Information System (INIS)

    Kaminski, R.; Lesniak, L.

    1994-06-01

    Threshold expansions of the ππ and K K-bar spin 0 and isospin 0 scattering amplitudes are performed. Scattering lengths, effective ranges and so-called volume parameters are evaluated. Good agreement with the existing experimental data for the ππ scalar-isoscalar amplitude is found. An importance of future accurate measurements of the K K-bar threshold parameters is stressed. New data are needed to understand the basic features of the scalar mesons. (author). 31 refs, 3 tabs

  12. Reaction enhancement of initially distant scalars by Lagrangian coherent structures

    International Nuclear Information System (INIS)

    Pratt, Kenneth R.; Crimaldi, John P.; Meiss, James D.

    2015-01-01

    Turbulent fluid flows have long been recognized as a superior means of diluting initial concentrations of scalars due to rapid stirring. Conversely, experiments have shown that the structures responsible for this rapid dilution can also aggregate initially distant reactive scalars and thereby greatly enhance reaction rates. Indeed, chaotic flows not only enhance dilution by shearing and stretching but also organize initially distant scalars along transiently attracting regions in the flow. To show the robustness of this phenomenon, a hierarchical set of three numerical flows is used: the periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that Lagrangian coherent structures (LCS), as identified by ridges in finite time Lyapunov exponents, are directly responsible for this coalescence of reactive scalar filaments. When highly concentrated filaments coalesce, reaction rates can be orders of magnitude greater than would be predicted in a well-mixed system. This is further supported by an idealized, analytical model that was developed to quantify the competing effects of scalar dilution and coalescence. Chaotic flows, known for their ability to efficiently dilute scalars, therefore have the competing effect of organizing initially distant scalars along the LCS at timescales shorter than that required for dilution, resulting in reaction enhancement

  13. Rényi entropy, stationarity, and entanglement of the conformal scalar

    Science.gov (United States)

    Lee, Jeongseog; Lewkowycz, Aitor; Perlmutter, Eric; Safdi, Benjamin R.

    2015-03-01

    We extend previous work on the perturbative expansion of the Rényi entropy, S q , around q = 1 for a spherical entangling surface in a general CFT. Applied to conformal scalar fields in various spacetime dimensions, the results appear to conflict with the known conformal scalar Rényi entropies. On the other hand, the perturbative results agree with known Rényi entropies in a variety of other theories, including theories of free fermions and vector fields and theories with Einstein gravity duals. We propose a resolution stemming from a careful consideration of boundary conditions near the entangling surface. This is equivalent to a proper treatment of total-derivative terms in the definition of the modular Hamiltonian. As a corollary, we are able to resolve an outstanding puzzle in the literature regarding the Rényi entropy of super-Yang-Mills near q = 1. A related puzzle regards the question of stationarity of the renormalized entanglement entropy (REE) across a circle for a (2+1)-dimensional massive scalar field. We point out that the boundary contributions to the modular Hamiltonian shed light on the previously-observed non-stationarity. Moreover, IR divergences appear in perturbation theory about the massless fixed point that inhibit our ability to reliably calculate the REE at small non-zero mass.

  14. Rényi entropy, stationarity, and entanglement of the conformal scalar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongseog; Lewkowycz, Aitor [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Perlmutter, Eric [DAMTP, Centre for Mathematical Sciences, University of Cambridge,Cambridge, CB3 0WA (United Kingdom); Safdi, Benjamin R. [Department of Physics, Princeton University,Princeton, NJ 08544 (United States)

    2015-03-16

    We extend previous work on the perturbative expansion of the Rényi entropy, S{sub q}, around q=1 for a spherical entangling surface in a general CFT. Applied to conformal scalar fields in various spacetime dimensions, the results appear to conflict with the known conformal scalar Rényi entropies. On the other hand, the perturbative results agree with known Rényi entropies in a variety of other theories, including theories of free fermions and vector fields and theories with Einstein gravity duals. We propose a resolution stemming from a careful consideration of boundary conditions near the entangling surface. This is equivalent to a proper treatment of total-derivative terms in the definition of the modular Hamiltonian. As a corollary, we are able to resolve an outstanding puzzle in the literature regarding the Rényi entropy of N=4 super-Yang-Mills near q=1. A related puzzle regards the question of stationarity of the renormalized entanglement entropy (REE) across a circle for a (2+1)-dimensional massive scalar field. We point out that the boundary contributions to the modular Hamiltonian shed light on the previously-observed non-stationarity. Moreover, IR divergences appear in perturbation theory about the massless fixed point that inhibit our ability to reliably calculate the REE at small non-zero mass.

  15. Exotic colored scalars at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Kfir; Efrati, Aielet; Frugiuele, Claudia; Nir, Yosef [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 (Israel)

    2017-02-21

    We study the phenomenology of exotic color-triplet scalar particles X with charge |Q|=2/3,4/3,5/3,7/3,8/3 and 10/3. If X is an SU(2){sub W}-non-singlet, mass splitting within the multiplet allows for cascade decays of the members into the lightest state. We study examples where the lightest state, in turn, decays into a three-body W{sup ±}jj final state, and show that in such case the entire multiplet is compatible with indirect precision tests and with direct collider searches for continuum pair production of X down to m{sub X}∼250 GeV. However, bound states S, made of XX{sup †} pairs at m{sub S}≈2m{sub X}, form under rather generic conditions and their decay to diphoton can be the first discovery channel of the model. Furthermore, for SU(2){sub W}-non-singlets, the mode S→W{sup +}W{sup −} may be observable and the width of S→γγ and S→jj may appear large as a consequence of mass splittings within the X-multiplet. As an example we study in detail the case of an SU(2){sub W}-quartet, finding that m{sub X}≃450 GeV is allowed by all current searches.

  16. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  17. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  18. Running vacuum cosmological models: linear scalar perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  19. RNA structure and scalar coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  20. Effect of the chameleon scalar field on brane cosmological evolution

    Science.gov (United States)

    Bisabr, Y.; Ahmadi, F.

    2017-11-01

    We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  1. Effect of the chameleon scalar field on brane cosmological evolution

    Directory of Open Access Journals (Sweden)

    Y. Bisabr

    2017-11-01

    Full Text Available We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  2. The 5D Standing Wave Braneworld with Real Scalar Field

    OpenAIRE

    Merab Gogberashvili; Pavle Midodashvili

    2013-01-01

    We introduce the new 5D braneworld with the real scalar field in the bulk. The model represents the brane which bounds collective oscillations of gravitational and scalar field standing waves. These waves are out of phase; that is, the energy of oscillations passes back and forth between the scalar and gravitational waves. When the amplitude of the standing waves is small, the brane width and the size of the horizon in extra space are of a same order of magnitude, and matter fields are locali...

  3. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  4. Cosmology and a general scalar-tensor theory of gravity

    International Nuclear Information System (INIS)

    Bishop, N.T.

    1976-01-01

    The cosmological models resulting from a general scalar-tensor theory of gravity are discussed. Those models for which the scalar field varies as a power of the cosmological expansion factor (i.e. phi varies as Rsup(n)) are considered in detail, leading to a set of such models compatible with observation. This set includes models in which the scalar coupling parameter ω is negative. The models described here are similar to those of Newtonian cosmology obtained from an impotence principle. (author)

  5. Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes

    Directory of Open Access Journals (Sweden)

    Cheng-Yong Zhang

    2015-10-01

    Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.

  6. Analysis and modeling of subgrid scalar mixing using numerical data

    Science.gov (United States)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  7. Noninertial effects on the quantum dynamics of scalar bosons

    International Nuclear Information System (INIS)

    Castro, Luis B.

