Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses
Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.
2010-01-01
Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…
International Nuclear Information System (INIS)
Kasao, D.; Ito, T.
1991-01-01
In this paper a survey of experimental understandings of steady forced convection heat transfer by supercritical helium 4 flowing in ducts is given, and the deterioration of heat transfer, the influences of buoyancy force and correlations of heat transfer are to be discussed as well
Bacon, D H
2013-01-01
Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
Barron, Randall F
2016-01-01
Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.
Baehr, Hans Dieter
2011-01-01
This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added. The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.
Heat and mass transfer models to understand the drying mechanisms of a porous substrate.
Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti
2016-02-01
While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.
SUNDÉN, B
2012-01-01
Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
International Nuclear Information System (INIS)
Hasatani, Masanobu; Itaya, Yoshinori
1985-01-01
In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)
International Nuclear Information System (INIS)
Bilbao y Leon, S.; Aksan, N.
2010-01-01
Ensuring the exchange of information and fostering the collaboration among Member States on the development of technology advances for future nuclear power plants are among the key roles of the IAEA. There is high interest internationally in both developing and industrialized countries in the design of innovative super-critical water-cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by for this concept, utilizing and building on the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). Following the advice of the IAEA Nuclear Energy Dept.'s Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA is working on a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The second Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna (Austria)) in August 2009. This paper summarizes the current status of the CRP, as well as the major achievements to date. (authors)
Hartnett, James P; Cho, Young I; Greene, George A
2001-01-01
Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.
REA, The Editors of
1988-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Heat Transfer Basics and Practice
Böckh, Peter
2012-01-01
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
Han, Je-Chin
2012-01-01
… it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden
Lienhard, John H
2011-01-01
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
International Nuclear Information System (INIS)
Welty, J.R.
1974-01-01
The basic concepts of heat transfer are covered with special emphasis on up-to-date techniques for formulating and solving problems in the field. The discussion progresses logically from phenomenology to problem solving, and treats numerical, integral, and graphical methods as well as traditional analytical ones. The book is unique in its thorough coverage of the fundamentals of numerical analysis appropriate to solving heat transfer problems. This coverage includes several complete and readable examples of numerical solutions, with discussions and interpretations of results. The book also contains an appendix that provides students with physical data for often-encountered materials. An index is included. (U.S.)
International Nuclear Information System (INIS)
1992-01-01
This volume contains the 4 key-note lectures and 83 of the 148 papers presented at the 3rd UK National Conference on Heat Transfer. The papers are grouped under the following broad headings: boiling and condensation; heat exchangers; refrigeration and air-conditioning; natural convection; process safety and nuclear reactors; two-phase flow; post dry-out; combustion, radiation and chemical reaction. Separate abstracts have been prepared for 13 papers of relevance to nuclear reactors. (UK)
International Nuclear Information System (INIS)
McGuire, J.C.
1983-01-01
An intermediate heat exchanger that provides the required physical isolation between the primary reactor coolant loops and a secondary liquid loop in which steam is generated was developed. The intermediate heat exchanger is contained within a sealed vapor chamber that includes a bottom interior portion and an adjacent upper interior portion in vertical communication with one another. The chamber is exhausted of all noncondensible gases at ambient temperature. A heat transfer medium within the chamber maintains a two phase liquid-vapor-liquid system at the design heat transfer temperature. A first set of tubes in the bottom portion of the vapor chamber is supplied with primary reactor coolant. A second set of tubes in the upper portion of the chamber is supplied with water or steam. A thermal linkage is provided between the two sets of tubes by the heat transfer medium, which is evaporated in the vicinity of the first set and is condensed in the vicinity of the second set. This results in a latent heat transport system, condensate return being accomplished by gravity
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
International Nuclear Information System (INIS)
Bhattacharyya, A.
1965-11-01
This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table
Nucleate boiling heat transfer
Energy Technology Data Exchange (ETDEWEB)
Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es
2009-07-01
Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)
Rathakrishnan, Ethirajan
2012-01-01
1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans
Transferring heat during a bounce
Shiri, Samira; Bird, James
2015-11-01
When a hot liquid drop impacts a cold non-wetting surface, the temperature difference drives heat transfer. If the drop leaves the surface before reaching thermal equilibrium, the amount of heat transfer may depend on the contact time. Past studies exploring finite-time heat exchange with droplets focus on the Leidenfrost condition where heat transfer is regulated by a thin layer of vapor. Here, we present systematic experiments to measure the heat transferred by a bouncing droplet in non-Leidenfrost conditions. We propose a physical model of this heat transfer and compare our model to the experiments.
Generalized reflood heat transfer correlation
International Nuclear Information System (INIS)
Hsuj-Chieh Yeh; Dodge, C.E.; Hochreiter, L.E.
1978-01-01
A reflood heat transfer correlation has been developed from the FLECHT reflood data for different axial power shapes and arbitrary variable flooding rate conditions. This correlation consists of a separate quench correlation and a heat transfer coefficient correlation. The reflood correlation predicts both the quench front, location and the heat transfer coefficient above the quench front.. The reflood heat transfer correlation prediction is in good agreement with both the cosine and the skewed axial power shape FLECHT reflooding data. (author)
Large molten pool heat transfer
International Nuclear Information System (INIS)
1994-01-01
This workshop on large molten pool heat transfer is composed of 5 sessions which titles are: feasibility of in-vessel core debris cooling; experiments on molten pool heat transfer; calculational efforts on molten pool convection; heat transfer to the surrounding water, experimental techniques; future experiments and ex-vessel studies (RASPLAV, TOLBIAC, BALI, SULTAN, CORVIS, VULCANO, CORINE programs)
Measuring of heat transfer coefficient
DEFF Research Database (Denmark)
Henningsen, Poul; Lindegren, Maria
Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...
aerodynamics and heat transfer
Directory of Open Access Journals (Sweden)
J. N. Rajadas
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
Gas turbine heat transfer and cooling technology
Han, Je-Chin; Ekkad, Srinath
2012-01-01
FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat
Convective heat transfer on Mars
International Nuclear Information System (INIS)
Arx, A.V. von; Delgado, A. Jr.
1991-01-01
An examination was made into the feasibility of using convective heat transfer on Mars to reject the waste heat from a Closed Brayton Cycle. Forced and natural convection were compared to thermal radiation. For the three radiator configurations studied, it was concluded that thermal radiation will yield the minimum mass and forced convection will result in the minimum area radiator. Other issues such as reliability of a fan motor were not addressed. Convective heat transfer on Mars warrants further investigation. However, the low density of the Martian atmosphere makes it difficult to utilize convective heat transfer without incurring a weight penalty
Heat transfer and thermal control
Crosbie, A. L.
Radiation heat transfer is considered along with conduction heat transfer, heat pipes, and thermal control. Attention is given to the radiative properties of a painted layer containing nonspherical pigment, bidirectional reflectance measurements of specular and diffuse surfaces with a simple spectrometer, the radiative equilibrium in a general plane-parallel environment, and the application of finite-element techniques to the interaction of conduction and radiation in participating medium, a finite-element approach to combined conductive and radiative heat transfer in a planar medium. Heat transfer in irradiated shallow layers of water, an analytical and experimental investigation of temperature distribution in laser heated gases, numerical methods for the analysis of laser annealing of doped semiconductor wafers, and approximate solutions of transient heat conduction in a finite slab are also examined. Consideration is also given to performance testing of a hydrogen heat pipe, heat pipe performance with gravity assist and liquid overfill, vapor chambers for an atmospheric cloud physics laboratory, a prototype heat pipe radiator for the German Direct Broadcasting TV Satellite, free convection in enclosures exposed to compressive heating, and a thermal analysis of a multipurpose furnace for material processing in space.
Heat transfer enhancement using 2MHz ultrasound.
Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas
2017-11-01
The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi
2012-01-01
Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Advances in heat transfer enhancement
Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan
2016-01-01
This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.
Heat transfer enhancement with nanofluids
Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz
2015-01-01
Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za
Fundamental principles of heat transfer
Whitaker, Stephen
1977-01-01
Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int
Heat transfer behavior of molten nitrate salt
Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.
2016-05-01
The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new
Directory of Open Access Journals (Sweden)
WANG Fang
2017-04-01
Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity，the experimental data were divided into group. Using the control variable method，the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object，using numerical simulation methods，porous media，k一￡model，second order upwind mode，and pressure一velocity coupling with SIMPLE algorithm，the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.
Annaratone, Donatello
2010-01-01
This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi
Heat transfer from rough surfaces
International Nuclear Information System (INIS)
Dalle Donne, M.
1977-01-01
Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de
Mills, A F
1999-01-01
The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.
Heat transfer from rough surfaces
International Nuclear Information System (INIS)
Dalle Donne, M.
1980-11-01
The transformation of the friction data obtained with experiments in annuli can be performed either with the assumption of universal logarithmic velocity profile or of an universal eddy momentum diffusivity profile. For the roughness of practical interest both methods, when properly applied, give good results. For these roughnesses the transformed friction factors seem not to be unduly affected if one assumes a constant slope of the velocity profile equal to 2.5. All the transformation methods of the heat transfer data so far proposed predict too high wall temperatures in the central channels of a 19-rod bundle with three-dimensional roughness. Preliminary calculations show that the application of the superimposition principle with the logarithmic temperature profiles gives good results for the three-dimensional roughness as well. Although the measurements show that the slope of the logarithmic temperature profiles is different from 2.5, the assumption of a constant slope equal to 2.5 does not affect the transformed heat transfer data appreciably. For moderately high roughness ribs the turbulent Prandtl number, averaged over the cross section of a tube, is about the same (approx. 0.8) for rough as for smooth surfaces. The temperature effect on the heat transfer data with air cooling is stronger than originally assumed in the general correlation of Dalle Donne and Meyer. With helium cooling this temperature effect is even stronger. (orig.) [de
Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants
Yoshida, Suguru; Fujita, Yasunobu
The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.
Turbulent Heat Transfer in Ribbed Pipe Flow
Kang, Changwoo; Yang, Kyung-Soo
2012-11-01
From the view point of heat transfer control, surface roughness is one of the popular ways adopted for enhancing heat transfer in turbulent pipe flow. Such a surface roughness is often modeled with a rib. In the current investigation, Large Eddy Simulation has been performed for turbulent flow in a pipe with periodically-mounted ribs at Reτ=700, Pr=0.71, and p / k =2, 4, and 8. Here, p and k represent the pitch and rib height, respectively. The rib height is fixed as one tenth of the pipe radius. The profiles of mean velocity components, mean temperature, root-mean-squares (rms) of temperature fluctuation are presented at the selected streamwise locations. In comparison with the smooth-pipe case at the same Re and Pr, the effects of the ribs are clearly identified, leading to overall enhancement of turbulent heat transfer in terms of Nu. The budget of temperature variance is presented in the form of contours. The results of an Octant analysis are also given to elucidate the dominant events. Our LES results shed light on a complete understanding of the heat-transfer mechanisms in turbulent ribbed-pipe flow which has numerous applications in engineering. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012013019).
Heat transfer--Orlando (Symposium), 1980
International Nuclear Information System (INIS)
Stein, R.P.
1980-01-01
This conference proceedings contains 36 papers of which 3 appear as abstracts. 23 papers are indexed separately. Topics covered include: thermodynamics of PWR and LMFBR Steam Generators; two-phase flow in parallel channels; geothermal heat transfer; natural circulation in complex geometries; heat transfer in non-Newtonian systems; and process heat transfer
Heat transfer coefficient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1998-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat transfer in multi-phase materials
Öchsner, Andreas
2011-01-01
This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).
Transient heat transfer characteristics of liquid helium
International Nuclear Information System (INIS)
Tsukamoto, Osami
1976-01-01
The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)
Heat Transfer in a Thermoacoustic Process
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
Liquid metal heat transfer issues
International Nuclear Information System (INIS)
Hoffman, H.W.; Yoder, G.L.
1984-01-01
An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept
Heat transfer simulation in solid substrate fermentation.
Saucedo-Castañeda, G; Gutiérrez-Rojas, M; Bacquet, G; Raimbault, M; Viniegra-González, G
1990-04-05
A mathematical model was developed and tested to simulate the generation and transfer of heat in solid substrate fermentation (SSF). The experimental studies were realized in a 1-L static bioreactor packed with cassava wet meal and inoculated with Aspergillus niger. A simplified pseudohomogeneous monodimensional dynamic model was used for the energy balance. Kinetic equations taking into account biomass formation (logistic), sugar consumption (with maintenance), and carbon dioxide formation were used. Model verification was achieved by comparison of calculated and experimental temperatures. Heat transfer was evaluated by the estimation of Biot and Peclet heat dimensionless numbers 5-10 and 2550-2750, respectively. It was shown that conduction through the fermentation fixed bed was the main heat transfer resistance. This model intends to reach a better understanding of transport phenomena in SSF, a fact which could be used to evaluate various alternatives for temperature control of SSF, i.e., changing air flow rates and increasing water content. Dimensionless numbers could be used as scale-up criteria of large fermentors, since in those ratios are described the operating conditions, geometry, and size of the bioreactor. It could lead to improved solid reactor systems. The model can be used as a basis for automatic control of SSF for the production of valuable metabolites in static fermentors.
Unsteady heat transfer during subcooled film boiling
Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.
2015-11-01
Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.
Heat transfer measurements with TOIRT method
Solnař, S.; Petera, K.; Dostál, M.; Jirout, T.
Temperature Oscillation Infra-Red Thermography (TOIRT) method was used to measure heat transfer coefficients between a at surface and a confined impinging jet generated by an impeller in a difusor and baffled vessel. The TOIRT method is based on measuring a phase-lag between the oscillating heat flux applied to the heat transfer surface and the surface temperature response using a contactless infra-red camera. The phase lag is in a direct relationship with the heat transfer coefficient.
HEAT-MASS TRANSFER IN MOVING MELT
Directory of Open Access Journals (Sweden)
R. I. Yesman
2005-01-01
Full Text Available The paper gives mathematical formation and solution of the heat-mass transfer problem when liquid metals are flowing in the channels of complicated geometry. The problem is solved with the help of numerical methods. A method of control volume is used for finite-difference approximation of transfer equations. The research results can be applied for execution of a numerical experiment while investigating heat-mass transfer in liquid-metal heat-transfer and reological media.
Heat transfer modeling an inductive approach
Sidebotham, George
2015-01-01
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Directory of Open Access Journals (Sweden)
N. Amanifard
2007-06-01
Full Text Available In this work, the effects of electrical double layer (EDL near the solid/ liquid interface, on three dimensional heat transfer characteristic and pressure drop of water flow through a rectangular microchannel numerically are investigated. An additional body force originating from the existence of EDL is considered to modify the conventional Navier-stokes and energy equations. These modified equations are solved numerically for steady laminar flow on the basis of control volume approaches. Fluid velocity distribution and temperature with presence and absence of EDL effects are presented for various geometric cases and different boundary conditions. The results illustrate that, the liquid flow in rectangular microchannels is influenced significantly by the EDL, particularly in the high electric potentials, and hence deviates from flow characteristics described by classical fluid mechanics.
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Proceedings of heat transfer in space systems
International Nuclear Information System (INIS)
Chan, S.H.; Anderson, E.E.; Simoneau, R.J.; Chan, C.K.; Pepper, D.W.; Blackwell, B.F.
1990-01-01
This book contains the proceedings of heat transfer in space systems. Topics covered include: High-Power Electronics; Two-Phase Thermal Systems: Heat Exchangers; Arc Welding; Microgravity Thaw Experiment
Heat-transfer data for hydrogen
Mc Carthy, J. R.; Miller, W. S.; Okuda, A. S.; Seader, J. D.
1970-01-01
Information is given regarding experimental heat-transfer data compiled for the turbulent flow of hydrogen within straight, electrically heated, round cross section tubes. Tube materials, test conditions, parameters studied, and generalized conclusions are presented.
Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger
Directory of Open Access Journals (Sweden)
S. A. Burtsev
2016-01-01
Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at
Heat transfer coeffcient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1997-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...
Heat Transfer Manipulation via Switchable Wettability Surfaces
National Aeronautics and Space Administration — The proposed research seeks to manipulate heat transfer during flow condensation in low-gravity environments by employing switchable wettability surfaces....
A literature survey on numerical heat transfer
Shih, T. M.
1982-12-01
Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
Heat transfer correlations in mantle tanks
DEFF Research Database (Denmark)
Furbo, Simon; Knudsen, Søren
2005-01-01
Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...
Heat transfer from humans wearing clothing
Lotens, W.A.
1993-01-01
In this monograph the effects of clothing on human heat transfer are described. The description is based on the physics of heat and mass transfer, depending on the design of the clothing, the climate, and the activity of the wearer. The resulting model has been stepwise implemented in computer
Heat Transfer in a Semitransparent Medium
Shamparov, E. Yu.
2018-01-01
The problem of 1D radiative-conductive heat transfer in a homogeneous isotropic gray medium near a planar diffuse nontransparent surface and in between parallel plates with different temperatures has been solved analytically. Nonconvective measurements of the thermal resistance of parallel-plane polyethylene foam specimens versus the number of layers (i.e., thickness) have been taken, both without and with thin screens made of aluminum foil. The applicability of the suggested theoretical approach and experimental technique for the measurement of radiative heat transfer and heat transfer by conduction in light heat-protective materials has been demonstrated.
Boiling heat transfer modern developments and advances
Lahey, Jr, RT
2013-01-01
This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Energy Technology Data Exchange (ETDEWEB)
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
Heat transfer correlations in mantle tanks
DEFF Research Database (Denmark)
Furbo, Simon; Knudsen, Søren
2005-01-01
Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Process heat transfer principles, applications and rules of thumb
Serth, Robert W
2014-01-01
Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos
Droplet heat transfer and chemical reactions during direct containment heating
International Nuclear Information System (INIS)
Baker, L. Jr.
1986-01-01
A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences
The magnetic fluid for heat transfer applications
International Nuclear Information System (INIS)
Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.
2002-01-01
Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case
Experimental investigations on heat transfer characteristics of ...
Indian Academy of Sciences (India)
Kalpak Sagar
2018-03-28
Mar 28, 2018 ... increases the requirement of high heat flux removal techniques. Various active and passive cooling tech- ... It works as a passive heat transfer system involving intricate phase change processes. Net heat ... RFI/EMI filter and SMPS as shown in figure 3. The SMPS converts 230 V AC into 24 V DC, which is ...
Fractal approach to heat transfer in silkworm cocoon hierarchy
Directory of Open Access Journals (Sweden)
Fei Dong-Dong
2013-01-01
Full Text Available Silkworm cocoon has a complex hierarchic structure with discontinuity. In this paper, heat transfer through the silkworm cocoon is studied using fractal theory. The fractal approach has been successfully applied to explain the fascinating phenomenon of cocoon survival under extreme temperature environment. A better understanding of heat transfer mechanisms for the cocoon could be beneficial to the design of biomimetic clothes for special applications.
Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring
International Nuclear Information System (INIS)
Mihalina, M.; Djetelic, N.
2010-01-01
The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e
Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.
Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari
2014-01-01
This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.
Endwall convective heat transfer for bluff bodies
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2012-01-01
, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat......The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...
Forced convection heat transfer in He II
International Nuclear Information System (INIS)
Kashani, A.
