WorldWideScience

Sample records for understanding ecosystem processes

  1. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions.

    Science.gov (United States)

    Schmidt, Susanne I; Cuthbert, Mark O; Schwientek, Marc

    2017-08-15

    Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    Science.gov (United States)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  3. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    Science.gov (United States)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  4. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  5. Ecosystem function in complex mountain terrain: Combining models and long-term observations to advance process-based understanding

    Science.gov (United States)

    Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.

    2017-04-01

    Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.

  6. Understanding the mobile money ecosystem

    DEFF Research Database (Denmark)

    Tobbin, P.

    2011-01-01

    This paper discusses the structure of the new mobile money ecosystem and the roles of its key players. Mobile money is an evolving sector both in volume and in economic impact especially in the developing world. The paper is an exploratory study that investigates the structure of the ecosystem......, providing a foundation for future strategic analysis of the system. We adopt a theoretical insight from Moore's business ecosystem theory to explain the key roles of the actors in the mobile money ecosystem. And also draw extensively from the work of Iansiti and Levien to explain the best strategies...

  7. Process-Based Thinking in Ecosystem Education

    Science.gov (United States)

    Jordan, Rebecca C.; Gray, Steven A.; Brooks, Wesley R.; Honwad, Sameer; Hmelo-Silver, Cindy E.

    2013-01-01

    Understanding complex systems such as ecosystems is difficult for young K-12 students, and students' representations of ecosystems are often limited to nebulously defined relationships between macro-level structural components inherent to the ecosystem in focus (rainforest, desert, pond, etc.) instead of generalizing processes across ecosystems…

  8. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  9. Ecosystem process interactions between central Chilean habitats

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2015-01-01

    Full Text Available Understanding ecosystem processes is vital for developing dynamic adaptive management of human-dominated landscapes. We focus on conservation and management of the central Chilean silvopastoral savanna habitat called “espinal”, which often occurs near matorral, a shrub habitat. Although matorral, espinal and native sclerophyllous forest are linked successionally, they are not jointly managed and conserved. Management goals in “espinal” include increasing woody cover, particularly of the dominant tree Acacia caven, improving herbaceous forage quality, and increasing soil fertility. We asked whether adjacent matorral areas contribute to espinal ecosystem processes related to the three main espinal management goals. We examined input and outcome ecosystem processes related to these goals in matorral and espinal with and without shrub understory. We found that matorral had the largest sets of inputs to ecosystem processes, and espinal with shrub understory had the largest sets of outcomes. Moreover, we found that these outcomes were broadly in the directions preferred by management goals. This supports our prediction that matorral acts as an ecosystem process bank for espinal. We recommend that management plans for landscape resilience consider espinal and matorral as a single landscape cover class that should be maintained as a dynamic mosaic. Joint management of espinal and matorral could create new management and policy opportunities.

  10. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Stacy L. Bierwagen

    2018-02-01

    Full Text Available The increased frequency of publications concerning trophic ecology of coral reefs suggests a degree of interest in the role species and functional groups play in energy flow within these systems. Coral reef ecosystems are particularly complex, however, and assignment of trophic positions requires precise knowledge of mechanisms driving food webs and population dynamics. Competent analytical tools and empirical analysis are integral to defining ecosystem processes and avoiding misinterpretation of results. Here we examine the contribution of trophodynamics to informing ecological roles and understanding of coral reef ecology. Applied trophic studies of coral reefs were used to identify recent trends in methodology and analysis. Although research is increasing, clear definitions and scaling of studies is lacking. Trophodynamic studies will require more precise spatial and temporal data collection and analysis using multiple methods to fully explore the complex interactions within coral reef ecosystems.

  11. Towards better process understanding

    DEFF Research Database (Denmark)

    Matero, Sanni Elina; van der Berg, Franciscus Winfried J; Poutiainen, Sami

    2013-01-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence......, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature...... and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim...

  12. Combining Long-Term Watershed Monitoring at Buck Creek with Spatially Extensive Ecosystem Data to Understand the Processes of Acid Rain Effects and Recovery

    Science.gov (United States)

    Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.

    2014-12-01

    The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of

  13. Going underground: root traits as drivers of ecosystem processes

    NARCIS (Netherlands)

    Bardgett, R.D.; Mommer, L.; Vries, de F.T.

    2014-01-01

    Ecologists are increasingly adopting trait-based approaches to understand how community change influences ecosystem processes. However, most of this research has focussed on aboveground plant traits, whereas it is becoming clear that root traits are important drivers of many ecosystem processes,

  14. Effects of invertebrates in lotic ecosystem processes

    Science.gov (United States)

    J.B. Wallace; J.J. Jr. Hutchens

    2000-01-01

    Freshwater invertebrates perform many roles in ecosystem processes (Palmer et al., 1997) and these roles are frequently associated with a diverse array of feeding habits which have been organized into functional feeding groups (FFGs). Wallace and Webster (1996) reviewed many roles ofFFGs in stream ecosystems. Streams differ markedly from most ecosystems in that the...

  15. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    Science.gov (United States)

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  16. Towards understanding, managing and protecting microbial ecosystems

    Directory of Open Access Journals (Sweden)

    Paul eBodelier

    2011-04-01

    Full Text Available Microbial communities are at the very basis of life on earth, catalysing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper indentifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  17. Toward understanding, managing, and protecting microbial ecosystems.

    Science.gov (United States)

    Bodelier, Paul L E

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity-conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  18. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    Science.gov (United States)

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  19. Nitrogen cycling process rates across urban ecosystems.

    Science.gov (United States)

    Reisinger, Alexander J; Groffman, Peter M; Rosi-Marshall, Emma J

    2016-09-21

    Nitrogen (N) pollution of freshwater, estuarine, and marine ecosystems is widespread and has numerous environmental and economic impacts. A portion of this excess N comes from urban watersheds comprised of natural and engineered ecosystems which can alter downstream N export. Studies of urban N cycling have focused on either specific ecosystems or on watershed-scale mass balances. Comparisons of specific N transformations across ecosystems are required to contextualize rates from individual studies. Here we reviewed urban N cycling in terrestrial, aquatic, and engineered ecosystems, and compared N processing in these urban ecosystem types to native reference ecosystems. We found that net N mineralization and net nitrification rates were enhanced in urban forests and riparian zones relative to reference ecosystems. Denitrification was highly variable across urban ecosystem types, but no significant differences were found between urban and reference denitrification rates. When focusing on urban streams, ammonium uptake was more rapid than nitrate uptake in urban streams. Additionally, reduction of stormwater runoff coupled with potential decreases in N concentration suggests that green infrastructure may reduce downstream N export. Despite multiple environmental stressors in urban environments, ecosystems within urban watersheds can process and transform N at rates similar to or higher than reference ecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Towards a Stochastic Predictive Understanding of Ecosystem Functioning and Resilience to Environmental Changes

    Science.gov (United States)

    Pappas, C.

    2017-12-01

    Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not

  1. Ecosystem management via interacting models of political and ecological processes

    Directory of Open Access Journals (Sweden)

    Haas, T. C.

    2004-01-01

    Full Text Available The decision to implement environmental protection options is a political one. Political realities may cause a country to not heed the most persuasive scientific analysis of an ecosystem's future health. A predictive understanding of the political processes that result in ecosystem management decisions may help guide ecosystem management policymaking. To this end, this article develops a stochastic, temporal model of how political processes influence and are influenced by ecosystem processes. This model is realized in a system of interacting influence diagrams that model the decision making of a country's political bodies. These decisions interact with a model of the ecosystem enclosed by the country. As an example, a model for Cheetah (Acinonyx jubatus management in Kenya is constructed and fitted to decision and ecological data.

  2. Radionuclide transport processes in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Whicker, F.W.

    1983-01-01

    Some major principles and the status of knowledge concerning the transport of radionuclides through terrestrial ecosystems are reviewed. Fundamental processes which control the flow of radionuclides between ecosystem components such as air, soil, plants, and animals are described, with emphasis on deposition, resuspension, plant uptake, ingestion, and assimilation. Properties of radionuclides, organisms, and ecosystems are examined in relation to their influence on the accumulation of radioactive materials by plants and animals. The effects of the physicochemical nature of the radionuclide; morphology, physiology, and behavior of the organism; and soil, nutrient, and trophic characteristics of the ecosystem are highlighted. Observations in natural ecosystems on radionuclides such as 137 Cs, 90 Sr, 131 I, 3 H, and 239 Pu are used to illustrate current concepts. An assessment of the degree to which the processes controlling radionuclide behavior are understood and of our ability to simulate and predict such behavior with computerized models is offered. Finally, brief comments are made on research needs

  3. Understanding the Budget Process

    Directory of Open Access Journals (Sweden)

    Mesut Yalvaç

    2000-03-01

    Full Text Available Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Li-ne-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the operating budget, while long-term plans are reflected in the capital budget. Since the time when cash is available to an organization does not usually coincide with the time that disbursements must be made, it is also important to carefully plan for the inflow and outflow of funds by means of a cash budget.      During the budget process an organization selects its programs and activities by providing the necessary funding; the library, along with others in the organization, must justify its requests. Because of the cyclical nature of the budget process, it is possible continually to gather information and evaluate alternatives for the next budget period so that the library may achieve its maximum potential for service to its patrons.

  4. Understanding the consultation processes

    International Nuclear Information System (INIS)

    Laing, A.C.

    1998-01-01

    This presentation focuses on the consultation processes between industry, government and First Nations communities regarding resource development. The expectations of the Crown are to facilitate capacity building within First Nations, to promote traditional use studies and to participate with industry proponents on certain consultation issues. The role of industry is to encourage partnerships between established contractors and First Nations contracting firms to allow First Nations firms to grow and experience success under the guidance of a mentor company. It is important to realize that solid First Nations relations are the key to shorter time lines and lower costs in developing projects. However, consultation and involvement must be 'real' with benefits and participation that fall within the First Nations Communities' definition of success

  5. Effects of fire on major forest ecosystem processes: an overview.

    Science.gov (United States)

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem

  6. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    Science.gov (United States)

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Ecosystemic Complexity Theory of Conflict: Understanding the Fog of Conflict

    Science.gov (United States)

    Brack, Greg; Lassiter, Pamela S.; Hill, Michele B.; Moore, Sarah A.

    2011-01-01

    Counselors often engage in conflict mediation in professional practice. A model for understanding the complex and subtle nature of conflict resolution is presented. The ecosystemic complexity theory of conflict is offered to assist practitioners in navigating the fog of conflict. Theoretical assumptions are discussed with implications for clinical…

  8. Geomorphic processes affecting meadow ecosystems [chapter 3

    Science.gov (United States)

    Jerry R. Miller; Dru Germanoski; Mark L. Lord

    2011-01-01

    Three geomorphic processes are of primary concern with respect to the current and future state of wet meadow ecosystems: channel incision, avulsion (the abrupt movement of the channel to a new location on the valley floor), and gully formation. Gully formation often is accompanied by upvalley headcut migration and a phenomenon referred to as "groundwater sapping...

  9. Understanding interfirm relationships in business ecosystems with interactive visualization.

    Science.gov (United States)

    Basole, Rahul C; Clear, Trustin; Hu, Mengdie; Mehrotra, Harshit; Stasko, John

    2013-12-01

    Business ecosystems are characterized by large, complex, and global networks of firms, often from many different market segments, all collaborating, partnering, and competing to create and deliver new products and services. Given the rapidly increasing scale, complexity, and rate of change of business ecosystems, as well as economic and competitive pressures, analysts are faced with the formidable task of quickly understanding the fundamental characteristics of these interfirm networks. Existing tools, however, are predominantly query- or list-centric with limited interactive, exploratory capabilities. Guided by a field study of corporate analysts, we have designed and implemented dotlink360, an interactive visualization system that provides capabilities to gain systemic insight into the compositional, temporal, and connective characteristics of business ecosystems. dotlink360 consists of novel, multiple connected views enabling the analyst to explore, discover, and understand interfirm networks for a focal firm, specific market segments or countries, and the entire business ecosystem. System evaluation by a small group of prototypical users shows supporting evidence of the benefits of our approach. This design study contributes to the relatively unexplored, but promising area of exploratory information visualization in market research and business strategy.

  10. Ecohydrological interfaces as hot spots of ecosystem processes

    Science.gov (United States)

    Krause, Stefan; Lewandowski, Jörg; Grimm, Nancy B.; Hannah, David M.; Pinay, Gilles; McDonald, Karlie; Martí, Eugènia; Argerich, Alba; Pfister, Laurent; Klaus, Julian; Battin, Tom; Larned, Scott T.; Schelker, Jacob; Fleckenstein, Jan; Schmidt, Christian; Rivett, Michael O.; Watts, Glenn; Sabater, Francesc; Sorolla, Albert; Turk, Valentina

    2017-08-01

    The movement of water, matter, organisms, and energy can be altered substantially at ecohydrological interfaces, the dynamic transition zones that often develop within ecotones or boundaries between adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological interfaces are often "hot spots" of ecological, biogeochemical, and hydrological processes and may provide refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to disturbance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable processes at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological, biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between different drivers and controls critically limits our ability to predict complex system responses to change. In this paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary framework, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their current representation as boundary conditions at investigated ecosystems.

  11. Hydrologic processes influencing meadow ecosystems [chapter 4

    Science.gov (United States)

    Mark L. Lord; David G. Jewett; Jerry R. Miller; Dru Germanoski; Jeanne C. Chambers

    2011-01-01

    The hydrologic regime exerts primary control on riparian meadow complexes and is strongly influenced by past and present geomorphic processes; biotic processes; and, in some cases, anthropogenic activities. Thus, it is essential to understand not only the hydrologic processes that operate within meadow complexes but also the interactions of meadow hydrology with other...

  12. Biotic Processes Regulating the Carbon Balance of Desert Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    R. S. Nowak; J. Arnone; L. Fenstermaker; and S. D. Smith

    2005-07-26

    This project provided the funding to operate and maintain the Nevada Desert FACE Facility. This support funds the CO{sub 2}, system repairs and maintenance, basic physical and biological site information, and personnel that are essential for the experiment to continue. They have continued to assess the effects of elevated CO{sub 2} on three key processes: (1) leaf- to plant-level responses of desert vegetation to elevated atmospheric CO{sub 2}; (2) ecosystem-level responses; and (3) integration of plant and ecosystem processes to understand carbon balance of deserts. The focus is the seminal interactions among atmospheric CO{sub 2}, water, and nitrogen that drive desert responses to elevated CO{sub 2} and explicitly address processes that occur across scales (biological, spatial, and temporal).

  13. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?

    Directory of Open Access Journals (Sweden)

    Emily B. Graham

    2016-02-01

    Full Text Available Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  14. Pressure and Buoyancy in Aquatic Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module explores some of the characteristics of aquatic organisms which can be…

  15. Ecological Modeling of the Supraglacial Ecosystem: A Process-based Perspective

    OpenAIRE

    Stibal, Marek; Bradley, James A.; Box, Jason E.

    2017-01-01

    Glacier and ice sheet surfaces are important microbe-dominated ecosystems that are changing rapidly due to climate change, with potentially significant impacts. A theoretical framework of the supraglacial (glacier surface) ecosystem is needed to enable its mathematical modeling, a necessary tool for understanding, quantifying and predicting present day and future ecosystem dynamics. Here, we review key biological processes occurring on glacier and ice sheet surfaces and present three framewor...

  16. Ecosystem function in waste stabilisation ponds: Improving water quality through a better understanding of biophysical coupling

    Science.gov (United States)

    Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew

    2014-05-01

    Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with

  17. Process-based principles for restoring river ecosystems

    Science.gov (United States)

    Timothy J. Beechie; David A. Sear; Julian D. Olden; George R. Pess; John M. Buffington; Hamish Moir; Philip Roni; Michael M. Pollock

    2010-01-01

    Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat...

  18. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning.

    Science.gov (United States)

    Krause, Sascha; Le Roux, Xavier; Niklaus, Pascal A; Van Bodegom, Peter M; Lennon, Jay T; Bertilsson, Stefan; Grossart, Hans-Peter; Philippot, Laurent; Bodelier, Paul L E

    2014-01-01

    In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology.

  19. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning

    Directory of Open Access Journals (Sweden)

    Sascha eKrause

    2014-05-01

    Full Text Available In ecology, biodiversity-ecosystem functioning (BEF research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology.

  20. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning

    Science.gov (United States)

    Krause, Sascha; Le Roux, Xavier; Niklaus, Pascal A.; Van Bodegom, Peter M.; Lennon, Jay T.; Bertilsson, Stefan; Grossart, Hans-Peter; Philippot, Laurent; Bodelier, Paul L. E.

    2014-01-01

    In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology. PMID:24904563

  1. A Practical Decision-Analysis Process for Forest Ecosystem Management

    Science.gov (United States)

    H. Michael Rauscher; F. Thomas Lloyd; David L. Loftis; Mark J. Twery

    2000-01-01

    Many authors have pointed out the need to firm up the 'fuzzy' ecosystem management paradigm and develop operationally practical processes to allow forest managers to accommodate more effectively the continuing rapid change in societal perspectives and goals. There are three spatial scales where clear, precise, practical ecosystem management processes are...

  2. South Florida wetlands ecosystem; biogeochemical processes in peat

    Science.gov (United States)

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the

  3. Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment.

    Science.gov (United States)

    Salas-Lopez, Alex; Mickal, Houadria; Menzel, Florian; Orivel, Jérôme

    2017-01-01

    The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.

  4. Biodiversity at the Ecosystem Level - Patterns and Processes

    DEFF Research Database (Denmark)

    This publication contains the presentations and discussions from the second DanBIF conference, entitled Biodiversity at the Ecosystem Level – Patterns and Processes. The questions asked at this conference were: What is biodiversity at the ecosystem level? How is it related to biodiversity at othe...... formulate a strategy for dealing with biodiversity above the species and molecular levels and make data available for the end-users....... levels of organization? How may GBIF (Global Biodiversity Information Facility) deal with ecosystem level data and informatics? The conference had two important goals. The first was to present an overview of contemporary research related to ecosystem level biodiversity and the second was to help GBIF...

  5. Understanding Complex Human Ecosystems: The Case of Ecotourism on Bonaire

    Directory of Open Access Journals (Sweden)

    Thomas Abel

    2003-12-01

    Full Text Available It is suggested that ecotourism development on the island of Bonaire can be productively understood as a perturbation of a complex human ecosystem. Inputs associated with ecotourism have fueled transformations of the island ecology and sociocultural system. The results of this study indicate that Bonaire's social and economic hierarchy is approaching a new, stable systems state following a 50-yr transition begun by government and industry that stabilized with the appearance of ecotourism development and population growth. Ecotourism can be understood to have "filled in" the middle of the production hierarchy of Bonaire. Interpreted from this perspective, population growth has completed the transformation by expanding into production niches at smaller scales in the production hierarchy. Both a consequence and a cause, ecotourism has transformed the island's social structure and demography. The theory and methods applied in this case study of interdisciplinary research in the field of human ecosystems are also presented.

  6. Semantic eScience for Ecosystem Understanding and Monitoring: The Jefferson Project Case Study

    Science.gov (United States)

    McGuinness, D. L.; Pinheiro da Silva, P.; Patton, E. W.; Chastain, K.

    2014-12-01

    Monitoring and understanding ecosystems such as lakes and their watersheds is becoming increasingly important. Accelerated eutrophication threatens our drinking water sources. Many believe that the use of nutrients (e.g., road salts, fertilizers, etc.) near these sources may have negative impacts on animal and plant populations and water quality although it is unclear how to best balance broad community needs. The Jefferson Project is a joint effort between RPI, IBM and the Fund for Lake George aimed at creating an instrumented water ecosystem along with an appropriate cyberinfrastructure that can serve as a global model for ecosystem monitoring, exploration, understanding, and prediction. One goal is to help communities understand the potential impacts of actions such as road salting strategies so that they can make appropriate informed recommendations that serve broad community needs. Our semantic eScience team is creating a semantic infrastructure to support data integration and analysis to help trained scientists as well as the general public to better understand the lake today, and explore potential future scenarios. We are leveraging our RPI Tetherless World Semantic Web methodology that provides an agile process for describing use cases, identification of appropriate background ontologies and technologies, implementation, and evaluation. IBM is providing a state-of-the-art sensor network infrastructure along with a collection of tools to share, maintain, analyze and visualize the network data. In the context of this sensor infrastructure, we will discuss our semantic approach's contributions in three knowledge representation and reasoning areas: (a) human interventions on the deployment and maintenance of local sensor networks including the scientific knowledge to decide how and where sensors are deployed; (b) integration, interpretation and management of data coming from external sources used to complement the project's models; and (c) knowledge about

  7. The evolving role of science in wilderness to our understanding of ecosystems and landscapes

    Science.gov (United States)

    Norman L. Christensen

    2000-01-01

    Research in wilderness areas (areas with minimal human activity and of large spatial extent) formed the foundation for ecological models and theories that continue to shape our understanding how ecosystems change through time, how ecological communities are structured and how ecosystems function. By the middle of this century, large expanses of wilderness had become...

  8. Process notebook for aquatic ecosystem simulation

    International Nuclear Information System (INIS)

    Swartzman, G.; Smith, E.; McKenzie, D.; Haar, B.; Fickeisen, D.

    1980-01-01

    This notebook contains a detailed comparison of 14 models of fish growth, energetics, population dynamics, and feeding. It is a basic document for the evaluation of thes models' usefulness for impact assessment. Model equations are categorized into 18 subprocesses comprising the major processes of consumption, predation, metabolic processes, growth, fecundity, and mortality. The model equations are compared in a standard notation and the equation rationales are considered and put into a historical framework with historical precedence charts. Model parameters are computed in standard units and data sources and techniques used for parameter estimation are identified. A translator compares standard notation with the notation used in the models. The major contribution of this work is that, for the first time, fish models are arrayed with their assumptions laid bare and their parameter values compared, allowing elucidation of model differeances and evaluaton of model behavior and data needs by using the process notebook as a base for further simulation comparison

  9. Multicompartment Ecosystem Mass Balances as a Tool for Understanding and Managing the Biogeochemical Cycles of Human Ecosystems

    Directory of Open Access Journals (Sweden)

    Lawrence A. Baker

    2001-01-01

    Full Text Available Nitrogen remains a ubiquitous pollutant in surface and groundwater throughout the United States, despite 30 years of pollution control efforts. A detailed multicompartment N balance for the Central Arizona-Phoenix ecosystem is used to illustrate how an ecosystem-level approach can be used to develop improved N management strategies. The N balance is used to demonstrate how nitrate in pumped groundwater used for crop irrigation could be used to reduce inputs of commercial fertilizer and decrease N leaching to aquifers. Effectively managing N pollution also will require an understanding of the complex factors that control the N balance, including targeted regulations, individual human behavior, land-use conversion, and other ecosystem management practices that affect the N balance. These sometimes countervailing factors are illustrated with several scenarios of wastewater treatment technology and population growth in the Phoenix area. Management of N eventually must be coupled to management of other elements, notably carbon, phosphorus, and salts. We postulate that an ecosystem framework for pollution management will result in strategies that are more effective, fairer, and less expensive than current approaches.

  10. The added complications of climate change: understanding and managing biodiversity and ecosystems

    Science.gov (United States)

    Amanda Staudt,; Allison K. Leidner,; Jennifer Howard,; Kate A. Brauman,; Jeffrey S. Dukes,; Hansen, Lara J.; Paukert, Craig; Sabo, John L.; Solorzano, Luis A.

    2013-01-01

    Ecosystems around the world are already threatened by land-use and land-cover change, extraction of natural resources, biological disturbances, and pollution. These environmental stressors have been the primary source of ecosystem degradation to date, and climate change is now exacerbating some of their effects. Ecosystems already under stress are likely to have more rapid and acute reactions to climate change; it is therefore useful to understand how multiple stresses will interact, especially as the magnitude of climate change increases. Understanding these interactions could be critically important in the design of climate adaptation strategies, especially because actions taken by other sectors (eg energy, agriculture, transportation) to address climate change may create new ecosystem stresses.

  11. Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies

    Science.gov (United States)

    Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.

    2012-04-01

    Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that

  12. Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Levin, Michael; Gallucci, V. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…

  13. Turbulence and Fluid Flow: Perspectives. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…

  14. Simulation of radioecological processes in mountain ecosystems specific to Ukraine

    Directory of Open Access Journals (Sweden)

    В.П. Петрусенко

    2007-01-01

    Full Text Available  To analyze and simulate radioecological processes in mountain ecosystems typical for regions of Ukraine the method of the box (chamber models is used. The real values of the rate of radionuclide exchange between the elements of a mountain landscape are specified on the basis of the literature data and the data of experts. Our results on simulation of slope ecosystems were adopted for mountain landscape with considerable greater rate of redistribution of radionuclides (Cs–137. Estimation of ecological safety for a mountain landscape contaminated with radionuclides is carried out on the basis of estimation of the radioactive doses affected people making use of a typical mountain ecosystem for production activity and recreation.It is shown that in a mountain ecosystem there is a rapid accumulation of the limit human radiation dose which may account for 6 – 17% of the initial amount in the ecosystem. It is shown that the events where not only the mountain top but all the elements of the mountain landscape are exposed to initial contamination are the most dangerous.