    2016-01-01

    The noninertial effect of rotating frames on the quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin-Kemmer-Petiau (DKP) formalism. Considering the DKP oscillator in this background the combined effects of a rotating frames and cosmic string on the equation of motion, energy spectrum, and DKP spinor are analyzed and discussed in detail. Additionally, the effect of rotating frames on the scalar bosons' localization is studied. (orig.)

  8. Scalar field vacuum expectation value induced by gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  9. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Science.gov (United States)

    Tretyakova, Daria; Latosh, Boris

    2018-02-01

    In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.

  10. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Directory of Open Access Journals (Sweden)

    Daria Tretyakova

    2018-02-01

    Full Text Available In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated.

  11. Understanding Comprehensive Learning Requirements in the Light of al-Zarnūjī’s Ta‘līm al-Muta‘allim

    Directory of Open Access Journals (Sweden)

    Miftachul Huda

    2016-11-01

    Full Text Available This article examines the requirements for quality learning in Islam from the perspective of al-Zarnūjī and according to his book, Ta‘līm al-Muta‘allim. This book has been a source of reference for both students and teachers in many educational institutions in Muslim countries, particularly, the Islamic boarding schools in Indonesia. The article attempts to understand the students’ learning requirements proposed by al-Zarnūjī in the above treatise. It is, therefore, a library-based research. The research tackles many issues. It addresses the need for a broad-based learning process and analyzes the requirements in the light of the modern day learning circumstances. It was found that al-Zarnūjī’s theory of quality learning is conditional on six main principles which are, indeed, determinants of quality student outcomes. These are intelligence or high learning ability; high motivation for learning; patience, emotional stability, and commitment to the learning process; availability of financial support; inspiration of the teachers; and disposition to time management in the learning process. The notion of quality education is fundamental to the classical perspective of learning in Islam.

  12. Analyzing the scalar top coannihilation region at the International Linear Collider

    International Nuclear Information System (INIS)

    Carena, M.; Freitas, A.; Milstene, C.; Finch, A.; Sopczak, A.; Nowak, H.

    2005-01-01

    The minimal supersymmetric standard model opens the possibility of electroweak baryogenesis provided that the light scalar top quark (stop) is lighter than the top quark. In addition, the lightest neutralino is an ideal candidate to explain the existence of dark matter. For a light stop with mass close to the lightest neutralino, the stop-neutralino coannihilation mechanism becomes efficient, thus rendering the predicted dark matter density compatible with observations. Such a stop may however remain elusive at hadron colliders. Here it is shown that a future linear collider provides a unique opportunity to detect and study the light stop. The production of stops with small stop-neutralino mass differences is studied in a detailed experimental analysis with a realistic detector simulation including a CCD vertex detector for flavor tagging. Furthermore, the linear collider, by precision measurements of superpartner masses and mixing angles, also allows to determine the dark matter relic density with an accuracy comparable to recent astrophysical observations

  13. Universal contributions to scalar masses from five dimensional supergravity

    CERN Document Server

    Dudas, Emilian

    2012-01-01

    We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability...

  14. Scalar lepton search with the CELLO detector at PETRA

    International Nuclear Information System (INIS)

    Behrend, H.J.; Chen, C.; Fenner, H.; Field, J.H.; Schroeder, V.; Sindt, H.; D'Agostini, G.; Apel, W.D.; Banerjee, S.; Bodenkamp, J.

    1982-04-01

    We report on the search for 'supersymmetric' scalar leptons conducted with the CELLO detector, at the PETRA e + e - storage ring. 11.1 pb -1 of high energy data were analysed (33 GeV < √s < 36.72 GeV). At a 95% C.L., the existence of a scalar e is ruled out for masses between 2 GeV and 16.8 GeV; correspondingly, a scalar μ is excluded between 3.3 GeV and 16 GeV, and a scalar tau between 6 GeV and 15.3 GeV, as well as between the tau mass and 3.8 GeV. (orig.)

  15. A nonlinear dynamics for the scalar field in Randers spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)

    2017-03-10

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  16. AdS gravity and the scalar glueball spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Vento, Vicente [Departament de Fisica Teorica, Universitat de Valencia y Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Cientificas, Burjassot (Valencia) (Spain)

    2017-09-15

    The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence. (orig.)

  17. Scalar mesons and the search for the 0++ Glueball

    International Nuclear Information System (INIS)

    Ulrike Thoma

    2002-01-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain

  18. Scalar mesons and the search for the 0++ glueball

    International Nuclear Information System (INIS)

    Thoma, U.

    2003-01-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)

  19. Scalar mesons and the search for the 0{sup ++} glueball

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, U. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2003-11-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)

  20. Scalar mesons and the search for the 0{sup ++} Glueball

    Energy Technology Data Exchange (ETDEWEB)

    Ulrike Thoma

    2002-10-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.

  1. Scalar and vector vortex beams from the source

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2016-10-01

    Full Text Available . Advanced Solid State Lasers 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), 30 October–3 November 2016, Boston, Massachusetts United States Scalar and vector vortex beams from the source Naidoo, Darryl Roux...

  2. Trace Anomaly of Dilaton Coupled Scalars in Two Dimensions

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We calculate their trace anomaly. It follows that an RST-type counterterm appears naturally in the one-loop effective action.

  3. Constant scalar curvature hypersurfaces in extended Schwarzschild space-time

    International Nuclear Information System (INIS)

    Pareja, M. J.; Frauendiener, J.

    2006-01-01

    We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat

  4. Classical behavior of a scalar field in the inflationary universe

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1987-09-01

    Extending the coarse-graining approach of Starobinsky, we formulate a theory to deal with the dynamics of a scalar field in inflationary universe models. We find a set of classical Langevin equations which describes the large scale behavior of the scalar field, provided that the coarse-grained size is greater than the effective compton wavelength of the scalar field. The corresponding Fokker-Planck equation is also derived which is defined on the phase space of the scalar field. We show that our theory is essentially equivalent to the one-loop field theory in de Sitter space and reduces to that of Starobinsky in a strong limit of the slow roll-over condition. Analysis of a simple Higgs potential model is done and the implications are discussed. (author)

  5. Low-scale neutrino seesaw mechanism and scalar dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Fabbrichesi, M. [INFN, Sezione di Trieste, Trieste (Italy); Petcov, S.T. [INFN, Sezione di Trieste, Trieste (Italy); SISSA, Trieste (Italy); Kavli IPMU, University of Tokyo, Tokyo (Japan)

    2014-02-15

    We discuss how two birds - the little hierarchy problem of low-scale type-I seesaw models and the search for a viable dark matter candidate - are (proverbially) killed by one stone: a new inert scalar state. (orig.)

  6. Scalar-graviton interaction in the noncommutative space

    International Nuclear Information System (INIS)

    Brandt, F. T.; Elias-Filho, M. R.

    2006-01-01

    We obtain the leading order interaction between the graviton and the neutral scalar boson in the context of noncommutative field theory. Our approach makes use of the Ward identity associated with the invariance under a subgroup of symplectic diffeomorphisms

  7. Effect of heavy particles in low-energy light-particle processes

    International Nuclear Information System (INIS)

    Chan, L.H.; Hagiwara, T.; Ovrut, B.

    1979-01-01

    The ''decoupling theorem'' of Appelquist and Carazzone is found not always to be applicable to light-scalar-particle processes in spontaneously broken theories. If the Higgs scalar is considered to be light, then Higgs-scalar processes see the effect of heavy fermions and heavy vector gauge bosons at the one-loop level. If there is more than one scalar multiplet in a spontaneously broken gauge theory, the effect of a heavy Higgs particle in light-scalar-particle processes is significant at the tree level. In the latter case, such an effect can be absorbed completely into an effective phi 4 coupling constant, lambda/sub eff/, of the light particle provided that lambda/sub eff/ is positive definite

  8. On the scalar electron mass limit from single photon experiments

    International Nuclear Information System (INIS)

    Grivaz, J.F.