1986-01-01
An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid
Transient forced convection heat transfer in helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya
2002-01-01
The knowledge of transient forced convection heat transfer at various periods of exponential increase of heat input to a heater is important as a database for understanding the transient heat transfer process in a high temperature gas cooled reactor (HTGR) due to an accident in excess reactivity. The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for quasi-steady-state and transient heat transfer were developed based on the experimental data. (author)
Transient heat transfer for forced convection flow of helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya
2002-01-01
The knowledge of forced convection transient heat transfer at various periods of exponential increase of heat input to a heater is important as a database for understanding the transient heat transfer process in a high temperature gas cooled reactor (HTGR) due to an accident in excess reactivity. The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for quasi-steady-state and transient heat transfer were developed based on the experimental data. (author)
Modeling of heat transfer into a heat pipe for a localized heat input zone
International Nuclear Information System (INIS)
Rosenfeld, J.H.
1987-01-01
A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study
Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.
2018-04-01
1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.
Heat Transfer Phenomena of Supercritical Fluids
Energy Technology Data Exchange (ETDEWEB)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)
2008-07-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
Heat Transfer Phenomena of Supercritical Fluids
International Nuclear Information System (INIS)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas
2008-01-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
Heat transfer studies in pool fire environment
International Nuclear Information System (INIS)
Nitsche, F.
1993-01-01
A Type B package has to withstand severe thermal accident conditions. To calculate the temperature behaviour of such a package in a real fire environment, heat transfer parameters simulating the effect of the fire are needed. For studying such heat transfer parameters, a systematic programme of experimental and theoretical investigations was performed which was part of the IAEA Coordinated Research Programme (Nitsche and Weib 1990). The studies were done by means of small, unfinned and finned, steel model containers of simplified design in hydrocarbon fuel open fire tests. By using various methods, flame and container temperatures were measured and also container surface absorptivity before and after the test to study the effect of sooting and surface painting on heat transfer. Based on all these experimental data and comparative calculations, simplified, effective heat transfer parameters could be derived, simulating the effect of the real fire on the model containers. (J.P.N.)
Boiling heat transfer and droplet spreading of nanofluids.
Murshed, S M Sohel; de Castro, C A Nieto
2013-11-01
Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Combined convective heat transfer from short cylinders
International Nuclear Information System (INIS)
Oosthuizen, P.H.; Paul, J.T.
1985-01-01
Considerable experimental evidence has been produced recently showing that the free convective heat transfer rate from horizontal circular cylinders becomes influenced by the length to diameter ratio L/D. The major aim of the present study was to determine the influence of the L/D ratio on the conditions under which buoyancy forces cause the heat transfer rate to start to deviate significantly from that existing in purely forced convection
Nonlocal heat transfer in nanostructures
International Nuclear Information System (INIS)
Kanavin, A.P.; Uryupin, S.A.
2008-01-01
Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted
Theory of Periodic Conjugate Heat Transfer
Zudin, Yuri B
2012-01-01
This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Conjugate Heat Transfer Study in Hypersonic Flows
Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar
2018-04-01
Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.
Interactive Heat Transfer Simulations for Everyone
Xie, Charles
2012-01-01
Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…
Enhanced heat transfer in confined pool boiling
Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.
2009-01-01
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found
Theory of periodic conjugate heat transfer
Zudin, Yuri B
2016-01-01
This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.
Heat transfer measurements for Stirling machine cylinders
Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.
1994-01-01
The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially
Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed
Energy Technology Data Exchange (ETDEWEB)
Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)
2009-06-21
Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.
Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed
International Nuclear Information System (INIS)
Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru
2009-01-01
Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.
Heat Transfer Enhancement in Separated and Vortex Flows
Energy Technology Data Exchange (ETDEWEB)
Richard J. Goldstein
2004-05-27
This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.
International Nuclear Information System (INIS)
Sircilli Neto, F.; Passaro, A.; Borges, E.M.
1991-01-01
The cooling systems of nuclear reactors for spacial applications include direct current electromagnetic pumps, which are used to circulate the coolant fluid thru the reactor core. In this work, the transfer of the heat generated by the electrical current in a magnet C excitation coils, which is used in a prototype pump, was evaluated. Considering the processes of heat transfer by conduction, natural convection and radiation, the results of simulation with the codes HEATING5 and AUTHEATS indicate the utilization of the 180 sup(0)C thermal class conductor for a working Joule power of 4 10 sup(4) W/m sup(3) in each magnet coil. (author)
Heat transfer with freezing and thawing
Lunardini, VJ
1991-01-01
This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime
Heat transfer in rocket combustion chambers
Anderson, P.; Cheng, G.; Farmer, R.
1993-11-01
Complexities of liquid rocket engine heat transfer which involve the injector faceplate and film cooled walls are being investigated by computational analysis. A conjugate heat transfer analysis was used to describe localized heating phenomena associated with particular injector configurations and film coolant flows. These components were analyzed, and the analyses verified when appropriate test data were available. The component analyses are being synthesized into an overall flowfield/heat transfer model. A Navier-Stokes flow solver, the FDNS code, was used to make the analyses. Particular attention was given to the representation of the thermodynamic properties of the fluid streams. Unit flow models of specific coaxial injector elements have been developed and are being used to describe the flame structure near the injector faceplate.
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
Heat transfer in the atmosphere
Oerlemans, J.
1982-01-01
The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it
Modeling microscale heat transfer using Calore
International Nuclear Information System (INIS)
Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley
2005-01-01
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted
Modeling microscale heat transfer using Calore.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley
2005-09-01
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.
Microscale and nanoscale heat transfer fundamentals and engineering applications
Sobhan, CB
2008-01-01
Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films
Transfer of heat pump technology
Broders, Martin A.
1990-02-01
The traveler participated in the activities of the first meeting of the IEA Heat Pump Center National Team Working Group. The meeting provided a forum for National Team representatives from seven participating countries to share information about their respective National Team organization, activities and priorities; and the status of heat pumps in their countries. Particular attention was given to discussion of topics and content of future IEA-HPC Newsletters, analysis studies and workshops. In-depth, follow-up discussions of U.S. National Team activities with both the IEA-HPC and IEA-CADDET were held with staff personnel at the operating agent Netherlands Agency for Energy and the Environment (NOVEM) headquarters in Sittard, The Netherlands.
Evaluation of heat transfer enhancement in air-heating collectors
Energy Technology Data Exchange (ETDEWEB)
Mattox, D. L.
1979-06-01
The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
Heat transfer to liquid sodium in the thermal entrance region
International Nuclear Information System (INIS)
Qiu, R.
1981-01-01
It is well known that the convective heat transfer in the regions of duct systems where the thermal boundary layers are not yet established can be far superior to heat transfer in the fully developed regions. A quantitative understanding of heat transfer in the thermal entrance region is essential in designing high heat-flux nuclear reactors. More specifically, if the thermal boundary layers have not been fully established in the system, the forced-convection relations for the fully developed regions cannot be used to predict the heat transfer characteristics. The present work is characterized by the following: 1. The behaviours in the thermal entrance region have been examined more completely. 2. To obtain a higher accuracy of analyses, in present study the method of SPARROW et al. for pipe was improved for annulus by utilizing a finite difference technique. Furthermore, an asymptotic solution was developed. 3. This is, in our knowledge, the first experimental investigation about the thermal development effect on turbulent heat transfer from rod element to liquid sodium in annulus with fully developed flow. (MDC)
Topology optimization for transient heat transfer problems
DEFF Research Database (Denmark)
Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov
The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......-stepping scheme. A PCM can efficiently absorb heat while keeping its temperature nearly unchanged [8]. The use of PCM ine.g. electronics [9] and mechanics [10], yields improved performance and lower costs depending on a.o., the spatial distribution of PCM.The considered problem consists in optimizing...... the distribution of PCM in a design domain, subject to a periodic heat influx. The objective is to stabilize the heat outflow. Application examples include keeping constant room temperature for oscilatory heat input or keeping constant working temperature of a CPU subjected to time varying computational load....
Heat transfer applications for the practicing engineer
Theodore, Louis
2011-01-01
This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Heat Transfer in Directional Water Transport Fabrics
Directory of Open Access Journals (Sweden)
Chao Zeng
2016-10-01
Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Directory of Open Access Journals (Sweden)
Giovanni Maria Carlomagno
2014-11-01
Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation
International Nuclear Information System (INIS)
Wong, K.-L.; Ke, M.-T.; Ku, S.-S.
2009-01-01
The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor
Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.
2013-01-01
This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.
A Paradox in Radiation Heat Transfer
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. A Paradox in Radiation Heat Transfer. J Srinivasan. Classroom Volume 12 Issue 4 April 2007 pp 85-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/04/0085-0091. Keywords. Radiation ...
REVIEW OF PCMs AND HEAT TRANSFER ENHANCEMENT ...
African Journals Online (AJOL)
HOD
Solar thermal power generation requires a cost effective thermal storage system. The existing two tank ... PCMS AND HEAT TRANSFER ENHANCEMENT METHODS IN PARABOLIC TROUGH SOLAR PLANTS THERMAL STORAGE SYSTEMS, M. D. Muhammad. Nigerian Journal of ..... However, there is still the need for.
Ribeiro, Carla
2017-01-01
The double-wall paper cup is an everyday object that can be used in the laboratory to study heat transfer. The experiment described here has been done by physics students aged 12-13 years; it can also be used in a different context to prompt debate about environmental issues.
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
CENTRIFUGAL COMPRESSOR EFFICIENCY CALCULATION WITH HEAT TRANSFER
Directory of Open Access Journals (Sweden)
Valeriu Dragan
2017-12-01
and manner under which the efficiency itself is calculated. The paper presents a more robust approach to measuring efficiency, regardless of the heat transfer within the turbomachinery itself. Possible applications of the study may range from cold-start regime simulation to the optimization of inter-cooling setup or even flow angle control without mechanically actuated OGV
Determination of the convective heat transfer coefficient
Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.
The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions
Heat Transfer Analysis of Fin Tube
International Nuclear Information System (INIS)
Jeon, Woo-Jin; Choi, Cheng-Ryul
2015-01-01
This paper describes a preliminary numerical analysis of fin tube used for a heat exchanger of the air-water cooling system. The internal flow in a fin tube is steam and the external of the fin is cooled by air. Cooling system in a nuclear power plant can be divided into two categories; 1) active pump driven system powered by alternating current and 2) passive cooling system drived by natural circulation phenomena. After the accident in Hukushima Nuclear Power Plants, the importance of the passive cooling system that can provide a long-term cooling of reactor decay heat during station blackout condition is emphasized. However, the effectiveness of passive cooling system based on cooling water is limited by the capacity of water storage tank. To overcome the limit due to the exhaustion of the cooling water, an natural convection air cooling system is proposed. As the air operated cooling system utilizes natural circulation phenomena of air, it does not require cooling water. However, the heat transfer area of the air operated cooling system should be increased much as the heat removal capacity per unit area is much lower than that of water cooling system. The air-water combined cooling system can resolve this excess increase of the heat transfer area in the air operated cooling system. This air-water cooling system can be also used in the passive containment cooling system. The effect of design parameters such as fin tube arrangement, the fin height, and pitch has been analyzed and the chimney effect on the simulation of heat transfer in a heat exchanger is evaluated. The internal flows in a fin tube heat exchanger for natural circulation flow condition and forced convection (suction) condition were investigated
Boiling heat transfer of nanofluids--special emphasis on critical heat flux.
Kim, Sung Joong; Kim, Hyungdae
2013-11-01
As innovative nanotechnology-based heat-transfer media, nanofluids have evoked considerable interest among researchers owing to their improved thermal properties as well as their extendable applications to various high-power thermal systems. This paper presents a comprehensive review of recent research developments and patents pertaining to nanofluid boiling heat transfer. Nanofluids definitely offer a wide range of potential improvements in boiling heat-transfer performance. However, experimental data available from different studies are currently beset by numerous contradictions, suggesting that the fundamental mechanisms of nanofluid boiling heat transfer are not yet well understood. Consequently application of these technologies has been limited in some aspects. Only a small number of patents related to nanofluid boiling heat transfer have thus far been reported in the literature. Based on the present review, future technological development and research requirements in this area are outlined in line with technical challenges. To utilize nanofluid boiling heat-transfer technologies for practical applications, more systematic and fundamental studies are required to understand the physical mechanisms involved.
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Boiling heat transfer in kettle evaporators
International Nuclear Information System (INIS)
Hwang, T.H.; Yao, S.C.
1987-01-01
The overall boiling process in a typical kettle evaporator is usually characterized as pool boiling. However, a liquid-vapor mixture flows by the gravity-induced natural circulation in the evaporator bundle is usually observed. The existing design or calculation methods, based upon the information of pool boiling in tube bundles, are inadequate to predict accurately the overall boiling heat transfer of a large bundle. Although some calculation schemes, based upon the flow boiling information, have been reported in reference to predict the overall performance of large bundles, the local heat transfer of a tube in a bundle is still not easy to be deducted from the integral results of the whole bundle. The purpose of this study is to investigate the local boiling phenomena in a uniformly heated tube bundle which is common encountered in kettle evaporators
Miyara, A.; Kariya, K.; Ali, Md. H.; Selamat, S. B.; Jalaluddin
2017-01-01
Three kinds of vertical-type ground heat exchangers, U-tube; double-tube; multi-tube, and two kinds of horizontal-type ground heat exchangers, standing Slinky; reclined Slinky, were experimentally and numerically investigated in order to clarify their heat transfer characteristics. Experiments and simulations were carried out under two operation conditions which are continuous operation mode and discontinuous operation mode and effects of temperature recovery and thermal storage on the heat transfer rate were shown. Differences of the heat transfer rate between standing Slinky and reclined Slinky were also indicated.
Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer
Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław
2017-10-01
The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.
Directory of Open Access Journals (Sweden)
N. A. Nesenchuk
2013-01-01
Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following evaluation results of heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.
Electrical control and enhancement of boiling heat transfer during quenching
Shahriari, Arjang; Hermes, Mark; Bahadur, Vaibhav
2016-02-01
Heat transfer associated with boiling degrades at elevated temperatures due to the formation of an insulating vapor layer at the solid-liquid interface (Leidenfrost effect). Interfacial electrowetting (EW) fields can disrupt this vapor layer to promote liquid-surface wetting. We experimentally analyze EW-induced disruption of the vapor layer and measure the resulting enhanced cooling during the process of quenching. Imaging is employed to visualize the fluid-surface interactions and understand boiling patterns in the presence of an electrical voltage. It is seen that EW fields fundamentally change the boiling pattern, wherein a stable vapor layer is replaced by intermittent wetting of the surface. Heat conduction across the vapor gap is thus replaced with transient convection. This fundamental switch in the heat transfer mode significantly accelerates cooling during quenching. An order of magnitude increase in the cooling rate is observed, with the heat transfer seen approaching saturation at higher voltages. An analytical model is developed to extract voltage dependent heat transfer rates from the measured cooling curve. The results show that electric fields can alter and tune the traditional cooling curve. Overall, this study presents an ultralow power consumption concept to control the mechanical properties and metallurgy, by electrically tuning the cooling rate during quenching.
Heat transfer studies in waste repository design
International Nuclear Information System (INIS)
Boehm, R.F.; Chen, Y.T.; Izzeldin, A.; Kuharic, W.; Sudan, N.
1994-01-01
The main task of this project is the development of visualization methods in heat transfer through porous media. Experiments have been performed related to the determination of the wavelength that gives equality of the refractive indices of the porous material and the liquid. The work has been accomplished using the calibration setup consisting of a 2-in. long test cell filled with 2-mm diameter soda-lime glass beads. A supplemental task is an unsaturated flow experiment with heat transfer in porous media. For this work the medium of interest in quartz beads. Essentially two-dimensional flows of admitted water are able to be examined. During this quarter, the setup and calibration of the experimental instrumentation was done. Also the modification of the main experimental tank and the inflow system was carried out. Initial testing was done
Low-melting point heat transfer fluid
Cordaro, Joseph Gabriel; Bradshaw, Robert W.
2010-11-09
A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.
Principles of heat and mass transfer
Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S
2013-01-01
Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Computer graphics in heat-transfer simulations
International Nuclear Information System (INIS)
Hamlin, G.A. Jr.
1980-01-01
Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges
Heat transfer studies on spiral plate heat exchanger
Directory of Open Access Journals (Sweden)
Rajavel Rangasamy
2008-01-01
Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.
Features of convective heat transfer in heated helium channel flow
Energy Technology Data Exchange (ETDEWEB)
Gordeev, S.; Heinzel, V.; Slobodtchouk, V. [Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)
2005-07-01
The aim of the present work is to choose an optimal method for thermohydraulic calculation of the gas flow in channels with intense heating at the flow Reynolds number below 10,000. These conditions are typical of the cooling channels of the High-Flux-Test Module of the International-Fusion-Materials-Irradiation-Facility (IFMIF/HFTM). A low Reynolds number and a high heating rate can result in partial relaminarization of the initially turbulent flow, and hence in a decrease in the heat transfer. A number of turbulence models offered by the commercial STAR-CD code were tested on the basis of the comparison of the numerical predictions with experimental data. This comparison showed that the low-Reynolds-number {kappa}-{epsilon} turbulence models predict the heat transfer characteristics close to the experimental data. The {kappa}-{epsilon} linear low Reynolds number turbulence model of Lien was applied as more appropriate fore the thermohydraulic analysis of the IFMIF high flux test module. (author)
Heat transfer to accelerating gas flows
International Nuclear Information System (INIS)
Kennedy, T.D.A.
1978-01-01
The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)
Energy Technology Data Exchange (ETDEWEB)
Park, Junseok; Kim, Hyungdae [Kyung Hee University, Seoul (Korea, Republic of)
2015-10-15
The correlation was derived based on the mechanistic model of Baumeister4 for film boiling heat transfer coefficient of a Leidenfrost droplet floated on a heated surface. The model was formulated only with the physical parameters of the stationary droplet while the droplet collision heat transfer phenomenon is very dynamic. Therefore, it is needed to improve the existing prediction correlation for droplet-wall collision heat transfer by incorporating dynamic characteristics of collision droplets into heat transfer coefficient model. In this study, effects of droplet velocity on collision dynamics and heat transfer characteristics during droplet-wall collision beyond the Leidenfrost point were examined using the integrated high-speed visible and infrared (IR) imaging technique. The experimental results obtained from the synchronized HSV and IR measurement could provide a better understanding than the previous existing results because various physical parameters associated with droplet-wall collision dynamics and heat transfer phenomena can be simultaneously obtained and the relation between collision dynamics and local heat transfer characteristics can be examined. This study experimentally investigated the dynamic behavior and heat transfer characteristics of droplet. The tests were conducted using a water droplet with diameter of 2 mm at atmospheric pressure. Droplet with velocity in the range from 0.2 to 1.5 collided with heated wall.
Refrigeration. Heat Transfer. Part I: Evaporators and Condensers
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....
Heat transfer education : Keeping it relevant and vibrant.
Energy Technology Data Exchange (ETDEWEB)
Khounsary, A. M.