  15. A multi-stable isotope framework to understand eutrophication in aquatic ecosystems.

    Science.gov (United States)

    Gooddy, Daren C; Lapworth, Dan J; Bennett, Sarah A; Heaton, Tim H E; Williams, Peter J; Surridge, Ben W J

    2016-01-01

    Eutrophication is a globally significant challenge facing aquatic ecosystems, associated with human induced enrichment of these ecosystems with nitrogen (N) and phosphorus (P). However, the limited availability of inherent labels for P and N has constrained understanding of the triggers for eutrophication in natural ecosystems and appropriate targeting of management responses. This paper proposes and evaluates a new multi-stable isotope framework that offers inherent labels to track biogeochemical reactions governing both P and N in natural ecosystems. The framework couples highly novel analysis of the oxygen isotope composition of phosphate (δ(18)OPO4) with dual isotope analysis of oxygen and N within nitrate (δ(15)NNO3, δ(18)ONO3) and with stable N isotope analysis in ammonium (δ(15)NNH4). The River Beult in England is used as an exemplar system for initial evaluation of this framework. Our data demonstrate the potential to use stable isotope labels to track the input and downstream fate of nutrients from point sources, on the basis of isotopic differentiation for both P and N between river water and waste water treatment work effluent (mean difference = +1.7‰ for δ(18)OPO4; +15.5‰ for δ(15)NNH4 (under high flow); +7.3‰ for δ(18)ONO3 and +4.4‰ for δ(15)NNO3). Stable isotope data reveal nutrient inputs to the river upstream of the waste water treatment works that are consistent with partially denitrified sewage or livestock sources of nitrate (δ(15)NNO3 range = +11.5 to +13.1‰) and with agricultural sources of phosphate (δ(18)OPO4 range = +16.6 to +19.0‰). The importance of abiotic and metabolic processes for the in-river fate of N and P are also explored through the stable isotope framework. Microbial uptake of ammonium to meet metabolic demand for N is suggested by substantial enrichment of δ(15)NNH4 (by 10.2‰ over a 100 m reach) under summer low flow conditions. Whilst the concentration of both nitrate and phosphate

  16. Understanding Patients’ Process to Use Medical Marijuana

    Directory of Open Access Journals (Sweden)

    Tara L Crowell

    2016-09-01

    Full Text Available Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medicinal marijuana—diagnosis, what prompted them to seek treatment, level of satisfaction with specific stages in the process, total length of time the process took, and patient’s level of pain. Results reveal numerous patient diagnoses for which medical marijuana is being prescribed; the top 4 most common are intractable skeletal spasticity, chronic and severe pain, multiple sclerosis, and inflammatory bowel disease. Next, results indicate a little over half of the patients were first prompted to seek alternative treatment from their physicians, while the remaining patients indicated that other sources such as written information along with friends, relatives, media, and the Internet persuaded them to seek treatment. These data indicate that a variety of sources play a role in prompting patients to seek alternative treatment and is a critical first step in this process. Additional results posit that once patients began the process of qualifying to receive medical marijuana as treatment, the process seemed more positive even though it takes patients on average almost 6 months to obtain their first treatment after they started the process. Finally, results indicate that patients are reporting a moderately high level of pain prior to treatment. Implication of these results highlights several important elements in the patients’ initial steps toward seeking medical marijuana, along with the quality and quantity of the process patients must engage in prior to

  17. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to

  18. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning

    NARCIS (Netherlands)

    Krause, S.; Le Roux, X.; Niklaus, P.A.; van Bodegom, P.M.; Lennon, J.T.; Bertilsson, S.A.; Grossart, H.P.; Philippot, L.; Bodelier, P.L.E.

    2014-01-01

    In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity

  19. Understanding and Managing the Assessment Process

    Science.gov (United States)

    Gene Lessard; Scott Archer; John R. Probst; Sandra Clark

    1999-01-01

    Taking an ecological approach to management, or ecosystem management, is a developing approach for managing natural resources within the context of large geogaphic scales and over multiple time frames. Recently, the Council on Environmental Quality (CEQ) (IEMTF 1995) defined an ecosystem as "...an interconnected community of living things, including humans, and...

  20. Experiments for understanding soil erosion processes

    Science.gov (United States)

    Seeger, Manuel

    2015-04-01

    Soil erosion processes are usually quantified by observation and measurement of their related forms. Rill, and gullies, moulds or sediment sinks are often used to estimate the soil loss. These forms are generally related directly to different types of processes, thus are also used to identify the dominant processes on a certain type of land-use. Nevertheless, the direct observation of erosion processes is constrained by their temporal and spatial erratic occurrence. As a consequence, the process understanding is generally deduced by analogies. Another possibility is to reproduce processes in experiments in both, the lab and in the field. Laboratory experiments are implemented when we want to have full control over all parameters we think are relevant for the process in our focus. So are very useful for identification of parameters influencing processes and their intensities, but also as physical models of the processes and process interactions in our focus. Therefore, we can use them to verify our concepts, and to define relevant parameters. Field experiments generally only simulate with controlled driving forces, this is the rain or the runoff, but dealing with the uncertainty of our study object, the soil. This enables two things: 1) similar as with lab experiments, we are able to identify processes and process interactions and so, to get a deeper understanding of soil erosion; 2) experiments are suitable for providing data about singular processes in the field and thus, to provide data suitable for model parametrisation and calibration. These may be quantitative data about erodibility or soil resistance, sediment detachment or transport. The Physical Geography Group at Trier University has a long lasting experience in the application of experiments in soil erosion research in the field, and has become lead in the further development conception and of devices and procedures to investigate splash detachment and initial transport of soil particles by wind and water

  1. Harnessing long-term flux records to better understand ecosystem response to drought

    Science.gov (United States)

    Novick, K. A.; Ficklin, D. L.; Stoy, P. C.; Williams, C. A.; Bohrer, G.; Oishi, A. C.; Papuga, S. A.; Blanken, P.; Noormets, A.; Scott, R. L.; Wang, L.; Roman, D. T.; Yi, K.; Sulman, B. N.; Phillips, R.

    2016-12-01

    While ongoing climate change affects a number of meteorological drivers relevant to plant functioning, the predicted increase in the frequency and severity of droughts may ultimately have the biggest impact on ecosystem carbon cycling. Because it is difficult to experimentally manipulate all of the meteorological drivers that change during drought (including precipitation, light, temperature, and humidity), our understanding of the mechanisms by which plants respond to drought is generally limited to an understanding of how plants respond to variable soil moisture. As flux tower records grow in length and number, they permit us to harness natural spatial and temporal variability in hydrologic condition to better understand how ecosystems respond to the full suite of meteorological drivers that change during drought stress. Here, a series of case studies are presented that illustrate how long term flux data can be used to disentangle limitations to ecosystem functioning imposed by declining soil moisture as compared to rising atmospheric demand for water during drought. At the site-level, we pair observations from the Morgan-Monroe State Forest Ameriflux tower (active since 1999) with eco-physiological datasets collected during the severe 2012 Midwestern drought. We show that vapor pressure deficit (VPD) limits ecosystem carbon uptake and transpiration as much as soil moisture, but that individual species vary in their sensitivity to these drivers. We then present results from two cross-site Ameriflux syntheses that quantify how VPD as compared to soil moisture limitations to carbon and water cycling vary across broad climate gradients spanning semi-arid to mesic biomes. Informed by these results, we end by highlighting ways that flux network data may be leveraged together with other eco-physiological networks and databases to further expand our understanding of the mechanisms determining ecosystem response to drought.

  2. A Dual Process Approach to Understand Tourists’ Destination Choice Processes

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, Albert

    2017-01-01

    Most studies that investigate tourists' choices of destinations apply the concept of mental destination representations, also referred to as destination image. The present study investigates tourists’ destination choice processes by conceptualizing how different components of destination image...... are mentally processed in tourists' minds. Specifically, the seminal dual processing approach is applied to the destination image literature. By doing this, we argue that some components of mental destination representations are processed systematically while others serve as inputs for heuristics...... that individuals apply to inform their decision making. Understanding how individuals make use of their mental destination representations and how they color their decision-making is essential in order to better explain tourist behavior....

  3. Understanding the Entrepreneurial Process: a Dynamic Approach

    Directory of Open Access Journals (Sweden)

    Vânia Maria Jorge Nassif

    2010-04-01

    Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.

  4. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  5. Understanding the individual to implement the ecosystem approach to fisheries management

    Science.gov (United States)

    Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Hawkins, Emily; Horodysky, Andrij; Jørgensen, Christian; Killen, Shaun S.; McKenzie, David J.; Metcalfe, Julian D.; Peck, Myron A.; Vu, Maria; Cooke, Steven J.

    2016-01-01

    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management. PMID:27293757

  6. Using ecological production functions to link ecological processes to ecosystem services.

    Science.gov (United States)

    Bruins, Randall Jf; Canfield, Timothy J; Duke, Clifford; Kapustka, Larry; Nahlik, Amanda M; Schäfer, Ralf B

    2017-01-01

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into EPFs of added ecological complexity and greater ability to represent the trade-offs among ES. Integr Environ Assess Manag 2017;13:52-61. © 2016 SETAC. © 2016 SETAC.

  7. Understanding the Spatial and Temporal Variations in Hormone Transport within the Stream Ecosystem

    Science.gov (United States)

    Mallakpour, I.; Ward, A. S.; Basu, N. B.

    2012-12-01

    Agricultural, urban, and industrial activities, including land application of manures and discharge of municipal and industrial wastewater, act as point and nonpoint sources for steroid hormones in soils, water, and sediments. Hormones are endocrine disruptors, and their occurrence in stream ecosystems has been implicated in the decline of certain species and change of sex in fish. Laboratory studies indicate that steroid hormones tend to have moderately large sorption coefficients and relatively short half-lives, from a few hours to a few days, suggesting that their persistence and subsequent leaching from soils will be limited. However, these chemicals continue to be detected in streams, indicating that laboratory studies may not capture the coupled hydrologic and biogeochemical dynamics occurring at the field or stream-reach scale. Understanding the spatial and temporal persistence of these chemicals downstream of a confined animal feeding operation (CAFO) or wastewater treatment plant (WWTP) requires a coupled hydrologic and biogeochemical model that takes into account multiple interacting species, sediment processes, and different aerobic and anaerobic reaction pathways and rates. In this study, we focus on two hormones, estrone (E1) and 17β-estradiol (E2), with redox dynamics controlling the conversion between E1 and E2. A 1D stream-reach model with a main-channel and a hyporheic zone was developed similar to the commonly used OTIS model. Processes such as photolysis, decay, and sorption to sediments were included in the model framework. The inclusion of coupled reactions, with specific reaction rates and pathways driven by different reaction pathway, that in turn can be dynamic during a storm event (for example, increasing discharge might lead to more aerobic conditions), was the novelty of the approach. The modeling framework was then used to quantify the relative importance of the different reaction pathways under varying flow conditions, and evaluate the

  8. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    Science.gov (United States)

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  9. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  10. In the dark: A review of ecosystem processes during the Arctic polar night

    Science.gov (United States)

    Berge, Jørgen; Renaud, Paul E.; Darnis, Gerald; Cottier, Finlo; Last, Kim; Gabrielsen, Tove M.; Johnsen, Geir; Seuthe, Lena; Weslawski, Jan Marcin; Leu, Eva; Moline, Mark; Nahrgang, Jasmine; Søreide, Janne E.; Varpe, Øystein; Lønne, Ole Jørgen; Daase, Malin; Falk-Petersen, Stig

    2015-12-01

    Several recent lines of evidence indicate that the polar night is key to understanding Arctic marine ecosystems. First, the polar night is not a period void of biological activity even though primary production is close to zero, but is rather characterized by a number of processes and interactions yet to be fully understood, including unanticipated high levels of feeding and reproduction in a wide range of taxa and habitats. Second, as more knowledge emerges, it is evident that a coupled physical and biological perspective of the ecosystem will redefine seasonality beyond the "calendar perspective". Third, it appears that many organisms may exhibit endogenous rhythms that trigger fitness-maximizing activities in the absence of light-based cues. Indeed a common adaptation appears to be the ability to utilize the dark season for reproduction. This and other processes are most likely adaptations to current environmental conditions and community and trophic structures of the ecosystem, and may have implications for how Arctic ecosystems can change under continued climatic warming.

  11. Linking land-use intensification, plant communities, and ecosystem processes in lowland Bolivia

    NARCIS (Netherlands)

    Carreno Rocabado, I.G.

    2013-01-01

    Land-use intensification (LUI) is one of the main global drivers of biodiversity loss with negative impact on ecosystem processes and the services that societies derive from the ecosystems. The effect of LUI on ecosystem processes can be direct through changes in environmental conditions and

  12. Linking land-use intensification, plant communities, and ecosystem processes in lowland Bolivia

    NARCIS (Netherlands)

    Carreno Rocabado, I.G.

    2013-01-01

    Land-use intensification (LUI) is one of the main global drivers of biodiversity loss with negative impact on ecosystem processes and the services that societies derive from the ecosystems. The effect of LUI on ecosystem processes can be direct through changes in environmental conditions and

  13. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    Science.gov (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  14. Ecological processes in the cycling of radionuclides within arctic ecosystems

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1986-01-01

    Worldwide fallout radionuclides in arctic ecosystems was investigated ecologically by circumpolar nations during 1959-80. Several of the radionuclides are isotopes of elements which currently contribute to arctic haze; they thus serve as effective tracers of biogeochemical processes. Investigations demonstrated the effective concentration of several radionuclides, particularly strontium-90 (an alkaline earth metal) and cesium-137 (a light alkali metal) which are chemical analogs of calcium and potassium, two very important stable elements in biotic systems. Transfer of 137 Cs through the lichen-cariboureindeer-man food chain characteristic of circumpolar nations, resulted in body burdens in Inuit that were 20 to 200 times greater than those in human populations of temperature latitudes. Radiation exposures from 90 Sr, 137 Cs and other natural and worldwide fallout radionuclides, were two to three times greater than for most other world populations. These results demonstrate the concentration capabilities of arctic ecosystems for several groups of chemical elements that have counterparts in arctic haze. These elements, therefore, provide the basis for considering the ecological implications of current situations

  15. New perspectives in ecosystem services science as instruments to understand environmental securities

    Science.gov (United States)

    Villa, Ferdinando; Voigt, Brian; Erickson, Jon D.

    2014-01-01

    As societal demand for food, water and other life-sustaining resources grows, the science of ecosystem services (ES) is seen as a promising tool to improve our understanding, and ultimately the management, of increasingly uncertain supplies of critical goods provided or supported by natural ecosystems. This promise, however, is tempered by a relatively primitive understanding of the complex systems supporting ES, which as a result are often quantified as static resources rather than as the dynamic expression of human–natural systems. This article attempts to pinpoint the minimum level of detail that ES science needs to achieve in order to usefully inform the debate on environmental securities, and discusses both the state of the art and recent methodological developments in ES in this light. We briefly review the field of ES accounting methods and list some desiderata that we deem necessary, reachable and relevant to address environmental securities through an improved science of ES. We then discuss a methodological innovation that, while only addressing these needs partially, can improve our understanding of ES dynamics in data-scarce situations. The methodology is illustrated and discussed through an application related to water security in the semi-arid landscape of the Great Ruaha river of Tanzania. PMID:24535393

  16. Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science

    Science.gov (United States)

    Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.

    2017-12-01

    The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization

  17. Use of Multiple Isotopic Systems to Interpret Ecosystem Processes in Hawaii

    Science.gov (United States)

    Chadwick, O.; Derry, L.; Vitousek, P.

    2007-12-01

    The Hawaiian Islands are an excellent natural laboratory for studying the way in which ecosystems develop and function under varying climates. The mantle-derived basalt parent material provides a constant reaction matrix, the trade winds provide an asymmetric climate pattern that means that the same-age lava flows can be studied under different forcing factors, the relatively few plant species that made it to Hawaii provide a simplified biotic influence on substrate. In essence, we find that the geochemical evolution of basalt weathering provides shifting boundary conditions that constrain ecosystem potentialities, and allows us to apply a number of isotopic systems to enhance the specificity of our interpretation of ecosystem processes. We have applied the following isotopes to assist us in understanding the processes that impact ecosystems: O, C, Sr, Ca, N, Si and Be, and are presently exploring the use of S and Mg. We use these isotopic systems within a matrix of controls that allows us to focus on specific questions. The isotopic signatures from different isotopic systems can define climate- response patterns that are non-linear with each defining different threshold and plateau in rainfall space. Measurement of these isotopic systems allows us to evaluate multiple chemical behaviors at once and to evaluate expected responses to perturbations to any of these tracers in response to past or future changes in climate or other ecosystem drives such as land cover change. For instance, based on deep-soil samples, the plants that grew before humans reached Hawaii have C13 values that drop from -14 per mil to -26 per mil as rainfall increases from 200 mm to 3000 mm. Today the surface-soil values remain close to -14 per mil throughout the rainfall gradient due to the introduction of C4 grasses for pasture. Along the same rainfall gradient, Sr isotopes demonstrate that as C3 plants began to predominate there was a fundmental shift in nutrients supplied from rocks to

  18. Fluid Dynamics Applied to Streams. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…

  19. Transpiration and Leaf Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Gates, David M.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report introduces two models of the thermal energy budget of a leaf. Typical values for…

  20. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach.

    Science.gov (United States)

    Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R

    2018-02-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  1. Understanding the value of plant diversity for ecosystem functioning through niche theory

    Science.gov (United States)

    Isbell, Forest; Purves, Drew W.; Loreau, Michel

    2016-01-01

    Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity–functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity–function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. PMID:27928043

  2. Current ecosystem processes in steppe near Lake Baikal

    Science.gov (United States)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  3. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research

  4. Insights into the Processing of Carbon by Early Microbial Ecosystems

    Science.gov (United States)

    DesMarais, D.; Bebout, B.; Carpenter, S.; Discipulo, S.; Londry, K.; Habicht, K.; Turk, K.

    2003-01-01

    Interactions between Earth and the biosphere that were crucial for early biological evolution also influenced substantially the processes that circulate C between its reservoirs in the atmosphere, ocean, crust and mantle. The C-13 C-12 values of crustal carbonates and organics have recorded changes both in biological discrimination and in the relative rates of burial of organics and carbonates. A full interpretation of these patterns needs further isotopic studies of microbial ecosystems and individual anaerobes. Thus we measured carbon isotope discrimination during autotrophic and heterotrophic growth of pure cultures of sulfate-reducing bacteria and archaea (SRB and SRA). Discrimination during CO2 assimilation is significantly larger than during heterotrophic growth on lactate or acetate. SRB grown lithoautotrophically consumed less than 3% of available CO2 and exhibited substantial discrimination, as follows: Desulfobacterium autotrophicum (alpha 1.0100 to 1.0123), Desulfobacter hydrogenophilus (alpha = 0.0138), and Desulfotomuculum acetoxidans (alpha = 1.0310). Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO2 resulted in biomass with delta C-13 composition intermediate to that of the substrates. We have recently extended these experiments to include the thermophilic SRA Archeoglobus spp. Ecological forces also influence isotopic discrimination. Accordingly, we quantified the flow of C and other constituents in modern marine cyanobacterial mats, whose ancestry extends back billions of years. Such ecosystem processes shaped the biosignatures that entered sediments and atmospheres. At Guerrero Negro, BCS, Mexico, we examined mats dominated by Microcoleus (subtidal) and Lyngbya (intertidal to supratidal) cyanobacteria. During 24 hour cycles, we observed the exchange of O2 and dissolved inorganic C (DIC) between mats and the overlying water. Microcoleus mats assimilated near-equal amounts of DIC during the day as they released at night, but

  5. Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China

    OpenAIRE

    Fengjiao Ma; A. Egrinya Eneji; Jintong Liu

    2014-01-01

    Exploring the relationship between different services has become the focus of ecosystem services research in recent years. The agro-ecosystem, which accounts for one-third of the global land area, provides lots of services but also disservices, depending on resources provided by other systems. In this paper, we explored the agro-ecosystem from four aspects: a summary of different indicators in the agro-ecosystem, input and output changes with time, relationships between different ecosystem se...

  6. Heat Transfer Processes for the Thermal Energy Balance of Organisms. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Stevenson, R. D.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes heat transfer processes involved in the exchange of heat…

  7. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research

  8. Understanding the Sales Process by Selling

    Science.gov (United States)

    Bussière, Dave

    2017-01-01

    Experiential projects bring students closer to real-world situations. This is valuable in sales education because the complexities of the sales process are difficult to learn from a textbook. A student project was developed that involved the selling of advertising space in a one-time newspaper insert. The project included a substantial minimum…

  9. Obsolescence – understanding the underlying processes

    NARCIS (Netherlands)

    Thomsen, A.F.

    2017-01-01

    Obsolescence, defined as the process of declining performance of buildings, is a serious threat for the value, the usefulness and the life span of built properties. Thomsen and van der Flier (2011) developed a model in which obsolescence is categorised on the basis of two distinctions, i.e. between

  10. Understanding Modeling Requirements of Unstructured Business Processes

    NARCIS (Netherlands)

    Allah Bukhsh, Zaharah; van Sinderen, Marten J.; Sikkel, Nicolaas; Quartel, Dick

    2017-01-01

    Management of structured business processes is of interest to both academia and industry, where academia focuses on the development of methods and techniques while industry focuses on the development of supporting tools. With the shift from routine to knowledge work, the relevance of management of

  11. Understanding Late Triassic low latitude terrestrial ecosystems: new insights from the Colorado Plateau Coring Project (CPCP)

    Science.gov (United States)

    Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.

    2017-12-01

    The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent

  12. Local adaptation in Trinidadian guppies alters ecosystem processes

    Science.gov (United States)

    Bassar, Ronald D.; Marshall, Michael C.; López-Sepulcre, Andrés; Zandonà, Eugenia; Auer, Sonya K.; Travis, Joseph; Pringle, Catherine M.; Flecker, Alexander S.; Thomas, Steven A.; Fraser, Douglas F.; Reznick, David N.

    2010-01-01

    Theory suggests evolutionary change can significantly influence and act in tandem with ecological forces via ecological-evolutionary feedbacks. This theory assumes that significant evolutionary change occurs over ecologically relevant timescales and that phenotypes have differential effects on the environment. Here we test the hypothesis that local adaptation causes ecosystem structure and function to diverge. We demonstrate that populations of Trinidadian guppies (Poecilia reticulata), characterized by differences in phenotypic and population-level traits, differ in their impact on ecosystem properties. We report results from a replicated, common garden mesocosm experiment and show that differences between guppy phenotypes result in the divergence of ecosystem structure (algal, invertebrate, and detrital standing stocks) and function (gross primary productivity, leaf decomposition rates, and nutrient flux). These phenotypic effects are further modified by effects of guppy density. We evaluated the generality of these effects by replicating the experiment using guppies derived from two independent origins of the phenotype. Finally, we tested the ability of multiple guppy traits to explain observed differences in the mesocosms. Our findings demonstrate that evolution can significantly affect both ecosystem structure and function. The ecosystem differences reported here are consistent with patterns observed across natural streams and argue that guppies play a significant role in shaping these ecosystems. PMID:20133670

  13. An individual-based process model to simulate landscape-scale forest ecosystem dynamics

    Science.gov (United States)

    Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies

    2012-01-01

    Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...

  14. Practice Alignment and intent as distinctions for understanding cross-boundary knowledge creation practices in knowledge ecosystems

    DEFF Research Database (Denmark)

    Aaen, Mathias

    This paper explores how practice alignment and intent across organizational boundaries may serve as an explanation for collaborative knowledge creation in a knowledge ecosystem. The paper is based on a longitudinal case study of a large multinational knowledge ecosystem consisting of many...... communities of practices and organisations. By applying a practice theory approach to five data sets collected over a five-year period, the study investigates how two distinctions may serve as a potential gateway into understanding knowledge creation across boundaries. The two distinctions – practice...... are identified and discussed. Potential implications for organisational and knowledge ecosystem conceptions are identified and discussed for further research....

  15. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Martinez-Ramos, M.; Bongers, F.

    2015-01-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity,

  16. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  17. Ecosystem services in ECOCLIM

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Boegh, Eva; Bendtsen, J

    that actions initiated to reduce anthropogenic GHG emissions are sustainable and not destructive to existing ecosystem services. Therefore it is important to address i.e. land use change in relation to the regulating services of the ecosystems, such as carbon sequestration and climate regulation. At present...... a thorough understanding of the ecosystem processes controlling the uptake or emissions of GHG is fundamental. Here we present ECOCLIM in the context of ecosystem services and the experimental studies within ECOCLIM which will lead to an enhanced understanding of Danish ecosystems....

  18. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    Science.gov (United States)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at solutions have on the accuracy of the final product, the digital surface model (DSM), by using recently acquired data. Specifically, when applied in a structurally complex field site with irregular surface roughness patterns, over a land use gradient, from livestock grazing to agricultural crops. We will demonstrate the added value of using very fine detail data

  19. An experimental framework to identify community functional components driving ecosystem processes and services delivery

    Czech Academy of Sciences Publication Activity Database

    Dias, A. T. C.; Berg, M. P.; de Bello, Francesco; Oosten, A. R. V.; Bílá, Karolína; Morreti, M.

    2013-01-01

    Roč. 101, č. 1 (2013), s. 29-37 ISSN 0022-0477 R&D Projects: GA ČR GAP505/12/1296 Institutional support: RVO:67985939 ; RVO:67179843 Keywords : CWM * ecosystem functioning * ecosystem processes * ecosystem services * functional divergence * functional diversity * functional evenness * functional richness * mass ratio hypothesis * Rao index Subject RIV: EH - Ecology, Behaviour; EF - Botanics (BU-J) Impact factor: 5.694, year: 2013

  20. Understanding the Factors Influencing Nonindustrial Private Forest Landowner Interest in Supplying Ecosystem Services in Cumberland Plateau, Tennessee

    Directory of Open Access Journals (Sweden)

    Nana Tian

    2015-11-01

    Full Text Available Private forests provide a range of ecosystem services for society including provisioning, regulating, cultural, and supporting services. Sustaining the supply of such services depends on the interest of nonindustrial private forest (NIPF landowners in managing their forests for such services. Assessing factors that influence NIPF landowner intentions would be useful in identifying potential suppliers of ecosystem services and in designing and implementing outreach and education programs to elevate the interests of less interested landowners. Using data collected from a mail survey of NIPF landowners on the Cumberland Plateau of Tennessee, this study examined how landowner interest in supplying ecosystem services was influenced by socio-demographic characteristics, economic and market factors, land management objectives, and ownership motivations. To that end, a multivariate logistic regression model was employed to analyze the supply of three types of ecosystem services: carbon storage (regulating service, water quality (provisioning service, and aesthetics (cultural service. Results revealed that landowner interest in managing forests for ecosystem services were significantly related to socio-demographic factors, management and ownership characteristics, and availability of financial incentives. These findings will improve the understanding of the market segment of landowners as related to ecosystem services. The findings may facilitate the development of market protocols and outreach programs that promote payments for ecosystem services in Tennessee and elsewhere.