    1987-03-01

    We discuss how the 90% C.L. lower limit on the mass of the scalar electron, as extracted from the single photon experiments, is affected by the way the background from radiative neutrino pair production is handled. We argue that some of the results presented at the Berkeley conference are overoptimistic, and that the mass lower limit is 65 GeV rather than the advertized value of 84 GeV, for the case of degenerate scalar electrons with massless photinos

  9. Cosmological simulations using a static scalar-tensor theory

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)

    2007-11-15

    We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.

  10. Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II

    Science.gov (United States)

    Salam, Abdus; Delbourgo, Robert

    1964-01-01

    The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).

  11. Scalar-tensor theory of fourth-order gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.; Goncalves, A.T.

    1986-04-01

    A scalar-tensor theory of fourth-order gravity is considered. Some cosmological consequences, due to the presence of the scalar field, as well as of metric derivatives higher than second order, are analysed. In particular, upperbpunds are obtained for the coupling constant α and for the scale factor of the universe, respectively. The discussion is restricted to Robertson-Walker universes. (Author) [pt

  12. Bound-state Dirac eigenvalues for scalar potentials

    International Nuclear Information System (INIS)

    Ram, B.; Arafah, M.

    1981-01-01

    The Dirac equation is solved with a linear and a quadratic scalar potential using an approach in which the Dirac equation is first transformed to a one-dimensional Schroedinger equation with an effective potential. The WKB method is used to obtain the energy eigenvalues. The eigenvalues for the quadratic scalar potential are real just as they are for the linear potential. The results with the linear potential agree well with those obtained by Critchfield. (author)

  13. Squeezed condensate and confinement in a scalar model

    International Nuclear Information System (INIS)

    Blaschke, D.; Pavel, H.P.; Roepke, G.; Peradze, G.; Pervushin, V.N.

    1996-01-01

    The generating functional of a free scalar field theory is generalized to the case of a squeezed vacuum. The squeezed vacuum is prepared by macroscopically populating the original vacuum with pairs of zero energy particles. It is shown that the corresponding quark propagator has no poles on the real-k 2 axis which can be interpreted as quark confinement. In contrast, a scalar meson-like bound state exists as solution of the corresponding Bethe-Salpeter equation. 20 refs

  14. Einstein gravity with torsion induced by the scalar field

    Science.gov (United States)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  15. Scalar particle creation in an anisotropic universe

    International Nuclear Information System (INIS)

    Berger, B.K.

    1975-01-01

    The problem of quantized scalar field creation in an anisotropic spatially homogeneous background universe is reexamined from a Schroedinger-picture point of view. For each mode a complete set of orthonormal wave functions, psi/subN/, is obtained using the method of Salusti and Zirilli. These wave functions are valid at all times even if there is an initial cosmological singularity and depend only on the solution of the classical equation of motion. The wave functions are fixed completely by requiring the classical solution to have positive-frequency WKB form when the universe reaches the stage of adiabatic expansion. These wave functions are eigenfunctions of a conserved number operator which has the usual particle interpretation in the adiabatic regime. An intitial state near the singularity is chosen as a superposition of the wave functions, psi/subN/, and the particle number in the adiabatic regime is calculated. For plane-wave initial states, which follow the classical behavior near the singularity, the final particle number depends only on the parameters of the initial wave packet. For an initial state which instantaneously diagonalizes the Hamiltonian, an (arbitrary) initial time must be chosen. If the mode in question is in the adiabatic regime at that time almost no particle creation occurs. If it is not adiabatic, creation occurs and becomes infinite if the initial time is taken to be that of the singularity. This creation is a consequence of the failure of particle number to be well defined in this regime. Comparisons with other particle-creation studies are made

  16. Utilizing scalar electromagnetics to tap vacuum energy

    International Nuclear Information System (INIS)

    Sweet, F.; Bearden, T.E.

    1991-01-01

    Based on E.T. Whittaker's previously unnoticed 1903-1904 papers which established a hidden bidirectional EM wave structure in a standing forcefield free scalar potential, a method of directly engineering the ambient potential of the vacuum has been developed and realized experimentally. Adding Whittaker's engineerable hidden variable theory to classical electromagnetic, quantum mechanics, and general relativity produces supersets of each discipline. These supersets are joined by the common Whittaker subset, producing a unified field theory that is engineerable and tested. By treating the nucleus of the atom as a pumped phase conjugate mirror, several working model energy units have been produced which excite and organize the local vacuum, increase the local virtual photon flux between local vacuum and nucleus, establish coherent self-oscillations between the local excited vacuum and the affected nuclei, utilized the self-oscillating standing wave for self-pumping of the nuclei/mirrors, introduce a very tiny signal wave to the mirrors, and output into an external load circuit a powerful, amplified, time-reversed phase conjugate replica wave at 60 Hertz frequency and nominal 120 volt sine wave power. Several models have been built, ranging from 6 watts early on to one of 5 kilowatts. Both closed battery-less systems with damped positive feedback and open loop systems with battery-powered input have been successfully built. Open loop power gains of from 5 x 10 4 to 1.5 x 10 6 have been achieved. Antigravity experiments have also been successfully conducted where the weight of the unit was reduced by 90% in controlled experiments, with a signal wave input of 175 microwatts and an output of 1 kilowatt. The basic theory of the device is briefly explained and experimental results presented

  17. Nordic Lighting?

    DEFF Research Database (Denmark)

    Munch, Anders V.

    2018-01-01

    The Danish designer Poul Henningsen wrote very elaborated theories of interior lighting from the mid-1920s on. He fought against the cold and reduced light quality of electric bulbs and tried to tame and cultivate this technology by design. He wanted a more rich light for domestic purpose...... worthwhile discussing than other design categories to interpret, whether experience of nature and climatic conditions play a role in Scandinavian Design, as repeatedly stated. This discussion contributes both to understanding of interior lighting and the historiographical critique of Scandinavian Design...... and shaped it through lamp design, colour reflections and differentiated use of several lamps in the room to make a more dim lighting, but with greater variation and softer contrasts. It was a ‘culture’ of lighting, he promoted, but he didn’t saw it as linked to the Nordic countries. His sensibility...

  18. Small vacuum energy from small equivalence violation in scalar gravity

    International Nuclear Information System (INIS)

    Agrawal, Prateek; Sundrum, Raman

    2017-01-01

    The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.

  19. Phenomenology of Bulk Scalar Production at the LHC

    CERN Document Server

    Beauchemin , Pierre-Hugues; Burgess, Cliff

    We examine the sensitivity of the ATLAS detector to extra-dimensional scalars in scenarios having the extra-dimensional Planck scale in the TeV range and n = 2 large extra dimensions. Such scalars appear as partners of the graviton in higher-dimensional supersymmetric theories. Using first the scalar's lowest-dimensional effective couplings to quarks and gluons, we compute the rate of production of a hard jet together with missing energy. We find a nontrivial range of bulk scalar couplings for which ATLAS could observe a signal, and in particular, higher sensitivity to couplings to gluons than to quarks. Bulk scalar emission increases the missing-energy signal by adding to graviton production, and so complicates the inference of the extra-dimensional Planck scale from the observed rate of jet + EmissT . Because bulk scalar differential cross sections resemble those for gravitons, it is unlikely that these can be experimentally distinguished should a missing energy signal be observed. However, given, for examp...