1998-08-14
The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat
Heat transfer operators associated with quantum operations
International Nuclear Information System (INIS)
Aksak, C; Turgut, S
2011-01-01
Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a Hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this paper is to investigate the relation between the HTOs and the associated quantum operations. Since any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This paper is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations, however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.
Subcooled boiling heat transfer on a finned surface
International Nuclear Information System (INIS)
Kowalski, J.E.; Tran, V.T.; Mills, P.J.
1992-01-01
Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)
Modelling of heat transfer to fluids at a supercritical pressure
International Nuclear Information System (INIS)
Shuisheng, He
2014-01-01
A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such
Low heat transfer oxidizer heat exchanger design and analysis
Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.
1987-01-01
The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.
Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles
Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.
2010-01-01
This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
46 CFR 153.430 - Heat transfer systems; general.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
Transfer coefficients in elliptical tubes and plate fin heat exchangers
International Nuclear Information System (INIS)
Saboya, S.M.
1979-09-01
Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt
Heat transfer, condensation and fog formation in crossflow plastic heat exchangers
Brouwers, Jos; van der Geld, C.W.M.
1996-01-01
In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall
Heat transfer model for quenching by submerging
International Nuclear Information System (INIS)
Passarella, D N; Varas, F; MartIn, E B
2011-01-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Heat transfer model for quenching by submerging
Energy Technology Data Exchange (ETDEWEB)
Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)
2011-05-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Heat transfer unit and method for prefabricated vessel
Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.
2017-11-07
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.
CFD simulations of heat transfer in internally helically ribbed tubes
Directory of Open Access Journals (Sweden)
Majewski Karol
2016-06-01
Full Text Available Heating surfaces in power boilers are exposed to very high heat flux. For evaporator protection against overheating, internally helically ribbed tubes are used. The intensification of the heat transfer and the maintenance of the thin water layer in the intercostal space, using ribbed tubes, enables better protection of the power boiler evaporator than smooth pipes. Extended inner surface changes flow and thermal conditions by influencing the linear pressure drop and heat transfer coefficient. This paper presents equations that are used to determine the heat transfer coefficient. The results of total heat transfer, obtained from CFD simulations, for two types of internally ribbed and plain tubes are also presented.
Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit
International Nuclear Information System (INIS)
Gunes, M.
1998-01-01
In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically
Heat transfer in rotor/stator cavity
Tuliszka-Sznitko, Ewa; Majchrowski, Wojciech; Kiełczewski, Kamil
2011-12-01
In the paper we analyze the results of DNS/LES of the flow with heat transfer in the rotor/stator cavity. The rotor and the outer cylinder are heated. Computations have been performed for wide range of Reynolds numbers and aspect ratios. Computations are based on the efficient pseudo-spectral Chebyshev-Fourier method. In LES we used a Lagrangian dynamic subgrid-scale model of turbulence. Analysis allowed to check the influence of the aspect ratio and Reynolds number on the statistics and the structure of the flow. We analyzed all six Reynolds stress tensor components, turbulent fluctuations, three turbulent heat fluxes and different structural parameters which can be useful for modeling purposes. The distributions of Nusselt numbers obtained for different Re and aspect rations along disks are given. We also investigated influence of thermal Rosssby number as well as distributions of temperature along heated disk on statistics. Computations have shown that turbulence is mostly concentrated in the stator boundary layer with a maximum at the junction between the stator and the outer cylinder. The results are compared to the experimental and numerical data taken from literature.
Porous media heat transfer for injection molding
Energy Technology Data Exchange (ETDEWEB)
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
International Nuclear Information System (INIS)
Sarkar, J.; Bhattacharyya, Souvik
2007-01-01
In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Fundamentals of Plasma Particle Momentum and Heat Transfer
Boulos, Maher I.; Fauchais, Pierre; Vardelle, Armelle; Pfender, Emil
Plasma-particle interactions represent one of the most important aspects on which the outcome of most plasma processing of materials depends. It plays a key role in such applications as in-flight melting, densification and spheroidization of powders, atmospheric and vacuum plasma spraying of protective coatings, plasma deposition of near net shape bodies, d.c. and r.f. induction plasma deposition of metal matrix composites, and plasma reactive deposition. A review is presented of recent developments in our understanding of the basic momentum and heat transfer phenomena involved and the way they can influence the overall outcome of the process. Both experimental and theoretical studies are presented in four separate sections; particle injection, plasma-particle momentum and heat transfer for a single particle in a plasma flow, single particle trajectories and temperature histories, and plasma-particle interactions under dense loading conditions. The discussion covers such phenomena as the effect of the particle carrier gas on the flow and temperature fields in the plasma reactor, the effect of steep temperature gradients on plasma-particle momentum and heat transfer, internal heat conduction within solid and porous particles, particle evaporation, and non-continuum effects.
Method of calculating heat transfer in furnaces of small power
Directory of Open Access Journals (Sweden)
Khavanov Pavel
2016-01-01
Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
Energy Technology Data Exchange (ETDEWEB)
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-10-03
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
International Nuclear Information System (INIS)
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-01-01
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel
Active chimney effect using heated porous layers: optimum heat transfer
Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid
2017-05-01
The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
Transient critical heat flux and blowdown heat-transfer studies
Energy Technology Data Exchange (ETDEWEB)
Leung, J.C.
1980-05-01
Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger
International Nuclear Information System (INIS)
Mokamati, S.V.; Prasad, R.C.
2003-01-01
In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)
The Heat and Momentum Transfers Relation in Channels of Plate Heat Exchangers
Kapustenko, Petro O.; Arsenyeva, Olga P.; Dolgonosova, Olena
2011-01-01
The link between heat transfer intensity and hydraulic resistance of PHE channels is determined with the use of modified Reynolds analogy of heat and momentum transfer. The formula to estimate the share in total hydraulic resistance of pressure loss due to friction is proposed. The resulting model enables to calculate film heat transfer coefficients in PHE channels on a data of hydraulic resistance of the main heat transfer field. The calculations are compared with the available in literature...
Recent Advances in Heat Transfer Enhancements: A Review Report
Directory of Open Access Journals (Sweden)
M. Siddique
2010-01-01
Full Text Available Different heat transfer enhancers are reviewed. They are (a fins and microfins, (b porous media, (c large particles suspensions, (d nanofluids, (e phase-change devices, (f flexible seals, (g flexible complex seals, (h vortex generators, (i protrusions, and (j ultra high thermal conductivity composite materials. Most of heat transfer augmentation methods presented in the literature that assists fins and microfins in enhancing heat transfer are reviewed. Among these are using joint-fins, fin roots, fin networks, biconvections, permeable fins, porous fins, capsulated liquid metal fins, and helical microfins. It is found that not much agreement exists between works of the different authors regarding single phase heat transfer augmented with microfins. However, too many works having sufficient agreements have been done in the case of two phase heat transfer augmented with microfins. With respect to nanofluids, there are still many conflicts among the published works about both heat transfer enhancement levels and the corresponding mechanisms of augmentations. The reasons beyond these conflicts are reviewed. In addition, this paper describes flow and heat transfer in porous media as a well-modeled passive enhancement method. It is found that there are very few works which dealt with heat transfer enhancements using systems supported with flexible/flexible-complex seals. Eventually, many recent works related to passive augmentations of heat transfer using vortex generators, protrusions, and ultra high thermal conductivity composite material are reviewed. Finally, theoretical enhancement factors along with many heat transfer correlations are presented in this paper for each enhancer.
The heat transfer of cooling fins on moving air
Doetsch, Hans
1935-01-01
The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.
Computational heat transfer analysis and combined ANN–GA ...
Indian Academy of Sciences (India)
Jones & Smith (1970) studied the optimal arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer for maximum heat trans- fer rate and proposed correlations to obtain optimum fin spacing. Khaled (2010) numerically studied the permissible number of fins for heat transfer enhancement and ...
Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply
Energy Technology Data Exchange (ETDEWEB)
Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics
2004-07-01
Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)
34th UIT Heat Transfer Conference 2016
International Nuclear Information System (INIS)
2017-01-01
The annual UIT Heat Transfer Conference of the “Unione Italiana di Termofluidodinamica” aims at promoting cooperation in the field of heat transfer and thermal sciences, by bringing together scientists and engineers working in related areas. Several issues of interest are addressed, namely natural, forced and mixed convection, conduction, radiation, multi-phase fluid dynamics and interface phenomena, computational fluid dynamics, micro- and nano-scales, efficiency in energy systems, environmental technologies and buildings, heat transfer in fire engineering. The 34th UIT Conference was held in Ferrara (FE), Italy, 4–6 July, 2015 in the spaces of the Scientific and Technological Center of The University of Ferrara. The response has been enthusiastic: 61 abstracts, 36 oral and 18 poster presentations, 48 papers published on the Proceedings To encourage the debate, the Conference Program has scheduled ample poster sessions and invited lectures from the best experts in the field along with a few of the most talented researchers. Keynote Lectures were given by Professor Giovanni S. Barozzi (University of Modena), Professor Paolo Di Marco (University of Pisa) and Professor Nicola Bianco (University of Napoli Federico II). This special volume collects a selection of the scientific contributions discussed during this conference; these works give a good overview of the state-of-the art Italian research in the field of Heat Transfer related topics. I would like to thank sincerely the authors for presenting their works at the conference and in this special issue. I would also like to extend my thanks to the Scientific Committee and the authors for their accurate review process of each paper for this special issue. Special thanks go to the organizing committee. Professor Stefano Piva (president of The Organizing Committee) About UIT (Unione Italiana Termofluidodinamica) The Italian Union of Thermal-Fluid Dynamics (UIT) was founded in Bologna on December 19, 1984
Software engineering technology transfer: Understanding the process
Zelkowitz, Marvin V.
1993-01-01
Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
Heat and mass transfer analysis of a desiccant dehumidifier matrix
Energy Technology Data Exchange (ETDEWEB)
Pesaran, A.A.
1986-07-01
This report documents the SERI Single-Blow Test Facility's design, fabrication, and testing for characterizing desiccant dehumidifiers for solar cooling applications. The first test article, a silica-gel parallel-plate dehumidifier with highly uniform passages, was designed and fabricated. Transient heat and mass transfer data and pressure drop data across the dehumidifier were obtained. Available heat and mass transfer models were extended to the parallel-place geometry, and the experimental data were compared with model predictions. Pressure drop measurements were also compared with model predictions of the fully developed laminar flow theory. The comparisons between the lumped-capacitance model and the experimental data were satisfactory. The pressure drop data compared satisfactorily with the theory (within 15%). A solid-side resistance model that is more detailed and does not assume symmetrical diffusion in particles was recommended for performance. This study has increased our understanding of the heat and mass transfer in silica gel parallel-plate dehumidifiers.
Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds
Samaha, Mohamed A.; Kahwaji, Ghalib Y.
2017-11-01
Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.
Heat transfer mechanisms in poplar wood undergoing torrefaction
Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira
2016-03-01
Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.
HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM
Johnson, E.F.
1962-06-01
This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)
Interfacial heat transfer - State of the art
International Nuclear Information System (INIS)
Yadigaroglu, G.
1987-01-01
Interfacial heat exchanges control the interfacial mass exchange rate, depend on the interfacial area, and are tied to the prediction of thermal nonequilibrium. The nature of the problem usually requires the formulation of mechanistic laws and precludes the general use of universal correlations. This is partly due to the fact that the length scale controlling the interfacial exchanges varies widely from one situation to another and has a strong influence on the exchange coefficients. Within the framework of the ''two-fluid models'', the exchanges occurring at the interfaces are explicitly taken into consideration by the jump condition linking the volumetric mass exchange (evaporation) rate between the phases, to the interfacial energy transfer rates
Blowdown heat transfer and transient boiling transition in BWR's
International Nuclear Information System (INIS)
Sozzi, G.L.; Burnette, G.W.
1977-01-01
Experimental results from the NRC/EPRI/GE BWR Blowdown Heat Transfer Program are evaluated in terms of bundle local heat transfer performance and in terms of cross-sectional average bundle thermal-hydraulic fluid conditions. The bundle heat transfer performance was generally found to be nucleate boiling below the two-phase mixture level interface with highly dispersed film boiling or steam cooling heat transfer above the interface. Comparisons are presented for predictions of boiling transition (BT) and post BT heat transfer performance during the blowdown phase of the LOCA experiments. These predictions utilize a drift flux void fraction model. The comparisons show very good agreement of both the onset of BT and the post BT heat transfer. 12 references
Corrosion of heat exchanger materials under heat transfer conditions
International Nuclear Information System (INIS)
Tapping, R.L.; Lavoie, P.A.; Disney, D.J.
1986-01-01
Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling water side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at Chalk River Laboratories that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel 625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28. Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested. (author). 3 refs., 4 tabs., 6 figs
Corrosion of heat exchanger materials under heat transfer conditions
International Nuclear Information System (INIS)
Tapping, R.L.; Lavoie, P.A.; Disney, D.J.
1987-01-01
Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28 1 . Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested
Convective heat transfer for fluids passing through aluminum foams
Directory of Open Access Journals (Sweden)
Dyga Roman
2015-03-01
Full Text Available This paper analyses the experimental findings within heat transfer when heating up air, water and oil streams which are passed through a duct with internal structural packing elements in the form of metal foams. Three types of aluminum foams with different cell sizes, porosity specifications and thermal conductivities were used in the study. The test data were collected and they made it possible to establish the effect of the foam geometry, properties of fluids and flow hydrodynamic conditions on the convective heat transfer process from the heating surface to the fluid flowing by (wetting that surface. The foam was found to be involved in heat transfer to a limited extent only. Heat is predominantly transferred directly from the duct wall to a fluid, and intensity of convective heat transfer is controlled by the wall effects. The influence of foam structural parameters, like cell size and/or porosity, becomes more clearly apparent under laminar flow conditions.
Sensitivity Analysis of the Gap Heat Transfer Model in BISON.
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)
2014-10-01
This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.
Fink, Richard
2015-01-01
The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.
Personalized recommendation based on heat bidirectional transfer
Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo
2016-02-01
Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.
Heat transfer in the post dryout region and on wetting heated surfaces
International Nuclear Information System (INIS)
Rassokhin, N.G.; Kabanov, L.P.
1987-01-01
A survey is given of the works published in the Soviet Union during 1983 and 1984 on heat transfer in the post dryout region and on wetting heated surfaces. New experimental data, heat transfer models, and computational techniques are analysed. The complexities of the heat transfer process under the above conditions are noted. The differences and common features of the heat transfer processes in the post dryout region and on wetting heated surfaces are indicated as well as the necessity for the development of computational techniques that would consider the two processes simultaneously. (author)
Influence of radiation heat transfer during a severe accident
Energy Technology Data Exchange (ETDEWEB)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)
2016-09-15
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
An introduction to heat transfer principles and calculations
Ede, A J; Ower, E
1967-01-01
An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling
Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei
2017-09-12
Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.
A study on the heat transfer characteristics of a self-oscillating heat pipe
International Nuclear Information System (INIS)
Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk
2002-01-01
In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe
Non-steady-state heat transfer of finned surface
International Nuclear Information System (INIS)
Okamoto, Y.; Kameoka, T.
1974-01-01
For many purposes, the finned surface is being used to increase heat transfer. Heat exchangers and fuel elements of gas cooled nuclear reactors require the use of the finned surface for high flux heat transfer. The problem is analytically treated by deriving a non-steady-state equation of radiative and convective heat transfer of annular and radial fins in case of sudden change of the fin-root temperature or heat flux. The numerical solution of temperature distribution along the fin is obtained for several typical transient cases. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.
Modeling of Heat Transfer in LDConverter (BOF) Lining
Jahan, Georgina
2012-01-01
During the production of steel in the LD converter the refractory lining is exposed to high temperature emulsion of steel, slag and gas. It protects the steel body of the vessel to come in contact with the molten steel.The main purpose of this work was to observe the temperature distribution profile in converter refractory lining which is very important to understand the life of the refractory lining of the LD converter.In this study, a three dimensional (3D) heat transfer model for the refra...
The heat transfer coefficients of the heating surface of 300 MWe CFB boiler
Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai
2012-08-01
A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.
Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated under Constant Heat Flux
Directory of Open Access Journals (Sweden)
Shuichi Torii
2010-01-01
Full Text Available The aim of the present study is to disclose the forced convective heat transport phenomenon of nanofluids inside a horizontal circular tube subject to a constant and uniform heat flux at the wall. Consideration is given to the effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region. It is found that (i heat transfer enhancement is caused by suspending nanoparticles and becomes more pronounced with the increase of the particle volume fraction, (ii its augmentation is affected by three different nanofluids employed here, and (iii the presence of particles produces adverse effects on viscosity and pressure loss that also increases with the particle volume fraction.
Surface wettability and subcooling on nucleate pool boiling heat transfer
Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki
2018-02-01
The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.
International Nuclear Information System (INIS)
Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei
2014-01-01
The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed
Transfer coefficients for plate fin and elliptical tube heat exchangers
International Nuclear Information System (INIS)
Saboya, S.M.; Saboya, F.E.M.
1981-01-01
In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt
International Nuclear Information System (INIS)
Cheng, XueTao; Liang, XinGang
2013-01-01
The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1996-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Computational heat transfer analysis and combined ANN–GA ...
Indian Academy of Sciences (India)
structures have significant effect on heat transfer characteristics and proposed correlations for the same. Siw et al ... studied the permissible number of fins for heat transfer enhancement and solved the energy equa- ..... The high temperature region is represented by red colour which is the base plate temperature and from ...
Analytical Evalution of Heat Transfer Conductivity with Variable Properties
DEFF Research Database (Denmark)
Rahimi, Masoume; Hosseini, Mohammad Javad; Barari, Amin
2011-01-01
The homotopy analysis method (HAM) as a new technique which is powerful and easy-to-use, is applied to solve heat transfer problems. In this paper, we use HAM for heat transfer conductivity equation with variable properties which may contain highly nonlinear terms. The obtained results are also...
Improving Heat Transfer Performance of Printed Circuit Boards
Schatzel, Donald V.
2009-01-01
This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.
The porosity in a fluidized bed heat transfer model
Visser, G; Visser, G.; Valk, M.
1993-01-01
A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable.
THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER
Directory of Open Access Journals (Sweden)
Alexander P. Solodov
2013-01-01
Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations.
Transient heat transfer in longitudinal fins of various profiles with ...
Indian Academy of Sciences (India)
Transient heat transfer through a longitudinal ﬁn of various proﬁles is studied. The thermal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions are ...
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
Mayer et al (1987) concluded from their numerical investigation that an excellent heat and mass transfer inside the reaction bed, good thermal contact of the bed material to the bed wall, and high external heat transfer coefficients were the important parameters to make the hydrogen absorption/desorption reaction efficient.
Heat transfer analysis of liquid piston compressor for hydrogen applications
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Rokni, Masoud
2015-01-01
A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
augments the heat transfer and reaction rate significantly. Jemni and his group predicted the dynamic heat and mass transfer characteristics in metal hydride bed during both absorption and desorption processes using two-dimensional model considering the variation of gas pres- sure inside the hydride bed (Faouzi et al ...
Thermocapillary flow contribution to dropwise condensation heat transfer
Phadnis, Akshay; Rykaczewski, Konrad
2017-11-01
With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.