  1. Photodegradation processes in arid ecosystems: controlling factors and potential application in land restoration

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Luna-Ramos, Lourdes; Oyonarte, Cecilio; Sole Benet, Albert

    2017-04-01

    Water availability plays a fundamental part in controlling biotic processes in arid ecosystems. However, recent evidence suggests that other decisive drivers take part in these processes. Despite low annual rainfall and microbial activity, unexplained high rates of litter decomposition, net nitrogen mineralization, soil enzymatic activity and carbon turnover have been observed in arid ecosystems. These observations have been partly explained by photodegradation, a process that consists of the breakdown of organic matter via solar radiation (UV) and that can increase decomposition rates and lead to changes in the balance of carbon and nutrients between plants, soil and atmosphere. A complete understanding of these mechanisms and its drivers in arid ecosystems remains a critical challenge for the scientific community at the global level. In this research, we conducted a multi-site field experiment to test the effects of photodegradation on decomposition of organic amendments used in ecosystem restoration. The study was carried out during 12 months in two study areas: the Pilbara region in Western Australia (Southern Hemisphere) and the Cabo de Gata Nijar Natural Park, South Spain (Northern Hemisphere). In both sites, four treatments were applied in replicated plots (1x1 m, n=4) that included a control (C) with no soil amendment; organic amendment covering the soil surface (AS); organic amendment incorporated into the soil (AI); and a combination of both techniques, both covering the surface and incorporated into the soil (AS-AI). Different organic amendments (native mulch versus compost) and soil substrates were used at each site according to local practices, but in both sites these were applied to increase soil organic matter up to 2%. At the two locations, a radiometer and a logger with a soil temperature and soil moisture probe were installed to monitor UV radiation and soil conditions for the duration of the trial. Soil microbial activity, soil CO2 efflux, and

  2. A flux footprint analysis to understand ecosystem fluxes in an intensively managed landscape

    Science.gov (United States)

    Hernandez Rodriguez, L. C.; Goodwell, A. E.; Kumar, P.

    2017-12-01

    Flux tower studies in agricultural sites have mainly been done at plot scale, where the footprint of the instruments is small such that the data reveals the behaviour of the nearby crop on which the study is focused. In the Midwestern United States, the agricultural ecosystem and its associated drainage, evapotranspiration, and nutrient dynamics are dominant influences on interactions between the soil, land, and atmosphere. In this study, we address large-scale ecohydrologic fluxes and states in an intensively managed landscape based on data from a 25m high eddy covariance flux tower. We show the calculated upwind distance and flux footprint for a flux tower located in Central Illinois as part of the Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). In addition, we calculate the daily energy balance during the summer of 2016 from the flux tower measurements and compare with the modelled energy balance from a representative corn crop located in the flux tower footprint using the Multi-Layer Canopy model, MLCan. The changes in flux footprint over the course of hours, days, and the growing season have significant implications for the measured fluxes of carbon and energy at the flux tower. We use MLCan to simulate these fluxes under land covers of corn and soybeans. Our results demonstrate how the instrument heights impact the footprint of the captured eddy covariance fluxes, and we explore the implication for hydrological analysis. The convective turbulent atmosphere during the daytime shows a wide footprint of more than 10 km2, which reaches 3km length for the 90% contribution, where buoyancy is the dominant mechanism driving turbulence. In contrast, the stable atmosphere during the night-time shows a narrower footprint that goes beyond 8km2 and grows in the direction of the prevalent wind, which exceeds 4 km in length. This study improves our understanding of agricultural ecosystem behaviour in terms of the magnitude and variability of fluxes and

  3. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  4. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan

    Science.gov (United States)

    Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems. PMID:29415066

  5. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan.

    Science.gov (United States)

    Yang, Haile; Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.

  6. Towards Predictive Modeling of Information Processing in Microbial Ecosystems With Quorum-Sensing Interactions

    Science.gov (United States)

    Yusufaly, Tahir; Boedicker, James

    Bacteria communicate using external chemical signals in a process known as quorum sensing. However, the efficiency of this communication is reduced by both limitations on the rate of diffusion over long distances and potential interference from neighboring strains. Therefore, having a framework to quantitatively predict how spatial structure and biodiversity shape information processing in bacterial colonies is important, both for understanding the evolutionary dynamics of natural microbial ecosystems, and for the rational design of synthetic ecosystems with desired computational properties. As a first step towards these goals, we implement a reaction-diffusion model to study the dynamics of a LuxI/LuxR quorum sensing circuit in a growing bacterial population. The spatiotemporal concentration profile of acyl-homoserine lactone (AHL) signaling molecules is analyzed, and used to define a measure of physical and functional signaling network connectivity. From this, we systematically investigate how different initial distributions of bacterial populations influence the subsequent efficiency of collective long-range signal propagation in the population. We compare our results with known experimental data, and discuss limitations and extensions to our modeling framework.-/abstract-

  7. A review of the feedbacks between bivalve grazing and ecosystem processes

    NARCIS (Netherlands)

    Prins, T.C.; Smaal, A.C.; Dame, R.F.

    1998-01-01

    This paper gives an overview of interactions between bivalve grazing and ecosystem processes, that may affect the carrying capacity of ecosystems for bivalve suspension feeders. These interactions consist of a number of positive and negative feedbacks. Bivalve grazing can result in local food

  8. Electricity vs Ecosystemsunderstanding and predicting hydropower impact on Swedish river flow

    Directory of Open Access Journals (Sweden)

    B. Arheimer

    2014-09-01

    Full Text Available The most radical anthropogenic impact on water systems in Sweden originates from the years 1900–1970, when the electricity network was developed in the country and almost all rivers were regulated. The construction of dams and changes in water flow caused problems for ecosystems. Therefore, when implementing the EU Water Framework Directive (WFD hydro-morphological indicators and targets were developed for rivers and lakes to achieve good ecological potential. The hydrological regime is one such indicator. To understand the change in flow regime we quantified the hydropower impact on river flow across Sweden by using the S-HYPE model and observations. The results show that the average redistribution of water during a year due to regulation is 19 % for the total discharge from Sweden. A distinct impact was found in seasonal flow patterns and flow duration curves. Moreover, we quantified the model skills in predicting hydropower impact on flow. The median NSE for simulating change in flow regime was 0.71 for eight dams studied. Results from the spatially distributed model are available for 37 000 sub-basins across the country, and will be used by the Swedish water authorities for reporting hydro-morphological indicators to the EU and for guiding the allocation of river restoration measures.

  9. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  10. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia

    2017-01-01

    of business processes has not been empirically evaluated. In this paper, we report on an experiment that investigates the effect of linked rules, a specific rule integration approach, on business process model understanding. Our results indicate that linked rules are associated with better time efficiency......Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...... research advocated integrating business rules into business process models to improve the effectiveness of important organizational activities, such as developing shared understanding, effective communication, and process improvement. However, whether such integrated modeling can improve the understanding...

  11. Introduction to the special issue on “Understanding and predicting change in the coastal ecosystems of the northern Gulf of Mexico”

    Science.gov (United States)

    Brock, John C.; Barras, John A.; Williams, S. Jeffress

    2013-01-01

    The coastal region of the northern Gulf of Mexico owes its current landscape structure to an array of tectonic, erosional and depositional, climatic, geochemical, hydrological, ecological, and human processes that have resulted in some of the world's most complex, dynamic, productive, and threatened ecosystems. Catastrophic hurricane landfalls, ongoing subsidence and erosion exacerbated by sea-level rise, disintegration of barrier island chains, and high rates of wetland loss have called attention to the vulnerability of northern Gulf coast ecosystems, habitats, built infrastructure, and economy to natural and anthropogenic threats. The devastating hurricanes of 2005 (Katrina and Rita) motivated the U.S. Geological Survey Coastal and Marine Geology Program and partnering researchers to pursue studies aimed at understanding and predicting landscape change and the associated storm hazard vulnerability of northern Gulf coast region ecosystems and human communities. Attaining this science goal requires increased knowledge of landscape evolution on geologic, historical, and human time scales, and analysis of the implications of such changes in the natural and built components of the landscape for hurricane impact susceptibility. This Special Issue of the Journal of Coastal Research communicates northern Gulf of Mexico research results that (1) improve knowledge of prior climates and depositional environments, (2) assess broad regional ecosystem structure and change over Holocene to human time scales, (3) undertake process studies and change analyses of dynamic landscape components, and (4) integrate framework, climate, variable time and spatial scale mapping, monitoring, and discipline-specific process investigations within interdisciplinary studies.

  12. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.

    Directory of Open Access Journals (Sweden)

    Thomas W Davies

    Full Text Available Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.

  13. Understanding the links between ecosystem health and social system well-being: an annotated bibliography.

    Science.gov (United States)

    Dawn M. Elmer; Harriet H. Christensen; Ellen M. Donoghue; [Compilers].

    2002-01-01

    This bibliography focuses on the links between social system well-being and ecosystem health. It is intended for public land managers and scientists and students of social and natural sciences. Multidisciplinary science that addresses the interconnections between the social system and the ecosystem is presented. Some of the themes and strategies presented are policy...

  14. Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China

    Directory of Open Access Journals (Sweden)

    Fengjiao Ma

    2014-11-01

    Full Text Available Exploring the relationship between different services has become the focus of ecosystem services research in recent years. The agro-ecosystem, which accounts for one-third of the global land area, provides lots of services but also disservices, depending on resources provided by other systems. In this paper, we explored the agro-ecosystem from four aspects: a summary of different indicators in the agro-ecosystem, input and output changes with time, relationships between different ecosystem services and disservices, and resource contribution to major services, using Luancheng County of North China as the study area. We then used emergy analysis to unify all the indicators. The conclusions were that the agro-ecosystem maintained provisioning and regulating services but with increasing volatility under continued growth in production inputs and disservice outputs. There was a positive correlation between most of the different services and disservices. Rainfall and groundwater resources were the most used input resources in the agro-ecosystem and all other major ecosystem services depended directly on them.

  15. Nutrient vectors and riparian nutrient processing in African semiarid savanna ecosystems

    Science.gov (United States)

    Jacobs, Shayne M.; Bechtold, J.S.; Biggs, Harry C.; Grimm, N. B.; McClain, M.E.; Naiman, R.J.; Perakis, Steven S.; Pinay, G.; Scholes, M.C.

    2007-01-01

    This review article describes vectors for nitrogen and phosphorus delivery to riparian zones in semiarid African savannas, the processing of nutrients in the riparian zone and the effect of disturbance on these processes. Semiarid savannas exhibit sharp seasonality, complex hillslope hydrology and high spatial heterogeneity, all of which ultimately impact nutrient fluxes between riparian, upland and aquatic environments. Our review shows that strong environmental drivers such as fire and herbivory enhance nitrogen, phosphorus and sediment transport to lower slope positions by shaping vegetative patterns. These vectors differ significantly from other arid and semiarid ecosystems, and from mesic ecosystems where the impact of fire and herbivory are less pronounced and less predictable. Also unique is the presence of sodic soils in certain hillslopes, which substantially alters hydrological flowpaths and may act as a trap where nitrogen is immobilized while sediment and phosphorus transport is enhanced. Nutrients and sediments are also deposited in the riparian zone during seasonal, intermittent floods while, during the dry season, subsurface movement of water from the stream into riparian soils and vegetation further enrich riparian zones with nutrients. As is found in mesic ecosystems, nutrients are immobilized in semiarid riparian corridors through microbial and plant uptake, whereas dissimilatory processes such as denitrification may be important where labile nitrogen and carbon are in adequate supply and physical conditions are suitablea??such as in seeps, wallows created by animals, ephemeral wetlands and stream edges. Interaction between temporal hydrologic connectivity and spatial heterogeneity are disrupted by disturbances such as large floods and extended droughts, which may convert certain riparian patches from sinks to sources for nitrogen and phosphorus. In the face of increasing anthropogenic pressure, the scientific challenges are to provide a basic

  16. The Development and Validation of an Alternative Assessment to Measure Changes in Understanding of the Longleaf Pine Ecosystem

    Science.gov (United States)

    Dentzau, Michael W.; Martínez, Alejandro José Gallard

    2016-01-01

    A drawing assessment to gauge changes in fourth grade students' understanding of the essential components of the longleaf pine ecosystem was developed to support an out-of-school environmental education program. Pre- and post-attendance drawings were scored with a rubric that was determined to have content validity and reliability among users. In…

  17. Linking bacterial identities and ecosystem processes: can 'omic' analyses be more than the sum of their parts?

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2011-01-01

    A major goal in microbial ecology is to link specific microbial populations to environmental processes (e.g. biogeochemical transformations). The cultivation and characterization of isolates using genetic, biochemical and physiological tests provided direct links between organisms and their activities, but did not provide an understanding of the process networks in situ. Cultivation-independent molecular techniques have extended capabilities in this regard, and yet, for two decades, the focus has been on monitoring microbial community diversity and population dynamics by means of rRNA gene abundances or rRNA molecules. However, these approaches are not always well suited for establishing metabolic activity or microbial roles in ecosystem function. The current approaches, microbial community metagenomic and metatranscriptomic techniques, have been developed as other ways to study microbial assemblages, giving rise to exponentially increasing collections of information from numerous environments. This review considers some advantages and limitations of nucleic acid-based 'omic' approaches and discusses the potential for the integration of multiple molecular or computational techniques for a more effective assessment of links between specific microbial populations and ecosystem processes in situ. Establishing such connections will enhance the predictive power regarding ecosystem response to parameters or perturbations, and will bring us closer to integrating microbial data into ecosystem- and global-scale process measurements and models. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Understanding relationships between morphology and ecosystem structure in a shallow tidal basins of Venice lagoon

    Science.gov (United States)

    Giuseppina Persichillo, Maria; Taramelli, Andrea; Valentini, Emiliana; Filipponi, Federico; Meisina, Claudia; Zucca, Francesco

    2014-05-01

    Coastal wetlands represent complex ecosystems prone to continue fluctuation of their internal equilibrium. They are valuable natural resources characterized by the continue interactions between geomorphological and biological components. Their adaptation to changing conditions is highly dependent on the rate and extent of spatial and temporal processes and their responses are still poorly understood. According to this, the vulnerability assessment to natural and human made hazard have became fundamental to analyse the resilience of these areas, their ability to cope with the impacts from externally driven forces or the efforts needed to minimize the impacts (Gitay et al., 2011). The objective of this research is to develop a comprehensive and replicable method through the application of Multi-Source data analysis, based on the integration of Earth Observation data and field survey, to analyse a shallow tidal basin of salt marshes, located in the northern part of the Venice lagoon. The study site is characterised by relatively elevated areas colonized by halophytic vegetation, and tidal flats, with not vegetated areas, characterized by lower elevations. Sub-pixel processing techniques (Spectral Mixing Analysis - SMA) were used to analyse the spatial distribution of both vegetation and sediments typology. Furthermore the classifications were assayed in terms of spatial (Power law) and temporal (Empirical Orthogonal Functions) patterns, in order to find the main characteristics of the aforementioned spatial trends and their variation over time. The principal aim is to study the spatio-temporal evolution of this coastal wetland area, in order to indentify tipping points, namely thresholds, beyond which the system reaches critical state and the main climatic, hydrodynamic and morphological variables that may influence and increase this behaviour. This research represents a new approach to study the geomorphological processes and to improve the management and

  19. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.

    Science.gov (United States)

    Galic, Nika; Grimm, Volker; Forbes, Valery E

    2017-08-01

    Freshwater ecosystems are exposed to many stressors, including toxic chemicals and global warming, which can impair, separately or in combination, important processes in organisms and hence higher levels of organization. Investigating combined effects of warming and toxicants has been a topic of little research, but neglecting their combined effects may seriously misguide management efforts. To explore how toxic chemicals and warming, alone and in combination, propagate across levels of biological organization, including a key ecosystem process, we developed an individual-based model (IBM) of a freshwater amphipod detritivore, Gammarus pseudolimnaeus, feeding on leaf litter. In this IBM, life history emerges from the individuals' energy budgets. We quantified, in different warming scenarios (+1-+4 °C), the effects of hypothetical toxicants on suborganismal processes, including feeding, somatic and maturity maintenance, growth, and reproduction. Warming reduced mean adult body sizes and population abundance and biomass, but only in the warmest scenarios. Leaf litter processing, a key contributor to ecosystem functioning and service delivery in streams, was consistently enhanced by warming, through strengthened interaction between the detritivorous consumer and its resource. Toxicant effects on feeding and maintenance resulted in initially small adverse effects on consumers, but ultimately led to population extinction and loss of ecosystem process. Warming in combination with toxicants had little effect at the individual and population levels, but ecosystem process was impaired in the warmer scenarios. Our results suggest that exposure to the same amount of toxicants can disproportionately compromise ecosystem processing depending on global warming scenarios; for example, reducing organismal feeding rates by 50% will reduce resource processing by 50% in current temperature conditions, but by up to 200% with warming of 4 °C. Our study has implications for

  20. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  1. Food security in a perfect storm: using the ecosystem services framework to increase understanding.

    Science.gov (United States)

    Poppy, G M; Chiotha, S; Eigenbrod, F; Harvey, C A; Honzák, M; Hudson, M D; Jarvis, A; Madise, N J; Schreckenberg, K; Shackleton, C M; Villa, F; Dawson, T P

    2014-04-05

    Achieving food security in a 'perfect storm' scenario is a grand challenge for society. Climate change and an expanding global population act in concert to make global food security even more complex and demanding. As achieving food security and the millennium development goal (MDG) to eradicate hunger influences the attainment of other MDGs, it is imperative that we offer solutions which are complementary and do not oppose one another. Sustainable intensification of agriculture has been proposed as a way to address hunger while also minimizing further environmental impact. However, the desire to raise productivity and yields has historically led to a degraded environment, reduced biodiversity and a reduction in ecosystem services (ES), with the greatest impacts affecting the poor. This paper proposes that the ES framework coupled with a policy response framework, for example Driver-Pressure-State-Impact-Response (DPSIR), can allow food security to be delivered alongside healthy ecosystems, which provide many other valuable services to humankind. Too often, agro-ecosystems have been considered as separate from other natural ecosystems and insufficient attention has been paid to the way in which services can flow to and from the agro-ecosystem to surrounding ecosystems. Highlighting recent research in a large multi-disciplinary project (ASSETS), we illustrate the ES approach to food security using a case study from the Zomba district of Malawi.

  2. Hydrology modifies ecosystem responses to warming through interactions between soil, leaf and canopy processes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, K. S.; Welker, J. M.; Lett, C.; Czimczik, C. I.; Lupascu, M.; Seibt, U. H.

    2013-12-01

    . Net carbon and water fluxes in the elevated temperature plots were similar to the control plots, as enhanced soil respiration offset the increased photosynthetic uptake. The T2 plants also had the highest leaf N content and specific leaf area (SLA), whereas watering, both in combination with higher temperatures and alone, reduced leaf SLA and leaf N relative to control plots. Warming increases soil N availability, but this is allocated differently depending on the precipitation regime. Where water limitation prevents increased canopy development the plants direct the N towards increasing the photosynthetic capacity of larger, thinner leaves, increasing leaf-level light use efficiency. However, with additional water, the distribution of N over a larger total leaf area results in overall greater productivity gains. Hydrology clearly modifies the response to warming in high Arctic ecosystems, through soil-plant interactions affecting both leaf and canopy scale processes. Our results provide a unique data set with which to parameterize and test models of ecosystem responses in the coming century.

  3. Understanding the Complexity of Social Issues through Process Drama.

    Science.gov (United States)

    O'Mara, Joanne

    2002-01-01

    Attempts to capture the process of understanding and questioning deforestation through process drama (in which students and teacher work both in and out of role to explore a problem, situation, or theme). Notes that moving topics such as the destruction of a rainforest into process drama introduces complexity into social issues. Considers how…

  4. Task-specific visual cues for improving process model understanding

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Context Business process models support various stakeholders in managing business processes and designing process-aware information systems. In order to make effective use of these models, they have to be readily understandable. Objective Prior research has emphasized the potential of visual cues to

  5. Using targeted active-learning exercises and diagnostic question clusters to improve students' understanding of carbon cycling in ecosystems.

    Science.gov (United States)

    Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill

    2012-01-01

    In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and organic carbon-containing compounds in biological systems. These results helped us identify specific active-learning exercises that would be responsive to students' existing knowledge. The effects of the active-learning interventions were then examined through analysis of students' pre- and postinstruction responses on the DQCs. The biology and non-biology majors participating in this study attended a range of institutions and the instructors varied in their use of active learning; one lecture-only comparison class was included. Changes in pre- to postinstruction scores on the DQCs showed that an instructor's teaching method had a highly significant effect on student reasoning following course instruction, especially for questions pertaining to cellular-level, carbon-transforming processes. We conclude that using targeted in-class activities had a beneficial effect on student learning regardless of major or class size, and argue that using diagnostic questions to identify effective learning activities is a valuable strategy for promoting learning, as gains from lecture-only classes were minimal.

  6. A terrestrial ecosystem model (SOLVEG) coupled with atmospheric gas and aerosol exchange processes

    International Nuclear Information System (INIS)

    Katata, Genki; Ota, Masakazu

    2017-01-01

    In order to predict the impact of atmospheric pollutants (gases and aerosols) to the terrestrial ecosystem, new schemes for calculating the processes of dry deposition of gases and aerosols, and water and carbon cycles in terrestrial ecosystems were implemented in the one-dimensional atmosphere-SOiL-VEGetation model, SOLVEG. We made performance tests at various vegetation areas to validate the newly developed schemes. In this report, the detail in each modeled process is described with an instruction how to use the modified SOLVEG. The framework of 'terrestrial ecosystem model' was developed for investigation of a change in water, energy, and carbon cycles associated with global warming and air pollution and its impact on terrestrial ecosystems. (author)

  7. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  8. A Demonstration Marine Biodiversity Observation Network (MBON): Understanding Marine Life and its Role in Maintaining Ecosystem Services

    Science.gov (United States)

    Muller-Karger, F. E.; Iken, K.; Miller, R. J.; Duffy, J. E.; Chavez, F.; Montes, E.

    2016-02-01

    The U.S. Federal government (NOAA, NASA, BOEM, and the Smithsonian Institution), academic researchers, and private partners are laying the foundation for a Marine Biodiversity Observation Network (MBON). The goals of the network are to: 1) Observe and understand life, from microbes to whales, in different coastal and continental shelf habitats; 2) Define an efficient set of observations required for implementing a useful MBON; 3) Develop technology for biodiversity assessments including emerging environmental DNA (eDNA), remote sensing, and image analysis methods to coordinate with classical sampling; 4) Integrate and synthesize information in coordination with the Integrated Ocean Observing System (IOOS), the international Group on Earth Observations Biodiversity Observation Network(GEO BON), and the Ocean Biogeographic Information System (OBIS) sponsored by UNESCO's Intergovernmental Oceanographic Commission (IOC); and 5) Understand the linkages between marine biodiversity, ecosystem processes, and the social-economic context of a region. Pilot projects have been implemented within three NOAA National Marine Sanctuaries (Florida Keys, Monterey Bay, and Channel Islands), the wider Santa Barbara Channel, in the Chukchi Sea, and through the Smithsonian's Tennenbaum Marine Observatories Network (TMON) at several sites in the U.S. and collaborating countries. Together, these MBON sites encompass a wide range of marine environments, including deep sea, continental shelves, and coastal habitats including estuaries, wetlands, and coral reefs. The present MBON partners are open to growth of the MBON through additional collaborations. Given these initiatives, GEO BON is proposing an MBON effort that spans from pole to pole, with a pathfinder effort among countries in the Americas. By specializing in coastal ecosystems—where marine biodiversity and people are concentrated and interact most—the MBON and TMON initiatives aim to provide policymakers with the science to

  9. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    Science.gov (United States)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more

  10. Shifts in ecosystem services in deprived urban areas: understanding people's responses and consequences for well-being

    Directory of Open Access Journals (Sweden)

    Marthe L. Derkzen

    2017-03-01

    Full Text Available Urban commons are under pressure. City development has led to the encroachment and ecological degradation of urban open space. Although there is growing insight that urban ecosystems need to be protected, there is hardly any attention for the consequences (of both pressures and protection efforts for vulnerable human population groups. We aim to understand how urban development affects the well-being of the urban poor, through shifts in ecosystem services (ES and people's responses to these shifts. We performed household interviews and group mapping sessions in seven urban lake communities in Bangalore, India. Changes at Bangalore's lakes can be summarized by three trends: privatization followed by conversion, pollution followed by degradation, and restoration followed by gentrification. Over time, this resulted in a shift in the types of ES supplied and demanded, the nature of use, and de facto governance: from provisioning, communal and public; to cultural, individual, and private. Lake dwellers responded by finding (other sources of income, accepting lower quality or less accessible ES, and/or completely stopping the use of certain ES. The consequences of ecosystem change for people's well-being differ depending on a household's ability to adapt and on individual circumstances, land tenure and financial capital in particular. To guarantee a future for Bangalore's lakes, restoration seems the only viable option. Although beautiful lake parks may be a solution for the well-off and not-too-poor, leaving the very poor without options to adapt to the new circumstances puts them at risk of becoming even more marginalized. We show that ecosystem degradation and restoration alike can impact the well-being of the urban poor. People's experiences allowed us to couple ecosystem change to well-being through ES and adaptation strategies. Hence, we revealed multiple cause-effect relations. Understanding these relations contributes to sustainable urban

  11. The interaction triangle as a tool for understanding stakeholder interactions in marine ecosystem based management

    NARCIS (Netherlands)

    Rockmann, C.; Leeuwen, van J.; Goldsborough, D.G.; Kraan, M.L.; Piet, G.J.

    2015-01-01

    Expectations about ecosystem based management (EBM) differ due to diverging perspectives about what EBM should be and how it should work. While EBM by its nature requires trade-offs to be made between ecological, economic and social sustainability criteria, the diversity of cross-sectoral

  12. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...... understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug...

  13. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  14. Ecosystem services and biogeochemical cycles on a global scale: valuation of water, carbon and nitrogen processes

    International Nuclear Information System (INIS)

    Watanabe, Marcos D.B.; Ortega, Enrique

    2011-01-01

    Ecosystem services (ES) are provided by healthy ecosystems and are fundamental to support human life. However, natural systems have been degraded all over the world and the process of degradation is partially attributed to the lack of knowledge regarding the economic benefits associated with ES, which usually are not captured in the market. To valuate ES without using conventional approaches, such as the human's willingness-to-pay for ecosystem goods and services, this paper uses a different method based on Energy Systems Theory to estimate prices for biogeochemical flows that affect ecosystem services by considering their emergy content converted to equivalent monetary terms. Ecosystem services related to water, carbon and nitrogen biogeochemical flows were assessed since they are connected to a range of final ecosystem services including climate regulation, hydrological regulation, food production, soil formation and others. Results in this paper indicate that aquifer recharge, groundwater flow, carbon dioxide sequestration, methane emission, biological nitrogen fixation, nitrous oxide emission and nitrogen leaching/runoff are the most critical biogeochemical flows in terrestrial systems. Moreover, monetary values related to biogeochemical flows on a global scale could provide important information for policymakers concerned with payment mechanisms for ecosystem services and costs of greenhouse gas emissions.