  20. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio

    2013-09-19

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  1. On the stability of scalar-vacuum space-times

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); PFUR, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Fabris, J.C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, ES (Brazil); Zhidenko, A. [Universidade Federal do ABC, Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil)

    2011-11-15

    We study the stability of static, spherically symmetric solutions to the Einstein equations with a scalar field as the source. We describe a general methodology of studying small radial perturbations of scalar-vacuum configurations with arbitrary potentials V({phi}), and in particular space-times with throats (including wormholes), which are possible if the scalar is phantom. At such a throat, the effective potential for perturbations V{sub eff} has a positive pole (a potential wall) that prevents a complete perturbation analysis. We show that, generically, (i) V{sub eff} has precisely the form required for regularization by the known S-deformation method, and (ii) a solution with the regularized potential leads to regular scalar field and metric perturbations of the initial configuration. The well-known conformal mappings make these results also applicable to scalar-tensor and f(R) theories of gravity. As a particular example, we prove the instability of all static solutions with both normal and phantom scalars and V({phi}){identical_to}0 under spherical perturbations. We thus confirm the previous results on the unstable nature of anti-Fisher wormholes and Fisher's singular solution and prove the instability of other branches of these solutions including the anti-Fisher ''cold black holes''. (orig.)

  2. Believing What You're Told: Politeness and Scalar Inferences

    Directory of Open Access Journals (Sweden)

    Diana Mazzarella

    2018-06-01

    Full Text Available The experimental pragmatics literature has extensively investigated the ways in which distinct contextual factors affect the computation of scalar inferences, whose most studied example is the one that allows “Some X-ed” to mean Not all X-ed. Recent studies from Bonnefon et al. (2009, 2011 investigate the effect of politeness on the interpretation of scalar utterances. They argue that when the scalar utterance is face-threatening (“Some people hated your speech” (i the scalar inference is less likely to be derived, and (ii the semantic interpretation of “some” (at least some is arrived at slowly and effortfully. This paper re-evaluates the role of politeness in the computation of scalar inferences by drawing on the distinction between “comprehension” and “epistemic assessment” of communicated information. In two experiments, we test the hypothesis that, in these face-threatening contexts, scalar inferences are largely derived but are less likely to be accepted as true. In line with our predictions, we find that slowdowns in the face-threatening condition are attributable to longer reaction times at the (latter epistemic assessment stage, but not at the comprehension stage.

  3. Nonperturbative loop quantization of scalar-tensor theories of gravity

    International Nuclear Information System (INIS)

    Zhang Xiangdong; Ma Yongge

    2011-01-01

    The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.

  4. Small vacuum energy from small equivalence violation in scalar gravity

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Sundrum, Raman [Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2017-05-29

    The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.

  5. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2013-01-01

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  6. Approximation of scalar and vector transport problems on polyhedral meshes

    International Nuclear Information System (INIS)

    Cantin, Pierre

    2016-01-01

    This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes. (author)

  7. Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories

    Science.gov (United States)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2018-04-01

    We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.

  8. Lighting. Eclairage

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Increasing energy costs have led to a review of the high costs of lighting. The use of new energy-efficient lighting equipment, coupled with the use of the proper quantity and quality of lighting only where it is needed, creates a potential for cost reduction. A manual is provided to aid the process of adapting Canadian industrial, commercial, and institutional enterprises to these higher costs. An introductory review of lighting fundamentals is presented, providing a basic understanding of concepts such as illumination, light output measurements, power requirements, lighting quality, and energy audit methods. The currently available lighting equipment used to achieve cost savings is then reviewed, including energy saving lamps and ballasts, controls, and automatic energy control systems. A number of energy management opportunities are identified, such as modification of lighting usage patterns, calculation of the optimum number of lighting fixtures, replacement of existing lamps, and the application of task lighting. Examples are included to show the cost savings possible when applying some of the techniques suggested. 27 figs., 11 tabs.

  9. Reconciling the Reynolds number dependence of scalar roughness length and laminar resistance

    Science.gov (United States)

    Li, D.; Rigden, A. J.; Salvucci, G.; Liu, H.

    2017-12-01

    The scalar roughness length and laminar resistance are necessary for computing scalar fluxes in numerical simulations and experimental studies. Their dependence on flow properties such as the Reynolds number remains controversial. In particular, two important power laws (1/4 and 1/2), proposed by Brutsaert and Zilitinkevich, respectively, are commonly seen in various parameterizations and models. Building on a previously proposed phenomenological model for interactions between the viscous sublayer and the turbulent flow, it is shown here that the two scaling laws can be reconciled. The "1/4" power law corresponds to the situation where the vertical diffusion is balanced by the temporal change or advection due to a constant velocity in the viscous sublayer, while the "1/2" power law scaling corresponds to the situation where the vertical diffusion is balanced by the advection due to a linear velocity profile in the viscous sublayer. In addition, the recently proposed "1" power law scaling is also recovered, which corresponds to the situation where molecular diffusion dominates the scalar budget in the viscous sublayer. The formulation proposed here provides a unified framework for understanding the onset of these different scaling laws and offers a new perspective on how to evaluate them experimentally.

  10. The Spectrum of Scalar Indices of Agyrotropy

    Science.gov (United States)

    Scudder, J. D.; Daughton, W. S.

    2017-12-01

    Quantitative scalar measures of departures from gyrotropy will be contrasted using 3D-PIC guide field simulations of a reconnection layer. Of interest are the sensitivity of 4 different proposed methods for inventorying the occurrence of needed signatures of demagnetization for identification of reconnection sites. Visual maps will be presented using the originally formulated diagnostic A0e for agyrotropy and three relatively recent attempts to generalize it. These visuals highlight the essentially common information contained in these approaches. The ``flavor'' distinctions between these techniques will be organized in terms of the types of deformations of the eVDF required for their distinctions to be present/significant. The first class of disturbances are those that explicitly cause the eVDF to depend on gyro phase in addition to pitch angle, while the second class requires a strong coordinated deformation of the eVDF in both polar angles. In the first class the magnetic field remains as an eigenvector of the deformed pressure tensor as in the originally proposed diagnostic A0e; in the second class NO eigenvector is aligned with the magnetic field and accompanies a more violent disruption of magnetization than the first class. The 3D VPIC guide simulation will be used as a data base to show the relative frequency of occurrence of these two types of disruptions in regions with non-zero agyrotropy. As far as identifying whether a region has demagnetization or not all techniques are virtually interchangeable and are shown to be statistically strongly correlated using billions of estimates. Accordingly, extensive early surveys using A0e to survey PIC reconnection geometries for signatures of demagnetization are not supplanted by the existence of alternate recipes for quantifying the geometry of the pressure tensor that get slightly larger values in relatively esoteric circumstances. Of the two types of deformation of the eVDF required to produce different ``flavors

  11. The Impact of Source Distribution on Scalar Transport over Forested Hills

    Science.gov (United States)

    Ross, Andrew N.; Harman, Ian N.

    2015-08-01

    relatively gentle terrain and for neutral flow. To understand fully such measurements it is necessary not only to understand the flow structure (given the site characteristics) but also to know the distribution of scalar sources and sinks in the canopy.

  12. Integrable Scalar Cosmologies I. Foundations and links with String Theory

    Science.gov (United States)

    Fré, P.; Sagnotti, A.; Sorin, A. S.