Enhancement of heat transfer using varying width twisted tape inserts
African Journals Online (AJOL)
user
Augmentation of convective heat transfer in internal flows with tape inserts in tubes is a well-acclaimed technique employed ...... Her research interests include IC Engines, Combustion modeling, Alternate fuels, Heat transfer, Refrigeration and Air-conditioning. She has published more than 8 papers in International journals.
Transient heat transfer in longitudinal fins of various profiles with ...
Indian Academy of Sciences (India)
Abstract. Transient heat transfer through a longitudinal fin of various profiles is studied. The ther- mal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions ...
Heat transfer and thermal stress analysis in grooved tubes
Indian Academy of Sciences (India)
The maximum thermal stress ratio positions inside the tube have been indicated as MX for all investigated cases. In the light of the thermal stress values, various designs can be applied to reduce thermal stress in grooved tubes. Keywords. Heat transfer; thermal stress; grooved tubes. 1. Introduction. Heat transfer in pipe flow ...
Heat transfer and thermal stress analysis in grooved tubes
Indian Academy of Sciences (India)
Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...
Enhancement of heat transfer using varying width twisted tape inserts
African Journals Online (AJOL)
Enhancement of heat transfer using varying width twisted tape inserts. ... International Journal of Engineering, Science and Technology ... The present work shows the results obtained from experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of varying width twisted ...
Analysis of heat and mass transfer
International Nuclear Information System (INIS)
Eckert, E.R.G.; Drake, R.M. Jr.
1987-01-01
The contents of this book are: Theory of Heat Conduction and Heat-conduction Equations; Thermal Conductivity; Steady Heat Conduction; Unsteady Heat Conduction; Forced Convection in Laminar Flow; Forced Convection in Turbulent Flow; Dimensional Analysis; Forced Convection in Separated Flow; Natural Convection; Radiation of Strongly Absorbing Media; and Radiation of Weakly Absorbing Media
Heat Transfer Enhancement In a Ribbed Duct
Directory of Open Access Journals (Sweden)
J.M. Jalil
2006-12-01
Full Text Available The rib enhancement of heat transfer in a duct is studied numerically and experimentally, where hot air passes through a duct (0.04 x 0.16 x 1.15 m3 with different rib arrangement. The arranments are lower 12-rib arrangement; upper 12 rib arrangement and 24 rib staggered arrangement. The staggered arrangement gives better performance than the others. Also, the angle of attack was studied for lower arrangement, three different values were tested (45°, 60° and 90°. Angle of 60° gives better performance. Numerically, the three-dimension continuity, Navier-Stokes and energy by finite volume method of flow of air through (0.04 x 0.16 x 0.6 m3. Validation of the code was performed by comparing the numerical result with the results obtained experimentally for staggered arrangement only. The agreement seems acceptable. The numerical studies were extended to study the case of cold air passing through hot ribbed duct.
Burnout detector design for heat transfer experiments
International Nuclear Information System (INIS)
Dias, H.F.
1992-01-01
This paper describes the design of an burnout detector for heat transfer experiments, applied during tests for optimization of fuel elements for PWR reactors. The burnout detector avoids the fuel rods destruction during the experiments at the Centro de Desenvolvimento da Tecnologia Nuclear. The detector evaluates the temperature changes over the fuel rods in the temperature changes over the fuel rods in the area where the burnout phenomenon could be anticipated. As soon as the phenomenon appears, the system power supply is turned off. The thermal Circuit No. 1, during the experiments, had been composed by nine fuel rods feed parallelly by the same power supply. Fine copper wires had been attached at the centre and at the ends of the fuel rod to take two Wheat stone bridge arms. The detector had been applied across the bridge diagonals, which must be balanced the burnout excursion can be detected as a small but fast increase of the signal over the detector. Large scale experiments had been carried out to compare the resistance bridge performance against a thermocouple attached through the fuel rod wall. These experiments had been showed us the advantages of the first method over the last, because the bridge evaluates the whole fuel rod, while the thermocouple evaluates only the area where it had been attached. (author)
Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach
Gövert, S.; Mira, D.; Zavala-Ake, M.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.
2017-01-01
The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber:
Energy Technology Data Exchange (ETDEWEB)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others
1995-09-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
Directory of Open Access Journals (Sweden)
Mathieu Legay
2011-01-01
Full Text Available This paper summarizes some applications of ultrasonic vibrations regarding heat transfer enhancement techniques. Research literature is reviewed, with special attention to examples for which ultrasonic technology was used alongside a conventional heat transfer process in order to enhance it. In several industrial applications, the use of ultrasound is often a way to increase productivity in the process itself, but also to take advantage of various subsequent phenomena. The relevant example brought forward here concerns heat exchangers, where it was found that ultrasound not only increases heat transfer rates, but might also be a solution to fouling reduction.
Fem Formulation of Coupled Partial Differential Equations for Heat Transfer
Ameer Ahamad, N.; Soudagar, Manzoor Elahi M.; Kamangar, Sarfaraz; Anjum Badruddin, Irfan
2017-08-01
Heat Transfer in any field plays an important role for transfer of energy from one region to another region. The heat transfer in porous medium can be simulated with the help of two partial differential equations. These equations need an alternate and relatively easy method due to complexity of the phenomenon involved. This article is dedicated to discuss the finite element formulation of heat transfer in porous medium in Cartesian coordinates. A triangular element is considered to discretize the governing partial differential equations and matrix equations are developed for 3 nodes of element. Iterative approach is used for the two sets of matrix equations involved representing two partial differential equations.
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo;
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
Condensation Heat Transfer Performance of Nano- Engineered Cu Surfaces
Kim, Hyunsik; Nam, Youngsuk
2014-11-01
We investigated condensate mobility and resulting heat transfer performance on Cu based water repellent surfaces including hydrophobic, superhydrophobic and oil-infused surfaces. We observed the transient microscale condensation behaviours up to 3 hours with controlling the supersaturation level at 1.64. We experimentally characterized the nucleation density, droplet size distribution and growth rate, and then incorporated them into the developed condensation heat transfer model to compare the condensation heat transfer performance of each surface. Due to the spontaneous coalescence induced jumping, superhydrophobic surface can maintain the high heat transfer performance while other surfaces show a gradual decrease in heat transfer performance due to the increase in the thermal resistance across the growing droplets. We also quantified each thermal resistance values from the vapor to the surface through the droplets to find out the relative importance of each thermal resistance term.
Direct contact heat transfer characteristics between melting alloy and water
International Nuclear Information System (INIS)
Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro
1995-01-01
As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)
Homogenization of a Conductive-Radiative Heat Transfer Problem
Habibi Zakaria
2012-01-01
This paper focuses on the contribution of the second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. Especially, for a heat conduction problem in a periodically perforated domain with a non-local boundary condition modelling the radiative heat transfer, if this model contains an oscillating thermal source and a thermal exchange with the perforations, the second order corrector helps us to model the gradients which appear between the source a...
Heat transfer and mechanical interactions in fusion nuclear systems
International Nuclear Information System (INIS)
Nygren, R.E.
1984-01-01
This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
Heat transfer to the adsorbent in solar adsorption cooling device
Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin
2014-08-01
The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.
The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa
Energy Technology Data Exchange (ETDEWEB)
Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)
1996-12-01
The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Heat transfer to sodium--potassium alloy in pool boiling
International Nuclear Information System (INIS)
Subbotin, V.I.; Sorokin, D.N.; Kudryavtsev, A.P.; Brigutsa, V.I.
1974-01-01
Results of an experimental investigation of superheating, heat transfer, and critical heat fluxes for the sodium-potassium alloy of the eutectic composition (78 wt percent K), as well as the dependence of the critical heat flux on the component concentration, are presented. (U.S.)
Validation of heat transfer models for gap cooling
International Nuclear Information System (INIS)
Okano, Yukimitsu; Nagae, Takashi; Murase, Michio
2004-01-01
For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)
Anode heat transfer in a constricted tube arc.
Lukens, L. A.; Incropera, F. P.
1971-01-01
The complex energy exchange mechanisms occurring on the most severely heated component of an arc constrictor, the anode, have been investigated. Measurements performed to determine the anode heat flux for a cascade, atmospheric argon arc of the Maecker type are described. The results are used to check the validity of an existing anode heat transfer model.
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
International Nuclear Information System (INIS)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol
2015-01-01
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of
International symposium on radiative heat transfer: Book of abstracts
International Nuclear Information System (INIS)
1995-01-01
The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting
Understanding the CDM's contribution to technology transfer
International Nuclear Information System (INIS)
Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.
2008-01-01
Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations
Analytical approach for the effect of melting heat transfer on nanofluid heat transfer
Sheikholeslami, M.; Nimafar, M.; Ganji, D. D.
2017-09-01
In this article, the impact of melting heat transfer on nanofluid flow in the presence of Lorentz forces is reported. Different shapes of nanoparticles are considered. The impacts of Joule heating, viscous dissipation and thermal radiation are added in the governing equations. The Homotopy Analysis Method (HAM) is selected to solve Ordinary Differential Equations (ODEs). The roles of nanofluid volume fraction, shape of the nanoparticles, Hartmann number, porosity parameter, melting parameter, Eckert number are presented graphically. The results reveal that choosing a platelet shape leads to the maximum Nusselt number. The temperature reduces with the rise of the melting parameter but velocity increases with the increase of the melting parameter. Nu augments with the increase of the Lorentz forces while it reduces with the augment of porosity and melting parameters.
Energy Technology Data Exchange (ETDEWEB)
Tafreshi, H. Vahedi; Ercan, E.; Pourdeyhimi, B. [North Carolina State University, Nonwovens Cooperative Research Center, Raleigh, NC (United States)
2006-07-15
In this note, the evaporation rate from a vertical wet fabric sheet is calculated using a free convection heat transfer correlation. Chilton-Colburn analogy is used to derive a mass transfer correlation from a heat transfer correlation proposed by Churchill and Chu for free convection from a vertical isothermal plate. The mass transfer rate obtained from this expression has shown excellent agreement with experimental data. (orig.)
Heat transfer in flow past a continuously moving porous flat plate with heat flux
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sarma, Y.V.B.
The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...
Heat transfer and flow in solar energy and bioenergy systems
Xu, Ben
culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected
International Nuclear Information System (INIS)
Bonamy, S.E.; Symons, J.G.
1974-08-01
Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)
Estimating local heat transfer coefficients from thin wall temperature measurements
Gazizov, I. M.; Davletshin, I. A.; Paereliy, A. A.
2017-09-01
An approach to experimental estimation of local heat transfer coefficient on a plane wall has been described. The approach is based on measurements of heat-transfer fluid and wall temperatures during some certain time of wall cooling. The wall was a thin plate, a printed circuit board, made of composite epoxy material covered with a copper layer. The temperature field can be considered uniform across the plate thickness when heat transfer is moderate and thermal resistance of the plate in transversal direction is low. This significantly simplifies the heat balance written for the wall sections that is used to estimate the heat transfer coefficient. The copper layer on the plate etched to form a single strip acted as resistance thermometers that measured the local temperature of the wall.
Transient heat transfer for forced convection flow of helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu
1999-01-01
Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)
Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.
Haque, A K M Mahmudul; Kim, Sedong; Kim, Junhyo; Noh, Jungpil; Huh, Sunchul; Choi, Byeongkeun; Chung, Hanshik; Jeong, Hyomin
2018-03-01
This study presents the forced convective heat transfer of a nanofluid consisting of distilled water and different weight concentrations (1 wt% and 2 wt%) of Al2O3 nanoparticles flowing in a vertical shell and tube heat exchanger under counter flow and laminar flow regime with certain constant heat flaxes (at 20 °C, 30 °C, 40 °C and 50 °C). The Al2O3 nanoparticles of about 50 nm diameter are used in the present study. Stability of aqueous Al2O3 nanofluids, TEM, thermal conductivity, temperature differences, heat transfer rate, T-Q diagrams, LMTD and convective heat transfer coefficient are investigated experimentally. Experimental results emphasize the substantial enhancement of heat transfer due to the Al2O3 nanoparticles presence in the nanofluid. Heat transfer rate for distilled water and aqueous nanofluids are calculated after getting an efficient setup which shows 19.25% and 35.82% enhancement of heat transfer rate of 1 wt% and 2 wt% aqueous Al2O3 nanofluids as compared to that of distilled water. Finally, the analysis shows that though there are 27.33% and 59.08% enhancement of 1 wt% Al2O3 and 2 wt% Al2O3 respectively as compared to that of distilled water at 30 °C, convective heat transfer coefficient decreases with increasing heat flux of heated fluid in this experimental setup.
International Nuclear Information System (INIS)
French, R.T.
1975-08-01
Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Heat transfer between immiscible liquids enhanced by gas bubbling
International Nuclear Information System (INIS)
Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.
1982-08-01
The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model
Boiling and quenching heat transfer advancement by nanoscale surface modification.
Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N
2017-07-21
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
A review on boiling heat transfer enhancement with nanofluids.
Barber, Jacqueline; Brutin, David; Tadrist, Lounes
2011-04-04
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.
Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies
Directory of Open Access Journals (Sweden)
Manan Singh
2016-11-01
Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.
NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW
Directory of Open Access Journals (Sweden)
W.H.Azmi
2013-06-01
Full Text Available Nanoﬂuids offer a significant advantage over conventional heat transfer ﬂuids and consequently, they have attracted much attention in recent years. The engineered suspension of nano-sized particles in a base liquid alters the properties of these nanofluids. Many researchers have measured and modeled the thermal conductivity and viscosity of nanofluids. The estimation of forced convective heat transfer coefficients is done through experiments with either metal or nonmetal solid particles dispersed in water. Regression equations are developed for the determination of the thermal conductivity and viscosity of nanofluids. The parameters influencing the decrease in convection heat transfer, observed by certain investigators, is explained.
Heat Transfer and Cooling Techniques at Low Temperature
Baudouy, B
2014-07-17
The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.
Directory of Open Access Journals (Sweden)
Huixing Li
2016-05-01
Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.
Understanding Transfer as Personal Change: Concerns, Intentions, and Resistance
Young, Jeani C.
2013-01-01
Adult education is about change. Change in knowledge and understanding. Change in attitudes and beliefs. Change in skills and behaviors. The transfer that adult educators and learners often want to achieve is that change. In situations where transfer equals change, models of change can be useful to describe, support, and predict transfer. This…
Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers
Directory of Open Access Journals (Sweden)
Hanuszkiewicz-Drapała Małgorzata
2016-03-01
Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
Experimental study on local heat transfer characteristics of porous media with internal heat source
International Nuclear Information System (INIS)
Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping
2008-01-01
Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)
Heat transfer characteristics of alkali metals flowing across tube banks
International Nuclear Information System (INIS)
Sugiyama, K.; Ishiguro, R.; Kojima, Y.; Kanaoka, H.
2004-01-01
For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)
Heat transfer characteristics of building walls using phase change material
Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.
2017-03-01
Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.
Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger
International Nuclear Information System (INIS)
Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan
2012-01-01
In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)
Numerical simulation of heat transfer in metal foams
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
Natural heat transfer augmentation in passive advanced BWR plants
International Nuclear Information System (INIS)
Gamble, R.E.; Peterson, P.F.; Greif, R.
2001-01-01
In the European Simplified Boiling Water Reactor (ESBWR), the long-term post-accident containment pressure is determined by the combination of non condensable gas pressure and steam pressure in the wet well gas space. Since there are no active systems for heat removal in the wet well, energy transmitted to the wet well gas space, by a variety of means, must be removed by passive heat transfer to the walls and suppression pool (SP). The cold suppression pool located below the hotter gas space provides a stable configuration in which convection currents are suppressed thus limiting heat and mass transfer between the gas space and pool. However, heat transfer to the walls results in natural circulation currents that can augment the heat and mass transfer to the pool surface. Using a simplified model, parametric studies are carried out to show that augmentation of the order of magnitude expected can significantly impact the heat and mass transfer to the pool. Additionally a review of available literature in the area of augmentation and mixed convection of this type is presented and indicates the need for additional experimental work in order to develop adequate models for heat and mass transfer augmentation in the configuration of a BWR suppression pool. (author)
Heat transfer and thermoregulation in the largemouth blackbass, Micropterus salmoides
Energy Technology Data Exchange (ETDEWEB)
Erskine, D. J.
1976-01-01
An energy budget equation, based on energy budget theory for terrestrial organisms, was developed to describe the heat energy exchange between a largemouth bass (Micropterus salmoides) and its aquatic environment. The energy budget equation indicated that convection and a combined conduction-convection process were major avenues of heat exchange for a fish. Solid aluminum castings were used to experimentally determine heat transfer coefficients for the largemouth bass at water velocities covering the free and forced convection ranges. Heat energy budget theory was applied to the casting data and the derived coefficients were used to characterize heat exchange between the bass and its aquatic habitat. The results indicate that direct transfer of heat from the body surface is the major mechanism of heat exchange for a fish.
Experimental study of droplet-wall direct contact heat transfer using infrared thermometry
Energy Technology Data Exchange (ETDEWEB)
Park, Junseok; Kim, Hyungdae [Kyung Hee Univ., Yongin (Korea, Republic of); Jung, Jun Yeong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-10-15
To prevent the fuel assembly melting, emergency core cooling systems are immediately initiated to flood the fuel assembly from the bottom. It is expected that the heated fuel temperature during the reflooding phase is higher than Leidenfrost temperature of water. When water rewets the fuel surface at the temperature higher than Leidenfrost temperature, quenching phenomenon occurs and a lot of droplets are generated near the quenching front. Dispersed droplet flow is formed above the quenching front. Direct contact heat transfer of droplets with the heated wall likely contributes to the cooling of the upper part of the fuel rods. However, the full understanding of complex fluid flow and heat transfer characteristics during droplet-wall collision is very difficult during LOCA. In this regard, this effect has been neglected in the previous studies, and thus prediction of fuel rod temperature has still a large uncertainty. A few years later, some research groups studied the effects of droplets on heat transfer and developed the prediction models for the fuel temperature. However, these model considered heat transfer mechanism without consideration of dynamics. Therefore, it is necessary to study the heat transfer mechanism considering the dynamic effects on single droplet-wall collision. We used a technique with the spatially and temporally synchronized high-speed camera and IR camera. The high-speed camera is used to measure droplet diameter, collision angle and velocity. IR camera is used to examine temperature changes on wall. Droplet-wall heat transfer phenomena are observed on the basis of wall temperature and collision angle. This study reviewed the previous our studies about the effects of wall temperature and collision angle on heat transfer characteristics of single droplet-wall collision. We compared the experimental data with the prediction by droplet-wall direct heat transfer correlation proposed by Bajorek and Young.
Topological design of heat dissipating structure with forced convective heat transfer
International Nuclear Information System (INIS)
Yoon, Gil Ho
2010-01-01
This paper discusses the use of the topology optimization formulation for designing a heat dissipating structure that utilizes forced convective heat transfer. In addition to forced convection, there is also natural convection due to natural buoyancy forces induced by local heating inside fluid. In the present study, the temperature distribution due to forced convection, neglecting buoyancy and viscous dissipation inside fluid, was simulated and optimized. In order to analyze the heat transfer equation with forced convective heat loss and the Navier-Stokes equation, a common sequential computational procedure for this thermo/hydraulic characteristic was implemented. For topology optimization, four material properties were interpolated with respect to spatially defined density design variables: the inverse permeability in the Navier-Stokes equation, the conductivity, density, and the specific heat capacity of the heat transfer equation. From numerical examples, it was found that the balance between the conduction and convection of fluid is of central importance to the design of heat dissipating structures
Heat transfer across the interface between nanoscale solids and gas.
Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao
2011-12-27
When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.
Heat and Mass Transfer in an L Shaped Porous Medium
Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.
2017-08-01
This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.
Heat transfer during forced convection condensation inside horizontal tube
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N. [M.M.M. Engineering College, Gorakhpur, Uttar Pradesh (India). Dept. of Mechanical Engineering; Varma, H.K.; Gupta, C.P. [Roorkee Univ., Uttar Pradesh (India). Dept. of Mechanical and Industrial Engineering
1995-03-01
This paper presents the results of an experimental investigation on heat transfer behaviour during forced convection condensation inside a horizontal tube for wavy, semi-annular and annular flows. A qualitative study was made of the effect of various parameters - refrigerant mass flux, vapour quality, condensate film temperature drop and average vapour mass velocity - on average condensing-heat transfer coefficient. Akers-Rosson correlations have been found to predict the heat transfer coefficients within {+-} 25% for the entire range of data. A closer examination of the data revealed that the nature of the relation for the heat transfer coefficient changes from annular and semi-annular flow to wavy flow. Akers-Rosson correlations with changed constant and power have been recommended for the two flow regimes. (author)
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.
Investigation into the heat transfer performance of helically ribbed surfaces
International Nuclear Information System (INIS)
Firth, R.J.
1981-12-01
The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)
Heat and mass transfer in frozen porous media
Loon, van W.
1991-01-01
In this thesis processes and parameters associated with heat and mass transfer in frozen porous media both on a theoretical and empirical basis are studied. To obtain the required measurements some existing measuring methods needed to be
Heat transfer problems in ductus of retangular cross section
International Nuclear Information System (INIS)
Cintra Filho, J. de S.
1976-01-01
The finite difference method is used to resolve the problem of heat transfer in the rectangular ducts in turbulent conditions. Velocities, temperatures and diffusivity distributions are determined. A computer programme is also developed for such calculations [pt
Heat radiation and transfer for point particles in arbitrary geometries
Asheichyk, Kiryl; Müller, Boris; Krüger, Matthias
2017-10-01
We study heat radiation and heat transfer for pointlike particles in a system of other objects. Starting from exact many-body expressions found from scattering theory and fluctuational electrodynamics, we find that transfer and radiation for point particles are given in terms of the Green's function of the system in the absence of the point particles. These general expressions contain no approximation for the surrounding objects. As an application, we compute the heat transfer between two point particles in the presence of a sphere of arbitrary size and show that the transfer is enhanced by several orders of magnitude through the presence of the sphere, depending on the materials. Furthermore, we compute the heat emission of a point particle in front of a planar mirror. Finally, we show that a particle placed inside a spherical mirror cavity does not radiate energy.
Non-Uniform Heat Transfer in Thermal Regenerators
DEFF Research Database (Denmark)
Jensen, Jesper Buch
, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled......, geometries was performed. The objective of performing these experiments was in part to eval- uate the direct applicability of the model, which only simulates one half of the regenerator cycle, to a practical situation where the regenerator is running con- tinuously by comparing the results gained......, and decreasing the plate spacing beoynd a certain point can even hurt the performance. Inter-channel heat transfer effects - or thermal cross-talk - have also been in- vestigated and the results show that not only the size of the plate spacings, but also their mutual order, can affect the heat transfer...
Recent developments in the modeling of boiling heat transfer mechanisms
International Nuclear Information System (INIS)
Podowski, M.Z.
2009-01-01
Due to the importance of boiling for the analysis of operation and safety of nuclear reactors, extensive efforts have been made in the past to develop a variety of methods and tools to study boiling heat transfer for various geometries and operating conditions. Recent progress in the computational multiphase fluid dynamics (CMFD) methods of two- and multiphase flows has already started opening up new exciting possibilities for using complete multidimensional models to predict the operation of boiling systems under both steady-state and transient conditions. However, such models still require closure laws and boundary conditions, the accuracy of which determines the predictive capabilities of the overall models and the associated CMFD simulations. Because of the complexity of the underlying physical phenomena, boiling heat transfer has traditionally been quantified using phenomenological models and correlations obtained by curve-fitting extensive experimental data. Since simple heuristic formulae are not capable of capturing the effect of various specific experimental conditions and the associated wide scattering of data points, most existing correlations are characterized by large uncertainties which are typically hidden behind the 'logarithmic scale' format of plots. Furthermore, such an approach provides only limited insight into the local phenomena of: nucleation, heated surface material properties, temperature fluctuations, and others. The objectives of this paper are two-fold. First, the state of the art is reviewed in the area of modeling concepts for both pool boiling and forced-convection (bulk and subcooled) boiling. Then, new results are shown concerning the development of new mechanistic models and their validation against experimental data. It is shown that a combination of the proposed theoretical approach with advanced computational methods leads to a dramatic improvement in both our understanding of the physics of boiling and the predictive
International Nuclear Information System (INIS)
Meng Xianke; Sun Zhongning; Xu Guangzhan
2012-01-01
Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average
Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi
2016-03-01
For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.
Evaluation method for radiative heat transfer in polydisperse water droplets
International Nuclear Information System (INIS)
Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki
2008-01-01
Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media
Literature survey of heat transfer enhancement techniques in refrigeration applications
Energy Technology Data Exchange (ETDEWEB)
Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics
1994-05-01
A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study
Herbinger, Florent; Bhouri, Maha; Groulx, Dominic
2017-07-01
In this paper, the use of PCMs for thermal storage of energy in HVAC applications was investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study was dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.
Micro-channel convective boiling heat transfer with flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch
2009-07-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
Cryogenic apparatus for study of near-field heat transfer
Czech Academy of Sciences Publication Activity Database
Králík, Tomáš; Hanzelka, Pavel; Musilová, Věra; Srnka, Aleš; Zobač, Martin
2011-01-01
Roč. 82, č. 5 (2011), 055106:1-5 ISSN 0034-6748 R&D Projects: GA AV ČR IAA100650804 Institutional research plan: CEZ:AV0Z20650511 Keywords : cryogenics * heat measurement * heat radiation * micrometry * radiative transfer * thermistors Subject RIV: BJ - Thermodynamics Impact factor: 1.367, year: 2011
Analysis of slip flow heat transfer between two unsymmetrically ...
Indian Academy of Sciences (India)
This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity ...
Hydrodynamics and heat transfer in cooled active laser mirrors
Shanin, Yu; Chernykh, A.
2017-10-01
The paper describes some features of hydrodynamics and heat exchange in cooling systems of optical units of laser active mirrors. The experimental data on hydraulic resistance and heat transfer are given and summarized for the cooling systems which are the most suitable to such applications – a channel system with an intermittent wall and a wafer cooling system.
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Students' Misconceptions about Heat Transfer Mechanisms and Elementary Kinetic Theory
Pathare, S. R.; Pradhan, H. C.
2010-01-01
Heat and thermodynamics is a conceptually rich area of undergraduate physics. In the Indian context in particular there has been little work done in this area from the point of view of misconceptions. This prompted us to undertake a study in this area. We present a study of students' misconceptions about heat transfer mechanisms, i.e. conduction,…
Computational heat transfer analysis and combined ANN–GA ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... In the devices like laptops, microprocessors, the electric circuits generate heat while performing work which necessitates the use of fins. In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ANSYS ...
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
one defines criterium and method of optimization, the inverse heat transfer prob- lem transforms into extreme case. Now, the task of optimization is to determine most favourable ratio between heat flux parameters in order to preserve exploitation properties of the tool and workpiece. Keywords. Machining process; thermal ...
Computational heat transfer analysis and combined ANN–GA ...
Indian Academy of Sciences (India)
In the devices like laptops, microprocessors, the electric circuits generate heat while performing work which necessitates the use of fins. In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ANSYS FLUENT© .
International symposium on transient convective heat transfer: book of abstracts
International Nuclear Information System (INIS)
1996-01-01
The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
Abstract. The present note deals with the effects of radiative heat transfer and free convection in. MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impul- sively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous ...
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic solutions for the steady velocity, temperature and concentration. The parameters ...
An experimental investigation of turbulent flow heat transfer through ...
African Journals Online (AJOL)
An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...
Local heat transfer coefficient for turbulent flow in rod bundles
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1983-03-01
The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004 [pt
Heat Transfer in the LCCM Thermal Reserve Battery
2009-09-01
CEDEX ALLEE SAINTE HELENE 18021 FRANCE 4 EAGLE PICHER TECHNOLOGIES, LLC ATTN C LAMB ATTN J FERRARO ATTN M STEELE ATTN R...Heat Transfer in the LCCM Thermal Reserve Battery by Frank C. Krieger and Michael Ding ARL-TR-4843 September 2009...Transfer in the LCCM Thermal Reserve Battery Frank C. Krieger and Michael Ding Sensors and Electron Devices Directorate, ARL
Verification of Conjugate Heat Transfer Models in a Closed Volume with Radiative Heat Source
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2016-01-01
Full Text Available The results of verification of mathematical model of convective-conductive heat transfer in a closed volume with a thermally conductive enclosing structures are presented. Experiments were carried out to determine the temperature of floor premises in the working conditions of radiant heating systems. Comparison of mathematical modelling of temperature fields and experiments showed their good agreement. It is concluded that the mathematical model of conjugate heat transfers in the air cavity with a heat-conducting and heat-retaining walls correspond to the real process of formation of temperature fields in premises with gas infrared heaters system.
Mathematical modeling of heat transfer in production premises heated by gas infrared emitters
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2017-01-01
Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.
Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves
Zhang, R. P.
2017-04-01
A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.
Heat transfer in intermediate heat exchanger under low flow rate conditions
International Nuclear Information System (INIS)
Mochizuki, H.
2008-01-01
The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)
A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation
Lee, C. K.
2014-01-01
This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…
Introduction to heat transfer test setup for the SCRAP receiver
Lubkoll, Matti; Harms, Thomas M.; von Backström, Theodor W.
2017-06-01
The Spiky Central Receiver Air Pre-heater (SCRAP) receiver is a novel external tubular metallic central receiver concept. The SCRAP receiver is designed to increase an air-receivers solar-thermal performance. This is aimed to be achieved by enhancing heat transfer to the pressurized air-stream within the absorber assemblies (spikes) by utilizing an internally finned tube geometry. The fin shape is defined to create rectangular ducts as passages for the air flow, therewith a high heat transfer coefficient. The spikes are arranged in such a way that they trap incoming concentrated radiation (reduce reflection losses) and minimize thermal radiation losses from the receiver to ambient. In previous work, the modeling of a SCRAP receiver was discussed on. This included the modeling of the internal air flow and heat transfer within a spike, analysis of the optical characteristics of a SCRAP receiver and the impingement heat transfer capabilities in the spike tip (exposed to the highest flux). Further, analysis of the thermal interaction of spikes with one another and with ambient (convective and radiative heat loss) permitted drawing of first conclusions of the receiver performance potential. To validate the models predicting the pressurized air flow and heat transfer within a spike, an experimental test setup was designed, constructed and built at the heat transfer laboratories at Stellenbosch University. This work introduces the design of the test setup and will discuss preliminary results obtained during its commissioning. From first analysis the predictions made for the pressure drop within the internally finned section appear adequate. The heat transfer behavior will require further detailed analysis to develop sufficient confidence to allow for conclusions. Initial results, however, show good general agreement between measured and simulated data.
Heat Transfer Experiments on a Pulse Detonation Driven Combustor
2011-03-01
in this experiment was to determine the design for the heat exchanger. Utilizing heat transfer principals ( Incropera , et al. 2007) a spreadsheet...flow is attained from a source ( Incropera , et al. 2007). From these numbers, q is calculated: , ,hg,in hg,outq T Thg in hg outp pm C C Eq...convection and radiation calculations for PDC tube and heat exchanger The following formulas and methods ( Incropera , et al. 2007) were used in
Determining convective heat transfer coefficient using phoenics software package
Energy Technology Data Exchange (ETDEWEB)
Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)
1997-12-31
The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.
Heat transfer and pressure drop in flow boiling in microchannels
Saha, Sujoy Kumar
2016-01-01
This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.
Duan, Luanfang; Qi, Chonggang; Ling, Xiang; Peng, Hao
2018-03-01
In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE) was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 - 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder's model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3
International Nuclear Information System (INIS)
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems
Supercritical water gasification with decoupled pressure and heat transfer modules
Dibble, Robert
2017-09-14
The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.
Resonant supercollisions and electron-phonon heat transfer in graphene
Tikhonov, K. S.; Gornyi, I. V.; Kachorovskii, V. Yu.; Mirlin, A. D.
2018-02-01
We study the effects of strong impurities on heat transfer in a coupled electron-phonon system in disordered graphene. A detailed analysis of the electron-phonon heat exchange assisted by such an impurity through the "resonant supercollision" mechanism is presented. We further explore the local modification of heat transfer in a weakly disordered graphene due to a resonant scatterer and determine spatial profiles of the phonon and electron temperature around the scatterer under electrical driving. Our results are consistent with recent experimental findings on imaging resonant dissipation from individual atomic defects.
Analysis of forced convection heat transfer to supercritical carbon dioxide
International Nuclear Information System (INIS)
Ko, H.S.; Sakurai, Katsumi; Okamoto, Koji; Madarame, Haruki
2000-01-01
The supercritical carbon dioxide flow has been visualized under forced convection by a Mach-Zehnder interferometry system. The forced convection heat transfer has been examined by an one-sided wall heater in the vertical rectangular test section. Temperature and density distributions of the heated carbon dioxide inside the test section have been calculated from the measured interferometry projections for the visible interferograms conditions. The relationship of the temperature distributions with the physical conditions has been analyzed to inspect the forced convection heat transfer of the supercritical carbon dioxide flow. (author)
A SDHW system with two-phase heat transfer fluid
International Nuclear Information System (INIS)
Konstantinou, K.; Belessiotis, V.; Hristoforou, A.
1993-12-01
Full text: This report examines the thermal performance of a SDHW system which uses ethanol 100% pure as heat transfer medium to the water in the tank. The energy transfer takes place through a change of phase of ethanol from liquid to vapor effected by the processes of boiling and condensation. A complete heat transfer analysis is performed, focused on the mechanisms of boiling and condensation. This method serves as a basic technique for the thermal evaluation of systems using two-phase fluids. (author)
Heat transfer enhancement in two-start spirally corrugated tube
Directory of Open Access Journals (Sweden)
Zaid S. Kareem
2015-09-01
Full Text Available Various techniques have been tested on heat transfer enhancement to upgrade the involving equipment, mainly in thermal transport devices. These techniques unveiled significant effects when utilized in heat exchangers. One of the most essential techniques used is the passive heat transfer technique. Corrugations represent a passive technique. In addition, it provides effective heat transfer enhancement because it combined the features of extended surfaces, turbulators and artificial roughness. Therefore, A Computational Fluid Dynamics was employed for water flowing at low Reynolds number in spiral corrugated tubes. This article aimed for the determination of the thermal performance of unique smooth corrugation profile. The Performance Evaluation Criteria were calculated for corrugated tubes, and the simulation results of both Nusselt number and friction factor were compared with those of standard plain and corrugated tubes for validation purposes. Results showed the best thermal performance range of 1.8–2.3 for the tube which has the severity of 45.455 × 10−3 for Reynolds number range of 100–700. The heat transfer enhancement range was 21.684%–60.5402% with friction factor increase of 19.2–36.4%. This indicated that this creative corrugation can improve the heat transfer significantly with appreciably increasing friction factor.
Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N
2018-04-05
Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.
Mixed convection heat transfer experiments using analogy concept
International Nuclear Information System (INIS)
Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea
2009-01-01
A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number
Modelling of heat and mass transfer processes in neonatology
Energy Technology Data Exchange (ETDEWEB)
Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Modelling of heat and mass transfer processes in neonatology
International Nuclear Information System (INIS)
Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C
2008-01-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices
Modeling of Radiative Heat Transfer in an Electric Arc Furnace
Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen
2017-12-01
Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.
Numerical investigation of heat transfer in flat vortex channels
Directory of Open Access Journals (Sweden)
N. V. Kukshinov
2014-01-01
Full Text Available The vortex channels is the method of heat transfer intensification which combines increase of surface area (finned wall and enhanced convective cooling. The vortex channels is a duct formed by combination of two plates with milled fins intersected at different angles. The investigation of heat transfer and hydraulic characteristics in vortex channels was carried out by means of CFD. Flow was simulated in wide range of Reynolds numbers, heat and hydraulic characteristics were obtained for this duct. It was shown that the sum intensification effect is comprised of convective component and the effect of surface area increase. It was shown that flat vortex channels provide to transfer the higher heat flux, than finned wall at the same conditions.
BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME
Directory of Open Access Journals (Sweden)
Suresh Chandrasekhar
2016-08-01
Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Sweeping jet for convective heat transfer of a flat plate
Park, Tongil; Kara, Kursat; Kim, Daegyoum
2017-11-01
A fluidic oscillator, which generates unsteady sweeping jet without any actuator and moving parts, has received much attention due to its attractive features: high durability to shock and vibration and no electromagnetic interference. In this work, we apply the fluidic oscillator to improve the performance of convective heat transfer. The sweeping jet impinges vertically on a heated flat plate. By varying Reynolds number and nozzle-to-plate spacing, we experimentally investigate the characteristics of a heat transfer rate of the plate and examine flow fields to find the flow characteristics responsible for enhancing heat transfer. Temperature on the plate was measured with thermocouples, and flow fields were obtained with planar particle image velocimetry. From the flow fields, dominant flow structure is extracted using proper orthogonal decomposition.
Polymeric film application for phase change heat transfer
Bart, Hans-Jörg; Dreiser, Christian
2018-01-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
Bibliography on augmentation of convective heat and mass transfer
Energy Technology Data Exchange (ETDEWEB)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report.
Bibliography on augmentation of convective heat and mass transfer
International Nuclear Information System (INIS)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
Cross-flow heat transfer in fixed bed
Ma, Hongfang; Zhang, Haitao; Ying, Weiyong; Fang, Dingye
2013-06-01
Radial flow reactor operated at cross-flow heat transfer is focused for large scale methanol synthesis. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on the cross-flow heat transfer were investigated and results show that the temperature profile of the area in front of the heating pipe is slightly affected by all the operating conditions. The main area whose temperature profile is influenced is located behind the heating pipe. The heat transfer direction is related to the direction of the flow. In order to obtain the basic parameters for radial flow reactor designing calculation, the dimensionless number group method was used for data fitting of the bed effective thermal conductivity and the wall heat transfer coefficient which were calculated by the mathematical model with the product of Reynolds number and Prandtl number. The comparison of experimental data and calculated values shows that the calculated values fit the experimental data satisfactorily and the formulas can be used for reactor designing calculation.
Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.