  15. Understanding the process of greening of Brazilian business schools

    DEFF Research Database (Denmark)

    Jabbour, C.J.C.; Sarkis, J.; De Sousa Jabbour, A.B.L.

    2013-01-01

    activities; (d) paradoxically, the analyzed business schools can be considered academic leaders in the field, but have had difficulties in adopting environmental management practices internally; (e) there is a "path dependence" effect in this process; (f) there are barriers to organizational change towards...... green business schools; (g) institutional entrepreneurs are important to the process of greening. This research represents the first research shedding light to understanding the process of greening of Brazilian business schools while considering the multidimensional aspects (teaching, research, outreach...

  16. Understanding Control Function and Failure From a Process Perspective

    DEFF Research Database (Denmark)

    Heussen, Kai; Lind, Morten

    2012-01-01

    In control design, fault-identification and fault tolerant control, the controlled process is usually perceived as a dynamical process, captured in a mathematical model. The design of a control system for a complex process, however, begins typically long before these mathematical models become...... relevant and available. To consider the role of control functions in process design, a good qualitative understanding of the process as well as of control functions is required. As the purpose of a control function is closely tied to the process functions, its failure has a direct effects on the process...... behaviour and its function. This paper presents a formal methodology for the qualitative representation of control functions in relation to their process context. Different types of relevant process and control abstractions are introduced and their application to formal analysis of control failure modes...

  17. ECOSYSTEM APPROACH FOR EVALUATING DEGRADATION PROCESSES AND NATURE PROTECTION IN INNER ASIA

    Directory of Open Access Journals (Sweden)

    Chultem Dugarjav

    2010-01-01

    Full Text Available he paper presents results of eco-biological assessment of Inner Asian ecosystems using the example of Mongolia as a case study. The comprehensive environmental analysis of changes in Mongolia’s environment included approaches based on three principles: (1 formal, (2 administrative division, and (3 landscape-ecological. We analyzed ecosystems that have undergone at last three levels of alterations (moderate, heavy, and very heavy due to anthropogenic factors. Based on our analysis of degradation processes that result in heavy and very heavy anthropogenic alteration of the natural environment, we isolated 5 groups of hazardous degradation processes: (1 rangeland overgrowth with shrubs, (2 deforestation of forest-steppe ecosystems, (3 desertification of ecosystems on light soils, (4 depletion of ecosystems of hydromorphic landscapes, and (5 narcotization of agrocenoses in modified ecosystems. The comprehensive assessment of adverse changes of natural habitats has enabled a revision of the state policy for the organization of the optimum network of wildlife reserves for conservation of floristic and faunistic diversity.

  18. The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes.

    Science.gov (United States)

    Fitzpatrick, Connor R; Agrawal, Anurag A; Basiliko, Nathan; Hastings, Amy P; Isaac, Marney E; Preston, Michael; Johnson, Marc T J

    2015-10-01

    Plant genetic variation and evolutionary dynamics are predicted to impact ecosystem processes but these effects are poorly understood. Here we test the hypothesis that plant genotype and contemporary evolution influence the flux of energy and nutrients through soil, which then feedback to affect seedling performance in subsequent generations. We conducted a multiyear field evolution experiment using the native biennial plant Oenothera biennis. This experiment was coupled with experimental assays to address our hypothesis and quantify the relative importance of evolutionary and ecological factors on multiple ecosystem processes. Plant genotype, contemporary evolution, spatial variation, and herbivory affected ecosystem processes (e.g., leaf decay, soil respiration, seedling performance, N cycling), but their relative importance varied between specific ecosystem variables. Insect herbivory and evolution also contributed to a feedback that affected seedling biomass of O. biennis in the next generation. Our results show that heritable variation among plant genotypes can be an important factor affecting local ecosystem processes, and while effects of contemporary evolution were detectable and sometimes strong, they were often contingent on other ecological, factors.

  19. Detecting Below-Ground Processes, Diversity, and Ecosystem Function in a Savanna Ecosystem Using Spectroscopy Across Different Vegetation Layers

    Science.gov (United States)

    Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.

    2017-12-01

    Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.

  20. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  1. Ecosystem services and climate change: Understanding the differences and identifying opportunities for forest carbon

    Science.gov (United States)

    Robert L. Deal; Crystal Raymond; David L. Peterson; Cindy. Glick

    2010-01-01

    There are a number of misunderstandings about “ecosystem services” and “climate change” and these terms are often used incorrectly to describe different concepts. These concepts address different issues and objectives but have some important integrating themes relating to carbon and carbon sequestration. In this paper, we provide definitions and distinctions between...

  2. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  3. Soil degradation processes in the Italian agricultural and forest ecosystems

    Directory of Open Access Journals (Sweden)

    Edoardo A.C. Costantini

    2013-12-01

    Full Text Available A number of processes of degradation threaten soil functions. Ten of them are acknowledged by the European Union and fifteen by the Organisation for Economic Co-operation and Development (OECD, but at least another seven have been indicated by different authors in Italy and in other parts of the world. This short review paper summarizes the nature, economic relevance, and territorial impact of soil degradation in Italy, and with reference to Europe as a whole, and highlights the most relevant research needs in soil conservation. The direct annual costs of the main soil degradation processes are estimated to be over 38,000,000,000 euro per year in Europe as a whole, while in Italy, only for landslides, floods, and soil erosion, costs amount to 900,000,000 euro. Loss of the ability to produce food commodities because of soil degradation is particularly important in Italy, since selfsufficiency in food has recently decreased to less than 80% and Italian agricultural soils are hit by several problems, such as limited soil drainage, unfavorable texture and stoniness, shallow rooting depth, and poor chemical properties. On average, soil sealing, reduction in organic matter, and soil compaction in Italy are comparable with those of many other countries, but the occurrence of soil erosion, floods, and landslides is more widespread than in most parts of Europe, and also the presence of salt-affected soils is becoming a major worry. The fight against soil degradation in Italy is certainly more difficult than in other countries because of the high environmental variability. However, according to the current trends, Italy is mostly probably destined not to achieve the European objective to significantly reduce main soil degradation processes by the year 2020. There are several research needs in the field of soil conservation in Italy. These include: i a better basic knowledge about many soil degradation processes and of pedodiversity; ii reliable, sensitive

  4. The quest for a mechanistic understanding of biodiversity-ecosystem services relationships.

    Science.gov (United States)

    Duncan, Clare; Thompson, Julian R; Pettorelli, Nathalie

    2015-10-22

    Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B-ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity-ecosystem functioning (B-EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B-ES research to look towards underlying B-EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B-EF findings to identify key areas for future developments in B-ES research. We highlight a means by which B-ES research may begin to identify how and when multiple underlying B-EF relationships may scale to final ES delivery and trade-offs. © 2015 The Author(s).

  5. [Effects and mechanism of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem].

    Science.gov (United States)

    Wang, Li-qin; Qi, Yu-chun; Dong, Yun-she; Peng, Qin; Guo, Shu-fang; He, Yun-long; Yan, Zhong-qing

    2015-11-01

    As a widespread natural phenomenon in the soil of middle and high latitude as well as high altitude, freeze-thawing cycles have a great influence on the nitrogen cycle of terrestrial ecosystem in non-growing season. Freeze-thawing cycles can alter the physicochemical and biological properties of the soil, which thereby affect the migration and transformation of soil nitrogen. The impacts of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem found in available studies remain inconsistent, the mechanism is still not clear, and the research methods also need to be further explored and innovated. So it is necessary to sum up and analyze the existing achievements in order to better understand the processes of soil nitrogen cycle subjected to freeze-thawing cycles. This paper reviewed the research progress in China and abroad about the effects and mechanisms of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem, including mineralization, immobilization, nitrification and denitrification, N leakage and gaseous loss, and analyzed the deficiencies of extant research. The possible key research topics that should be urgently paid more attention to in the future were also discussed.

  6. Marine ecosystem acoustics (MEA): Quantifying processes in the sea at the spatio-temporal scales on which they occur

    KAUST Repository

    Godøl, Olav Rune

    2014-07-22

    Sustainable management of fisheries resources requires quantitative knowledge and understanding of species distribution, abundance, and productivity-determining processes. Conventional sampling by physical capture is inconsistent with the spatial and temporal scales on which many of these processes occur. In contrast, acoustic observations can be obtained on spatial scales from centimetres to ocean basins, and temporal scales from seconds to seasons. The concept of marine ecosystem acoustics (MEA) is founded on the basic capability of acoustics to detect, classify, and quantify organisms and biological and physical heterogeneities in the water column. Acoustics observations integrate operational technologies, platforms, and models and can generate information by taxon at the relevant scales. The gaps between single-species assessment and ecosystem-based management, as well as between fisheries oceanography and ecology, are thereby bridged. The MEA concept combines state-of-the-art acoustic technology with advanced operational capabilities and tailored modelling integrated into a flexible tool for ecosystem research and monitoring. Case studies are presented to illustrate application of the MEA concept in quantification of biophysical coupling, patchiness of organisms, predator-prey interactions, and fish stock recruitment processes. Widespread implementation of MEA will have a large impact on marine monitoring and assessment practices and it is to be hoped that they also promote and facilitate interaction among disciplines within the marine sciences.

  7. Response diversity, nonnative species, and disassembly rules buffer freshwater ecosystem processes from anthropogenic change.

    Science.gov (United States)

    Moore, Jonathan W; Olden, Julian D

    2017-05-01

    Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.

  8. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    WINTEC

    *For correspondence. Understanding the folding process of synthetic polymers by ... Conformational control in biological macromole- cules depends largely ... context of sensors. 11–13 and more recently with regard to foldamers. 14–17. In these systems, the com- plexation of the OE segment by a metal-ion leads to either a ...

  9. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    WINTEC

    Understanding the folding process of synthetic polymers by small-molecule folding agents. S G RAMKUMAR and S RAMAKRISHNAN*. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 e-mail: raman@ipc.iisc.ernet.in. Abstract. Two acceptor containing polyimides PDI and NDI ...

  10. Understanding the Advising Learning Process Using Learning Taxonomies

    Science.gov (United States)

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  11. Understanding the Process by Which New Employees Enter Work Groups

    Science.gov (United States)

    Summers, Donald B.

    1977-01-01

    The Group Integration Process, described in this article, serves as a broad and guiding set of steps (invitation, induction, orientation, training, relationship, and integration) that helps the supervisor better understand what is to be done in managing a new employee's entrance into a work group. (TA)

  12. Understanding the IT/business partnership - a business process perspective

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    2014-01-01

    From a business process perspective, the business value of information technologies (IT) stems from how they improve or enable business processes. At the same time, in the field of strategic IT/business alignment, the locus of discussion has been how IT/business partnerships enhance the value of IT....... Despite this apparent relationship, the business process perspective has been absent from the IT/business alignment discussion. In this paper, we use the case of an industrial company to develop a model for understanding IT/business partnerships in business process terms. Based on our findings, we define...... these partnerships by allocating responsibilities between central IT and the local business during two stages of a process lifecycle: formation and standardization. The significance of the findings lies in how the model’s configuration leads to different types of IT units’ process centricity. This in turn affects...

  13. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Buendia, L.V.; Neue, H.U.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  14. [Comparative analysis of natural uranium mobility and concentration process in ecosystems of the Pechora river basin].

    Science.gov (United States)

    Rachkova, N G; Shuktomova, I I

    2013-01-01

    Natural uranium mobility and its concentration process in water ecosystems of the Pechora river basin situated in the areas with the uranium increased concentration in rocks and in the zone around radioactive waste repository were compared. The study investigated the influence of the environmental factors on the uranium distribution in water reservoirs. In the studied ecosystems, Fe-bearing compounds are major sorbents of uranium during the migration and concentration process. Nitrate-ions increase the uranium mobility in the ecosystems. The influence of sulfate, phosphate and carbonate complexation on the uranium distribution between water and bottom sediments wasn't pronounced in the ecosystems with high natural radioactivity, but significant for the radioactively contaminated water reservoirs. Uranium geochemical mobility is higher in contaminated water ecosystems. The uranium content in the water from this area substantially exceeds the background value for the region and toxicity limits for hydrophytes. Comparison of the current and earlier received data shows that the uranium concentration in the water has decreased, its specific activity in sediments has enhanced. The level of the uranium concentration in dry hygrophyte biomass has not changed.

  15. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.

    Science.gov (United States)

    McCormack, M Luke; Dickie, Ian A; Eissenstat, David M; Fahey, Timothy J; Fernandez, Christopher W; Guo, Dali; Helmisaari, Heljä-Sisko; Hobbie, Erik A; Iversen, Colleen M; Jackson, Robert B; Leppälammi-Kujansuu, Jaana; Norby, Richard J; Phillips, Richard P; Pregitzer, Kurt S; Pritchard, Seth G; Rewald, Boris; Zadworny, Marcin

    2015-08-01

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Understanding metallic bonding: Structure, process and interaction by Rasch analysis

    Science.gov (United States)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-08-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.

  17. Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery

    Science.gov (United States)

    Lind, B. M.; Hanan, N. P.

    2016-12-01

    Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.

  18. Biotic and abiotic processes in eastside ecosystems: the effects of management on soil properties, processes, and productivity.

    Science.gov (United States)

    Alan E. Harvey; J. Michael Geist; Gerald L McDonald; Martin F. Jurgensen; Patrick H. Cochran; Darlene Zabowski; Robert T. Meurisse

    1994-01-01

    Productivity of forest and range land soils is based on a combination of diverse physical, chemical and biological properties. In ecosystems characteristic of eastside regions of Oregon and Washington, the productive zone is usually in the upper 1 or 2 m. Not only are the biological processes that drive both soil productivity and root development concentrated in...

  19. Animal Thermoregulation and the Operative Environmental (Equivalent) Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Process.

    Science.gov (United States)

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Thermoregulation is defined as the ability of an organism to modify its body temperature. This…

  20. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  1. Armillaria species: Primary drivers of forest ecosystem processes and potential impacts of climate change

    Science.gov (United States)

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Amy L. Ross-Davis; Sara M. Ashiglar; Geral I. McDonald

    2012-01-01

    Species of the fungal genus Armillaria are pervasive in forest soils and are associated with widely ranging tree species of diverse forests worldwide (Baumgartner et al., 2011). As primary decay drivers of ecosystem processes, Armillaria species exhibit diverse ecological behaviors, ranging from virulent root and/or butt pathogens of diverse woody hosts, such as timber...

  2. Roles of Woody Root-Associated Fungi in Forest Ecosystem Processes: Recent Advances in Fungal Identification

    Science.gov (United States)

    Jill A. Hoff; Ned B. Klopfenstein; Jonalea R. Tonn; Geral I. McDonald; Paul J. Zambino; Jack D. Rogers; Tobin L. Peever; Lori M. Carris

    2004-01-01

    Interactions between fungi and woody roots may be critical factors that influence diverse forest ecosystems processes, such as wood decay (nutrient recycling); root diseases and their biological control; and endophytic, epiphytic, and mycorrhizal symbioses. However, few studies have characterized the diversity and the spatial and temporal distribution of woody root-...

  3. TRANSLOCATION OF NUTRIENTS BY FRESHWATER MUSSELS – ALTERATION OF ECOSYSTEM AND COMMUNITY PROCESSES

    Science.gov (United States)

    Nutrient demand and availability is a major driver of ecosystem processes. We examined the impact of freshwater mussels, a highly imperiled faunal group, on nitrogen (N) and phosphorus (P) cycling and storage in three Oklahoma streams. We found that filter-feeding by freshwater m...

  4. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    NARCIS (Netherlands)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.; Andersson, M.G.I.; Tramper, A.; de Brabandere, L.; van Damme, S.; Brion, N.; Meire, P.; Dehairs, F.; Middelburg, J.J.; Heip, C.H.R.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrientrich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 14 m2 tidal marsh area, and marsh ammonium processing and

  5. Climatic and pollution influences on ecosystem processes in northern hardwood forests

    Science.gov (United States)

    Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak

    1996-01-01

    The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...

  6. What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages

    Czech Academy of Sciences Publication Activity Database

    Houadria, Mickal; Menzel, F.

    2017-01-01

    Roč. 184, č. 4 (2017), s. 885-899 ISSN 0029-8549 Institutional support: RVO:60077344 Keywords : ecosystem processes * functional performance * functional redundancy Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.130, year: 2016 https://link.springer.com/article/10.1007%2Fs00442-017-3900-x

  7. Linking trajectories of land change, land degradation processes and ecosystem services

    NARCIS (Netherlands)

    Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Salvati, L.; Perini, L.

    2016-01-01

    Land Degradation (LD) is a complex phenomenon resulting in a progressive reduction in the capacity of providing ecosystem services (ES). Landscape transformations promoting an unsustainable use of land often reveal latent processes of LD. An evaluation carried out in respect to the different

  8. Amazon Column CO2 & CO Observations to Elucidate Tropical Ecosystem Processes

    Science.gov (United States)

    Dubey, M. K.; Parker, H. A.; Myers, K.; Wennberg, P. O.; Wunch, D.; Allen, N.; Kawa, S. R.; Keppel-Aleks, G.; Miller, J. B.; O'Dell, C.; Feist, D. G.; Osterman, G. B.

    2015-12-01

    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained. The complex interplay of radiation, water and ecosystem phenology remains unresolved in tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes. We observe a robust mean daily column CO2 uptake of about 1.8 ppm (5 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning and secular CO2 increase during this period implies an increase of 3.5 ppm that is attributed to tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based and eddy flux observations that indicate that tree phenology (e.g. leaf flushing) plays an important role in the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from carbon cycle models with assimilated meteorology (e.g. NASA's CASA/GFED) and find they under predict the daily drawdown of CO2 by a factor of 2.5. We plan to perform comparisons with other models (e.g. CLM) and also determine the net carbon flux from the Amazon basin by combining back-trajectory analysis and observations of column CO2 made at Ascension Island that is upwind of our site.

  9. Monitoring Greater Yellowstone Ecosystem wetlands: Can long-term monitoring help us understand their future?

    Science.gov (United States)

    Ray, Andrew M.; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra; Thoma, David; Al-Chokhachy, Robert K.; Litt, Andrea R.

    2015-01-01

    In the Greater Yellowstone Ecosystem (GYE), changes in the drying cycles of wetlands have been documented. Wetlands are areas where the water table is at or near the land surface and standing shallow water is present for much or all of the growing season. We discuss how monitoring data can be used to document variation in annual flooding and drying patterns of wetlands monitored across Yellowstone and Grand Teton national parks, investigate how these patterns are related to a changing climate, and explore how drying of wetlands may impact amphibians. The documented declines of some amphibian species are of growing concern to scientists and land managers alike, in part because disappearances have occurred in some of the most protected places. These disappearances are a recognized component of what is being described as Earth’s sixth mass extinction.

  10. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability.

    Science.gov (United States)

    Gaxiola, Aurora; Armesto, Juan J

    2015-01-01

    Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15-240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.

  11. Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability.

    Directory of Open Access Journals (Sweden)

    Aurora eGaxiola

    2015-03-01

    Full Text Available Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer-months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15 to 240 mm. Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for decidous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.

  12. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    Science.gov (United States)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  13. Understanding uncertainty in process-based hydrological models

    Science.gov (United States)

    Clark, M. P.; Kavetski, D.; Slater, A. G.; Newman, A. J.; Marks, D. G.; Landry, C.; Lundquist, J. D.; Rupp, D. E.; Nijssen, B.

    2013-12-01

    Building an environmental model requires making a series of decisions regarding the appropriate representation of natural processes. While some of these decisions can already be based on well-established physical understanding, gaps in our current understanding of environmental dynamics, combined with incomplete knowledge of properties and boundary conditions of most environmental systems, make many important modeling decisions far more ambiguous. There is consequently little agreement regarding what a 'correct' model structure is, especially at relatively larger spatial scales such as catchments and beyond. In current practice, faced with such a range of decisions, different modelers will generally make different modeling decisions, often on an ad hoc basis, based on their balancing of process understanding, the data available to evaluate the model, the purpose of the modeling exercise, and their familiarity with or investment in an existing model infrastructure. This presentation describes development and application of multiple-hypothesis models to evaluate process-based hydrologic models. Our numerical model uses robust solutions of the hydrology and thermodynamic governing equations as the structural core, and incorporates multiple options to represent the impact of different modeling decisions, including multiple options for model parameterizations (e.g., below-canopy wind speed, thermal conductivity, storage and transmission of liquid water through soil, etc.), as well as multiple options for model architecture, that is, the coupling and organization of different model components (e.g., representations of sub-grid variability and hydrologic connectivity, coupling with groundwater, etc.). Application of this modeling framework across a collection of different research basins demonstrates that differences among model parameterizations are often overwhelmed by differences among equally-plausible model parameter sets, while differences in model architecture lead

  14. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  15. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  16. Experiments to understand the corrosion process of fuel rod claddings

    International Nuclear Information System (INIS)

    Groeschel, F.; Hermann, A.

    1997-01-01

    Fuel rods in light water reactors have to respond to the trends in increased burn-up and extended dwelling time in reactor. Waterside corrosion of the cladding affecting wall thickness, mechanical stability due to hydriding and the heat transfer due to the low thermal conductivity of the oxide scale may become the limiting factors. The corrosion process is complex and involves a large variety of mechanisms. Understanding of the process is important for safe operation and a prerequisite for development of improved materials. A variety of analytical techniques and mechanical tests, including examination of irradiated pathfinder rods, are used to tackle the different aspects. (author) 6 figs., 1 tab., 17 refs

  17. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps

    Directory of Open Access Journals (Sweden)

    Sayjro K. Nouwakpo

    2016-06-01

    Full Text Available Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolerable before crossing the sustainability threshold. In these ecosystems, concentrated flow processes are perceived as indicators of degradation and often warrant the implementation of mitigation strategies. Nevertheless, this negative perception of concentrated flow processes may conflict with the need to improve understanding of the role of these transport vessels in redistributing water, soil and nutrients along the rangeland hillslope. Vegetation influences the development and erosion of concentrated flowpaths and has been the primary factor used to control and mitigate erosion on rangelands. At the ecohydrologic level, vegetation and concentrated flow pathways are engaged in a feedback relationship, the understanding of which might help improve rangeland management and restoration strategies. In this paper, we review published literature on experimental and conceptual research pertaining to concentrated flow processes on rangelands to: (1 present the fundamental science underpinning concentrated flow erosion modeling in these landscapes, (2 discuss the influence of vegetation on these erosion processes, (3 evaluate the contribution of concentrated flow erosion to overall sediment budget and (4 identify knowledge gaps.

  18. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  19. Laurel Wilt in Natural and Agricultural Ecosystems: Understanding the Drivers and Scales of Complex Pathosystems

    Directory of Open Access Journals (Sweden)

    Randy C. Ploetz

    2017-02-01

    Full Text Available Laurel wilt kills members of the Lauraceae plant family in the southeastern United States. It is caused by Raffaelea lauricola T.C. Harr., Fraedrich and Aghayeva, a nutritional fungal symbiont of an invasive Asian ambrosia beetle, Xyleborus glabratus Eichhoff, which was detected in Port Wentworth, Georgia, in 2002. The beetle is the primary vector of R. lauricola in forests along the southeastern coastal plain of the United States, but other ambrosia beetle species that obtained the pathogen after the initial introduction may play a role in the avocado (Persea americana Miller pathosystem. Susceptible taxa are naïve (new-encounter hosts that originated outside Asia. In the southeastern United States, over 300 million trees of redbay (P. borbonia (L. Spreng. have been lost, and other North American endemics, non-Asian ornamentals and avocado—an important crop that originated in MesoAmerica—are also affected. However, there are no reports of laurel wilt on the significant number of lauraceous endemics that occur in the Asian homeland of R. lauricola and X. glabratus; coevolved resistance to the disease in the region has been hypothesized. The rapid spread of laurel wilt in the United States is due to an efficient vector, X. glabratus, and the movement of wood infested with the insect and pathogen. These factors, the absence of fully resistant genotypes, and the paucity of effective control measures severely constrain the disease’s management in forest ecosystems and avocado production areas.

  20. Understanding ecosystem services adoption by natural resource managers and research ecologists

    Science.gov (United States)

    Engel, Daniel; Evans, Mary; Low, Bobbi S.; Schaeffer, Jeff

    2017-01-01

    The ecosystem services (ES) paradigm has gained much traction as a natural resource management approach due to its comprehensive nature and ability to provide quantitative tools to improve decision-making. However, it is still uncertain whether and how practitioners have adopted the ES paradigm into their work and how this aligns with resource management information needs. To address this, we surveyed natural resource managers within the Great Lakes region about their use of ES information in decision-making. We complemented our manager survey with in-depth interviews of a related population—research ecologists at the U.S. Geological Survey Great Lakes Science Center. In this study, managers and ecologists almost unanimously agreed that ES were appropriate to consider in resource management. We also found high congruence between managers and ecologists in the ES considered most relevant to their work, with provision of habitat, recreation and tourism, biological control, and primary production being the ES ranked highly by both groups. However, a disconnect arose when research ecologists deemed the information they provide regarding ES as adequate for management needs, but managers disagreed. Furthermore, managers reported that they would use economic information about ES if they had access to that information. We believe this data deficiency could represent a gap in scientific coverage by ecologists, but it may also simply reflect an underrepresentation of ecological economists who can translate ecological knowledge of ES providers into economic information that many managers desired.

  1. A comparative gradient approach as a tool for understanding and managing urban ecosystems

    Science.gov (United States)

    Christopher G. Boone; Elizabeth Cook; Sharon J. Hall; Marcia L. Nation; Nancy B. Grimm; Carol B. Raish; Deborah M. Finch; Abigail M. York

    2012-01-01

    To meet the grand challenges of the urban century - such as climate change, biodiversity loss, and persistent poverty - urban and ecological theory must contribute to integrated frameworks that treat social and ecological dynamics as interdependent. A socioecological framework that encapsulates theory from the social and ecological sciences will improve understanding...

  2. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    Science.gov (United States)

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  3. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  4. Commentary: how can technology help us understand the communication process?

    Science.gov (United States)

    Keyton, Joann

    2012-08-01

    In this commentary, the author reflects on the articles chosen for the special section on communications analysis. These articles problematize communication and raise an interesting set of questions for both human factors and communication scholars to ponder. In the end, both sets of scholars seek the same goal: How do we better examine communication to improve it? Problematizing communication requires scholars to challenge their fundamental assumptions about the phenomenon as well as to tease out the distinctions of methodological approaches typically used by both human factors and communication scholars. Human factors scholars tend to favor forms of communication in which technology or task roles control who can communicate and how. Communication scholars tend to favor contexts in which information flows more freely with fewer explicit restrictions. Creating opportunities to collaborate in research on the communication process may create the best understanding of technology that can better serve our understanding of communication.