    2013-12-01

    potential, although the corresponding solutions have a long history [19,20]. Possible imprints on the low-ℓ tail of the CMB power spectrum were then discussed in [21], while an analysis of the mechanism near the initial singularity was recently presented in [22]; The eventual collapse in a Big Crunch of systems of this type whenever the scalar tends to settle at a negative extremum of the potential V(ϕ). This was expected: it reflects the fact that AdS has no spatially flat metrics, or that negative extrema are non-admissible fixed points for the corresponding dynamical systems. The fields hi associated with the Cartan generators of the Lie algebra of G, whose number equals the rank r of the coset and whose kinetic terms, determined by the invariant metric of G/H, are canonical up to an overall constant; The axions bI associated with the roots of the Lie algebra of G, whose kinetic terms depend instead on both the Cartan fields hi and the bI. Can the integrable models that we have identified be realized within conventional gauged Supergravity, and for what choices of fluxes? This proviso is important, since some of the simplest potentials in our list do appear, albeit in versions where SUSY is non-linearly realized. Can integrable potentials provide interesting insights on inflationary scenarios behind the slow-roll regime, in addition to those encoded by the single-exponential potential, the simplest member of the set, that already revealed the existence of the climbing phenomenon? How much can one learn from integrable potentials about Cosmology with similar non-integrable potentials? The first question is perhaps the most difficult one, but it is also particularly interesting since a proper understanding of the issue will encode low-energy manifestations of non-perturbative string effects present in these contexts even with supersymmetry broken at high scales. It will be dealt with in detail elsewhere [27].The second question has encouraging answers. There are indeed

  13. N-body simulations for coupled scalar-field cosmology

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  14. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.

    Science.gov (United States)

    Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele

    2018-03-30

    We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

  15. Investigation of the scalar spectrum in SU (3) with eight degenerate flavors

    Science.gov (United States)

    Rinaldi, E.

    2017-12-01

    The Lattice Strong Dynamics collaboration is investigating the properties of a SU(3) gauge theory with Nf = 8 light fermions on the lattice. We measure the masses of the lightest pseudoscalar, scalar and vector states using simulations with the nHYP staggered-fermion action on large volumes and at small fermion masses, reaching Mρ/Mπ ≈ 2.2. The axial-vector meson and the nucleon are also studied for the same range of fermion masses. One of the interesting features of this theory is the dynamical presence of a light flavor-singlet scalar state with 0++ quantum numbers that is lighter than the vector resonance and has a mass consistent with the one of the pseudoscalar state for the whole fermion mass range explored. We comment on the existence of such state emerging from our lattice simulations and on the challenges of its analysis. Moreover we highlight the difficulties in pursuing simulations in the chiral regime of this theory using large volumes.

  16. Light propagation in linear optical media

    CERN Document Server

    Gillen, Glen D; Guha, Shekhar

    2013-01-01

    Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o

  17. High resolution multi-scalar drought indices for Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia; Trigo, Ricardo; Jerez, Sonia

    2014-05-01

    The Iberian Peninsula has been recurrently affected by drought episodes and by adverse associated effects (Gouveia et al., 2009), ranging from severe water shortages to losses of hydroelectricity production, increasing risk of forest fires, forest decline and triggering processes of land degradation and desertification. Moreover, Iberia corresponds to one of the most sensitive areas to current and future climate change and is nowadays considered a hot spot of climate change with high probability for the increase of extreme events (Giorgi and Lionello, 2008). The spatial and temporal behavior of climatic droughts at different time scales was analyzed using spatially distributed time series of multi-scalar drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This new climatic drought index is based on the simultaneous use of precipitation and temperature fields with the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment. Moreover, reanalysis data and the higher resolution hindcasted databases obtained from them are valuable surrogates of the sparse observations and widely used for in-depth characterizations of the present-day climate. Accordingly, this work aims to enhance the knowledge on high resolution drought patterns in Iberian Peninsula, taking advantage of high-resolution (10km) regional MM5 simulations of the recent past (1959-2007) over Iberia. It should be stressed that these high resolution meteorological fields (e.g. temperature, precipitation) have been validated for various purposes (Jerez et al., 2013). A detailed characterization of droughts since the 1960s using the 10 km resolution hidncasted simulation was performed with the aim to explore the conditions favoring drought onset, duration and ending, as well as the subsequent short, medium and long-term impacts affecting the environment and the

  18. Quasistationary solutions of scalar fields around accreting black holes

    Science.gov (United States)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  19. Iron Kα line of Kerr black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, Carrera 9 Bis No. 62-43, 110231 Bogotá (Colombia); Herdeiro, Carlos A R; Radu, Eugen, E-mail: yyni13@fudan.edu.cn, E-mail: mlzhou13@fudan.edu.cn, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: bambi@fudan.edu.cn, E-mail: herdeiro@ua.pt, E-mail: eugen.radu@ua.pt [Departamento de Física da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-07-01

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.

  20. Effective description of higher-order scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, David [APC—Astroparticule et Cosmologie, Université Paris Diderot Paris 7, 75013 Paris (France); Mancarella, Michele; Vernizzi, Filippo [Institut de physique théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: michele.mancarella@cea.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: filippo.vernizzi@cea.fr [Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Parc de Grandmont, 37200 Tours (France)

    2017-05-01

    Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.

  1. Late time solution for interacting scalar in accelerating spaces

    Energy Technology Data Exchange (ETDEWEB)

    Prokopec, Tomislav, E-mail: t.prokopec@uu.nl [Institute for Theoretical Physics, Spinoza Institute and EMME$\\Phi$, Utrecht University, Postbus 80.195, Utrecht, 3508 TD The Netherlands (Netherlands)

    2015-11-01

    We consider stochastic inflation in an interacting scalar field in spatially homogeneous accelerating space-times with a constant principal slow roll parameter ε. We show that, if the scalar potential is scale invariant (which is the case when scalar contains quartic self-interaction and couples non-minimally to gravity), the late-time solution on accelerating FLRW spaces can be described by a probability distribution function (PDF) ρ which is a function of φ/H only, where φ=φ( x-vector ) is the scalar field and H=H(t) denotes the Hubble parameter. We give explicit late-time solutions for ρarrow ρ{sub ∞}(φ/H), and thereby find the order ε corrections to the Starobinsky-Yokoyama result. This PDF can then be used to calculate e.g. various n-point functions of the (self-interacting) scalar field, which are valid at late times in arbitrary accelerating space-times with ε= constant.

  2. Simple standard model extension by heavy charged scalar

    Science.gov (United States)

    Boos, E.; Volobuev, I.

    2018-05-01

    We consider a Standard Model (SM) extension by a heavy charged scalar gauged only under the UY(1 ) weak hypercharge gauge group. Such an extension, being gauge invariant with respect to the SM gauge group, is a simple special case of the well-known Zee model. Since the interactions of the charged scalar with the Standard Model fermions turn out to be significantly suppressed compared to the Standard Model interactions, the charged scalar provides an example of a long-lived charged particle being interesting to search for at the LHC. We present the pair and single production cross sections of the charged scalar at different colliders and the possible decay widths for various boson masses. It is shown that the current ATLAS and CMS searches at 8 and 13 TeV collision energy lead to the bounds on the scalar boson mass of about 300-320 GeV. The limits are expected to be much larger for higher collision energies and, assuming 15 a b-1 integrated luminosity, reach about 2.7 TeV at future 27 TeV LHC thus covering the most interesting mass region.

  3. Probing new charged scalars with neutrino trident production

    Science.gov (United States)

    Magill, Gabriel; Plestid, Ryan

    2018-03-01

    We investigate the possibility of using neutrino trident production to probe leptophilic charged scalars at future high intensity neutrino experiments. We show that under specific assumptions, this production process can provide competitive sensitivity for generic charged scalars as compared to common existing bounds. We also investigate how the recently proposed mixed-flavor production—where the two oppositely charged leptons in the final state need not be muon flavored—can give a 20%-50% increase in sensitivity for certain configurations of new physics couplings as compared to traditional trident modes. We then categorize all renormalizable leptophilic scalar extensions based on their representation under SU (2 )×U (1 ), and discuss the Higgs triplet and Zee-Babu models as explicit UV realizations. We find that the inclusion of additional doubly charged scalars and the need to reproduce neutrino masses make trident production uncompetitive with current bounds for these specific UV completions. Our work represents the first application of neutrino trident production to study charged scalars. Additionally, it is the first application of mixed-flavor trident production to study physics beyond the standard model more generally.