Shahriari, Arjang; Wurz, Jillian; Bahadur, Vaibhav
2014-10-14
The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid toward the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperatures exceeding 500 °C, which is more than 8 times the Leidenfrost superheat for organic solvents. Robust Leidenfrost state suppression is observed for a variety of liquids, ranging from low electrical conductivity organic solvents to electrically conducting salt solutions. Elimination of the vapor layer increases heat dissipation capacity by more than 1 order of magnitude. Heat removal capacities exceeding 500 W/cm(2) are measured, which is 5 times the critical heat flux (CHF) of water on common engineering surfaces. Furthermore, the heat transfer rate can be electrically controlled by the applied voltage. The underlying science is explained via a multiphysics analytical model which captures the coupled electrostatic-fluid-thermal transport phenomena underlying electrostatic Leidenfrost state suppression. Overall, this work uncovers the physics underlying dryout prevention and demonstrates electrically tunable boiling heat transfer with ultralow power consumption.
A characteristic correlation for heat transfer over serrated finned tubes
International Nuclear Information System (INIS)
Anoop, B.; Balaji, C.; Velusamy, K.
2015-01-01
Highlights: • Numerical investigation og heat transfer over serrated finned tubes. • Fins used on the outside of the tubes of a sodium to air heat exchanger. • RANS approach with RNG k–ε model to handle turbulence to handle closure. • Validation with in-house experiments. • Parametric studies culminating in a correlation for Nusselt number. - Abstract: Conjugate heat transfer from serrated fins on the outside of the tubes of a sodium to air tubular heat exchanger of sodium cooled fast breeder reactors, has been investigated by combined experimental and computational approaches. For the latter approach, the RNG k–ε model, which is applicable for a wide range of Reynolds numbers, was used for turbulence closure. The numerical model employed was validated by conducting in-house heat transfer experiments on a single serrated finned tube. A detailed parametric study has been carried out to investigate the effect of serration depth, fin pitch, fin height and fin thickness. In addition to pure cross flow, the effect of angle of attack of the flow on the heat transfer also has been studied. A correlation for determining the Nusselt number over a serrated finned tube has been proposed taking into account the serration parameters. This is expected to be useful in the design of sodium to air heat exchangers of fast breeder reactors
Electromagnetic enhancement of turbulent heat transfer
Kenjeres, S.
2008-01-01
We performed large eddy simulations (LES) of the turbulent natural convection of an electrically conductive fluid (water with 7% Na2SO4 electrolyte solution) in a moderate (4:4:1) aspect ratio enclosure heated from below and cooled from above and subjected to external nonuniformly distributed
Verification and Validation of Heat Transfer Model of AGREE Code
Energy Technology Data Exchange (ETDEWEB)
Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)
2013-05-15
The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.
Particle shape effect on heat transfer performance in an oscillating heat pipe
Directory of Open Access Journals (Sweden)
Chen Hsiu-hung
2011-01-01
Full Text Available Abstract The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP was investigated experimentally. A binary mixture of ethylene glycol (EG and deionized water (50/50 by volume was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.
Directory of Open Access Journals (Sweden)
Cieśliński Janusz T.
2016-09-01
Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.
The effect of plate heat exchanger’s geometry on heat transfer
Directory of Open Access Journals (Sweden)
Oana GIURGIU
2014-11-01
Full Text Available The study presents further Computational Fluid Dynamics (CFD numerical analysis for two models of plate heat exchangers. Comparatively was studied the influence of geometric characteristics of plates on the intensification process of heat exchange. For this purpose, it was examined the distribution of velocity and temperatures fields on active plate height. Heat transfer characteristics were analysed through the variation of mass flow on the primary heat agent.
Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles
Zhou, Chen; Wang, Zhijin; Hou, Tianjiao
2017-11-01
This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.
Directory of Open Access Journals (Sweden)
B Sreedhara Rao
2015-04-01
Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.
3-D heat transfer computer calculations of the performance of the IAEA's air-bath calorimeters
International Nuclear Information System (INIS)
Elias, E.; Kaizermann, S.; Perry, R.B.; Fiarman, S.
1989-01-01
A three dimensional (3-D) heat transfer computer code was developed to study and optimize the design parameters and to better understand the performance characteristics of the IAEA's air-bath calorimeters. The computer model accounts for heat conduction and radiation in the complex materials of the calorimeter and for heat convection and radiation at its outer surface. The temperature servo controller is modelled as an integral part of the heat balance equations in the system. The model predictions will be validated against test data using the ANL bulk calorimeter. 11 refs., 6 figs
Heat transfer and fluid flow in minichannels and microchannels
Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R
2014-01-01
Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan
Flow and heat transfer regimes during quenching of hot surfaces
International Nuclear Information System (INIS)
Barnea, Y.; Elias, E.
1993-05-01
Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
Energy Technology Data Exchange (ETDEWEB)
Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota
2015-06-17
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs
Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids
International Nuclear Information System (INIS)
Huminic, Gabriela; Huminic, Angel
2013-01-01
Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water
Heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations
International Nuclear Information System (INIS)
Fahmy, A.S.A.; Mariy, A.H.; Mahmoud, S.I.; Ibrahim, N.A.
1987-01-01
An experimental investigation is carried out study the behaviour of heat transfer in pool boiling from a vertical and inclined heated tube at atmospheric pressure. An imperial correlation joining the different parameters affecting the heat transfer coefficient in pool boiling for an electrically heated tube at various inclinations is developed. Two test sections (zircaloy-4 and stainless steel) of 16 n n outer diameter and 120 nm length are investigated. Four levels of heat flux are used for heating the two lest sections (e.g. 381, 518, 721 and 929 k.watt/n 2). The maximum surface temperature achieved is 146.5 degree c for both materials, and the maximum bulk temperature is 95 degree C. It is found that the average heat transfer coefficient is inversely proportional with heated length l, where it reaches a constant value in the horizontal position. The heat transfer coefficient curves at various inclinations with respect to the heated tube length pass around one point which is defined as limit length
HEAT TRANSFER ENHANCEMENT WITH NANOFLUIDS – A REVIEW
Directory of Open Access Journals (Sweden)
A.M. Hussein
2013-06-01
Full Text Available This paper presents a review of the studies undertaken on convection heat transfer with nanofluids. Initial studies were directed towards the determination of the properties of nanofluids, especially their thermal conductivity and viscosity. The studies indicate that thermal conductivity and viscosity increase with an increase in the concentration of the nanofluid. Experiments were conducted with different nanofluids, at various concentrations and temperature ranges, for the estimation of the heat transfer coefficient and friction factor for water-based nanofluids. All the studies confirmed enhancement of the heat transfer coefficient with an increase in concentration. The experimental ranges of temperature undertaken by the authors were different for different nanofluids. Certain studies with smaller particle sizes indicated an increase in heat transfer enhancements when compared with values obtained when using larger particle sizes. It is observed that the concentration of the nanofluid, the operating temperature, the particle size and shape, together with the material of the nanoparticle dispersed in the base liquid, have significant influence on the heat transfer coefficient. All the studies indicate a nominal increase in pressure drop.
Super-Planckian far-field radiative heat transfer
Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.
2018-01-01
We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Heat Transfer Phenomena in Concentrating Solar Power Systems.
Energy Technology Data Exchange (ETDEWEB)
Armijo, Kenneth Miguel; Shinde, Subhash L.
2016-11-01
Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .
Condensation heat transfer on natural convection at the high pressure
International Nuclear Information System (INIS)
Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park
2007-01-01
The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure
Heat transfer degradation during condensation of non-azeotropic mixtures
Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col
2017-11-01
International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.
Theoretical and numerical study of heat transfer deterioration in HPLWR
International Nuclear Information System (INIS)
Palko, D.; Anglart, H.
2007-01-01
A numerical investigation of the Heat Transfer Deterioration (HTD) phenomena is performed using the low-Re k - ω turbulence model. Steady state Reynolds-averaged Navier-Stokes equations are solved together with equations for the transport of enthalpy and turbulence. Equations are solved for the supercritical water flow at different pressures, using water properties from the standard IAPWS tables. All cases are extensively validated against experimental data. The influence of buoyancy on the HTD is demonstrated for different mass flow rates in the heated pipes. Numerical results prove that the RANS low-Re turbulence modeling approach is fully capable to simulate the heat transfer in pipes with the water flow at supercritical pressures. A study of buoyancy influence shows that for the low mass flow rates of coolant, the influence of buoyancy forces on the heat transfer in heated pipes is significant. For the high flow rates, buoyancy influence could be neglected and there are clearly other mechanisms causing the decrease in heat transfer at high coolant flow rates. (author)
International Nuclear Information System (INIS)
Kim, Yoon Ho; Moon, Jung Eun; Lee, Kyu Jung; Choi, Young Jong
2008-01-01
The performance experiments for a microchannel Printed Circuit Heat Exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 ∼ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of 40 .deg. C ∼ 50 .deg. C while that of the cold-side were fixed at 20 .deg. C. In the flow pattern, the counter flow was provided 6.8% and 10 ∼ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE
Directory of Open Access Journals (Sweden)
Jang-Won Seo
2015-05-01
Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.
Directory of Open Access Journals (Sweden)
Aboaltabooq Mahdi Hatf Kadhum
2016-01-01
Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.
A simple heat transfer model for a heat flux plate under transient conditions
International Nuclear Information System (INIS)
Ryan, L.; Dale, J.D.
1985-01-01
Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)
International Nuclear Information System (INIS)
Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi
2005-01-01
In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)
Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing
International Nuclear Information System (INIS)
AbuRomia, M.M.; Chu, A.W.; Cho, S.M.
1976-01-01
Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted
Exergy in near-field electromagnetic heat transfer
Iizuka, Hideo; Fan, Shanhui
2017-09-01
The maximum amount of usable work extractable from a given radiative heat flow defines the exergy. It was recently noted that the exergy in near-field radiative heat transfer can exceed that in the far-field. Here, we derive a closed form formula of exergy in the near-field heat transfer between two parallel surfaces. This formula reveals that, for a given resonant frequency, the maximum exergy depends critically on the resonant linewidth, and there exists an optimal choice of the linewidth that maximizes the exergy. Guided by the analytical result, we show numerically that with a proper choice of doping concentration, the heat flow between two properly designed SiC-coated heavily doped silicon regions can possess exergy that is significantly higher compared to the heat flow between two SiC regions where the heat flow is carried out by phonon-polaritons. Our work indicates significant opportunities for either controlling material properties or enhancing the fundamental potential for near-field heat transfer in thermal energy conversion through the approach of meta-material engineering.
Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe
International Nuclear Information System (INIS)
Cui, Xiaoyu; Zhu, Yue; Li, Zhihua; Shun, Shende
2014-01-01
Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP. - Highlights: •The thermal mechanisms altered accordingly with the operation features in the PHP. •Unlike conventional heat pipes, continuous temperature soaring would not happen in the PHP. •Before the oscillation start-up, there existed a heat-transfer limit for the relatively stagnated flow in the PHP. •A limit of thermal performance existed in the PHP at relatively high heat inputs
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
Simulation of Fluid Flow and Heat Transfer in Porous Medium Using Lattice Boltzmann Method
Wijaya, Imam; Purqon, Acep
2017-07-01
Fluid flow and heat transfer in porous medium are an interesting phenomena to study. One kind example of porous medium is geothermal reservoir. By understanding the fluid flow and heat transfer in porous medium, it help us to understand the phenomena in geothermal reservoir, such as thermal change because of injection process. Thermal change in the reservoir is the most important physical property to known since it has correlation with performance of the reservoir, such as the electrical energy produced by reservoir. In this simulation, we investigate the fluid flow and heat transfer in geothermal reservoir as a simple flow in porous medium canal using Lattice Boltzmann Method. In this simulation, we worked on 2 dimension with nine vectors velocity (D2Q9). To understand the fluid flow and heat transfer in reservoir, we varied the fluid temperature that inject into the reservoir and set the heat source constant at 410°C. The first variation we set the fluid temperature 45°C, second 102.5°C, and the last 307.5°C. Furthermore, we also set the parameter of reservoir such as porosity, density, and injected fluid velocity are constant. Our results show that for the first temperature variation distribution between experiment and simulation is 92.86% match. From second variation shows that there is one pick of thermal distribution and one of turbulence zone, and from the last variation show that there are two pick of thermal distribution and two of turbulence zone.
Fem Formulation of Heat Transfer in Cylindrical Porous Medium
Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.
2017-08-01
Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.
Computation of turbulent flow and heat transfer in subassemblies
International Nuclear Information System (INIS)
Slagter, W.
1979-01-01
This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development
Magnetic nanofluid properties as the heat transfer enhancement agent
Directory of Open Access Journals (Sweden)
Roszko Aleksandra
2016-01-01
Full Text Available The main purpose of this paper was to investigate an influence of various parameters on the heat transfer processes with strong magnetic field utilization. Two positions of experimental enclosure in magnetic environment, two methods of preparation and three different concentrations of nanoparticles (0.0112, 0.056 and 0.112 vol.% were taken into account together with the magnetic field strength. Analysed nanofluids consisted of distilled water (diamagnetic and Cu/CuO particles (paramagnetic of 40–60 nm size. The nanofluids components had different magnetic properties what caused complex interaction of forces’ system. The heat transfer data and fluid flow structure demonstrated the influence of magnetic field on the convective phenomena. The most visible consequence of magnetic field application was the heat transfer enhancement and flow reorganization under applied conditions.
Nuclear reactor fuel element having improved heat transfer
Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.
1982-03-03
A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
Forced convection heat transfer to air/water vapor mixtures
International Nuclear Information System (INIS)
Richards, D.R.; Florschuetz, L.W.
1986-01-01
Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components. 20 references
Transient flow and heat transfer phenomena in inclined wavy films
Energy Technology Data Exchange (ETDEWEB)
Serifi, Katerina; Bontozoglou, Vasilis [Department of Mechanical and Industrial Engineering, University of Thessaly, 38334, Volos (Greece); Malamataris, Nikolaos A. [Department of Mechanical Engineering, Technological Educational Institution of Western Macedonia, 50100, Kila Kozani (Greece)
2004-08-01
A finite-element numerical scheme is used to study rigorously the flow of an inclined liquid film and the heat transfer from the constant-temperature wall. Regular inlet disturbances are predicted to evolve into periodic or solitary waves depending on the frequency of the forcing. At very low disturbance frequencies parasitic crests appear and the regularity of the wave-train is lost. The effect of a solitary wave-train on heat transfer from the wall is studied, and it is predicted that a stationary temperature distribution develops with periodic flux variation that follows the waves. The thinning of the substrate between successive humps combines with the effect of convection at the crest and tail of the solitary humps to produce heat transfer enhancement significantly above the conduction limit. (authors)
Analysis of heat transfer in a heated tube with a different typed disc insertion
Directory of Open Access Journals (Sweden)
Turan Betül
2012-01-01
Full Text Available Heat transfer and fluid flow can be controlled in a tube by inserting different typed passive elements. The main objective of this study is to control heat transfer and fluid flow using cutting edged disc in pipe. Governing equations of laminar, two-dimensional flow is solved via finite volume technique. The disc is adiabatic and its thickness is 5mm. It is located into axial axis of the tube. Three cases were applied based on the type of the disc as inclination angle of the top side is 45º and 0º. Calculations were performed for different Reynolds number in the range of 335 < Re < 845. Three cases were tested based on types of discs. It is observed that each position exhibits different heat transfer ratio according to studied Reynolds number. The highest heat transfer is formed when inlet flow impinges to flat side of the cutting edged baffle.
Propagation of Fire Generated Smoke and Heat Transfer in Shipboard Spaces with a Heat Source
National Research Council Canada - National Science Library
Vegara, Billy
2000-01-01
The propagation of fire generated smoke and heat transfer into a shipboard space has been computationally modeled using a commercial code generated by Computational Fluid Dynamics Research Corporation (CFDRC...
Variational principles in terms of entransy for heat transfer
International Nuclear Information System (INIS)
Xu, Mingtian
2012-01-01
A variational principle for heat conduction is formulated which results in the steady state heat conduction equation established from the Fourier law. Furthermore based on the thermodynamics in terms of entransy a more general functional is defined for incompressible fluids. We show that extremizing this functional gives rise to the state described by the Navier-Stokes-Fourier equations with vanishing substantive derivatives of the temperature and velocity field. In this sense one may conclude that this variational principle is consistent with the Navier-Stokes-Fourier equations. Therefore the variational principle developed in the present work demonstrates a great advantage over the minimum entropy production principle. -- Highlights: ► A variational principle for heat transfer of incompressible fluid is established in terms of entransy. ► For pure heat conduction the variational principle leads to the classical steady state heat conduction equation. ► For heat convection the variational principle is consistent with the Navier-Stokes-Fourier equations.
International Nuclear Information System (INIS)
Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira
1998-01-01
The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5 μm and specific weight is same as water. The slurry of the MCPCM and water is put into a rectangular enclosure with a heated horizontal cylinder. The heat transfer coefficients of the cylinder were evaluated. Changing the concentrations of PCM and temperature difference between cylinder surface and working fluid. Addition of MCPCM into water, the heat transfer is enhanced significantly comparison with pure water in cases with phase change and is reduced slightly in cases without phase change. (author)
On the transfer of heat by free convection of air in heated vertical channels
International Nuclear Information System (INIS)
Klan, H.
1976-01-01
The heat transfer in upward flow in vertical channels is investigated in this work. The object of the study is to determine the dependence of the heat transfer on the channel dimensions and on the characteristic temperature difference in order to determine the connection between free and forced convection for through-flow channels and in order to be able to give generally applicable rules for optimum design from the technically interesting viewpoint. (orig.) [de
Heat transfer in vapour-liquid flow of carbon dioxide
International Nuclear Information System (INIS)
Yagov, V.V.
2009-01-01
During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO 2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO 2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO 2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)
A numerical study of vorticity-enhanced heat transfer
Wang, Xiaolin; Alben, Silas
2012-11-01
The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.
Experimental observation for the heat transfer in fluids
International Nuclear Information System (INIS)
Salinas R, G.A.
1996-01-01
The heat transfer that occurs into a cavity with a relation 2/1 with constant heat supply in a vertical wall and on the opposed wall at constant temperature is studied. The energy transfer process causes the heat convection that occurs mainly due to energy transport that is present by means of the motion of the fluid itself. Also the heat conduction process by molecular exchange is obtained. During the fluid particle displacements, the high energy regions take contact with the low energy regions resulting by this way the free convection by density differences. The flow can be followed by means of tracers and the changes of density can be registered by optical techniques like interferometry. (Author)
A computational fluid dynamic model for fluidized bed heat transfer
International Nuclear Information System (INIS)
Yusuf, R.; Melaaen, M.C.; Mathiesen, V.