  5. Importance of isotopes for understanding the sedimentation processes

    International Nuclear Information System (INIS)

    Manjunatha, B.R.

    2012-01-01

    Isotopes of either radioactive or stable depending upon radiation emitted or not respectively which have wide applications in understanding not only the history of sedimentation, but also provide information about paleoclimate. Stable isotope mass difference occurs due to changes in physicochemical conditions of the ambient environment, for instance temperature, evaporation, precipitation, redox processes, and changes in the mobility of elements during weathering processes, biological uptake, metabolism, re-mineralization of biogenic material, etc. In contrast, radionuclides emit radiation because of excess of neutrons present in the nucleus when compared to protons of an atom. The decay of radioactive isotopes is unaffected despite changes in physicochemical variations; hence, they are useful for determining ages of different types of materials on earth. The radioisotopes can be classified based on origin and half life into primordial or long-lived, cosmogenic and artificial radionuclides or fission products. In this study, the importance of 137 Cs artificial radionuclides will be highlighted to understand short-term sedimentation processes, particularly in estuaries, deltas/continental shelf of west coast of India. The distribution of 137 Cs in sediments of south-western continental margin of India indicates that coastal marginal environments are filters or sinks for fall-out radionuclides. The sparse of 137 Cs in the open continental shelf environment indicates that most of sediments are either older or sediments being diluted by components generated in the marine environment

  6. Northern Forest DroughtNet: A New Framework to Understand Impacts of Precipitation Change on the Northern Forest Ecosystem

    Science.gov (United States)

    Asbjornsen, H.; Rustad, L.; Templer, P. H.; Jennings, K.; Phillips, R.; Smith, M.

    2014-12-01

    Recent trends and projections for future change for the U.S. northern forests suggest that the region's climate is becoming warmer, wetter, and, ironically, drier, with more precipitation occurring as large events, separated by longer periods with no precipitation. However, to date, precipitation manipulation experiments conducted in forest ecosystems represent only ~5% of all such experiments worldwide, and our understanding of how the mesic-adapted northern forest will respond to greater frequency and intensity of drought in the future is especially poor. Several important challenges have hampered previous research efforts to conduct forest drought experiments and draw robust conclusions, including difficulties in reducing water uptake by deep and lateral tree roots, logistical and financial constraints to establishing and maintaining large-scale field experiments, and the lack of standardized approaches for determining the appropriate precipitation manipulation treatment (e.g., amount and timing of throughfall displacement), designing and constructing the throughfall displacement infrastructure, identifying key response variables, and collecting and analyzing the field data. The overarching goal of this project is to establish a regional research coordination network - Northern Forest DroughtNet - to investigate the impacts of changes in the amount and distribution of precipitation on the hydrology, biogeochemistry, and carbon (C) cycling dynamics of northern temperate forests. Specific objectives include the development of a standard prototype for conducting precipitation manipulation studies in forest ecosystems (in collaboration with the international DroughtNet-RCN) and the implementation of this prototype drought experiment at the Hubbard Brook Experimental Forest. Here, we present the advances made thus far towards achieving the objectives of Northern Forest DroughtNet, plans for future work, and an invitation to the larger scientific community interested

  7. Understanding the Relationship Between Soil Processes and Atmospheric Methane Concentrations

    Science.gov (United States)

    Laybolt, W. D.; O'Connell, E.; Risk, D. A.

    2014-12-01

    As vehicle-based atmospheric surveying becomes more commonplace, its natural evolution will see an increased movement towards detection of multiple gases and geochemical approaches for discriminating leaks of different origin. While multi-gas surveys are already feasible, the factor limiting our ability to interpret them is the understanding of gas source-sink dynamics, particularly at the soil level. This study aims to understand the relationship between soil processes and atmospheric methane concentrations. Using source regions of approximately 100 km2, extensive soil gas surveys were completed, measuring CH4, δ13CH4 and CO2. We compared this to daytime and nighttime vehicle-based surveys where we acquired data for the same gases to see which of these individual gases, or ratios thereof, could be detected in the lower atmosphere. These surveys were done in two contrasting regions, which were also expected to have different source/sink processes. Results showed that atmospheric CH4 concentration, its isotopic signature, and the CO2/CH4 ratio of above-background concentrations showed the highest level of correspondence with the soil CH4 values. Anomalies in CH4 concentrations in the first study area appeared to be from predominantly biological sources (δ13CH4 values near -60‰) rather than from a fossil source (underlying coal beds). However, the study area also showed anomalous values of δ13CH4, which may have been due to a soil CH4 sink. In both regions, nighttime atmospheric studies generally yield stronger signals and correlations because decreased night winds contributed to pooling of gases and higher atmospheric concentrations. This study helps advance our understanding of the relationship between soil processes and atmospheric methane, which is essential for improving vehicle-based surveys for use in detecting environmental side-effects of energy and geosequestration projects in regions of complex surface gas dynamics.

  8. Importance of neutral processes varies in time and space: Evidence from dryland stream ecosystems.

    Directory of Open Access Journals (Sweden)

    Xiaoli Dong

    Full Text Available Many ecosystems experience strong temporal variability in environmental conditions; yet, a clear picture of how niche and neutral processes operate to determine community assembly in temporally variable systems remains elusive. In this study, we constructed neutral metacommunity models to assess the relative importance of neutral processes in a spatially and temporally variable ecosystem. We analyzed macroinvertebrate community data spanning multiple seasons and years from 20 sites in a Sonoran Desert river network in Arizona. The model goodness-of-fit was used to infer the importance of neutral processes. Averaging over eight stream flow conditions across three years, we found that neutral processes were more important in perennial streams than in non-perennial streams (intermittent and ephemeral streams. Averaging across perennial and non-perennial streams, we found that neutral processes were more important during very high flow and in low flow periods; whereas, at very low flows, the relative importance of neutral processes varied greatly. These findings were robust to the choice of model parameter values. Our study suggested that the net effect of disturbance on the relative importance of niche and neutral processes in community assembly varies non-monotonically with the severity of disturbance. In contrast to the prevailing view that disturbance promotes niche processes, we found that neutral processes could become more important when the severity of disturbance is beyond a certain threshold such that all organisms are adversely affected regardless of their biological traits and strategies.

  9. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    Science.gov (United States)

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  10. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  11. #TwittIR: Understanding and Establishing a Twitter Ecosystem for Interventional Radiologists and Their Practices.

    Science.gov (United States)

    Wadhwa, Vibhor; Brandis, Aaron; Madassery, Kumar; Horner, Peder E; Dhand, Sabeen; Bream, Peter; Shiloh, Aaron; Lessne, Mark L; Ryu, Robert K

    2018-01-01

    The use of social media among interventional radiologists is increasing, with Twitter receiving the most attention. Twitter is an ideal forum for open exchange of ideas from around the world. However, it is important for Twitter users to gain a rudimentary understanding of the many potential communication pathways to connect with other users. An intentional approach to Twitter is vital to efficient and successful use. This article describes several common communication pathways that can be utilized by physicians in their interventional radiology practice. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  12. Understanding Biological Rates and their Temperature Dependence, from Enzymes to Ecosystems

    Science.gov (United States)

    Prentice, E.; Arcus, V. L.

    2017-12-01

    Temperature responses over various scales in biological systems follow a similar pattern; negative curvature results in an optimum temperature (Topt) for activity/growth/turnover, with decreases in rates on either side of Topt. Previously this downturn in rates at high temperatures has been attributed to enzyme denaturation, where a failing of the basic driving units of metabolism was used to describe curvature at the enzyme and organism level. However, recent developments in our understanding of the factors governing enzyme rates at different temperatures have guided a new understanding of the responses of biological systems. Enzymes catalyse reactions by driving the substrate through a high energy species, which is tightly bound to the enzyme. Macromolecular rate theory (MMRT) has recently been developed to account for the changes in the system brought about by this tight binding, specifically the change in the physical parameter heat capacity (ΔCǂp), and the effect this has on the temperature dependence of enzyme reactions. A negative ΔCǂp imparts the signature negative curvature to rates in the absence of denaturation, and finds that Topt, ΔCǂp and curvature are all correlated, placing constraints on biological systems. The simplest of cells comprise thousands of enzymatically catalysed reactions, functioning in series and in parallel in metabolic pathways to determine the overall growth rate of an organism. Intuitively, the temperature effects of enzymes play a role in determining the overall temperature dependence of an organism, in tandem with cellular level regulatory responses. However, the effect of individual Topt values and curvature on overall pathway behaviour is less apparent. Here, this is investigated in the context of MMRT through the in vitro characterisation of a six-step metabolic pathway to understand the steps in isolation and functioning in series. Pathway behaviour is found to be approximately an average of the properties of the

  13. Understanding the process by which female entrepreneurs create INVs

    DEFF Research Database (Denmark)

    Rosenbaum, Gitte Ohrt; Hannibal, Martin

    than remaining in one´s domestic market (e.g. in terms of risk propensity, ability to acquire foreign market knowledge, growth ambitions, network connections and such like), answers to the questions of “Who am I?, What do I know? Whom do I know?” in the founding stage for INVs are likely to be very...... different than for purely domestic new ventures. However, despite this apparent logic, INV scholars have only recently begun to explore how the founding characteristics and processes of INVs may vary from those of purely domestic ventures (e.g. Bell et al., 2003; Coviello, 2006; Coviello & Cox, 2006; Di...... Gregorio et al., 2008). Unfortunately, while the above studies have contributed to our understanding, they are all gender-neutral i.e. they fail to consider the process of INV creation from a female entrepreneurial perspective. This is problematic given the rapidly rising numbers of women-owned ventures...

  14. Towards an understanding of parietal mnemonic processes: some conceptual guideposts

    Science.gov (United States)

    Levy, Daniel A.

    2012-01-01

    The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes, or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations, or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal mnemonic effects and perceptual, attentional, and action-oriented cognitive processes. PMID:22783175

  15. Towards an understanding of parietal mnemonic processes: Some conceptual guideposts

    Directory of Open Access Journals (Sweden)

    Daniel A Levy

    2012-07-01

    Full Text Available The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal-mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal-mnemonic effects and perceptual, attentional, and action-oriented cognitive processes.

  16. Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem

    Science.gov (United States)

    Mosquera, Giovanny M; Celleri, Rolando; Lazo, Patricio X; Vache, Kellie B; Perakis, Steven; Crespo, Patricio

    2016-01-01

    Few high-elevation tropical catchments worldwide are gauged and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall-runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53 km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900 m a.s.l. Water samples for stable isotopic analysis were collected during 2 years (May 2011 – May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that Andosol soils predominantly situated on hillslopes drain laterally to Histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily comprised of pre-event water stored in the Histosols, which is replenished by rainfall that infiltrates through the Andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non-exceedance flows high intensity precipitation events. Deep groundwater contributions to discharge seem to be minimal. These results suggest that, in this high-elevation tropical ecosystem: 1) subsurface flow is a dominant hydrological process and 2) (Histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged.

  17. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    Czech Academy of Sciences Publication Activity Database

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-01-01

    Roč. 81, č. 2 (2017), s. 1-27, č. článku e00063. ISSN 1092-2172 R&D Projects: GA ČR(CZ) GP14-09040P; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : bacteria * decomposition * ecosystem processes Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 14.533, year: 2016

  18. An Assessment of Students' Understanding of Ecosystem Concepts: Conflating Ecological Systems and Cycles

    Science.gov (United States)

    Jordan, Rebecca; Gray, Steven; Demeter, Marylee; Lui, Lei; Hmelo-Silver, Cindy E.

    2009-01-01

    Teaching ecological concepts in schools is important in promoting natural science and environmental education for young learners. Developing educational programs is difficult, however, because of complicated ecological processes operating on multiple levels, the unlimited nature of potential system interactions (given the openness of systems), and…

  19. Understanding and Predicting the Process of Software Maintenance Releases

    Science.gov (United States)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  20. Understanding the mechanism of nanoparticle formation in wire explosion process

    International Nuclear Information System (INIS)

    Bora, B.; Wong, C.S.; Bhuyan, H.; Lee, Y.S.; Yap, S.L.; Favre, M.

    2013-01-01

    The mechanism of nanoparticle formation by wire explosion process has been investigated by optical emission spectroscopy in Antony et al. 2010 [2] [J Quant Spectrosc Radiat Transfer 2010; 111:2509]. It was reported that the size of the nanoparticles formed in Ar ambience increases with increasing pressure, while an opposite trend was observed for the nanoparticles produced in N 2 and He ambiences. However, the physics behind this opposite trend seems unclear. In this work, we have investigated the probable mechanism behind the opposite trend in particle size with pressure of different gases and understand the mechanism of nanoparticle formation in wire explosion process. The experiment was carried out to investigate the effect of ambient gas species (Ar and N 2 ) and pressure on arc plasma formation and its corresponding effects on the characteristics of the produced nanoparticles in wire explosion process. Our results show that the arc plasma formation is probably the mechanism that may account for the opposite trend of particle size with pressure of different gases. -- Highlights: ► Cu nanoparticles have been synthesized by wire explosion technique. ► Investigate the effect of the ambient gas species and pressure. ► Arc plasma formation in wire explosion process is investigated. ► Arc plasma formation plays a crucial role in characteristic of the nanoparticles

  1. Bark Beetle Impacts on Ecosystem Processes are Over Quickly and Muted Spatially

    Science.gov (United States)

    Ewers, B. E.; Norton, U.; Borkhuu, B.; Reed, D. E.; Peckham, S. D.; Biederman, J. A.; King, A.; Gochis, D. J.; Brooks, P. D.; Harpold, A. A.; Frank, J. M.; Massman, W. J.; Mackay, D. S.; Pendall, E. G.

    2013-12-01

    The recent epidemic of bark beetles across western North America has impacted conifers from low to high elevations from New Mexico to Yukon. The mechanism of mortality is clear, with both mountain pine and spruce beetles killing trees by introducing xylem occluding blue stain fungi which dramatically stops transpiration. The visual impact of this outbreak is stunning, with mortality of canopy trees over 90% in some stands. However, emerging work shows that the impact on ecosystem processes is not as dramatic. We hypothesize that increased soil water and nitrogen sets up rapid succession of plant communities, which quickly restores ecosystem processing of water, carbon and nitrogen, while spatial patchiness of mortality and belowground responses mutes the impact as spatial scale increases from stands to watersheds. In support of our hypothesis we found 1) Soil nitrogen and moisture increase within one growing season but decrease to the same as uninfested stands five years later. 2) Soil respiration is correlated with live tree basal area suggesting a large component of autotrophic respiration. 3) Once stands have more than 50% basal area mortality, seedling density increases up to five fold and total non-tree understory cover increased two fold both within five years after infestation. 4) Ecosystem scale estimates of water vapor fluxes do not decline as rapidly as overstory leaf area. 5) Stable isotopes of snow, soil and stream water suggest that increased below canopy evapotranspiration nearly compensates for reduced canopy transpiration. 6) Nested watershed data shows that precipitation variations are much more important in regulating streamflow than changes in canopies from bark beetle induced mortality. These results were tested in the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model. TREES was able to predict annual changes in the carbon fluxes but had difficulty simulating soil moisture and annual water budgets likely due to inadequate abiotic

  2. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America

    Science.gov (United States)

    Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger

    2002-01-01

    Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical “rules” for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (

  3. Belowground processes regulate ecosystem nitrogen retention during a multi-year forest dieback event

    Science.gov (United States)

    Nave, L. E.; Le Moine, J.; Gough, C. M.; Vogel, C.; Nadelhoffer, K. J.; Curtis, P.

    2013-12-01

    In the absence of disturbances, forests typically have strong retention capacity for nitrogen (N), which is internally recycled between soil, microbial and plant pools. However, disturbances that trigger senescence or mortality of forest vegetation may alter internal N cycling processes and lead to the loss of ecosystem N retention capacity. Here, we present an assessment of the role played by belowground processes in governing ecosystem N cycling and retention during an experimental disturbance that killed the dominant canopy taxa in a Great Lakes forest over a 4-year period. After applying stem girdling to hasten the age-related senescence of the dominant taxa (Populus and Betula spp.; ~35% of the basal area), we observed a 38% decrease in stand-level allocation of nonstructural carbohydrates to fine roots, which triggered a tenfold increase in the rate of fine root turnover and increased soil NH4+ and NO3- availability. Elevated soil N availability decreased mycorrhizal hyphal foraging and N uptake, effectively down-regulating the role of symbiotic fungi in the N nutrition of the residual (longer-lived) tree taxa. However, even as residual trees took up less N from mycorrhizal sources, their overall N uptake increased and served to offset the loss of the dominant taxa. The net result of this offset was that canopy N stocks remained constant through the disturbance period and there was no appreciable loss of ecosystem N stocks due to leaching or gaseous export. In sum, the cascade of changes in root, microbial, and soil processes during this experiment indicates that these interdependent components of the belowground system comprised a mechanism responsible for retention and redistribution of ecosystem N stocks during the disturbance period.

  4. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Wallenstein, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2017-12-05

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, but will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.

  5. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    Science.gov (United States)

    Band, L. E.

    2015-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  6. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites

    Science.gov (United States)

    Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

    2012-01-01

    Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...

  7. Towards an understanding of business model innovation processes

    DEFF Research Database (Denmark)

    Taran, Yariv; Boer, Harry; Lindgren, Peter

    2009-01-01

    Companies today, in some industries more than others, invest more capital and resources just to stay competitive, develop more diverse solutions, and increasingly start to think more radically, when considering to innovate their business model. However, the development and innovation of business...... models is a complex venture and has not been widely researched yet. The objective of this paper is therefore 1) to build a [descriptive] theoretical understanding, based on Christensen’s (2005) three-step procedure, to business models and their innovation and, as a result of that, 2) to strengthen...... researchers’ and practitioners’ perspectives as to how the process of business model innovation can be realized. By using various researchers’ perspectives and assumptions, we identify relevant inconsistencies, which consequently lead us to propose possible supplementary solutions. We conclude our paper...

  8. Theory Building- Towards an understanding of business model innovation processes

    DEFF Research Database (Denmark)

    Taran, Yariv; Boer, Harry; Lindgren, Peter

    2009-01-01

    Companies today, in some industries more than others, invest more capital and resources just to stay competitive, develop more diverse solutions, and increasingly start to think more radically, when considering to innovate their business model. However, the development and innovation of business...... models is a complex venture and has not been widely researched yet. The objective of this paper is therefore 1) to build a [descriptive] theoretical understanding, based on Christensen's (2005) three-step procedure, to business models and their innovation and, as a result of that, 2) to strengthen...... researchers' and practitioners' perspectives as to how the process of business model innovation can be realized. By using various researchers' perspectives and assumptions, we identify relevant inconsistencies, which consequently lead us to propose possible supplementary solutions. We conclude our paper...

  9. Ocean-atmosphere pollutant circulation processes: The Heligoland Bight ecosystem (PRISMA). 2. interim report (1991)

    International Nuclear Information System (INIS)

    1992-04-01

    The PRISMA BMFT project is an important stage on the way to a comprehensive knowledge of the impacts of pollutants on the North Sea/Heligoland Bight ecosystem. The overall project is dedicated to the development, verification and application of a complex shelf-sea model which provides qualitative and quantitative data about the causal interactions between the basic atmospheric conditions, the hydrodynamics and thermodynamics of the water, the chemical reactons in the air, in the water and the sediments, and the activity of organisms. The model comprises a compact set of formulae, process formulations, initial and marginal conditions and empirical parameters which serves to describe the origin, transport, reactions and final deposition of pollutants in the North Sea, helps to analyze and elucidate the present condition of the ecosystem and its spatial and temporal variability, and provides forecasts in accordance with the changing natural and anthropogenic environmental conditions. (orig.) [de

  10. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  11. A Science-Based Understanding of Cermet Processing

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, III, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roach, Robert Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald Francis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Ornum, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stuecker, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shollenberger, Kimberly A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper

  12. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  13. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia

    Science.gov (United States)

    van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert

    2014-05-01

    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of

  14. Coastal and wetland ecosystems of the Chesapeake Bay watershed: Applying palynology to understand impacts of changing climate, sea level, and land use

    Science.gov (United States)

    Willard, Debra A.; Bernhardt, Christopher E.; Hupp, Cliff R.; Newell, Wayne L.

    2015-01-01

    The mid-Atlantic region and Chesapeake Bay watershed have been influenced by fluctuations in climate and sea level since the Cretaceous, and human alteration of the landscape began ~12,000 years ago, with greatest impacts since colonial times. Efforts to devise sustainable management strategies that maximize ecosystem services are integrating data from a range of scientific disciplines to understand how ecosystems and habitats respond to different climatic and environmental stressors. Palynology has played an important role in improving understanding of the impact of changing climate, sea level, and land use on local and regional vegetation. Additionally, palynological analyses have provided biostratigraphic control for surficial mapping efforts and documented agricultural activities of both Native American populations and European colonists. This field trip focuses on sites where palynological analyses have supported efforts to understand the impacts of changing climate and land use on the Chesapeake Bay ecosystem.

  15. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  16. Effects of consumer interactions on benthic resources and ecosystem processes in a neotropical stream.

    Directory of Open Access Journals (Sweden)

    Michael C Marshall

    Full Text Available The effect of consumers on their resources has been demonstrated in many systems but is often confounded by trophic interactions with other consumers. Consumers may also have behavioral and life history adaptations to each other and to co-occurring predators that may additionally modulate their particular roles in ecosystems. We experimentally excluded large consumers from tile periphyton, leaves and natural benthic substrata using submerged electrified frames in three stream reaches with overlapping consumer assemblages in Trinidad, West Indies. Concurrently, we assessed visits to (non-electrified control frames by the three most common large consumers-primarily insectivorous killifish (Rivulus hartii, omnivorous guppies (Poecilia reticulata and omnivorous crabs (Eudaniela garmani. Consumers caused the greatest decrease in final chlorophyll a biomass and accrual rates the most in the downstream reach containing all three focal consumers in the presence of fish predators. Consumers also caused the greatest increase in leaf decay rates in the upstream reach containing only killifish and crabs. In the downstream reach where guppies co-occur with predators, we found significantly lower benthic invertebrate biomass in control relative to exclosure treatments than the midstream reach where guppies occur in the absence of predators. These data suggest that differences in guppy foraging, potentially driven by differences in their life history phenotype, may affect ecosystem structure and processes as much as their presence or absence and that interactions among consumers may further mediate their effects in these stream ecosystems.

  17. Effects of Consumer Interactions on Benthic Resources and Ecosystem Processes in a Neotropical Stream

    Science.gov (United States)

    Marshall, Michael C.; Binderup, Andrew J.; Zandonà, Eugenia; Goutte, Sandra; Bassar, Ronald D.; El-Sabaawi, Rana W.; Thomas, Steven A.; Flecker, Alexander S.; Kilham, Susan S.; Reznick, David N.; Pringle, Cathy M.

    2012-01-01

    The effect of consumers on their resources has been demonstrated in many systems but is often confounded by trophic interactions with other consumers. Consumers may also have behavioral and life history adaptations to each other and to co-occurring predators that may additionally modulate their particular roles in ecosystems. We experimentally excluded large consumers from tile periphyton, leaves and natural benthic substrata using submerged electrified frames in three stream reaches with overlapping consumer assemblages in Trinidad, West Indies. Concurrently, we assessed visits to (non-electrified) control frames by the three most common large consumers–primarily insectivorous killifish (Rivulus hartii), omnivorous guppies (Poecilia reticulata) and omnivorous crabs (Eudaniela garmani). Consumers caused the greatest decrease in final chlorophyll a biomass and accrual rates the most in the downstream reach containing all three focal consumers in the presence of fish predators. Consumers also caused the greatest increase in leaf decay rates in the upstream reach containing only killifish and crabs. In the downstream reach where guppies co-occur with predators, we found significantly lower benthic invertebrate biomass in control relative to exclosure treatments than the midstream reach where guppies occur in the absence of predators. These data suggest that differences in guppy foraging, potentially driven by differences in their life history phenotype, may affect ecosystem structure and processes as much as their presence or absence and that interactions among consumers may further mediate their effects in these stream ecosystems. PMID:23028865

  18. Engineered Geophysical Disturbances, Geomorphic Processes, and Ecosystem Patterns in Large, Multi-purpose Rivers

    Science.gov (United States)

    Jacobson, R. B.

    2002-12-01

    Large rivers are used by society for a wide variety of goods and services; human impacts on these rivers are of a magnitude that they often can be considered geophysical disturbances. Engineered changes in many large, multi-purpose rivers can be categorized into semi-independent hydrologic and geomorphic components. Reservoir regulation is the dominant influence on the hydrologic component and bank stabilization/navigation structures comprise the dominant influence on the geomorphic component. Both components can have profound effects on temporal and spatial ecosystem patterns; on many rivers, the interaction of the two components is a critical issue in management and rehabilitation strategies. For example, engineered changes to the Lower Missouri River affect both hydrology (decreases in peak flows for flood control, increases in low flows to support navigation) and geomorphology (narrowing to create a self-scouring channel and bank stabilization to preserve farmland). Two-dimensional hydraulic modeling using pre- and post-engineered hydrologic times series and geomorphic boundary conditions document changes in ecosystem pattern measured as habitat diversity, habitat connectivity/fragmentation, and timing of habitat availability. The analysis points to rehabilitation strategies that may help to recover ecosystem patterns and functions. Channel engineering is a persistent disturbance that fundamentally alters how ecosystem patterns respond to subsequent, episodic geophysical disturbances. In the engineered Lower Missouri River, the energy of extreme floods is concentrated in discrete areas at levee breaks. Geomorphic processes at these sites are dominated by vertical erosion and deposition, resulting in a pattern of deep lentic scours ringed by sand splays, and separated by extensive tracts of unaltered farmland. In contrast, the pre-engineered channel responded to floods by migrating laterally. Relatively uniform lateral migration of bends resulted in long, sub

  19. Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951-2000

    Science.gov (United States)

    Liu, Jinxun; Vogelmann, James E.; Zhu, Zhiliang; Key, Carl H.; Sleeter, Benjamin M.; Price, D.T.; Chen, Jing M.; Cochrane, Mark A.; Eidenshink, Jeffery C.; Howard, Stephen M.; Bliss, Norman B.; Jiang, Hong

    2011-01-01

    Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951–2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of –27.3 Tg C) because NBP in the 1980s was very low (–5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951–2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire

  20. Modeling Elevation and Aspect Controls on Emerging Ecohydrologic Processes and Ecosystem Patterns Using the Component-based Landlab Framework

    Science.gov (United States)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2014-12-01

    Topography plays a commanding role on the organization of ecohydrologic processes and resulting vegetation patterns. In southwestern United States, climate conditions lead to terrain aspect- and elevation-controlled ecosystems, with mesic north-facing and xeric south-facing vegetation types; and changes in biodiversity as a function of elevation from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations and ridge tops. These observed patterns have been attributed to differences in topography-mediated local soil moisture availability, micro-climatology, and life history processes of plants that control chances of plant establishment and survival. While ecohydrologic models represent local vegetation dynamics in sufficient detail up to sub-hourly time scales, plant life history and competition for space and resources has not been adequately represented in models. In this study we develop an ecohydrologic cellular automata model within the Landlab component-based modeling framework. This model couples local vegetation dynamics (biomass production, death) and plant establishment and competition processes for resources and space. This model is used to study the vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. Processes that lead to observed plant types across the landscape are examined by initializing the domain with randomly assigned plant types and systematically changing model parameters that couple plant response with soil moisture dynamics. Climate perturbation experiments are conducted to examine the plant response in space and time. Understanding the inherently transient ecohydrologic systems is critical to improve predictions of climate change impacts on ecosystems.