  4. Theory and phenomenology of the MSSM with heavy scalars

    International Nuclear Information System (INIS)

    Bernal Hernandez, N.

    2008-09-01

    This work is dedicated to the study of different phenomenological aspects of supersymmetry with on one hand the physics of the Minimal Supersymmetric Standard Model (MSSM) in the case of heavy scalar superparticles and its implications at the LHC and on the other hand the characteristics of black matter particles and their detection in colliders and in astro-particle experiments. The first chapter presents the Standard Model, the supersymmetry theory and how the supersymmetric extension of the Standard Model can solve some concerns of the Standard Model. In the second chapter we present the MSSM with heavy scalars. In this model all the scalar particles have masses beyond the TeV and consequently even next generations of colliders will not be able to detect them. We recall why heavy scalars are necessary. In the third chapter we present the construction of MSSM parameters with heavy scalars and we show that the future ILC (International Linear Collider) will be able to set the value of these parameters with a satisfactory accuracy. The last chapter deals with dark matter particles like WIMPS, their detection sensitivity in the XENON experiment and the reconstruction of their masses will be analyzed. We have also studied the direct detection of WIMPS via the observation of some products of their annihilation

  5. Constraining scalar fields with stellar kinematics and collisional dark matter

    International Nuclear Information System (INIS)

    Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano

    2010-01-01

    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m φ and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei

  6. Tensor-to-scalar ratio in punctuated inflation

    International Nuclear Information System (INIS)

    Jain, Rajeev Kumar; Sriramkumar, L.; Chingangbam, Pravabati; Souradeep, Tarun

    2010-01-01

    Recently, we have shown that scalar spectra with lower power on large scales and certain other features naturally occur in punctuated inflation, i.e. the scenario wherein a brief period of rapid roll is sandwiched between two stages of slow roll inflation. Such spectra gain importance due to the fact that they can lead to a better fit of the observed CMB anisotropies, when compared to the conventional, featureless, power law spectrum. In this paper, with examples from the canonical scalar field as well as the tachyonic models, we illustrate that, in punctuated inflation, a drop in the scalar power on large scales is always accompanied by a rise in the tensor power and, hence, an even more pronounced increase in the tensor-to-scalar ratio r on these scales. Interestingly, we find that r actually exceeds well beyond unity over a small range of scales. To our knowledge, this work presents for the first time, examples of single scalar field inflationary models wherein r>>1. This feature opens up interesting possibilities. For instance, we show that the rise in r on large scales translates to a rapid increase in the angular power spectrum, C l BB , of the B-mode polarization of the CMB at the low multipoles. We discuss the observational implications of these results.

  7. Arbitrary scalar-field and quintessence cosmological models

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  8. Tests of the scalar sector of the electroweak theory

    International Nuclear Information System (INIS)

    Chopin, E.

    1996-01-01

    The theory of weak interactions contains an important question: why are the gauge bosons (W +- and Z) massive particles? Several models exist that may explain this experimental fact, and these models may also have some experimental consequences. We thus have studied the implications of some models beyond the Standard Model in the Z -> γγγ decay. The simplest model explaining the W and the Z mass contains a scalar particle called the Higgs boson, and some future colliders will try to discover this particle. However, this won't be sufficient to understand the mechanism that makes the W and the Z massive. Among the interactions needed to realize this spontaneous symmetry breakdown, there exist some interactions between several Higgs bosons. It is therefore needed to measure the corresponding couplings. We have shown that the triple-Higgs interaction is reasonably measurable in the next e + e - linear collider (in the TeV range). In order to get this result, we had to complete a thorough phenomenological study of some decay processes. γγ → W + W - HH and e + e - → ν e ν-bar e HH were the most interesting processes. For the purpose of this study, we used some new gauges derived from some background filed gauges that were shown to be quite interesting. The use of some structure functions was shown to be a powerful way to reproduce the exact computations, and pointed out the dominance of longitudinal W fusion in the latter processes. We tried to improve the structure function formalism, and we have shown the limitations of validity for this formalism. (author)

  9. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Tenkanen, Tuomas V.I. [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Weir, David J. [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2){sub L}×U(1){sub Y} gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  10. Unified cosmology with scalar-tensor theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)

    2017-04-15

    Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)

  11. On the scalar curvature of self-dual manifolds

    International Nuclear Information System (INIS)

    Kim, J.

    1992-08-01

    We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs

  12. Kaluza-Klein gravity and scalar-tensor theories

    International Nuclear Information System (INIS)

    Chauvineau, Bertrand

    2007-01-01

    In this paper, we propose a Kaluza-Klein approach to gravity in Δ=4+n 1 +n 2 +... dimensions, where n 1 ,n 2 ,... are the dimensions of independent internal spaces. One is interested in the case where each internal metric depends on the four-dimensional coordinates by a conformal factor. If all these conformal factors depend on the four-dimensional coordinates through a common scalar function Ψ, the induced effective four-dimensional gravity theory turns out to be of general scalar-tensor type. One shows that, if there are at least two internal spaces, the theory is not ruled out by experimental tests on gravitation, even if there is no massive scalar-potential term in the effective four-dimensional Lagrangian (contrary to what happens if there is only one internal space, in which case ω is of order unity, whatever the dimension of this internal space)

  13. Scalar dissipation rate and dissipative anomaly in isotropic turbulence

    International Nuclear Information System (INIS)

    Donzis, D.A.; Sreenivasan, K.R.; Yeung, P.K.

    2006-12-01

    We examine available data from experiment and recent numerical simulations to explore the supposition that the scalar dissipation rate in turbulence becomes independent of the fluid viscosity when the viscosity is small and of scalar diffusivity when the diffusivity is small. The data are interpreted in the context of semi-empirical spectral theory of Obukhov and Corrsin when the Schmidt number, Sc, is below unity, and of Batchelor's theory when Sc is above unity. Practical limits in terms of the Taylor-microscale Reynolds number, R λ , as well as Sc, are deduced for scalar dissipation to become sensibly independent of molecular properties. In particular, we show that such an asymptotic state is reached if R λ Sc 1/2 >> 1 for Sc λ 1. (author)

  14. Nonminimally coupled scalar fields may not curve spacetime

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum

  15. Optimized scalar promotion with load and splat SIMD instructions

    Science.gov (United States)

    Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A

    2013-10-29

    Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.

  16. Testing effective string models of black holes with fixed scalars

    International Nuclear Information System (INIS)

    Krasnitz, M.; Klebanov, I.R.

    1997-01-01

    We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society

  17. Scalar fields and their applications in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Mbelek, Jean-Paul

    2003-01-01

    This research thesis reports an analysis of the different existing theoretical contexts of occurrence of scalar fields in unified field theories, astrophysics and cosmology. More particularly, most of unified theories (Grand Unified Theories of GUTs, string theories, and so on) can be reduced, within astrophysical and cosmological conditions, to the form of effective theories such as Kaluza-Klein (multi-dimensional theories) or Brans-Dicke (four-dimensional theories) theories which comprise scalar fields. After a presentation of these theories, the author discusses the concept of scalar fields in field quantum theories and in cosmology. He proposes a stabilised model of the Kaluza-Klein theory in 5D, and several experiments designed to measure G. The thesis is completed by several published articles and contributions [fr

  18. Scalar field dark matter and the Higgs field

    Directory of Open Access Journals (Sweden)

    O. Bertolami

    2016-08-01

    Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  19. Unified cosmology with scalar-tensor theory of gravity

    International Nuclear Information System (INIS)

    Tajahmad, Behzad; Sanyal, Abhik Kumar

    2017-01-01

    Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)

  20. Covariant conserved currents for scalar-tensor Horndeski theory

    Science.gov (United States)

    Schmidt, J.; Bičák, J.