2005-01-01
The objective of this work is to study heat transfer from a heated wall in a gas fluidized bed using the computational fluid dynamic (CFD) approach. An Eulerian-Eulerian simulation of a two dimensional bubbling bed at ambient conditions with a heated wall is carried out on the in-house code FLOTRACS-MP-3D. An empirical as well as a mechanistic model for solid phase thermal conductivity is tested. Effect of operating parameters like velocity and particle size are also investigated. The fluid dynamic model is able to predict the qualitative trends for the influence of operating parameters as well as high heat transfer coefficients observed in gas fluidized beds. (author)
Advances in Enhanced Boiling Heat Transfer From Electronic Components
Honda, Hiroshi; Wei, Jinjia
This paper reviews recent advances in enhancing boiling heat transfer from electronic components immersed in dielectric liquids by use of surface microstructures. The microstructures developed include rough surfaces produced by sanding, vapor blasting hard particles, sputtering of SiO2 followed by wet etching of the surface, chemical vapor deposition of SiO2 film etc., laser-drilled cavities, a brush-like structure (dendritic structure), reentrant and micro-reentrant cavities, microfins, and porous structures fabricated by alumina particle spraying and painting of silver flakes, diamond particles, aluminum particles and copper particles. Heat sink studs with drilled holes, microfins, multi-layered micro-channels and pores, and pin fins with and without microporous coating have also been developed. The height of microstructure ranges from 0 to 12mm. The primary issues discussed are the mitigation of temperature overshoot at boiling incipience, enhancement of nucleate boiling heat transfer and increasing the critical heat flux.
Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.
Gosman, A. D.; And Others
1979-01-01
Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)
A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem
Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.
2010-01-01
To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…
The Power Transistor: A Module on Heat Transfer. Tech Physics Series.
Technical Education Research Center, Cambridge, MA.
This module is intended to provide an understanding of the principles related to heat transfer. The objectives are designed to enable the learner to select and install a device for measuring the temperature of a power transistor, determine power ratings, measure the transient response for a power level and its final equilibrium temperature. Other…
Advanced Computational Methods for Thermal Radiative Heat Transfer
Energy Technology Data Exchange (ETDEWEB)
Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,
2016-10-01
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
Numerical prediction of flow, heat transfer, turbulence and combustion
Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K
1983-01-01
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu
Simple heat transfer correlations for turbulent tube flow
Directory of Open Access Journals (Sweden)
Taler Dawid
2017-01-01
Full Text Available The paper presents three power-type correlations of a simple form, which are valid for Reynolds numbers range from 3·103 ≤ Re ≤ 106, and for three different ranges of Prandtl number: 0.1 ≤ Pr ≤ 1.0, 1.0 < Pr ≤ 3.0, and 3.0 < Pr ≤ 103. Heat transfer correlations developed in the paper were compared with experimental results available in the literature. The comparisons performed in the paper confirm the good accuracy of the proposed correlations. They are also much simpler compared with the relationship of Gnielinski, which is also widely used in the heat transfer calculations.
Radiative heat transfer between nanoparticles enhanced by intermediate particle
Directory of Open Access Journals (Sweden)
Yanhong Wang
2016-02-01
Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.
Fluid flow and heat transfer in rotating porous media
Vadasz, Peter
2016-01-01
This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
Heat transfer simulation for industrial applications. Needs, limitations, expectations
Energy Technology Data Exchange (ETDEWEB)
Peniguel, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches
1997-12-31
The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.) 15 refs.
Heat and mass transfer in porous cavity: Assisting flow
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.
Heat transfer simulation for industrial applications. Needs, limitations, expectations
International Nuclear Information System (INIS)
Peniguel, C.
1997-01-01
The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.)
Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces
Directory of Open Access Journals (Sweden)
Onur YEMENİCİ
2013-04-01
Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2007-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2008-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)
Forced convective heat transfer in a porous plate channel
Jiang, Peixue; Wang, Zhan; Ren, Zepei; Wang, Buxuan
1997-09-01
Forced convective heat transfer in a plate channel filled with metallic spherical particles was investigated experimentally and numerically. The test section, 58 mm×80 mm×5 mm in size, was heated by a 0.4 mm thick plate electrical heater. The coolant water flow rate ranged from 0.015 to 0.833 kg/s. The local wall temperature distribution was measured along with the inlet and outlet fluid temperatures and pressures. The results illustrate the heat transfer augmentation and increased pressure drop caused by the porous medium. The heat transfer coefficient was increased 5-12 times by the porous media although the hydraulic resistance was increased even more. The Nusselt number and the heat transfer coefficient increased with decreasing particle diameter, while the pressure drop decreased as the particle diameter increased. It was found that, for the conditions studied (metallic packed bed), the effect of thermal dispersion did not need to be considered in the physical model, as opposed to a non-metallic packed bed, where thermal dispersion is important.
Near-field heat transfer between multilayer hyperbolic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik; Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Univ. Sherbrooke, PQ (Canada). Dept. of Mechanical Engineering
2017-05-01
We review the near-field radiative heat flux between hyperbolic materials focusing on multilayer hyperbolic meta-materials. We discuss the formation of the hyperbolic bands, the impact of ordering of the multilayer slabs, as well as the impact of the first single layer on the heat transfer. Furthermore, we compare the contribution of surface modes to that of hyperbolic modes. Finally, we also compare the exact results with predictions from effective medium theory.
Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger
International Nuclear Information System (INIS)
Webb, R.L.; Perez-Blanco, H.
1986-01-01
This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement
Enhanced heat transfer characteristics of conjugated air jet impingement on a finned heat sink
Directory of Open Access Journals (Sweden)
Qiu Shuxia
2017-01-01
Full Text Available Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.
Numerical study on condensation heat transfer of trapezoid grooved surfaces
Directory of Open Access Journals (Sweden)
Baojin Qi
2016-05-01
Full Text Available This article presents a numerical analysis and experimental study on condensation heat transfer and fluid flow for filmwise condensation on trapezoid grooved surfaces. First, a physical model was properly simplified based on some reasonable assumptions. Then, the coupled non-linear governing equations for the mass transfer, fluid flow, and two-dimensional thermal conduction were developed. The relationship between z-coordinate and heat transfer was obtained by solving the equations numerically. The influences of groove length and basic angle were discussed. The calculation results showed that the heat flux decreased with increase in groove length, and the decline range also decreased gradually. The calculation results also suggested that the heat flux through groove with α = 60° was lower than the groove with α = 75° at the top of the groove, while the opposite conclusion was obtained at the low parts. The distributions of wall temperature and heat flux on trapezoid groove were also studied systematically. The distribution of surface temperature and heat flux presents obvious lateral inhomogeneity, and the maximum wall temperature and heat flux were both obtained in region II. The thermal resistance of groove with α = 60° was lower but the liquid-discharged ability was better than that of groove with α = 75°. In order to validate the feasibility and reliability of the present analyses and to further investigate the heat transfer performance of trapezoid grooved surfaces, experiments were carried out with three condensing plates including two trapezoid grooved surfaces in different physical dimensions and one smooth surface. The experimental data obtained under various schooling were compared with the calculations, and the experimental results for different condensing plates are all in good agreement with the numerical model, with a maximum deviation less than 15%. Moreover, the trapezoid grooves can enhance the
Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger.
Legay, M; Simony, B; Boldo, P; Gondrexon, N; Le Person, S; Bontemps, A
2012-11-01
A new kind of ultrasonically-assisted heat exchanger has been designed, built and studied. It can be seen as a vibrating heat exchanger. A comprehensive description of the overall experimental set-up is provided, i.e. of the test rig and the acquisition system. Data acquisition and processing are explained step-by-step with a detailed example of graph obtained and how, from these experimental data, energy balance is calculated on the heat exchanger. It is demonstrated that ultrasound can be used efficiently as a heat transfer enhancement technique, even in such complex systems as heat exchangers. Copyright © 2012 Elsevier B.V. All rights reserved.
Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A
2014-11-15
Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for
Radiant heat transfer of bicycle helmets and visors.
Brühwiler, Paul A
2008-08-01
Twenty-six bicycle helmets and their associated visors were characterized for radiant heat transfer using a thermal manikin headform in a climate chamber to assess their ability to protect the wearer from heating by the sun. A single configuration for applied radiant flow of 9.3 W was used to assess the roles of the forward and upper vents and the visor. The helmets shielded 50-75% of the radiant heating without a visor and 65-85% with one. Twenty-three visors were shown to result in a relevant reduction of radiant heating of the face (>0.5 W), with 15 reaching approximately 1 W. Heating of the visor and/or helmet and subsequent heating of the air flowing into the helmet was nevertheless found to be a relevant effect in many cases, suggesting that simple measures like reflective upper surfaces could noticeably improve the radiant heat rejection without changing the helmet structure. The forward vents in the helmets that allow the transmission of radiant heat are often important for forced convection, so that minimizing radiant heating geneally reduces the maximization of forced convective heat loss for current helmets.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Influence of Local Zones of Intensive Heat Transfer on Thermal Regime of Heat Supply Objects
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2015-01-01
Full Text Available The results of mathematical simulation of conjugate heat transfer for heat supply object are represented. The turbulent regime of air motion in a closed cavity with the enclosing walls from reinforced concrete and glass is examined. On the outer boundary, which includes window aperture, the conditions of convective-radiation heat exchange with environment are realized. Is solved the system of the dimensionless equations within the framework of thermal conductivity model for the solid walls and Navier-Stokes for the gas. The influence of the local zones of intensive heat transfer on the thermal regime of the heat supply objects is established. Are determined the values of the dimensionless heat exchange coefficient on division border “air - wall”. The analysis of the values of mean temperatures of the solution region is carried out.
Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger
International Nuclear Information System (INIS)
Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun
2008-01-01
Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.
2012-01-01
In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…
Heat Transfer in a Flash Fuser.
Baumann, Gerald Walter
Flash fusing is used in high speed electrophotographic computer printers to melt the thermoplastic printed image on the paper surface. This technology is not yet well understood, even though it has been used in several different machines. Consequently current fusers may be far from optimum. The aim of this research is to formulate and confirm mathematical models of the fuser. The fusing process was modelled by transient thermal conduction. The toner was assumed to fuse to the paper when its lower surface, against the paper, reached its melting point. The temperature depends on the power input to the toner from the flash tube. Hence, mathematical models were developed to describe both the electrical conduction and radiation characteristics of the flash tube. These models were coupled to the equations describing the electrical drive circuits, and the instantaneous output of the flash was computed. These results were then used in the transient heat conduction model of the toner and paper. A ballistic integrating radiometer was built to measure the total output energy of the flash tube. The electrical input power to the flash tube was measured and compared to the model. These experiments were used to support the computed power input to the toner surface. Unfused prints were exposed to a multitude of pulse shapes, pulse widths, and energies. A standard adhesion test was used to measure the degree of fusing. The temperature of the toner/paper interface was computed. The toner had significant porosity and its heat capacity varied greatly with temperature. The adsorbed water in the paper influenced the temperature profile. The experiments confirmed the melting model. The degree of fusing correlated well with computed interface temperature, and not with input energy or surface temperature. Toner porosity and flash pulse shape are potential design parameters, and they were studied in detail. Modelling results indicate that modest reductions in porosity can significantly
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
International Nuclear Information System (INIS)
Lemaitre, P.; Porcheron, E.
2008-01-01
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
Energy Technology Data Exchange (ETDEWEB)
Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)
2008-08-15
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)
Heat transfer from a tube bank with mass transfer in a duct
International Nuclear Information System (INIS)
Nouri, A.; Lavasani, A. M.
2005-01-01
An experimental investigation on heat transfer coefficient is present from three horizontal tubes in a vertical array in a duct for 500 D <6000. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies in the range 0.055< D/W<0.22. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second the Nusselt number is more than that of the third one
International Nuclear Information System (INIS)
Abou-Ziyan, Hosny Z.
2004-01-01
This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct
Modelling of conjugate heat transfer in barium titanate plates heated by the air flow
Kozyulin, Nikolay; Bobrov, Maxim; Hrebtov, Michael
2017-10-01
We present the results of simulation of conjugate heat transfer between the grid of barium titanate plates and the hot air flow. The air temperature undergoes rapid change and the thermal front propagation and heat exchange with the solid plates have been studied for several plate configurations. The results show that the air heat could be effectively absorbed by the plates during the time of thermal front propagation, making such configuration attractive for pyroelectric energy harvesting applications.
Some observations on boiling heat transfer with surface oscillation
International Nuclear Information System (INIS)
Miyashita, H.
1992-01-01
The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)
International Nuclear Information System (INIS)
Groshev, A.I.; Slobodchuk, V.I.
1986-01-01
The results of numerical calculation of the conjugated problem of convective heat transfer under unsteady conditions are presented. The equations describing heat transfer take into account longitudinal heat diffusion in liquid and in a wall. The formulae for calculating local heat flows at the wall-liquid surface in the case of an arbitrary law of temperature variation at the outer wall surface along the channel length are proposed for steady-state heat transfer conditions
Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels
Energy Technology Data Exchange (ETDEWEB)
Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)
2015-03-23
The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in
Local heat transfer where heated rods touch in axially flowing water
International Nuclear Information System (INIS)
Kast, S.J.
1983-05-01
An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Heat Transfer Enhancement in a Differentially Heated Enclosure Using Nanofluids-Turbulent Regime
Abu-Nada, E.; Dinkelacker, F.; Alatabi, A.; Manickam, B.; Jollet, S.
2010-05-01
Heat Transfer enhancement in turbulent natural convection using nanofluids is investigated numerically. The problem used for studying natural convection is a differentially heated square enclosure. The Bousinessq model is used to model density variation in the nanofluid. The transport equations are solved numerically using a second-order finite volume technique by implementing the k-ω model. The numerical solution is benchmarked against the experimental results of Ampofo and Karayiannis [10]. The Prandtl number and the Rayleigh number of the base fluid are set equal to 6.57 and 1010 respectively. The presence of nanoparticles is found to enhance the heat transfer in the enclosure.
Laminar natural convection heat transfer from a horizontal circular cylinder to liquid metals
International Nuclear Information System (INIS)
Sugiyama, K.; Ma, Y.; Ishiguro, R.
1991-01-01
The objective of the present study is to clarify the heat transfer characteristic of natural convection around a horizontal circular cylinder immersed in liquid metals. Experimental work concerning liquid metals sometimes involves such a degree of error that is impossible to understand the observed characteristics in measurement. Numerical analysis is a powerful means to overcome this experimental disadvantage. In the present paper the authors first show that the Boussinesq approximation is more applicable heat transfer rates, even for a cylinder with a relatively large temperature difference (>100K) between the heat transfer surface and fluid. It is found from a comparison of the present results with previous work that the correlation equations that have already been proposed predict values lower than the present ones
Hydrodynamics and heat transfer characteristics of liquid pools with bubble agitation
International Nuclear Information System (INIS)
Blottner, F.G.
1979-11-01
Estimates are given for the heat transfer coefficients at various interfaces which occur in molten pools on concrete. Previous simulant experiments and correlations are used to determine the hydrodynamic behavior of the pool and heat transfer coefficients for the liquids of interest. Other studies assume a gas film occurs between the concrete and molten pool, but the results of this investigation do not confirm this assumption. The results also indicate the significant influence the very viscous concrete slag has on the properties of the molten pool. Additional experiments and analysis are needed to improve the accuracy of the heat transfer coefficients estimated and to understand the behavior of the concrete slag at the interface between the pool and decomposing concrete
Heat transfer and fluid flow during laser spot welding of 304 stainless steel
He, X; Debroy, T
2003-01-01
The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...
Salamon, V.; Senthil kumar, D.; Thirumalini, S.
2017-08-01
The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.
Numerical analysis on heat transfer characteristics and pressure drop in plate heat exchanger
Energy Technology Data Exchange (ETDEWEB)
Kim, K.R.; Kim, I.G.; Yim, C.S. [Inha University, Inchon (Korea)
2002-06-01
This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-{epsilon} model. Computations have been carried out for a range of chevron angle from 30 deg. to 60 deg., inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases. (author). 7 refs., 12 figs.
Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants
Energy Technology Data Exchange (ETDEWEB)
Mathur, Anoop [Terrafore Inc.
2013-08-14
A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during
An ecofriendly graphene-based nanofluid for heat transfer applications
DEFF Research Database (Denmark)
Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza
2016-01-01
Herein, a new ecofriendly approach to generate a graphene-based nanofluid was established. Specifically, a novel mode of graphene oxide reduction through functionalization with polyphenol extracted from red wine was introduced. Comprehensive characterization methods were employed to confirm and u...... that the generated nanofluid will open a new avenue in the pursuit of ecofriendly thermal conductors for heat transfer applications....
Unsteady MHD free convection flow and heat transfer along an ...
African Journals Online (AJOL)
Unsteady MHD free convection flow and heat transfer along an infinite vertical porous plate under Arrhenius kinetics. ... due to increase in the Hartmann number (iii) fluid velocity increases due to increase in Grashof number which agrees with natural phenomena because of the buoyancy force which assist the flow.
Convective heat transfer around vertical jet fires: An experimental study
International Nuclear Information System (INIS)
Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim
2011-01-01
Highlights: ► Experiments were carried out to analyze convection around a vertical jet fire. ► Convection heat transfer is enhanced increasing the flame length. ► Nusselt number grows with higher values of Rayleigh and Reynolds numbers. ► In subsonic flames, Nusselt number increases with Froude number. ► Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.
A Rotating Plug Model of Friction Stir Welding Heat Transfer
Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.
2006-01-01
A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.
Heat transfer between two parallel porous plates for Couette flow ...
Indian Academy of Sciences (India)
Abstract. The aim of the present paper is to study the unsteady magneto-hydro- dynamic viscous Couette flow with heat transfer in a Darcy porous medium between two infinite parallel porous plates considering Hall effect, and temperature dependent physical properties under constant pressure gradient. The parallel plates ...
Versatile Desktop Experiment Module (DEMo) on Heat Transfer
Minerick, Adrienne R.
2010-01-01
This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…
Simulation Tests in Whole Building Heat and Moisture Transfer
DEFF Research Database (Denmark)
Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika
2006-01-01
An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...
Heat and mass transfer enhancement in absorbing processes
International Nuclear Information System (INIS)
Hijikata, Kunio; Lee, S.K.
1993-01-01
The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)
Simulation of heat and mass transfer in spray drying
Lijn, van der J.
1976-01-01
A survey is given of heat and mass transfer around droplets in spray dryers and the diffusional transport inside them. A calculational model is developed which includes variable diffusion coefficients in the drying liquid and swelling or shrinking of droplets. Calculations for droplets
Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
Directory of Open Access Journals (Sweden)
Roberto Agromayor
2016-06-01
Full Text Available The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt % and 32% (0.5 wt %, respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids.
Transient hydraulics and heat transfer in a turbulent flow
International Nuclear Information System (INIS)
Kawamura, H.
1975-06-01
In a reactor transient analysis, the friction factor and the heat transfer coefficient are assumed equal to the steady state values even in a transient state. This quasi-static assumption has been examined in the present paper. (orig./TK) [de
Heat and mass transfer in turbulent multiphase channel flow
Bukhvostova, A.
2015-01-01
Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We
Simultaneous measurement of aerodynamic and heat transfer data ...
Indian Academy of Sciences (India)
The measured value of the drag coefﬁcient varies by about ± 6 % from the theoretically estimated value based on the modiﬁed Newtonian theory, while the axi-symmetric Navier–Stokes computations overpredict the drag coefﬁcient by about 9%. The normalized values of measured heat transfer rates at 0° angle of attack are ...
Estimation of bulk transfer coefficient for latent heat flux (Ce)
Digital Repository Service at National Institute of Oceanography (India)
Sadhuram, Y.