  1. Ecosystem approach in education

    Science.gov (United States)

    Nabiullin, Iskander

    2017-04-01

    biological relationships some complicated chemical and physical processes occur in ecosystems, so the ecosystem approach also involves interdisciplinary connection between biology, chemistry, physics, geology, mathematics, and others. Therefore, our schoolteachers of these subjects work together on environmental education of students. Ecosystem approach allows students to achieve a deeper understanding of how ecosystems work. This may help them to find keys for understanding and solving environmental problems such as climate change, loss of biodiversity, pollution, waste, energy efficiency etc.

  2. Incorporating historical ecosystem diversity into conservation planning efforts in grass and shrub ecosystems

    Science.gov (United States)

    Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew

    2011-01-01

    Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...

  3. Understanding Stoichiometric Controls in Nutrient Processing Along the River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Gonzalez-Pinzon, R.; Van Horn, D. J.; Covino, T. P.

    2016-12-01

    Eutrophication is the second most common cause of water impairment across the U.S. Nutrient retention in streams is controlled by physical and biochemical processes, including biomass availability and stoichiometric limitations. Decoupling the interactions between hydrology, nutrient supply and biogeochemical processes remains challenging for the scientific community due to lack of mechanistic understanding. Consequently, more knowledge regarding optimal controls for nutrient retention is needed to implement better management and restoration practices. We conducted column experiments to investigate how stoichiometric limitations influence nutrient spiraling in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (which spans eight stream orders), in New Mexico, USA. In each stream order we incubated six columns packed with different sediments (i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (>2mm) and native sediments) from each site for three months. We performed two laboratory tracer experiments using columns of each substrate under identical flow conditions. In the first experiment we added a short-term pulse of reactive and conservative tracers (i.e. NaNO3 and NaBr). In the second experiment we added a short-term pulse of NaBr and nutrients following Redfield's ratio (106C:16N:1P). We estimated uptake kinetics using the Tracer Additions for Spiraling Curve Characterization (TASCC) method and evaluated how ideal stoichiometric conditions controlled efficient nutrient retention along fluvial networks. Our results suggest that biological uptake of nitrate is limited by nitrogen in headwater streams and by phosphorus and carbon in larger stream orders.

  4. An Ecosystem Approach for understanding status and changes of Nador lagoon (Morocco): application for of food web models and ecosystem indices

    Science.gov (United States)

    Bocci, M.; Brigolin, D.; Pranovi, F.; Najih, M.; Nachite, D.; Pastres, R.

    2016-03-01

    The work applies food web models to the Lagoon of Nador (Morocco) and subsequently estimates ecosystem indices. This effort supports the evaluation of the ecosystem status and the implementation of the Ecosystem Approach (EcAp), endorsed by the contracting parties of the Barcelona Convention for the Mediterranean Sea. The Lagoon of Nador, on the Mediterranean coast of Morocco, suffered from eutrophication during recent decades. We used indices derived from Ecological Network Analysis for investigating the most relevant features of ecosystem functioning in the decade 2000-2010 (present scenario), and comparing them with those of the 1980s (past scenario). As the Lagoon includes different habitats, the methodology was applied to each of them, in order to assess their contribution to the functioning of the whole ecosystem. Results highlighted an increase in Total System Throughput (TST) in the present scenario when compared with the past one, also associated to an increase of Total Respiration (TR) and of the ratio between Total Primary Production and Total Respiration (TPP/TR). Under the present scenario Nador lagoon shows a decreased cycling efficiency. The sensitivity analysis highlighted the capability of TST and Comprehensive Cycling Index (CCI) in detecting changes, in agreement with other recent studies on responses of food web functioning to eutrophication. The results are discussed in respect to three specific aspects, related with the application of food Web Models and Ecological Network Analysis in the EcAp context: i) data availability; ii) spatialization of indicators; iii) selected set of indicators. The results also highlight the important role of sensitivity/uncertainty analysis when implementing food web models in data-scarce systems.

  5. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  6. Local scale processes drive long-term change in biodiversity of sandy beach ecosystems.

    Science.gov (United States)

    Schooler, Nicholas K; Dugan, Jenifer E; Hubbard, David M; Straughan, Dale

    2017-07-01

    Evaluating impacts to biodiversity requires ecologically informed comparisons over sufficient time spans. The vulnerability of coastal ecosystems to anthropogenic and climate change-related impacts makes them potentially valuable indicators of biodiversity change. To evaluate multidecadal change in biodiversity, we compared results from intertidal surveys of 13 sandy beaches conducted in the 1970s and 2009-11 along 500 km of coast (California, USA). Using a novel extrapolation approach to adjust species richness for sampling effort allowed us to address data gaps and has promise for application to other data-limited biodiversity comparisons. Long-term changes in species richness varied in direction and magnitude among beaches and with human impacts but showed no regional patterns. Observed long-term changes in richness differed markedly among functional groups of intertidal invertebrates. At the majority (77%) of beaches, changes in richness were most evident for wrack-associated invertebrates suggesting they have disproportionate vulnerability to impacts. Reduced diversity of this group was consistent with long-term habitat loss from erosion and sea level rise at one beach. Wrack-associated species richness declined over time at impacted beaches (beach fill and grooming), despite observed increases in overall intertidal richness. In contrast richness of these taxa increased at more than half (53%) of the beaches including two beaches recovering from decades of off-road vehicle impacts. Over more than three decades, our results suggest that local scale processes exerted a stronger influence on intertidal biodiversity on beaches than regional processes and highlight the role of human impacts for local spatial scales. Our results illustrate how comparisons of overall biodiversity may mask ecologically important changes and stress the value of evaluating biodiversity change in the context of functional groups. The long-term loss of wrack-associated species, a key

  7. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  8. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: a comprehensive understanding.

    Directory of Open Access Journals (Sweden)

    Wenzhong Tang

    Full Text Available Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems. The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average. The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.

  9. Synergistic linkage between remote sensing and biophysical models for estimating plant ecophysiological and ecosystem processes

    International Nuclear Information System (INIS)

    Inoue, Y.; Olioso, A.

    2004-01-01

    Abstract Information on the ecological and physiological status of crops is essential for growth diagnostics and yield prediction. Within-field or between-field spatial information is required, especially with the recent trend toward precision agriculture, which seeks the efficient use of agrochemicals, water, and energy. The study of carbon and nitrogen cycles as well as environmental management on local and regional scales requires assessment of the spatial variability of biophysical and ecophysiological variables, scaling up of which is also needed for scientific and decision-making purposes. Remote sensing has great potential for these applications because it enables wide-area non-destructive, and real-time acquisition of information about ecophysiological conditions of vegetation. With recent advances in sensor technology, a variety of electromagnetic signatures, such as hyperspectral reflectance, thermal-infrared temperature, and microwave backscattering coefficients, can be acquired for both plants and ecosystems using ground-based, airborne, and satellite platforms. Their spatial and temporal resolutions have both recently been improved. This article reviews the state of the art in the remote sensing of plant ecophysiological data, with special emphasis on the synergy between remote sensing signatures and biophysical and ecophysiological process models. Several case studies for the optical, thermal, and microwave domains have demonstrated the potential of this synergistic linkage. Remote sensing and process modeling methods complement each other when combined synergistically. Further research on this approach is needed f or a wide range of ecophysiological and ecosystem studies, as well as for practical crop management

  10. Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-04-01

    Full Text Available The Arctic Ocean is one of the fastest changing oceans, plays an important role in global carbon cycling and yet is a particularly challenging ocean to study. Hence, observations tend to be relatively sparse in both space and time. How the Arctic functions, geophysically, but also ecologically, can have significant consequences for the internal cycling of carbon, and subsequently influence carbon export, atmospheric CO2 uptake and food chain productivity. Here we assess the major carbon pools and associated processes, specifically summarizing the current knowledge of each of these processes in terms of data availability and ranges of rates and values for four geophysical Arctic Ocean domains originally described by Carmack & Wassmann (2006: inflow shelves, which are Pacific-influenced and Atlantic-influenced; interior, river-influenced shelves; and central basins. We attempt to bring together knowledge of the carbon cycle with the ecosystem within each of these different geophysical settings, in order to provide specialist information in a holistic context. We assess the current state of models and how they can be improved and/or used to provide assessments of the current and future functioning when observational data are limited or sparse. In doing so, we highlight potential links in the physical oceanographic regime, primary production and the flow of carbon within the ecosystem that will change in the future. Finally, we are able to highlight priority areas for research, taking a holistic pan-Arctic approach.

  11. The Importance of Ecology-Based Nature Education Project in Terms of Nature Integration and Understanding the Human-Ecosystem Relationship

    Science.gov (United States)

    Meydan, Ali

    2011-01-01

    The aim of this project is to define the importance of 12-day ecology-based education training upon integration with nature and understanding the human-ecosystem relationship. In accordance with this purpose, there has been collected some survey data interviewing with the participants of "Lake Beysehir National Park and Ecology-based Nature…

  12. Understanding Metallic Bonding: Structure, Process and Interaction by Rasch Analysis

    Science.gov (United States)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-01-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students'…

  13. Linking trajectories of land change, land degradation processes and ecosystem services.

    Science.gov (United States)

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Salvati, L; Perini, L

    2016-05-01

    Land Degradation (LD) is a complex phenomenon resulting in a progressive reduction in the capacity of providing ecosystem services (ES). Landscape transformations promoting an unsustainable use of land often reveal latent processes of LD. An evaluation carried out in respect to the different ecosystem services is nowadays regarded as the most appropriate approach for assessing the effects of LD. The aim of this study is to develop an evaluation framework for identifying the linkages between land changes, LD processes and ES and suggesting Sustainable Land Management (SLM) options suited to reverse (or mitigate) LD impact. A SWOT analysis was carried out with the aim to identify internal and external factors that are favorable (or unfavorable) to achieve the proposed SLM actions. The study areas are the Fortore valley and the Valpadana, in Italy. The main trajectory identified for the Fortore valley is related to land abandonment due to population aging and the progressive emigration started in the 1950s. The most relevant LD processes are soil erosion and geomorphological instability, affecting regulating services such as natural hazard and erosion control. SLM options should consider interventions to contrast geomorphological instability, the promotion of climate smart agriculture and of typical products, and an efficient water resources management. The main trajectories identified for Valpadana are related to urban expansion and farmland abandonment and, as a consequence, land take due to anthropogenic pressure and woodland expansion as the main LD process. The reduction of food production was identified as the most relevant provisioning service affected. SLM should envisage best practices finalized to water saving and soil consumption reduction: efficient irrigation solutions, climate smart agriculture and zero sealing practices. This study highlights the diagnostic value of the suggested approach where LD processes are elicited from land change trajectories

  14. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Science.gov (United States)

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  15. Simple metal model for predicting uptake and chemical processes in sewage-fed aquaculture ecosystem

    DEFF Research Database (Denmark)

    Azanu, David; Jorgensen, Sven Erik; Darko, Godfred

    2016-01-01

    % was the best, which is also in accordance to the fish growth. The ratio of fish food was also calibrated to be 70% due to a food chain in the water and 30% due to a food chain in the sediment. This gave the lowest uncertainty of the model. The simple metal model was working acceptably well for Pb, Cu and Cd...... regression with an R2 value of 0.9 indicating that a good agreement between the model predictions and the experimental measurements. The finding suggests that the simple metal model is an accurate and useful for predicting uptake and chemical processes in ecosystem.......This paper shows how a model can be used as an experimental tool to assess the processes in aqua chemistry that should be included in the model. The STELLA software was used to study the uptake of Cd, Pb, Cr, Cu and Hg from sewage-fed aquaculture. Model calibration revealed that feeding rate of 15...

  16. Fire Process Research Natural Areas: Managing research and restoration of dynamic ecosystem processes

    Science.gov (United States)

    Timothy Ingalsbee

    2001-01-01

    Since 1992 a collaborative group of fire scientists, forest conservationists, and Federal resource specialists have been developing proposals for a Research Natural Area (RNA) in the Warner Creek Fire area on the Willamette National Forest in Oregon. Inspired by these proposals, the Oregon Natural Heritage Plan created the new category of "Fire Process RNAs"...

  17. Looking Past Primary Productivity: Benchmarking System Processes that Drive Ecosystem Level Responses in Models

    Science.gov (United States)

    Cowdery, E.; Dietze, M.

    2017-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty. Benchmarking model predictions against data are necessary to assess their ability to replicate observed patterns, but also to identify and evaluate the assumptions causing inter-model differences. We have implemented a novel benchmarking workflow as part of the Predictive Ecosystem Analyzer (PEcAn) that is automated, repeatable, and generalized to incorporate different sites and ecological models. Building on the recent Free-Air CO2 Enrichment Model Data Synthesis (FACE-MDS) project, we used observational data from the FACE experiments to test this flexible, extensible benchmarking approach aimed at providing repeatable tests of model process representation that can be performed quickly and frequently. Model performance assessments are often limited to traditional residual error analysis; however, this can result in a loss of critical information. Models that fail tests of relative measures of fit may still perform well under measures of absolute fit and mathematical similarity. This implies that models that are discounted as poor predictors of ecological productivity may still be capturing important patterns. Conversely, models that have been found to be good predictors of productivity may be hiding error in their sub-process that result in the right answers for the wrong reasons. Our suite of tests have not only highlighted process based sources of uncertainty in model productivity calculations, they have also quantified the patterns and scale of this error. Combining these findings with PEcAn's model sensitivity analysis and variance decomposition strengthen our ability to identify which processes

  18. Using ecological production functions to link ecological processes to ecosystem services.

    Science.gov (United States)

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively ...

  19. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands

    Science.gov (United States)

    Ricca, Mark; Miles, A. Keith; Van Vuren, Dirk H.; Eviner, Valerie T.

    2016-01-01

    Introductions of mammalian herbivores to remote islands without predators provide a natural experiment to ask how temporal and spatial variation in herbivory intensity alter feedbacks between plant and soil processes. We investigated ecosystem effects resulting from introductions of Rangifer tarandus (hereafter “Rangifer”) to native mammalian predator- and herbivore-free islands in the Aleutian archipelago of Alaska. We hypothesized that the maritime tundra of these islands would experience either: (1) accelerated ecosystem processes mediated by positive feedbacks between increased graminoid production and rapid nitrogen cycling; or (2) decelerated processes mediated by herbivory that stimulated shrub domination and lowered soil fertility. We measured summer plant and soil properties across three islands representing a chronosequence of elapsed time post-Rangifer introduction (Atka: ~100 yr; Adak: ~50; Kagalaska: ~0), with distinct stages of irruptive population dynamics of Rangifer nested within each island (Atka: irruption, K-overshoot, decline, K-re-equilibration; Adak: irruption, K-overshoot; Kagalaska: initial introduction). We also measured Rangifer spatial use within islands (indexed by pellet group counts) to determine how ecosystem processes responded to spatial variation in herbivory. Vegetation community response to herbivory varied with temporal and spatial scale. When comparing temporal effects using the island chronosequence, increased time since herbivore introduction led to more graminoids and fewer dwarf-shrubs, lichens, and mosses. Slow-growingCladonia lichens that are highly preferred winter forage were decimated on both long-termRangifer-occupied islands. In addition, linear relations between more concentrated Rangifer spatial use and reductions in graminoid and forb biomass within islands added spatial heterogeneity to long-term patterns identified by the chronosequence. These results support, in part, the hypothesis that

  20. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    DEFF Research Database (Denmark)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.

    2005-01-01

    and retention were traced in six subsequent tide cycles. We present data for the water phase components of the marsh system, in which changes in concentration and isotopic enrichment of NO3-, NO2- , N2O, N2, NH4+, and suspended particulate nitrogen (SPN) were measured in concert with a mass balance study......We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient-rich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 m2 tidal marsh area, and marsh ammonium processing......, with nitrification accounting for 30% of 15N-transformation. In situ whole-ecosystem nitrification rates were four to nine times higher than those in the water column alone, implying a crucial role for the large reactive marsh surface area in N-transformation. Under conditions of low oxygen concentrations and high...

  1. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions.

    Science.gov (United States)

    Murray, Fiona; Widdicombe, Stephen; McNeill, C Louise; Solan, Martin

    2013-08-30

    Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acidification associated with a failure of sub-seabed carbon storage infrastructure have received less attention. This study investigates the effects of severe short-term (8days) exposure to acidified seawater on infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and functioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within the sediment and the variability in occupancy depth reduced considerably. This study indicated that rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural changes that could have longer-term implications for species survival, ecosystem structure and functioning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    Science.gov (United States)

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  3. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data.

    Science.gov (United States)

    Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U

    2014-07-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  4. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data

    International Nuclear Information System (INIS)

    Konovalenko, L.; Bradshaw, C.; Kumblad, L.; Kautsky, U.

    2014-01-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  5. Impacts to ecosystem services from aquatic acidification: using FEGS-CS to understand the impacts of air pollution

    Science.gov (United States)

    Increases in anthropogenic emissions of sulfur (S) and nitrogen (N) have resulted in increases in the associated atmospheric deposition of acidic compounds. In sensitive watersheds, this deposition has initiated a cascade of negative environmental effects on aquatic ecosystems, ...

  6. Understanding the Process of Acculturation for Primary Prevention.

    Science.gov (United States)

    Berry, J. W.

    This paper reviews the concepts of acculturation and adaptation to provide a framework for understanding the highly variable relationship between acculturation and mental health in refugee populations. It begins with an extended definition and discussion of the concepts of acculturation and adaptation. The characteristics of acculturating groups…

  7. Genetic Aspects of Deafness: Understanding the Counseling Process.

    Science.gov (United States)

    Boughman, Joann A.; Shaver, Kathleen A.

    1982-01-01

    An understanding of the genetic concepts applicable to individual cases of deafness, as well as an appreciation of the complex nature of determinaton of recurrence risks in families, will facilitate the referral of individuals and families for genetic evaluation and counseling. (Author)

  8. Dynamics in organic matter processing, ecosystem metabolism and trophic sources for consumers in the Mara River, Kenya

    NARCIS (Netherlands)

    Masese, F.O.

    2015-01-01

    To properly conserve, restore and manage riverine ecosystems and the services they provide, it is pertinent to understand their functional dynamics. However, there is still a major knowledge gap concerning the functioning of tropical rivers in terms of energy sources supporting riverine

  9. Understanding pre-registration nursing fitness to practise processes.

    Science.gov (United States)

    MacLaren, Jessica; Haycock-Stuart, Elaine; McLachlan, Alison; James, Christine

    2016-01-01

    Protection of the public is a key aspect of pre-registration nursing education and UK Nursing and Midwifery Council monitoring processes. Universities must ensure that nursing students are "fit to practise" both during their programme and at the point of registration. However, current evidence suggests that institutional fitness to practise policies and processes can be inconsistent, lacking in clarity, and open to legal challenge. To examine fitness to practise processes in pre-registration nursing programmes in Scotland. Academic personnel (n=11) with key roles in fitness to practise processes in nine of the eleven Scottish universities providing pre-registration nursing programmes. Semi-structured qualitative interviews were conducted with eleven academics with responsibility for fitness to practise processes in pre-registration programmes. The qualitative data and documentary evidence including institutional policies and processes were thematically analysed. In this paper, we focus on illuminating the key theme of Stages and Thresholds in Fitness to Practise processes i.e. Pre-fitness to practise, Stage 1, Stage 2, and Appeal, along with two thresholds (between Pre-fitness to practise and Stage 1; between Stage 1 and Stage 2. Diverse fitness to practise processes are currently in place for Scottish pre-registration nursing students. These processes draw on a shared set of principles but are couched in different terminology and vary according to their location within different university structures. Nevertheless, universities appear to be confronting broadly similar issues around ensuring fitness to practise and are building a body of expertise in this area. Examples of good practice are identified and include the use of staged processes and graduated outcomes, the incorporation of teaching about fitness to practise into nursing programmes, positive attitudes around health and disability, and collaborative decision making. Areas of challenge include systems for

  10. Learning from Game Design : Understanding Participatory processes through Game Mechanics

    NARCIS (Netherlands)

    Ampatzidou, Christina; Gugerell, Katharina; Diephuis, Jeremiah

    With the increasing interest of local governments in civic participation, it becomes important to explore the available methods for orchestrating participatory processes and evaluate how different tools address some of the common issues associated with participatory processes. Game design is an

  11. Dual processing and discourse space: Exploring fifth grade students' language, reasoning, and understanding through writing

    Science.gov (United States)

    Yoon, Sae Yeol

    The purpose of this study was to explore the development of students' understanding through writing while immersed in an environment where there was a strong emphasis on a language-based argument inquiry approach. Additionally, this study explored students' spoken discourse to gain a better understanding of what role(s) talking plays in the development of understanding through writing. Finally, the study proposed a new concept of Discourse Space, which enabled researchers to improve their understanding of the characteristics of the development of student cognition through writing, and of the roles talking plays in cognitive development through writing. This study was guided by the research question: What patterns of the development of fifth grade students' cognition over time emerge in their private and public negotiations under a teacher who is ranked as a low-level implementer of the SWH approach? This question was divided into two sub-questions: (a) Throughout a unit, Ecosystems, what patterns emerge regarding the development of six fifth grade students' understanding through writing, and b) What patterns of the development of Discourse Space emerge through talking in three different contexts. In order to answer these questions, this qualitative research employed a generic qualitative study. Twenty-one fifth grade students participated in this study, and six students were purposefully selected through which to further investigate the development of an understanding of science through private negotiation while immersed in a language-based argument inquiry approach. Major data sources included students' writing samples, informal conversations with the teacher, researcher's field notes, and classroom videos. Additionally, the teacher's modified RTOP scores and semi-structured interviews were used to deepen the contextual understanding of the learning environment and the teacher's instructional performance. The data analysis was conducted by utilizing discourse

  12. An elevational gradient in snowpack chemical loading at Glacier National Park, Montana: implications for ecosystem processes

    Science.gov (United States)

    Fagre, Daniel; Tonnessen, Kathy; Morris, Kristi; Ingersoll, George; McKeon, Lisa; Holzer, Karen

    2000-01-01

    The accumulation and melting of mountain snowpacks are major drivers of ecosystem processes in the Rocky Mountains. These include the influence of snow water equivalent (SWE) timing and amount of release on soil moisture for annual tree growth, and alpine stream discharge and temperature that control aquatic biota life histories. Snowfall also brings with it atmospheric deposition. Snowpacks will hold as much as 8 months of atmospheric deposition for release into mountain ecosystems during the spring melt. These pulses of chemicals influence soil microbiota and biogeochemical processes affecting mountain vegetation growth. Increased atmospheric nitrogen inputs recently have been documented in remote parts of Colorado's mountain systems but no baseline data exist for the Northern Rockies. We examined patterns of SWE and snow chemistry in an elevational gradient stretching from west to east over the continental divide in Glacier National Park in March 1999 and 2000. Sites ranged from 1080m to 2192m at Swiftcurrent Pass. At each site, two vertically-integrated columns of snow were sampled from snowpits up to 600cm deep and analyzed for major cations and anions. Minor differences in snow chemistry, on a volumetric basis, existed over the elvational gradient. Snowpack chemical loading estimates were calculated for NH4, SO4 and NO3 and closely followed elevational increases in SWE. NO3 (in microequivalents/square meter) ranged from 1,000 ueq/m2 at low elevation sites to 8,000+ ueq/m2 for high elevation sites. Western slopes received greater amounts of SWE and chemical loads for all tested compounds.

  13. Productivity and modifications of ecosystem processes in gaps of a low Macchia in southern Italy

    Directory of Open Access Journals (Sweden)

    A. De Marco

    2008-06-01

    Full Text Available Disturbance in Mediterranean shrub lands creates gaps that break up the shrub cover and potentially restrict productivity and other ecosystem processes. Gaps make up to about 20% of the low Macchia area at the Castel Volturno nature reserve (southern Italy. The plant community consists mainly of small annual species (legumes, grasses and forbs that germinate in November and die out before the onset of summer drought. The inter-annual variability in productivity and the relative abundance of legumes, grasses and forbs were assessed over 4 yr (2004–2007 to evaluate main potential modifications of ecosystem processes determined by the occurrence of gaps in the shrub cover.

    In the study years, at the peak production, plant mass varied from about 250 to 700 g m−2; biomass belowground allocation varied from 23% in the wettest to 44% in the driest year. Belowground/aboveground biomass ratios were negatively related to rainfall and positively related to the length of the dry period, showing that water availability controls biomass allocation patterns. Legumes were the most abundant fraction (about 60% of the aboveground mass in the wettest year. In the drier years legumes exhibited a shorter life cycle and senesced by mid-spring. Among the three functional groups monitored, legumes were the most sensitive to water shortage and their biomass was positively related to the amount of rainfall and negatively related to the length of the dry period. The higher fraction of legume mass was associated with higher nitrogen content in plant tissues and in the soil. Senesced annual species decomposed more than senescent Phillyrea sp. leaves. The stability of organic carbon pool, evaluated through the endogenous mineralization coefficient (CEM, was lower in gaps than in understorey soils.

  14. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin.

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  15. Adaptive management for ecosystem services.