    2018-04-01

    The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory.

  1. Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    International Nuclear Information System (INIS)

    Allman, B. E.; Lee, W.-T.; Motrunich, O. I.; Werner, S. A.

    1999-01-01

    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a ''dual'' scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper. (c) 1999 The American Physical Society

  2. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  3. Pulsar timing signal from ultralight scalar dark matter

    International Nuclear Information System (INIS)

    Khmelnitsky, Andrei; Rubakov, Valery

    2014-01-01

    An ultralight free scalar field with mass around 10 −23 −10 −22 eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10 −15 and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment

  4. Investigation of Scalar Implicatures of Binus University Students

    Directory of Open Access Journals (Sweden)

    Clara Herlina Karjo

    2011-01-01

    Full Text Available Scalar implicatures are based on a range of quantifiers ordered in terms of informational strength, for example in quantity: some, most, all; in frequency: sometimes, often, and always. This study measures the scalar implicatures among university students who learn English as a foreign language. The participants for this study are fourth semester English Department students at Binus University. Using the same instruments as in Slabakova (2009 and Noveck’s study (2001 the present study aims to find out the general ability of the university students of computing scalar implicatures and to discover the level of pragmatic/logical competence of the university students with regards to their gender and grade point average. The results show that the students with GPA lower than three are more logical than those with GPA higher than three; while female students are more pragmatic than male students.

  5. The trace anomaly and massless scalar degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, Maurizio [Los Alamos National Laboratory; Mottola, Emil [Los Alamos National Laboratory

    2008-01-01

    The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, {open_square}T{sup {mu}{nu}}J{sup {alpha}}J{sup {beta}}, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m{yields}0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J{sup {alpha}} and J{sup {beta}}, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to {delta}(k{sup 2}) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.

  6. Manifestations of quantum gravity in scalar QED phenomena

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.; Romeo, A.

    1995-01-01

    Quantum gravitational corrections to the effective potential, at the one-loop level and in the leading-log approximation, for scalar quantum electrodynamics with higher-derivative gravity, which is taken as an effective theory for quantum gravity (QG), are calculated. We point out the appearance of relevant phenomena caused by quantum gravity, such as dimensional transmutation, QG-driven instabilities of the potential, QG corrections to scalar-to-vector mass ratios, and curvature-induced phase transitions, whose existence is shown by means of analytical and numerical study

  7. Instanton-induced scalar potential for the universal hypermultiplet

    International Nuclear Information System (INIS)

    Ketov, Sergei V.

    2003-01-01

    We calculate the scalar potential in the gauged N=2 supergravity with a single hypermultiplet, whose generic quaternionic moduli space metric has an Abelian isometry. This isometry is gauged by the use of a graviphoton gauge field. The hypermultiplet metric and the scalar potential are both governed by the single real potential that is a solution to the 3d (integrable) continuous Toda equation. An explicit solution, controlled by the Eisenstein series E 3/2 , is found in the case of the D-instanton-corrected universal hypermultiplet moduli space metric having an U(1)xU(1) isometry, with one of the isometries being gauged

  8. f(R) gravity cosmology in scalar degree of freedom

    International Nuclear Information System (INIS)

    Goswami, Umananda Dev; Deka, Kabita

    2014-01-01

    The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background

  9. Contractive relaxation systems and interacting particles for scalar conservation laws

    International Nuclear Information System (INIS)

    Katsoulakis, M.A.; Tzavaras, A.E.

    1996-01-01

    We consider a class of semi linear hyperbolic systems with relaxation that are contractive in the L 1 -norm and admit invariant regions. We show that, as the relaxation parameter ξ goes to zero, their solutions converge to a weak solution of the scalar multidimensional conversation law that satisfies the Kruzhkov conditions. In the case of one space dimension, we propose certain interacting particle systems, whose mesoscopic limit is the systems with relaxation and their macroscopic dynamics is described by entropy solutions of a scalar conservation law. (author)

  10. Scalar field localization on a brane with cosmological constant

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Yahiro, Masanobu

    2003-01-01

    We investigate the localization of a massive scalar for both dS and AdS branes, where the scalar mass is varied from the massive-particle region to the tachyon region. We find that the eigenmass m of the localized mode satisfies a simple relation m 2 = cM 2 with a positive constant c for the dS brane, and m 2 = c 1 M 2 + c 2 with positive constants c 1 and c 2 for the AdS brane. We discuss the relation of these results to the stability of the brane and also some cosmological problems

  11. Scalar-vector unitarity mixing in ξ gauge

    International Nuclear Information System (INIS)

    Kaloshin, A.E.; Radzhabov, A.E.

    2003-01-01

    The effect of unitary mixing of scalar and vector fields in general ξ gauge is studied. This effect takes place for nonconserved vector currents and ξ gauge generates some additional problems with unphysical scalar field. Solutions of Dyson-Schwinger equations and performed the renormalization of full propagators are obtained. The key feature of renormalization is the usage of Ward identity which relates some different Green functions. It is found that using of Ward identity leads to disappearing of ξ dependence in renormalization matrix element [ru

  12. Renormalization ambiguities and conformal anomaly in metric-scalar backgrounds

    International Nuclear Information System (INIS)

    Asorey, M.; Berredo-Peixoto, G. de; Shapiro, I. L.

    2006-01-01

    We analyze the problem of the existing ambiguities in the conformal anomaly in theories with an external scalar field in curved backgrounds. In particular, we consider the anomaly of a self-interacting massive scalar field theory and of a Yukawa model in the massless conformal limit. In all cases the ambiguities are related to finite renormalizations of local nonminimal terms in the effective action. We point out the generic nature of this phenomenon and provide a general method to identify the theories where such an ambiguity can arise

  13. Quantum Prisoners' Dilemma in Fluctuating Massless Scalar Field

    Science.gov (United States)

    Huang, Zhiming

    2017-12-01

    Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners' Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game's properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.

  14. Dynamical Evolution of the Scalar Condensate in Heavy Ion Collisions

    CERN Document Server

    Csernai, Laszlo P.; Jeon, Sangyong; Kapusta, Joseph I.; Csernai, Laszlo P.; Ellis, Paul J.; Jeon, Sangyong; Kapusta, Joseph I.

    2000-01-01

    We derive the effective coarse-grained field equation for the scalar condensate of the linear sigma model in a simple and straightforward manner using linear response theory. In general, the necessary response functions cannot be obtained in perturbation theory but require a summation of ladder diagrams. We estimate these response functions using direct physical reasoning. The field equation is solved for hot matter undergoing either one or three dimensional expansion and cooling in the aftermath of a high energy nuclear collision. The results show that the time constant for returning the scalar condensate to thermal equilibrium is of order 2 fm/c.

  15. General scalar-tensor theories for induced gravity inflation

    International Nuclear Information System (INIS)

    Boutaleb J, H.; Marrakchi, A.L.