The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988. The computations have been made over two regions (A: 0-8 degrees N: 60-68 degrees E: B: 0...
Heat transfer, friction, and rheological characteristics of antimisting kerosene
Matthys, E.; Sarohia, V.
1985-01-01
Experiments were performed to determine the skin friction and heat transfer behavior of antimisting kerosene (AMK) in pipe flows. The additive used was FM-9. Based on the results of the experiments, which identify high viscosity and viscoelasticity for AMK, it is recommended that AMK be degraded. Sufficient degradation produces behavior similar to that of jet A.
Analytical prediction of forced convective heat transfer of fluids ...
Indian Academy of Sciences (India)
Nanoﬂuids are a new class of heat transfer ﬂuids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base ﬂuid such as water, ethylene glycol, engine oil etc. signiﬁcantly enhances their thermal properties. Several phenomenological models have been ...
Maximal near-field radiative heat transfer between two plates
Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl
2013-09-01
Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.
Hypervelocity Heat-Transfer Measurements in an Expansion Tube
Hollis, Brian R.; Perkins, John N.
1996-01-01
A series of experiments has been conducted in the NASA HYPULSE Expansion Tube, in both CO2 and air test gases, in order to obtain data for comparison with computational results and to assess the capability for performing hypervelocity heat-transfer studies in this facility. Heat-transfer measurements were made in both test gases on 70 deg sphere-cone models and on hemisphere models of various radii. HYPULSE freestream flow conditions in these test gases were found to be repeatable to within 3-10%, and aerothermodynamic test times of 150 microsec in CO2 and 125 microsec in air were identified. Heat-transfer measurement uncertainty was estimated to be 10-15%. Comparisons were made with computational results from the non-equilibrium Navier-Stokes solver NEQ2D. Measured and computed heat-transfer rates agreed to within 10% on the hemispheres and on the sphere-cone forebodies, and to within 10% in CO2 and 25% in air on the afterbodies and stings of the sphere-cone models.
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
pp. 429–438. Free convection effects and radiative heat transfer in MHD. Stokes problem for the flow of dusty conducting fluid through porous medium. OM PRAKASH1,∗, DEVENDRA KUMAR2 and Y K DWIVEDI3. 1Department of Mathematics, Hindustan College of Science & Technology,. Farah Mathura 281 112, India.
Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system
Directory of Open Access Journals (Sweden)
S. Ramachandran
2008-09-01
Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.
Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures
International Nuclear Information System (INIS)
Targui, N.; Kahalerras, H.
2008-01-01
A numerical study of flow and heat transfer characteristics is made in a double pipe heat exchanger with porous structures inserted in the annular gap in two configurations: on the inner cylinder (A) and on both the cylinders in a staggered fashion (B). The flow field in the porous regions is modelled by the Darcy-Brinkman-Forchheimer model and the finite volume method is used to solve the governing equations. The effects of several parameters such as Darcy number, porous structures thickness and spacing and thermal conductivity ratio are considered in order to look for the most appropriate properties of the porous structures that allow optimal heat transfer enhancement. It is found that the highest heat transfer rates are obtained when the porous structures are attached in configuration B especially at small spacing and high thicknesses
Directory of Open Access Journals (Sweden)
Waqar Azeem Khan
Full Text Available The present paper deals with the analysis of melting heat and mass transfer characteristics in the stagnation point flow of an incompressible generalized Burgers fluid over a stretching sheet in the presence of non-linear radiative heat flux. A uniform magnetic field is applied normal to the flow direction. The governing equations in dimensional form are reduced to a system of dimensionless expressions by implementation of suitable similarity transformations. The resulting dimensionless problem governing the generalized Burgers is solved analytically by using the homotopy analysis method (HAM. The effects of different flow parameters like the ratio parameter, magnetic parameter, Prandtl number, melting parameter, radiation parameter, temperature ratio parameter and Schmidt number on the velocity, heat and mass transfer characteristics are computed and presented graphically. Moreover, useful discussions in detail are carried out with the help of plotted graphs and tables. Keywords: Generalized Burgers fluid, Non-linear radiative flow, Magnetic field, Melting heat transfer
Heat transfer in a counterflow heat exchanger at low flow rates
International Nuclear Information System (INIS)
Hashimoto, A.; Hattori, N.; Naruke, K.
1995-01-01
A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)
Studies of heat-transfer in the crucible pool with the heat of the electron gun
International Nuclear Information System (INIS)
Zhu Yiming; Wang Dewu
2000-01-01
It is important for the recycle of uranium to increase the production of uranium metal evaporation by the electron gun with high temperature in AVLIS. To decrease the pollution of impurity and the erosion of the crucible caused by the molten uranium, the heat-transfer character of the crucible pool with the solid and liquid interface is studied by solving the Navier-Stocks equation and the energy equation according to the practice of the uranium recycling system. The research emphasizes on the relation between the heat-transfer character and the interface geometry, the crucible height, the heat-conducting factor, the parameter of the electron gun. All the studies show more about the heat-transfer character of the pool and give more parameter for the design of the crucible
Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed
2017-03-17
Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τ d ), the heating length scale of the liquid film (δ H ) and the area fraction of the evaporating liquid film (A r ). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.
Numerical investigation on the convective heat transfer in a spiral coil with radiant heating
Directory of Open Access Journals (Sweden)
Đorđević Milan Lj.
2016-01-01
Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006
Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses
Energy Technology Data Exchange (ETDEWEB)
Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.
1986-12-01
This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.
Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses
International Nuclear Information System (INIS)
Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.
1986-12-01
This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions
A novel investigation of heat transfer characteristics in rifled tubes
Jegan, C. Dhayananth; Azhagesan, N.
2017-12-01
The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.
A novel investigation of heat transfer characteristics in rifled tubes
Jegan, C. Dhayananth; Azhagesan, N.
2018-05-01
The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.
Enhanced heat transfer using oscillatory flows in solar collectors
Energy Technology Data Exchange (ETDEWEB)
Lambert, A.A.; Cuevas, S.; Rio, J.A. del [Centro de Investigacion en Energia, UNAM, A.P. 34, 62580 Temixco, Mor. (Mexico)
2006-10-15
In this work, we propose the use of oscillatory laminar flows to enhance the transfer of heat from solar collectors. The idea is to explore the possibility of transferring the heat collected from a solar device to a storage tank by means of a zero-mean oscillating fluid contained in a tube. This method takes advantage of the fact that the effective thermal diffusivity of a fluid in oscillatory motion is several orders of magnitude higher than the fluid molecular diffusivity. Therefore, the axial transport of heat along the tube is substantially higher when the fluid oscillates than when the fluid is static. Also, preliminary estimations show a dramatic heat transfer enhancement using oscillatory flows compared with the forced convection of heat by standard unidirectional flows. We explore the behavior of the effective thermal diffusivity using both Newtonian and viscoelastic fluids. For the Newtonian fluid a single maximum value of this quantity is exhibited for a given oscillation frequency. In contrast, several maxima for different resonant frequencies are observed for the viscoelastic fluid. Further, the absolute maximum of the enhanced thermal diffusivity for the viscoelastic fluid is several orders of magnitude larger than that of the Newtonian fluid. (author)
Convective and radiative heat transfer in MHD radiant boilers
Im, K. H.; Ahluwalia, R. K.
1981-10-01
A combined convection-gas radiation, two-zone flow model is formulated for study of the heat transfer characteristics of MHD radiant boilers. The radiative contributions of carbon dioxide, water vapor, potassium atoms, and slag particles are included in the formulation, and are determined by solving the radiation transport equation using the P1 approximation. The scattering and absorption cross sections of slag particles are calculated from Mie theory. The model is used to analyze the scale-up of heat transfer in radiant boilers with refractory thickness, wall emissivity, and boiler size under conditions of a gas composition and slag particle spectrum typical of coal-fired MHD combustion. A design procedure is suggested for sizing radiant boilers so as to achieve the required heat extraction rate and to provide a flow residence time that is adequate for decomposition of NO(x) to acceptable levels.
Measurement and modeling of interface heat transfer coefficients
International Nuclear Information System (INIS)
Rollett, A.D.; Lewis, H.D.; Dunn, P.S.
1985-01-01
The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal
Analytical heat transfer modeling of a new radiation calorimeter
Energy Technology Data Exchange (ETDEWEB)
Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)
2016-06-10
Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.
Analytical heat transfer modeling of a new radiation calorimeter
International Nuclear Information System (INIS)
Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric
2016-01-01
Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.
Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures
Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue
2017-06-01
Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.
Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes
Directory of Open Access Journals (Sweden)
Pezo Milada L.
2016-01-01
Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014
Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger
DEFF Research Database (Denmark)
Knudsen, Søren; Morrison, GL; Behnia, M
2005-01-01
Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...
Steady flow and heat transfer analysis of third grade fluid with porous medium and heat generation
Directory of Open Access Journals (Sweden)
Akinbowale T. Akinshilo
2017-12-01
Full Text Available In this study, flow and heat transfer of a non Newtonian third grade fluid with porous medium and internal heat source conveyed through parallel plates held horizontally against each other are investigated. The nonlinear ordinary equations arising due to visco-elastic effects from the mechanics of the fluid are analysed using the adomian decomposition method (ADM adopting Vogel’s temperature dependent model based viscosity. Thermal fluidic parameters effects such as pressure gradient, heat generation parameter and porosity term are examined on the flow and heat transfer. Increasing porosity term shows slight decreasing effect on velocity distribution, as increasing heat generation term demonstrates significant increase on temperature distribution towards the upper plate. Obtained solutions in this paper may be used to advance studies in thin film flow, energy conservation, coal-water mixture, polymer solution and oil recovery application. Also Results from analyses compared against the fourth order Runge kutta numerical solution proves to be in satisfactory agreement.
Heat transfer of Al2O3 nanofluids in microchannel heat sink
Razali, A. A.; Sadikin, A.; Ibrahim, S. A.
2017-04-01
Microchannel heat sink creates an innovative cooling technology to remove large amount of heat from small area. Recently, nanotechnology gain interest to explore the microchannel cooling benefits of nanofluids as working fluid. The objective of this study is to investigate the effect of heat transfer to Al2O3 nanofluids after used as working fluid in the microchannel. In this study, the microchannel was design in square shape with a cross section of 0.5×0.5 mm2 and made by copper. The experiment was conducted in laminar flow with Reynolds number ranging approximately from 633 to 1172. The present study was focused on heat transfer of Al2O3 nanofluids in microchannel heat sink at concentration of 1.0 wt. % and 2.5 wt. % dispersed in water. The heat was produced at bottom of the heat sink is 325 W. The computational simulation method was carried out to validate the experimental results. It was observed that the heat transfer rate is higher when using Al2O3 nanofluids compared to water. However, according to X-ray diffraction method (XRD), it is found that the structure of Al2O3 particles tends to more integrity and the crystallite size grows up after increased the temperature in the microchannel.
Directory of Open Access Journals (Sweden)
Milan Đorđević
2017-12-01
Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.
Heat transfer behaviors in round tube with conical ring inserts
International Nuclear Information System (INIS)
Promvonge, P.
2008-01-01
To increase convection heat transfer in a uniform heat flux tube by a passive method, several conical rings used as turbulators are mounted over the test tube. The effects of the conical ring turbulator inserts on the heat transfer rate and friction factor are experimentally investigated in the present work. Conical rings with three different diameter ratios of the ring to tube diameter (d/D = 0.5, 0.6, 0.7) are introduced in the tests, and for each ratio, the rings are placed with three different arrangements (converging conical ring, referred to as CR array, diverging conical ring, DR array and converging-diverging conical ring, CDR array). In the experiment, cold air at ambient condition for Reynolds numbers in a range of 6000-26,000 is passed through the uniform heat flux circular tube. It is found that the ring to tube diameter ratio and the ring arrays provide a significant effect on the thermal performance of the test tube. The experimental results demonstrate that the use of conical ring inserts leads to a higher heat transfer rate than that of the plain surface tube, and the DR array yields a better heat transfer than the others. The results are also correlated in the form of Nusselt number as a function of Reynolds number, Prandtl number and diameter ratio. An augmentation of up to 197%, 333%, and 237% in Nusselt number is obtained in the turbulent flow for the CR, DR and CDR arrays, respectively, although the effect of using the conical ring causes a substantial increase in friction factor
Cfd Analysis of Heat Transfer in a Microtubular Solid Oxide Fuel Cell Stack
Directory of Open Access Journals (Sweden)
Pianko-Oprych Paulina
2014-09-01
Full Text Available The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed
Heat transfer efficient thermal energy storage for steam generation
International Nuclear Information System (INIS)
Adinberg, R.; Zvegilsky, D.; Epstein, M.
2010-01-01
A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours
Surface heat transfer in a channel with porous insert
Gortyshov, Yu. F.
1993-05-01
One of the possible ways of the effective intensification is the realization of heat carrier flows in porous structures. For this purpose inserts are placed in moving heat carrier channels. Despite a large number of publications, net-like, fibrous, brush, caked and powder structures of low and mean porosity (epsilon less than or equal to 0.6) are studied. Application of high-porous permeable honeycomb materials (HPHM) shows, that among the the well-known porous materials possessing maximal permeability (penetrability factors are 10(exp -8) ...10(exp -9) sq m). HPHM's have a characteristic three-dimensional net-like honeycomb structure with high repeatability of cells. All the frame substance is concentrated in stripping ribs, which bound each separate cell. In coolant flowing in the channel with porous insert the transfer of energy from the heated wall into the channel interior originates at the expense of the frame material heat conduction and lateral conduction and lateral convective mixing of flow. In this paper we present the results of analytical and experimental heat transfer investigation at forced heat carrier, flowing in the channel that is filled-in by porous HPHM medium.
46 CFR 153.434 - Heat transfer coils within a tank.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger
Directory of Open Access Journals (Sweden)
S. Sathiyan
2013-06-01
Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.
Heat transfer in laminar flow for a finned double - tube
International Nuclear Information System (INIS)
Colle, S.
1977-01-01
An analitical study of the steady-state heat transfer in laminar flow in finned double-tube heat exchangers is presented. The fins are plane, straight and continous, equally spaced and are fixed over the external surface of the inner tube. A constant peripheral temperature distribution is assumed to apply over the inner tube surface and each fin, and a constant peripheral heat flux is assumed to apply over the outer tube surface, while the overall heat flux is suposed to be uniform in the longitudinal direction of the duct. The prediction of the thermal performance of the finned double-tube is made by means of the relationship between the Nusselt number, the boundary conditions and the geometric characteristcs of the duct. (author) [pt
Heat Transfer Correlations for Free Convection from Suspended Microheaters
Directory of Open Access Journals (Sweden)
David GOSSELIN
2016-08-01
Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.
Assessment of interfacial heat transfer models under subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Guilherme B.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: fbraz@ieav.cta.br [Instituto de Estudos Avançados (DCTA/IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear
2017-07-01
The present study concerns a detailed analysis of subcooled flow boiling characteristics under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. An uniform heat flux of 570 kW/m2 and saturation pressure of 4.5 MPa were applied to the channel wall, whereas water mass flux of 900 kg/m2s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of CFD technique for the estimation of wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Different sub-models of interfacial heat transfer coefficient were applied and compared, allowing a better prediction of void fraction along the heated channel. (author)
Heat Transfer Analysis for a Fixed CST Column
International Nuclear Information System (INIS)
Lee, S.Y.
2004-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant
Numerical simulation on coolant flow and heat transfer in core
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis
Numerical Analysis of Heat Transfer During Quenching Process
Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana
2018-04-01
A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.
A correlation to the heat transfer coefficient in nucleate boiling
International Nuclear Information System (INIS)
Ribatski, Gherhardt; Jabardo, Jose M. Saiz
1999-01-01
Nucleate boiling heat transfer is a complex phenomenon, making the development of a correlation for the heat transfer coefficient rather cumbersome due to the number of physical parameters involved in it. Some authors have followed a pragmatic approach to the problem by correlating the heat transfer coefficient in terms of reduced primitive properties. Two of the most knowledgeable authors who have followed this approach are Gorenflo and Cooper. Comparisons have been performed among results from the correlations proposed by these researchers and experimental results obtained elsewhere for refrigerants R-11, R-113 and R-114. These comparisons have shown that Cooper's correlation is best fitted for halocarbon refrigerants. The correlation proposed by Gorenflo ads the difficulty of including a numerical factor specific for each fluid. Leiner modified Gorenflo's correlation to determine the numerical factor as a function of known physical parameters of the fluid. In present study, the form of this function has been investigated for halocarbon refrigerants. The obtained correlation is written in terms of the following parameters: reduced pressure, eccentric and compressibility factors at the critical state, and a dimensionless specific heat of the vapor phase. The correlation compares well with experimental results. (author)
Heat transfer and performance analysis of thermoelectric stoves
International Nuclear Information System (INIS)
Najjar, Yousef S.H.; Kseibi, Musaab M.
2016-01-01
Highlights: • Design and testing of a thermo electric stove. • Three biofuels namely: wood, peat and manure are used. • Heat transfer analysis is detailed. • Resulting thermoelectric energy for vital purposes in remote poor regions. • Evaluation of performance of the stove subcomponents. - Abstract: Access to electricity is one of the important challenges for remote poor regions of the world. Adding TEG (thermoelectric generators) to stoves can provide electricity for the basic benefits such as: operating radio, light, phones, medical instruments and other small electronic devices. Heat transfer analysis of a multi-purpose stove coupled with 12 TEG modules is presented. This analysis comprises a well aerodynamically designed combustor, finned TEG base plate, cooker and water heater beside the outer surface for space heating. Heat transfer analysis was also carried out for all the subcomponents of the stove, and performance predicted against the experimental results. It was found that the maximum power obtained is about 7.88 W using wood, manure or peat with an average overall efficiency of the stove about 60%.
International Nuclear Information System (INIS)
Satoh, Isao; Kurosaki, Yasuo
1987-01-01
This paper dealt with the numerical calculations of the heat transfer of a tube partially heated on its circumference, considering two-dimensional heat conduction within the wall. The contribution of the unheated region of the tube wall to heat tranfer of the heated region was explained by the term of 'fin efficiency of psuedo-fin', it was clarified that the fin efficiency of the unheated region was little affected by the temperature difference between the inner and outer surfaces of the wall, and could be approximated by the fin efficency of a rectangular fin. Both the circumferential and radial heat conductions within the wall affected the temperature difference between the inner and outer surfaces of the heated region; however, the effect of the temperature difference on the circumferentially average Nusselt number could be obtained by using the analytical solution of radially one-dimensional heat conduction. Using these results, a diagram showing the effect of wall conduction on heat transfer, which is useful for designing the circumferentially nonuniformly heated coolant passages, was obtained. (author)
Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H
2011-07-01
In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.
Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity
Chung, Jacob N.
1998-01-01
This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of
Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993
International Nuclear Information System (INIS)
Boyd, Ronald D.
2000-01-01
Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details
Effects of fluid flow on heat transfer in large rotating electrical machines
International Nuclear Information System (INIS)
Lancial, Nicolas
2014-01-01
EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydro-generator) notes significant differences compared to results from confined case: both of them are present in an hydro-generator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developed new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature. (author)