    Science.gov (United States)

    Birgé, Hannah E; Allen, Craig R; Garmestani, Ahjond S; Pope, Kevin L

    2016-12-01

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with management designed to meet the demands of a growing human population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Suffering transaction: a process of reflecting and understanding

    OpenAIRE

    Wong, Shyh-Heng

    2011-01-01

    This study examines the transaction of the lived experience of ‘suffering’ in the process of psychotherapy. ‘Suffering’ is conceptualised as having its weight and value transacted between a psychotherapist and his or her client. As a psychotherapist from a family with a disabled member, my fieldwork in a hospital with the parents of disabled children was conducted in Taiwan. The development of our therapeutic relationship was discovered as the process of ‘suffering transaction’...

  17. Understanding mid-level representations in visual processing

    Science.gov (United States)

    Peirce, Jonathan W.

    2015-01-01

    It is clear that early visual processing provides an image-based representation of the visual scene: Neurons in Striate cortex (V1) encode nothing about the meaning of a scene, but they do provide a great deal of information about the image features within it. The mechanisms of these “low-level” visual processes are relatively well understood. We can construct plausible models for how neurons, up to and including those in V1, build their representations from preceding inputs down to the level of photoreceptors. It is also clear that at some point we have a semantic, “high-level” representation of the visual scene because we can describe verbally the objects that we are viewing and their meaning to us. A huge number of studies are examining these “high-level” visual processes each year. Less well studied are the processes of “mid-level” vision, which presumably provide the bridge between these “low-level” representations of edges, colors, and lights and the “high-level” semantic representations of objects, faces, and scenes. This article and the special issue of papers in which it is published consider the nature of “mid-level” visual processing and some of the reasons why we might not have made as much progress in this domain as we would like. PMID:26053241

  18. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  19. Understanding the process by which female entrepreneurs create INVs

    DEFF Research Database (Denmark)

    Rosenbaum, Gitte Ohrt; Hannibal, Martin

    , or vice-versa (Sarasvathy, 2005)? The present paper provides a comparative case study of the founding processes of nine Danish female-owned ventures (in the fashion design industry in Denmark). All have entered foreign markets within the first year of establishment. The retrospective case study draws...... close family members. As regards the latter, the effectual process of opportunity creation was very different across the case firms with some being more the result of collaboration with social network partners, whereas others appeared to be totally random or coincidental. The paper discusses the above...

  20. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  1. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    Science.gov (United States)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  2. Understanding the cognitive processes involved in writing to learn.

    Science.gov (United States)

    Arnold, Kathleen M; Umanath, Sharda; Thio, Kara; Reilly, Walter B; McDaniel, Mark A; Marsh, Elizabeth J

    2017-06-01

    Writing is often used as a tool for learning. However, empirical support for the benefits of writing-to-learn is mixed, likely because the literature conflates diverse activities (e.g., summaries, term papers) under the single umbrella of writing-to-learn. Following recent trends in the writing-to-learn literature, the authors focus on the underlying cognitive processes. They draw on the largely independent writing-to-learn and cognitive psychology learning literatures to identify important cognitive processes. The current experiment examines learning from 3 writing tasks (and 1 nonwriting control), with an emphasis on whether or not the tasks engaged retrieval. Tasks that engaged retrieval (essay writing and free recall) led to better final test performance than those that did not (note taking and highlighting). Individual differences in structure building (the ability to construct mental representations of narratives; Gernsbacher, Varner, & Faust, 1990) modified this effect; skilled structure builders benefited more from essay writing and free recall than did less skilled structure builders. Further, more essay-like responses led to better performance, implicating the importance of additional cognitive processes such as reorganization and elaboration. The results highlight how both task instructions and individual differences affect the cognitive processes involved when writing-to-learn, with consequences for the effectiveness of the learning strategy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Using Ancient DNA to Understand Evolutionary and Ecological Processes

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Cooper, Alan

    2014-01-01

    Ancient DNA provides a unique means to record genetic change through time and directly observe evolutionary and ecological processes. Although mostly based on mitochondrial DNA, the increasing availability of genomic sequences is leading to unprecedented levels of resolution. Temporal studies of ...

  4. Understanding Social Learning Processes in a Citrus Farming ...

    African Journals Online (AJOL)

    This paper focuses on what would traditionally be termed 'non-formal' learning processes in the context of a case study examining how citrus farming communities in the Patensie Valley in the Eastern Cape in South Africa were learning conservation practices. Communities of Practice theory was used to provide a ...

  5. Interviewing International Students to Understand the Process of Expatriate Acculturation

    Science.gov (United States)

    Peterson, Mark

    2014-01-01

    Globalization is the most influential trend of the early twenty-first century. However, many students have had limited direct contact with cultures other than their own. The following teaching innovation targets such students to give them an experiential learning opportunity about the process of acculturation for expatriates. This is accomplished…

  6. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes

    Science.gov (United States)

    Wang, Jianjun; Shen, Ji; Wu, Yucheng; Tu, Chen; Soininen, Janne; Stegen, James C; He, Jizheng; Liu, Xingqi; Zhang, Lu; Zhang, Enlou

    2013-01-01

    Increasing evidence has emerged for non-random spatial distributions of microbes, but knowledge of the processes that cause variation in microbial assemblage among ecosystems is lacking. For instance, some studies showed that deterministic processes such as habitat specialization are important, while other studies hold that bacterial communities are assembled by stochastic forces. Here we examine the relative influence of deterministic and stochastic processes for bacterial communities from subsurface environments, stream biofilm, lake water, lake sediment and soil using pyrosequencing of the 16S ribosomal RNA gene. We show that there is a general pattern in phylogenetic signal in species ecological niches across recent evolutionary time for all studied habitats, enabling us to infer the influences of community assembly processes from patterns of phylogenetic turnover in community composition. The phylogenetic dissimilarities among-habitat types were significantly higher than within them, and the communities were clustered according to their original habitat types. For communities within-habitat types, the highest phylogenetic turnover rate through space was observed in subsurface environments, followed by stream biofilm on mountainsides, whereas the sediment assemblages across regional scales showed the lowest turnover rate. Quantifying phylogenetic turnover as the deviation from a null expectation suggested that measured environmental variables imposed strong selection on bacterial communities for nearly all sample groups. For three sample groups, spatial distance reflected unmeasured environmental variables that impose selection, as opposed to spatial isolation. Such characterization of spatial and environmental variables proved essential for proper interpretation of partial Mantel results based on observed beta diversity metrics. In summary, our results clearly indicate a dominant role of deterministic processes on bacterial assemblages and highlight that

  7. Understanding the process of fibrosis in Duchenne muscular dystrophy.

    Science.gov (United States)

    Kharraz, Yacine; Guerra, Joana; Pessina, Patrizia; Serrano, Antonio L; Muñoz-Cánoves, Pura

    2014-01-01

    Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.

  8. Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2014-01-01

    Full Text Available Fibrosis is the aberrant deposition of extracellular matrix (ECM components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD, caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.

  9. Ultrathin (Understanding the processing, structure, and physical and electrical limits

    Science.gov (United States)

    Green, M. L.; Gusev, E. P.; Degraeve, R.; Garfunkel, E. L.

    2001-09-01

    The outstanding properties of SiO2, which include high resistivity, excellent dielectric strength, a large band gap, a high melting point, and a native, low defect density interface with Si, are in large part responsible for enabling the microelectronics revolution. The Si/SiO2 interface, which forms the heart of the modern metal-oxide-semiconductor field effect transistor, the building block of the integrated circuit, is arguably the worlds most economically and technologically important materials interface. This article summarizes recent progress and current scientific understanding of ultrathin (understanding of the limits of these gate dielectrics, i.e., how their continuously shrinking thickness, dictated by integrated circuit device scaling, results in physical and electrical property changes that impose limits on their usefulness. We observe, in conclusion, that although Si microelectronic devices will be manufactured with SiO2 and Si-O-N for the foreseeable future, continued scaling of integrated circuit devices, essentially the continued adherence to Moore's law, will necessitate the introduction of an alternate gate dielectric once the SiO2 gate dielectric thickness approaches ˜1.2 nm. It is hoped that this article will prove useful to members of the silicon microelectronics community, newcomers to the gate dielectrics field, practitioners in allied fields, and graduate students. Parts of this article have been adapted from earlier articles by the authors [L. Feldman, E. P. Gusev, and E. Garfunkel, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by E. Garfunkel, E. P. Gusev, and A. Y. Vul' (Kluwer, Dordrecht, 1998), p. 1 [Ref. 1]; E. P. Gusev, H. C. Lu, E. Garfunkel, T. Gustafsson, and M. Green, IBM J. Res. Dev. 43, 265 (1999) [Ref. 2]; R. Degraeve, B. Kaczer, and G. Groeseneken, Microelectron. Reliab. 39, 1445 (1999) [Ref. 3].

  10. Modeling Dynamic Food Choice Processes to Understand Dietary Intervention Effects.

    Science.gov (United States)

    Marcum, Christopher Steven; Goldring, Megan R; McBride, Colleen M; Persky, Susan

    2018-02-17

    Meal construction is largely governed by nonconscious and habit-based processes that can be represented as a collection of in dividual, micro-level food choices that eventually give rise to a final plate. Despite this, dietary behavior intervention research rarely captures these micro-level food choice processes, instead measuring outcomes at aggregated levels. This is due in part to a dearth of analytic techniques to model these dynamic time-series events. The current article addresses this limitation by applying a generalization of the relational event framework to model micro-level food choice behavior following an educational intervention. Relational event modeling was used to model the food choices that 221 mothers made for their child following receipt of an information-based intervention. Participants were randomized to receive either (a) control information; (b) childhood obesity risk information; (c) childhood obesity risk information plus a personalized family history-based risk estimate for their child. Participants then made food choices for their child in a virtual reality-based food buffet simulation. Micro-level aspects of the built environment, such as the ordering of each food in the buffet, were influential. Other dynamic processes such as choice inertia also influenced food selection. Among participants receiving the strongest intervention condition, choice inertia decreased and the overall rate of food selection increased. Modeling food selection processes can elucidate the points at which interventions exert their influence. Researchers can leverage these findings to gain insight into nonconscious and uncontrollable aspects of food selection that influence dietary outcomes, which can ultimately improve the design of dietary interventions.

  11. Understanding the work of telehealth implementation using Normalization Process Theory

    OpenAIRE

    Morrison, Janet Gwyneth

    2014-01-01

    This dissertation uses the theoretical constructs of Normalization Process Theory (NPT) to examine the successful implementation of an innovative telehealth service that delivers occupational health nursing services to a large healthcare employee population over a wide geographic area. Telehealth services have come to be regarded as a possible means to improve access to health care services, clinical efficiency, and cost effectiveness in an era where there are shrinking resources and growing ...

  12. How does crowdfunding work? Understanding the process through its activity

    OpenAIRE

    Stiver, Alexandra

    2016-01-01

    Crowdfunding is a process featuring incremental financial donations from a ‘crowd’ of backers to help fund a project initiated by a creator. In recent years, crowdfunding has generated significant revenue as well as great interest from industry, government, and creative entrepreneurs. However, rate of successful funding for crowdfunding projects remains around 35% for global crowdfunding leader Kickstarter1, and lower yet for other platforms.\\ud \\ud The identified gap between crowdfunding gro...

  13. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    Science.gov (United States)

    Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.

  14. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    Directory of Open Access Journals (Sweden)

    Mauricio Herrera

    Full Text Available There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.

  15. Managing the mismatches to provide ecosystem services human well-being: a conceptual framework for understanding the New Commons

    CSIR Research Space (South Africa)

    Duraiappah, AK

    2014-04-01

    Full Text Available within and across individuals coupled with the spatial scales at which different institutions are organized and at which ecosystem services are produced create mismatches in the management of the New Commons. We define the New Commons as the mosaic...

  16. Shifts in ecosystem services in deprived urban areas : Understanding people’s responses and consequences for well-being

    NARCIS (Netherlands)

    Derkzen, Marthe L.; Nagendra, Harini; Van Teeffelen, Astrid J.A.; Purushotham, Anusha; Verburg, Peter H.

    2017-01-01

    Urban commons are under pressure. City development has led to the encroachment and ecological degradation of urban open space. Although there is growing insight that urban ecosystems need to be protected, there is hardly any attention for the consequences (of both pressures and protection efforts)

  17. Interactive effects of air pollution and climate change on forest ecosystems in the United States: current understanding and future scenarios

    Science.gov (United States)

    Andrzej Bytnerowicz; Mark Fenn; Steven McNulty; Fengming Yuan; Afshin Pourmokhtarian; Charles Driscoll; Tom Meixner

    2013-01-01

    A review of the current status of air pollution and climate change (CC) in the United States from a perspective of their impacts on forest ecosystems is provided. Ambient ozone (O3) and nitrogen (N) deposition have important and widespread ecological impacts in U.S. forests. Effects of sulphurous (S) air pollutants and other trace pollutants have...

  18. Application of Cosmic-ray Soil Moisture Sensing to Understand Land-atmosphere Interactions in Three North American Monsoon Ecosystems

    Science.gov (United States)

    Schreiner-McGraw, A.; Vivoni, E. R.; Franz, T. E.; Anderson, C.

    2013-12-01

    Human impacts on desert ecosystems have wide ranging effects on the hydrologic cycle which, in turn, influence interactions between the critical zone and the atmosphere. In this contribution, we utilize cosmic-ray soil moisture sensors at three human-modified semiarid ecosystems in the North American monsoon region: a buffelgrass pasture in Sonora, Mexico, a woody-plant encroached savanna ecosystem in Arizona, and a woody-plant encroached shrubland ecosystem in New Mexico. In each case, landscape heterogeneity in the form of bare soil and vegetation patches of different types leads to a complex mosaic of soil moisture and land-atmosphere interactions. Historically, the measurement of spatially-averaged soil moisture at the ecosystem scale (on the order of several hundred square meters) has been problematic. Thus, new advances in measuring cosmogenically-produced neutrons present an opportunity for observational and modeling studies in these ecosystems. We discuss the calibration of the cosmic-ray soil moisture sensors at each site, present comparisons to a distributed network of in-situ measurements, and verify the spatially-aggregated observations using the watershed water balance method at two sites. We focus our efforts on the summer season 2013 and its rainfall period during the North American monsoon. To compare neutron counts to the ground sensors, we utilized an aspect-elevation weighting algorithm to compute an appropriate spatial average for the in-situ measurements. Similarly, the water balance approach utilizes precipitation, runoff, and evapotranspiration measurements in the footprint of the cosmic-ray sensors to estimate a spatially-averaged soil moisture field. Based on these complementary approaches, we empirically determined a relationship between cosmogenically-produced neutrons and the spatially-aggregated soil moisture. This approach may improve upon existing methods used to calculate soil moisture from neutron counts that typically suffer from

  19. The dynamic regime concept for ecosystem management and restoration

    NARCIS (Netherlands)

    Mayer, A.; Rietkerk, M.G.

    2004-01-01

    Because the response of ecosystem patterns and processes to disturbance is rarely linear, the dynamic regime concept offers a more realistic construct than linear models for understanding ecosystems. Dynamic regimes, and shifts between them, have been reported for a diversity of ecosystem

  20. The Dynamic Regime Concept for Ecosystem Management and Restoration

    NARCIS (Netherlands)

    Mayer, A.L.; Rietkerk, M.

    2004-01-01

    Because the response of ecosystem patterns and processes to disturbance is rarely linear, the dynamic regime concept offers a more realistic construct than linear models for understanding ecosystems. Dynamic regimes, and shifts between them, have been reported for a diversity of ecosystem types (e.

  1. Understanding movement data and movement processes: current and emerging directions.

    Science.gov (United States)

    Schick, Robert S; Loarie, Scott R; Colchero, Fernando; Best, Benjamin D; Boustany, Andre; Conde, Dalia A; Halpin, Patrick N; Joppa, Lucas N; McClellan, Catherine M; Clark, James S

    2008-12-01

    Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.

  2. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  3. Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls

    Science.gov (United States)

    Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy. Ford

    2012-01-01

    Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...

  4. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  5. A review of impacts by invasive exotic plants on forest ecosystem services

    Science.gov (United States)

    Kevin Devine; Songlin. Fei

    2011-01-01

    Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...

  6. Using a Forest Health Index as an Outreach Tool for Improving Public Understanding of Ecosystem Dynamics and Research-Based Management

    Science.gov (United States)

    Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.

    2015-12-01

    An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.

  7. Microbial Life in the Subseafloor at Mid-Ocean Ridges: A Key to Understanding Ancient Ecosystems on Earth and Elsewhere?

    Science.gov (United States)

    Baross, J. A.; Delaney, J. R.

    2001-12-01

    Some planets and moons in our solar system were similar to Earth in their geological properties during the first few hundred million years after accretion. This is the period when life arose and became established on Earth. It follows that understanding the geophysical and geochemical characteristics of early Earth could provide insight into life-supporting environments on other solar bodies that have not evolved "Garden of Eden" conditions. Hydrothermal systems are primordial and their emergence coincided with the accumulation of liquid water on Earth. The interactions of water and rock associated with hydrothermal systems result in predictable suites of dissolved elements and volatiles. While the concentrations of these chemicals vary at different vent locations and were certainly different during the early Archaean, the overall chemical composition of aqueous hydrothermal fluid is likely to be the same because of the basaltic nature of oceanic crust. In present-day hydrothermal systems, those environments not contaminated by electron acceptors produced from pelagic photosynthesis would most closely mimic the earliest conditions on Earth. These conditions include the subseafloor and high temperature, anaerobic environments associated with hydrothermal systems. The microorganisms associated with these environments derive energy from sulfur, iron, hydrogen and organic compounds. New seafloor eruptions and diffuse flow vents provide unprecedented access to deep subseafloor microbial communities. For example, 12 new eruptions have occurred in the past 15 years including five in the Northeast Pacific. Hyperthermophiles were isolated from 5-30oC diffuse vent fluids from new eruption sites at CoAxial within months of the June, 1993 eruption and from the 1998 eruption at Axial Volcano, and from plume fluids within days of the February, 1996 eruption at the N. Gorda Ridge. The presence of such organisms in fluids that are 20 to 50°C below their minimum growth temperature

  8. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  9. A Global-Scale Estimate of Ecosystem Services from Urban Agriculture: Understanding Incentives for Natural Capital in Cities

    Science.gov (United States)

    Clinton, N.; Stuhlmacher, M.; Miles, A.; Uludere, N.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P.

    2017-12-01

    Despite substantial interest in urban agriculture, little is known about the aggregate benefits conferred by natural capital for growing food in cities. Here we perform a scenario-based analysis to quantify ecosystem services from adoption of urban agriculture at varying intensity. To drive the scenarios, we created global-scale estimates of vacant land, rooftop and building surface area, at one kilometer resolution, from remotely sensed and modeled geospatial data. We used national scale agricultural reports, climate and other geospatial data at global scale to estimate agricultural production and economic returns, storm-water avoidance, energy savings from avoided heating and cooling costs, and ecosystem services provided by nitrogen sequestration, pollination and biocontrol of pests. The results indicate that vacant lands, followed by rooftops, represent the largest opportunities for natural capital put to agricultural use in urban areas. Ecosystem services from putting such spaces to productive use are dominated by agricultural returns, but energy savings conferred by insulative characteristics of growth substrate also provide economic incentives. Storm water avoidance was estimated to be substantial, but no economic value was estimated. Relatively low economic returns were estimated from the other ecosystem services examined. In aggregate, approximately $10-100 billion in economic incentives, before costs, were estimated. The results showed that relatively developed, high-income countries stand the most to gain from urban agricultural adoption due to the unique combination of climate, crop mixture and crop prices. While the results indicate that urban agriculture is not a panacea for urban food security issues, there is potential to simultaneously ameliorate multiple issues around food, energy and water in urbanized areas.

  10. Impact of photochemical processing of DOC on the bacterioplankton respiratory quotient in aquatic ecosystems

    Science.gov (United States)

    Allesson, Lina; Ström, Lena; Berggren, Martin

    2016-07-01

    Many studies assume a respiratory quotient (RQ = molar ratio of CO2 produced to O2 consumed) close to 1 when calculating bacterioplankton respiration. However, evidence suggests that RQ depends on the chemical composition of the respired substrate pool that may be altered by photochemical production of oxygen-rich substrates, resulting in elevated RQs. Here we conducted a novel study of the impact of photochemical processing of dissolved organic carbon (DOC) on RQ. We monitored the bacterial RQ in bioassays of both ultraviolet light irradiated and nonirradiated humic lake water, using optic gas-pressure sensors. In the experimentally irradiated samples the average RQ value was significantly higher (3.4-3.5 [±0.4 standard error (SE)]) than that in the dark controls (1.3 [±0.1 SE]). Our results show that the RQ is systematically higher than 1 when the bacterial metabolism in large part is based on photoproducts. By assuming an RQ of 1, bacterioplankton respiration in freshwater ecosystems may be greatly underestimated.

  11. Framework for systematic indicator selection to assess effects of land management on ecosystem services

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Petz, K.; Alkemade, R.; Hein, L.G.; Groot, de R.S.

    2012-01-01

    Land management is an important factor that affects ecosystem services provision. However, interactions between land management, ecological processes and ecosystem service provision are still not fully understood. Indicators can help to better understand these interactions and provide information

  12. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  13. Towards an Understanding of Enabling Process Knowing in Global Software Development: A Case Study

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Babar, Muhammad Ali

    2014-01-01

    Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of information...... over a project lifecycle. Developing and sustaining process knowledge can be more challenging in Global Software Development (GSD). GSD distances can limit the ability of a team to develop a common understanding of processes. Anecdotes of the problems caused by lack of common understanding of processes...

  14. The influence of ecological processes on the accumulation of persistent organochlorines in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Olof

    1999-09-01

    Several ecological problems influences the fate, transport, and accumulation of persistent organochlorines (OCs) in aquatic ecosystems. In this thesis, I have focused on two processes, namely (i) the food chain bioaccumulation of OCs, and (ii) the trophic status of the aquatic system. To test the biomagnification theory, I investigated PCB concentrations in planktonic food chains in lakes. The concentrations of PCB on a lipid basis did not increase with increasing trophic level. Hence, I could give no support to the theory of biomagnification. Instead, lipid content explained most of the variation in PCB accumulation in these food chains. PCBs were differentially fractionated in the food chains, the relative amount of high molecular weight PCBs increased with increasing trophic level, indicating congener specific differences in either the accumulation or the elimination of PCBs at the different trophic levels. In another study, I investigated the relationship between OC concentrations and trophic level, measured as {delta}{sup 15}N, in a specific predatory fish population. The dry weight OC concentrations and {delta}{sup 15}N were related, indicating effects of prey choice on the OC accumulation. However, here also, lipid content explained the major part of the variation in OC concentrations, independent of trophic level (e. g. {delta}{sup 15}N). I investigated the effects of trophic status, measured as Tot-P concentration in water, on the concentrations of OCs in water, planktonic food chains and sediment in lakes. The dry weight concentrations of PCBs in phytoplankton were negatively related to the trophic status of the lakes. However, this relationship was explained by the decreasing lipid content of phytoplankton with lake trophic status. The phytoplankton in eutrophic lakes had lower lipid content than phytoplankton in oligotrophic lakes, possibly due to inter- and intraspecific differences in lipid content due to nutrient stress. The sediment accumulation and

  15. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    International Nuclear Information System (INIS)

    Gustafsson, David; Jansson, Per-Erik; Gaerdenaes, Annemieke; Eckersten, Henrik

    2006-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem

  16. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering; Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Eckersten, Henrik [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Crop Production Ecology

    2006-12-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem.

  17. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes.

    Science.gov (United States)

    Wood, Tana E; Cavaleri, Molly A; Reed, Sasha C

    2012-11-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO(2) ) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  18. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Science.gov (United States)

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C.

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  19. Ecosystem services driven by the diversity of soil biota - understanding and management in agriculture - The Biodiversa SoilMan-Project

    Science.gov (United States)

    Potthoff, Martin; Pérès, Guénola; Taylor, Astrid; Schrader, Stefan; Landa, Blanca; Nicolai, Annegret; Sandor, Mignon; Öptik, Maarja; Gema, Guzmán; Bergmann, Holger; Cluzeau, Daniel; Banse, Martin; Bengtsson, Jan; Guernion, Muriel; Zaller, Johann; Roslin, Tomas; Scheu, Stefan; Gómez Calero, José Alfonso

    2017-04-01

    Soil biota diversity is ensuring primary production in terrestrial ecosystems and agricultural productivity. Water and nutrient cycling, soil formation and aggregation, decomposition and carbon sequestration as well as control of pest organisms are important functions in soil that are driven by biota and biota interactions. In agricultural systems these functions support and regulate ecosystem services directed to agricultural production and agricultural sustainability. A main goal of future cropping systems will be to maintain or raise agricultural productivity while keeping production sustainable in spite of increasing food demands and ongoing soil degradation caused by inappropriate soil management practices. Farm based tools that farmers use to engineer soils for plant production depend as soil management factors on decisions by farmers, which are triggered by regional traditions, knowledge and also by agriculture policies as a governance impact. However, biological impacts on soil fertility and soil health are often neglected or overseen when planning and shaping soil management in annual cropping systems or perennial systems like vineyards. In order to get progress in conservation farming and in agricultural sustainability not only knowledge creation is in need, but also a clash of perspectives has to be overcome within the societies (generals public, farmers associations, NGOs) The talk will present the conception of the recently startet SoilMan-project and summaries selected results from current and recent European research projects.

  20. Soil microbial activity in hydromorphic-subaqueous ecosystems: processes and functional biodiveristy

    Directory of Open Access Journals (Sweden)

    Ruxandra Papp

    2015-12-01

    Full Text Available The hydromorphic and subaqueous soils have largely been overlooked on their pedogenic concepts or in soil C accounting studies considering their phisico-chemical properties. Conversely, little attention has been paid to the microbial activity playing a key role in regulating the biogeochemical cycle of elements. The aim of the study was to evaluate biological properties such as enzyme activities and the functional diversity of soil microbial population as bio- indicators, sensitive to processes affected by the water shallow. Eight soil profiles were opened along two transects: 1 a-a’ North and 2 b-b' South, in a dune ecosystem of the Adriatic coast, Ravenna (Italy. The soil chemical and biochemical properties were determined. In particular, soil enzyme activities and soil induced respiration were measured using the microplates technique in order to assess the microbial functional diversity. The soil biochemical properties such as the potential enzyme activities and microbial induced respiration, as well as microbial functional diversity were sensitive indicators to study hydromorphic and subaqueous soils. A general reduction of hydrolytic enzyme activities was observed in subaqueous soil with respect to hydromorphic one. Moreover, the endopedon of subaqueous soils showed a lower microbial functional diversity than hydromorphic one. In this study the ratio of enzyme activities involved in C to S cycles (SEIC/Aryl as well as the C:S ratio showed a marked reduction in the subaqueous with respect to hydromorphic soils. In conclusion, in a coastal area the C and S biogeochemical cycles, in the hydromorphic and subaqueous soils, may depend on freshwater and saltwater interface equilibrium.