    1992-07-01

    Some cosmological implications of a general scalar-tensor theory for induced gravity are discussed. The model exhibits a slow-rolling phase provided that the coupling function ε(φ) varies slowly enough such that φ dlnε(φ)/dφ much less than 2 during almost the inflationary epoch. It is then shown that, as in the ordinary induced gravity inflation, the chaotic scenario is more natural than the new scenario which proves to be even not self-consistent. The results are applied, for illustration, to a scalar-tensor theory of the Barker type. (author). 25 refs

  16. Flat rotation curves using scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Cota, Jorge L [Depto de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 D.F. (Mexico); RodrIguez-Meza, M A [Depto de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 D.F. (Mexico); Nunez, Dario [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 D.F. (Mexico)

    2007-11-15

    We computed flat rotation curves from scalar-tensor theories in their weak field limit. Our model, by construction, fits a flat rotation profile for velocities of stars. As a result, the form of the scalar field potential and DM distribution in a galaxy are determined. By taking into account the constraints for the fundamental parameters of the theory ({lambda}, {alpha}), it is possible to obtain analytical results for the density profiles. For positive and negative values of {alpha}, the DM matter profile is as cuspy as NFW's.

  17. Scalar quantum chromodynamics in two dimensions and the parton model

    International Nuclear Information System (INIS)

    Shei, S.S.; Tsao, H.-S.

    1978-01-01

    SU(N) scalar quantum chromodynamics is studied in two space-time dimensions in the large-N limit. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of four-dimensional QCD, i.e. infrared slavery, quark confinement, the charmonium picture. etc, are all realized. Moreover, the current in this model mimics nicely the behaviour of the current in four-dimensional QCD, in contrast to the original model of 't Hooft. (Auth.)

  18. Instanton-induced scalar potential for the universal hypermultiplet

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V. E-mail: ketov@comp.metro-u.ac.jp

    2003-04-21

    We calculate the scalar potential in the gauged N=2 supergravity with a single hypermultiplet, whose generic quaternionic moduli space metric has an Abelian isometry. This isometry is gauged by the use of a graviphoton gauge field. The hypermultiplet metric and the scalar potential are both governed by the single real potential that is a solution to the 3d (integrable) continuous Toda equation. An explicit solution, controlled by the Eisenstein series E{sub 3/2}, is found in the case of the D-instanton-corrected universal hypermultiplet moduli space metric having an U(1)xU(1) isometry, with one of the isometries being gauged.

  19. Geometric scalar theory of gravity beyond spherical symmetry

    Science.gov (United States)

    Moschella, U.; Novello, M.

    2017-04-01

    We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.

  20. Interacting massless scalar and source-free electromagnetic fields

    International Nuclear Information System (INIS)

    Ayyangar, B.R.N.; Mohanty, G.

    1985-01-01

    The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)

  1. Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

    Directory of Open Access Journals (Sweden)

    Shinkai Hisaaki

    2018-01-01

    Full Text Available We numerically investigated how the nonlinear dynamics depends on the dimensionality and on the higher-order curvature corrections in the form of Gauss-Bonnet (GB terms, with a model of colliding scalar pulses in plane-symmetric space-time. We observed that a collision of large scalar pulses will produce a large-curvature region, of which the magnitude depends on αGB. The normal corrections (αGB > 0 work for avoiding the appearance of singularity, although it is inevitable.

  2. Scalar quantum chromodynamics in two dimensions and parton model

    International Nuclear Information System (INIS)

    Shei, S.S.; Tsao, H.S.

    1977-05-01

    The SU(N) scalar quantum chromodynamics in two space-time dimensions in the large N limit are studied. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of the four dimensional QCD, i.e., the infrared slavery, quark confinement, the charmonium picture etc. are all realized. Moreover, the current in this model mimics nicely the behaviors of current in the four dimensional QCD, in contrast to the original model of 't Hooft

  3. Hydrodynamic fluctuations from a weakly coupled scalar field

    Science.gov (United States)

    Jackson, G.; Laine, M.

    2018-04-01

    Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.

  4. The K*0(800) scalar resonance from Roy-Steiner representations of πK scattering

    International Nuclear Information System (INIS)

    Descotes-Genon, S.; Moussallam, B.

    2006-01-01

    We discuss the existence of the light scalar meson K * 0 (800) (also called κ) in a rigorous way, by showing the presence of a pole in the πK→πK amplitude on the second Riemann sheet. For this purpose, we study the domain of validity of two classes of Roy-Steiner representations in the complex energy plane. We prove that one of them is valid in a region sufficiently broad in the imaginary direction. From this representation, we compute the l=0 partial wave in the complex plane neither making any additional approximation nor having model dependence, relying only on experimental data. A scalar resonance with strangeness S=1 is found with the following mass and width: M κ =658±13 MeV and Γ κ =557±24 MeV. (orig.)

  5. Scalar trace anomaly and anti-gravitational interaction in a perturbative approach to self-consistent cosmologies

    International Nuclear Information System (INIS)

    Gunzig, E.; Nardone, P.

    1984-01-01

    We present a perturbative approach to the equations controlling the behavior of the recently proposed self-consistent, causal, singularity-free cosmologies. This approach sheds a new light on the threshold mass which governs both the (in)stability of empty Minkowski space and the existence of these cosmologies. An unexpected fact arises at the lower order of this perturbative scheme: the mass of the massive (scalar) field coupled non-minimally to gravitation is completely absorbed in a rescaling of the gravitational constant. The latter becomes negative, thereby causing an effective anti-gravitational interaction when the corresponding mass exceeds the minkowskian instability threshold. Moreover, the source of this effective antigravitational interaction is the usual scalar trace anomaly associated with the residual massless part of the matter field. (orig.)

  6. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-07-15

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  7. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  8. k-spectrum of decaying, aging and growing passive scalars in Lagrangian chaotic fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Kalda, Jaan [CENS, Institute of Cybernetics, Tallinn University of Technology, Tallinn (Estonia)

    2011-12-22

    We derive the k-spectrum of decaying passive scalars in Lagrangian chaotic fluid flows. In the case of exponentially decaying scalar particles, this is a power law, the exponent of which depends on the scalar decay rate, as well as on the dimensionality and compressibility of the flow. In the case of aging scalar particles, the k-spectrum departs from a power law. We express analytically it in terms of the scalar decay function, and provide calculations in the particular case of constant life-time scalar particles.

  9. Unitarity constraints in the standard model with a singlet scalar field

    International Nuclear Information System (INIS)

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  10. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  11. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the ...

  12. Remarks on the spherical scalar field halo in galaxies

    International Nuclear Information System (INIS)

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  13. Global structure of exact scalar hairy dynamical black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)

    2016-05-30

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  14. Classification of scalar and dyadic nonlocal optical response models

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2015-01-01

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...

  15. Early universe with modified scalar-tensor theory of gravity

    Science.gov (United States)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  16. Exponential stability in a scalar functional differential equation

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2006-01-01

    Full Text Available We establish a criterion for the global exponential stability of the zero solution of the scalar retarded functional differential equation whose linear part generates a monotone semiflow on the phase space with respect to the exponential ordering, and the nonlinearity has at most linear growth.

  17. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel Edward [Tufts Univ., Medford, MA (United States)

    2004-08-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb-1 of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-pT muons and two isolated high-pT jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high-pT jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c2 for the β = 1(1/2) channels.

  18. A scalar-tensor bimetric brane world cosmology

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-08-01

    We study a scalar-tensor bimetric cosmology in the Randall-Sundrum model with one positive tension brane, where the biscalar field is assumed to be confined on the brane. The effective Friedmann equations on the brane are obtained and analyzed. We comment on resolution of cosmological problems in this bimetric model. (author)

  19. Conformal standard model with an extended scalar sector

    Energy Technology Data Exchange (ETDEWEB)

    Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-10-26

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  20. Scalar sector of two-Higgs-doublet models: A minireview

    Indian Academy of Sciences (India)

    2016-08-24

    Aug 24, 2016 ... These constitute the primary motivation to look for avenues beyond the SM ... theory with N number of scalar multiplets, then the general expression .... the parameters of the potential that need to be satis- fied to ensure that the ...