  1. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  2. Implementing ecosystem-based marine management as a process of regionalisation

    DEFF Research Database (Denmark)

    Hegland, Troels Jacob; Raakjær, Jesper; van Tatenhove, Jan

    2015-01-01

    This article deals with the implementation of ecosystem-based marine management in the Baltic Sea. It explores and documents in particular the preliminary lessons from environmental and fisheries management with reference to the Helsinki Commission Group for implementation of the ecosystem approach......'s Marine Strategy Framework Directive. The Baltic Sea Fisheries Forum is a new governing body to facilitate regional cooperation in fisheries management. The aim of the article is twofold: a) to describe and discuss two different pathways of regionalisation in the Baltic Sea and b) to explore how...... these forms of regionalisation could contribute to the implementation of governance structures needed to implement ecosystem-based marine management at the level of a regional sea – efficiently, legitimately and effectively. We conclude that a nested governance structure could be developed by building upon...

  3. Human driven transitions in complex model ecosystems

    Science.gov (United States)

    Harfoot, Mike; Newbold, Tim; Tittinsor, Derek; Purves, Drew

    2015-04-01

    Human activities have been observed to be impacting ecosystems across the globe, leading to reduced ecosystem functioning, altered trophic and biomass structure and ultimately ecosystem collapse. Previous attempts to understand global human impacts on ecosystems have usually relied on statistical models, which do not explicitly model the processes underlying the functioning of ecosystems, represent only a small proportion of organisms and do not adequately capture complex non-linear and dynamic responses of ecosystems to perturbations. We use a mechanistic ecosystem model (1), which simulates the underlying processes structuring ecosystems and can thus capture complex and dynamic interactions, to investigate boundaries of complex ecosystems to human perturbation. We explore several drivers including human appropriation of net primary production and harvesting of animal biomass. We also present an analysis of the key interactions between biotic, societal and abiotic earth system components, considering why and how we might think about these couplings. References: M. B. J. Harfoot et al., Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model., PLoS Biol. 12, e1001841 (2014).

  4. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling

    Directory of Open Access Journals (Sweden)

    S. Sabate

    2009-08-01

    Full Text Available Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE", and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+", was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

  5. University Students' Understanding of Chemistry Processes and the Quality of Evidence in Their Written Arguments

    Science.gov (United States)

    Seung, Eulsun; Choi, Aeran; Pestel, Beverly

    2016-01-01

    We have developed a process-oriented chemistry laboratory curriculum for non-science majors. The purpose of this study is both to explore university students' understanding of chemistry processes and to evaluate the quality of evidence students use to support their claims regarding chemistry processes in a process-oriented chemistry laboratory…

  6. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    Science.gov (United States)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  7. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    Science.gov (United States)

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  8. Biotic Processes Regulating the Carbon Balance of Desert Ecosystems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Robert S [UNR; Smith, Stanley D [UNLV; Evans, Dave [WSU; Ogle, Kiona [ASU; Fenstermaker, Lynn [DRI

    2012-12-13

    Our results from the 10-year elevated atmospheric CO{sub 2} concentration study at the Nevada Desert FACE (Free-air CO{sub 2} Enrichment) Facility (NDFF) indicate that the Mojave Desert is a dynamic ecosystem with the capacity to respond quickly to environmental changes. The Mojave Desert ecosystem is accumulating carbon (C), and over the 10-year experiment, C accumulation was significantly greater under elevated [CO{sub 2}] than under ambient, despite great fluctuations in C inputs from year to year and even apparent reversals in which [CO{sub 2}] treatment had greater C accumulations.

  9. Combined global change effects on ecosystem processes in nine U.S

    Science.gov (United States)

    Melannie D. Hartman; Jill S. Baron; Holly A. Ewing; Kathleen C. Weathers; Chelcy Miniat

    2014-01-01

    Concurrent changes in climate, atmospheric nitrogen (N) deposition, and increasing levels of atmospheric carbon dioxide (CO2) affect ecosystems in complex ways. The DayCent-Chem model was used to investigate the combined effects of these human-caused drivers of change over the period 1980–2075 at seven forested montane and two alpine watersheds...

  10. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Science.gov (United States)

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  11. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Science.gov (United States)

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  12. Community and ecosystem responses to elevational gradients

    DEFF Research Database (Denmark)

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems.......Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...

  13. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  14. Effects of landcover, water redistribution, and temperature on ecosystem processes in the South Plate Basin

    Science.gov (United States)

    Baron, Jill S.; Hartman, M.D.; Kittel, Timothy G.F.; Band, L.E.; Ojima, D. S.; Lammers, R.B.

    1998-01-01

    Over one-third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation-related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin-wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin-wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of <500 mm on the plains below 1800 m is far less than potential

  15. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  16. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Ciais, P.; Wang, T.; Piao, S.L.; Ottlé, C.; Brender, P.; Moors, E.J.

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the

  17. Understanding the relationship between vegetation phenology and productivity across key dryland ecosystem types through the integration of PhenoCam, satellite, and eddy covariance data

    Science.gov (United States)

    Yan, D.; Scott, R. L.; Moore, D. J.; Biederman, J. A.; Smith, W. K.

    2017-12-01

    Land surface phenology (LSP) - defined as remotely sensed seasonal variations in vegetation greenness - is intrinsically linked to seasonal carbon uptake, and is thus commonly used as a proxy for vegetation productivity (gross primary productivity; GPP). Yet, the relationship between LSP and GPP remains uncertain, particularly for understudied dryland ecosystems characterized by relatively large spatial and temporal variability. Here, we explored the relationship between LSP and the phenology of GPP for three dominant dryland ecosystem types, and we evaluated how these relationships change as a function of spatial and temporal scale. We focused on three long-term dryland eddy covariance flux tower sites: Walnut Gulch Lucky Hills Shrubland (WHS), Walnut Gulch Kendall Grassland (WKG), and Santa Rita Mesquite (SRM). We analyzed daily canopy-level, 16-day 30m, and 8-day 500m time series of greenness indices from PhenoCam, Landsat 7 ETM+/Landsat 8 OLI, and MODIS, respectively. We first quantified the impact of spatial scale by temporally resampling canopy-level PhenoCam, 30m Landsat, and 500m MODIS to 16-day intervals and then comparing against flux tower GPP estimates. We next quantified the impact of temporal scale by spatially resampling daily PhenoCam, 16-day Landsat, and 8-day MODIS to 500m time series and then comparing against flux tower GPP estimates. We find evidence of critical periods of decoupling between LSP and the phenology of GPP that vary according to the spatial and temporal scale, and as a function of ecosystem type. Our results provide key insight into dryland LSP and GPP dynamics that can be used in future efforts to improve ecosystem process models and satellite-based vegetation productivity algorithms.

  18. Volcano ecology at Chaiten, Chile: geophysical processes interact with forest ecosystems

    Science.gov (United States)

    Swanson, F. J.; Crisafulli, C.; Jones, J. A.; Lara, A.

    2010-12-01

    The May 2008 eruption of Chaiten Volcano (Chile) offers many insights into volcano ecology -ecological responses to volcanic and associated hydrologic processes and ecosystem development in post-eruption landscapes. Varied intensities of pyroclastic density currents (PDC) and thickness of tephra fall deposits (to 50+ cm) created strong gradients of disturbance in several hundred square kilometers of native forest in a sector north to southeast from the volcano. A gradient from tree removal to toppled forest to standing, scorched forest extends 1.5 km northward from the caldera rim along the trajectory of a PDC. Close to the vent (e.g., 2 km NE from rim) a rain of ca. 10 cm of gravel tephra stripped foliage and twigs from tree canopies; farther away (23 km SE) 10 cm of fine tephra loaded the canopy, causing extensive fall of limbs >8 cm diameter. Even in the severely disturbed, north-flank PDC zone, surviving bamboo, ferns, and other herbs sprouted from pre-eruption soil and other refugia; sprouts of new foliage appeared on the boles and major limbs of several species of toppled and scorched, standing trees; animals including vertebrates (rodents and amphibians) and terrestrial invertebrates (e.g., insects and arachnids) either survived or quickly recolonized; and a diverse fungal community began decomposing the vast dead wood resource. During the second growing season we documented the presence of some plant species that had colonized by seed. Within two years after the eruption secondary ecological disturbances resulting from channel change and overbank deposition of fluvially transported tephra created new patches of damaged forest in riparian zones of streams draining the north flank and along the Rio Rayas and Rio Chaiten. These features parallel observations in the intensively-studied, post-1980-eruption landscape of Mount St. Helens over a similar time period. However, several aspects of ecological response to the two eruptions differ because of differences

  19. A new perspective on proxy report: Investigating implicit processes of understanding through patient-proxy congruence.

    Science.gov (United States)

    Schwartz, Carolyn E; Ayandeh, Armon; Rodgers, Jonathan D; Duberstein, Paul; Weinstock-Guttman, Bianca; Benedict, Ralph H B

    2015-11-01

    Utilizing proxy report is a common solution to gathering quality-of-life information from people who are not capable of reliably answering questionnaires, such as people with dementia. Proxy report could, however, also provide information about patients' implicit processes of understanding, which we define as automatic, schema-driven cognitive processes that allow one to have a better understanding of oneself and of one's body, make oneself known and knowable to members of the social network, and allow one to react proactively in response to cues. We investigated whether implicit processes of understanding explain some of the association between reserve and healthy lifestyle behaviors. We operationalized three implicit processes of understanding: (a) psychosocial understanding; (b) insight into physical disability; and (c) somatic awareness. This secondary analysis involved a cohort of multiple sclerosis patients and their caregiver informants (n = 118 pairs). Measures included a neurologist-administered Expanded Disability Status Scale, patient- and informant-completed survey measures, and a heartbeat perception test (interoception). Patient-other congruence assessed implicit processes of understanding: psychosocial understanding (neurocognitive and personality); physical-disability insight; and somatic awareness (interoception). Effect sizes (ES) for the inter-correlations between the three implicit processes were small. Psychosocial understanding was associated with higher past reserve-building activities (small ES). Psychosocial understanding explained variance in healthy lifestyle behaviors over and above the variance explained by current reserve-building activities (∆R (2) = 0.04; model R Adjusted (2) = 0.18). Proxy versus patient report can provide information about underlying interpretational processes related to insight. These processes are distinct from reserve, predict health outcomes, and can inform lifestyle-changing interventions.

  20. Terrestrial ecosystems under warmer and drier climates

    Science.gov (United States)

    Pan, Y.

    2016-12-01

    Future warmer and drier climates will likely affect many of the world's terrestrial ecosystems. These changes will fundamentally reshape terrestrial systems through their components and across organization levels. However, it is unclear to what extent terrestrial ecosystems would be resilient enough to stay put to increased temperature and water stress by only adjusting carbon fluxes and water balances? And to what extent it would reach the thresholds at which terrestrial ecosystems were forced to alter species compositions and ecosystem structures for adapting to newer climates? The energy balance of terrestrial ecosystems link thermal and water conditions to defines terrestrial carbon processes and feedbacks to climate, which will inevitably change under warmer and drier climates. Recent theoretical studies provide a new framework, suggesting that terrestrial ecosystems were capable of balancing costs of carbon gain and water transport to achieve optimums for functioning and distribution. Such a paradigm is critical for understanding the dynamics of future terrestrial ecosystems under climate changes, and facilitate modeling terrestrial ecosystems which needs generalized principles for formulating ecosystem behaviors. This study aims to review some recent studies that explore responses of terrestrial ecosystems to rather novel climate conditions, such as heat-induced droughts, intending to provide better comprehension of complex carbon-water interactions through plants to an ecosystem, and relevant factors that may alleviate or worsen already deteriorated climates such as elevated CO2 and soil conditions.

  1. Soil cover patterns and SOC dynamics impacts on the soil processes, land management and ecosystem services in Central Region of Russia

    Science.gov (United States)

    Vasenev, Ivan; Chernikov, Vladimir; Yashin, Ivan; Geraskin, Mikhail; Morev, Dmitriy

    2014-05-01

    mapping, traditional regression kriging, correlation tree models and DSS adapted to concrete region and agrolandscape conditions. The outcomes of statistical process modeling show the essential amplification of erosion, dehumification, CO2, CH4 and N2O emission, soluble SOC fluxes, acidification or alkalization, disaggregation and overcompaction processes due to violation of environmentally sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the most zonal soils and soil cover pattern essentially lost not only their unique natural features (humus horizons depth till 1 m and more in case of Chernozems, 2-6 % of SOC and favorable agrophysical features), but ecosystem services and ecological functions including terrestrial ecosystem carbon balance and the GHG fluxes control. Key-site monitoring results and regional generalized data showed 1-1.5% SOC lost during last 50 years period and active processes of CO2 emission and humus profile eluvial-illuvial redistribution too. A drop of Corg content below threshold "humus limiting content" values (for different soils they vary from 1 to 3-4% of SOC) considerably reduces effectiveness of used fertilizers and possibility of sustai¬nable agronomy here. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus supplies can be ten-tatively estimated as fifty-fifty with strong spatial variability due to slope and land-use parameters. These processes have essentially different sets of environmental consequences and ecosystem services that we need to understand in frame of environmental and agroecological problems development prediction.

  2. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia (Invited)

    Science.gov (United States)

    Sivapalan, M.

    2013-12-01

    Competition for water between humans and ecosystems is set to become a flash point in coming decades in all parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development of effective mediation strategies. This paper presents a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resource development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of

  3. On the Use of Hedonic Price Indices to Understand Ecosystem Service Provision from Urban Green Space in Five Latin American Megacities

    Directory of Open Access Journals (Sweden)

    Ursula Loret de Mola

    2017-12-01

    Full Text Available Latin American (LA megacities are facing enormous challenges to provide welfare to millions of people who live in them. High rates of urbanization and limited administrative capacity of LA cities to plan and control urban growth have led to a critical deficit of urban green space, and therefore, to sub-optimal outcomes in terms of urban sustainability. This study seeks to assess the possibility of using real estate prices to provide an estimate of the monetary value of the ecosystem services provided by urban green space across five Latin American megacities: Bogota, Buenos Aires, Lima, Mexico City and Santiago de Chile. Using Google Earth images to quantify urban green space and multiple regression analysis, we evaluated the impact of urban green space, crime rates, business density and population density on real estate prices across the five mentioned megacities. In addition, for a subset of the data (Lima and Buenos Aires we analyzed the effects of landscape ecology variables (green space patch size, connectivity, etc. on real estate prices to provide a first insight into how the ecological attributes of urban green space can determine the level of ecosystem service provision in different urban contexts in Latin America. The results show a strong positive relationship between the presence of urban green space and real estate prices. Green space explains 52% of the variability in real estate prices across the five studied megacities. Population density, business density and crime had only minor impacts on real estate prices. Our analysis of the landscape ecology variables in Lima and Buenos Aires also show that the relationship between green space and price is context-specific, which indicates that further research is needed to better understand when and where ecological attributes of green space affect real estate prices so that managers of urban green space in LA cities can optimize ecological configuration to maximize ecosystem service

  4. Understanding the time-lag effect of terrestrial ecosystem response to drought: a regional case study of the 2000s Millennium Drought in Australia

    Science.gov (United States)

    Zhao, M.; A, G.; Velicogna, I.; Kimball, J. S.

    2016-12-01

    Drought is one of the major drivers of the reduction in terrestrial ecosystem productivity. Ecosystem productivity may not primarily be driven by present moisture conditions. Instead, earlier drought conditions may have the largest impact on vegetation growth. We investigate this time-lag effect in Australia by comparing MODIS NDVI data with multiple drought metrics that are sensitive to water deficits at different soil depths. These metrics include 1) soil moisture (SM) from microwave satellite-retrievals that is sensitive to top-centimeter SM variations; 2) the Palmer drought severity index (PDSI) which is sensitive to atmosphere moisture demand and shallow-depth ( 1 meter) SM changes; 3) the newly developed GRACE drought severity index (GRACE-DSI) that is sensitive to changes in overall terrestrial water storage component of the hydrologic cycle and complements satellite SM observations and the PDSI by providing information about deep groundwater storage changes. We quantify the temporal lags between NDVI and these drought metrics during 2002-2014. We find that the NDVI closely evolves with the GRACE-DSI but lags 1-3 months behind the PDSI and satellite-retrievals of SM in western Australia. This pattern however is reverse in eastern Australia. These contrasting NDVI response patterns indicate that vegetation in western Australia is more sensitive to water storage in relatively deeper soil depths than vegetation in the east. This suggests that, in western Australia, vegetation might experience a protracted recovery period after extreme drought since, usually, moisture recharge in deeper soil depths takes a relatively longer period. We conclude that the time-lag effect in Australia is associated with the relative depth of SM to which vegetation is most sensitive. We suggest that characterizing the relative vegetation moisture sensitive depth at the global scale is important for understanding the nature and pace of terrestrial ecosystem recovery from extreme

  5. Reconciling top-down and bottom-up estimates of CO2 fluxes to understand increased seasonal exchange in Northern ecosystems

    Science.gov (United States)

    Bastos, A.; Ciais, P.; Zhu, D.; Maignan, F.; Wang, X.; Chevallier, F.; Ballantyne, A.

    2017-12-01

    Continuous atmospheric CO2 monitoring data indicate enhanced seasonal exchange in the high-latitudes in the Northern Hemisphere (above 40oN), mainly attributed to terrestrial ecosystems. Whether this enhancement is mostly explained by increased vegetation growth due to CO2 fertilization and warming, or by changes in land-use and land-management practices is still an unsettled question (e.g. Forkel et al. (2016) and Zeng et al. (2013)). Previous studies have shown that models present variable performance in capturing trends in CO2 amplitude at CO2 monitoring sites, and that Earth System Models present large spread in their estimates of such trends. Here we integrate data of atmospheric CO2 exchange in terrestrial ecosystems by a set of atmospheric CO2 inversions and a range of land-surface models to evaluate the ability of models to reproduce changes in CO2 seasonal exchange within the observation uncertainty. We then analyze the factors that explain the model spread to understand if the trend in seasonal CO2 amplitude may indeed be a useful metric to constrain future changes in terrestrial photosynthesis (Wenzel et al., 2016). We then compare model simulations with satellite and other observation-based datasets of vegetation productivity, biomass stocks and land-cover change to test the contribution of natural (CO2 fertilization, climate) and human (land-use change) factors to the increasing trend in seasonal CO2 amplitude. Forkel, Matthias, et al. "Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems." Science 351.6274 (2016): 696-699. Wenzel, Sabrina, et al. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2." Nature 538, no. 7626 (2016): 499-501.Zeng, Ning, et al. "Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude." Nature 515.7527 (2014): 394.

  6. Understanding the design research process: The evolution of a professional development program in Indian slums

    NARCIS (Netherlands)

    McKenney, Susan; Raval, Harini; Pieters, Jules

    2011-01-01

    McKenney, S., Raval, H., & Pieters, J. (2011, 8-12 April). Understanding the design research process: The evolution of a professional development program in Indian slums. Presentation at AERA annual meeting, New Orleans.

  7. Understanding the design research process: The evolution of a professional development program in Indian slums

    OpenAIRE

    McKenney, Susan; Raval, Harini; Pieters, Jules

    2011-01-01

    McKenney, S., Raval, H., & Pieters, J. (2011, 8-12 April). Understanding the design research process: The evolution of a professional development program in Indian slums. Paper presentation at AERA annual meeting, New Orleans.

  8. Understanding the design research process: The evolution of a professional development program in Indian slums

    NARCIS (Netherlands)

    McKenney, Susan; Raval, Harini; Pieters, Jules

    2012-01-01

    McKenney, S., Raval, H., & Pieters, J. (2011, 8-12 April). Understanding the design research process: The evolution of a professional development program in Indian slums. Paper presentation at AERA annual meeting, New Orleans.

  9. [Characteristics of terrestrial ecosystem primary productivity in East Asia based on remote sensing and process-based model].

    Science.gov (United States)

    Zhang, Fang-Min; Ju, Wei-Min; Chen, Jing-Ming; Wang, Shao-Qiang; Yu, Gui-Rui; Han, Shi-Jie

    2012-02-01

    Based on the bi-linearly interpolated meteorological reanalysis data from National Centers for Environmental Prediction, USA and by using the leaf area index data derived from the GIMMS NDVI to run the process-based Boreal Ecosystems Productivity Simulator (BEPS) model, this paper simulated and analyzed the spatiotemporal characteristics of the terrestrial ecosystem gross primary productivity (GPP) and net primary productivity (NPP) in East Asia in 2000-2005. Before regional simulating and calculating, the observation GPP data of different terrestrial ecosystem in 15 experimental stations of AsiaFlux network and the inventory measurements of NPP at 1300 sampling sites were applied to validate the BEPS GPP and NPP. The results showed that BEPS could well simulate the changes in GPP and NPP of different terrestrial ecosystems, with the R2 ranging from 0.86 to 0.99 and the root mean square error (RMSE) from 0.2 to 1.2 g C x m(-2) x d(-1). The simulated values by BEPS could explain 78% of the changes in annual NPP, and the RMSE was 118 g C x m(-2) x a(-1). In 2000-2005, the averaged total GPP and total NPP of the terrestrial ecosystems in East Asia were 21.7 and 10.5 Pg C x a(-1), respectively, and the GPP and NPP exhibited similar spatial and temporal variation patterns. During the six years, the total NPP of the terrestrial ecosystems varied from 10.2 to 10.7 Pg C x a(-1), with a coefficient of variation being 2. 2%. High NPP (above 1000 g C x m(-2) x a(-1)) occurred in the southeast island countries, while low NPP (below 30 g C x m(-2) x a(-1)) occurred in the desert area of Northwest China. The spatial patterns of NPP were mainly attributed to the differences in the climatic variables across East Asia. The NPP per capita also varied greatly among different countries, which was the highest (70217 kg C x a(-1)) in Mongolia, far higher than that (1921 kg C x a(-1)) in China, and the lowest (757 kg C x a(-1)) in India.

  10. A model for understanding and learning of the game process of computer games

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Majgaard, Gunver

    time make sure that the students learn to act and reflect like game designers? We fell our game design model managed to just that end. Our model entails a guideline for the computer game design process in its entirety, and at same time distributes clear and easy understandable insight to a particular......This abstract focuses on the computer game design process in the education of engineers at the university level. We present a model for understanding the different layers in the game design process, and an articulation of their intricate interconnectedness. Our motivation is propelled by our daily...... teaching practice of game design. We have observed a need for a design model that quickly can create an easily understandable overview over something as complex as the design processes of computer games. This posed a problem: how do we present a broad overview of the game design process and at the same...

  11. Toward an integration of evolutionary biology and ecosystem science.

    Science.gov (United States)

    Matthews, Blake; Narwani, Anita; Hausch, Stephen; Nonaka, Etsuko; Peter, Hannes; Yamamichi, Masato; Sullam, Karen E; Bird, Kali C; Thomas, Mridul K; Hanley, Torrance C; Turner, Caroline B

    2011-07-01

    At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Understanding Human-Coyote Encounters in Urban Ecosystems Using Citizen Science Data: What Do Socioeconomics Tell Us?

    Science.gov (United States)

    Wine, Stuart; Gagné, Sara A.; Meentemeyer, Ross K.

    2015-01-01

    The coyote ( Canis latrans) has dramatically expanded its range to include the cities and suburbs of the western US and those of the Eastern Seaboard. Highly adaptable, this newcomer's success causes conflicts with residents, necessitating research to understand the distribution of coyotes in urban landscapes. Citizen science can be a powerful approach toward this aim. However, to date, the few studies that have used publicly reported coyote sighting data have lacked an in-depth consideration of human socioeconomic variables, which we suggest are an important source of overlooked variation in data that describe the simultaneous occurrence of coyotes and humans. We explored the relative importance of socioeconomic variables compared to those describing coyote habitat in predicting human-coyote encounters in highly-urbanized Mecklenburg County, North Carolina, USA using 707 public reports of coyote sightings, high-resolution land cover, US Census data, and an autologistic multi-model inference approach. Three of the four socioeconomic variables which we hypothesized would have an important influence on encounter probability, namely building density, household income, and occupation, had effects at least as large as or larger than coyote habitat variables. Our results indicate that the consideration of readily available socioeconomic variables in the analysis of citizen science data improves the prediction of species distributions by providing insight into the effects of important factors for which data are often lacking, such as resource availability for coyotes on private property and observer experience. Managers should take advantage of citizen scientists in human-dominated landscapes to monitor coyotes in order to understand their interactions with humans.

  13. Multivariate Spatio-Temporal Clustering: A Framework for Integrating Disparate Data to Understand Network Representativeness and Scaling Up Sparse Ecosystem Measurements

    Science.gov (United States)

    Hoffman, F. M.; Kumar, J.; Maddalena, D. M.; Langford, Z.; Hargrove, W. W.

    2014-12-01

    Disparate in situ and remote sensing time series data are being collected to understand the structure and function of ecosystems and how they may be affected by climate change. However, resource and logistical constraints limit the frequency and extent of observations, particularly in the harsh environments of the arctic and the tropics, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent variability at desired scales. These regions host large areas of potentially vulnerable ecosystems that are poorly represented in Earth system models (ESMs), motivating two new field campaigns, called Next Generation Ecosystem Experiments (NGEE) for the Arctic and Tropics, funded by the U.S. Department of Energy. Multivariate Spatio-Temporal Clustering (MSTC) provides a quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks. We applied MSTC to down-scaled general circulation model results and data for the State of Alaska at a 4 km2 resolution to define maps of ecoregions for the present (2000-2009) and future (2090-2099), showing how combinations of 37 bioclimatic characteristics are distributed and how they may shift in the future. Optimal representative sampling locations were identified on present and future ecoregion maps, and representativeness maps for candidate sampling locations were produced. We also applied MSTC to remotely sensed LiDAR measurements and multi-spectral imagery from the WorldView-2 satellite at a resolution of about 5 m2 within the Barrow Environmental Observatory (BEO) in Alaska. At this resolution, polygonal ground features—such as centers, edges, rims, and troughs—can be distinguished. Using these remote sensing data, we up-scaled vegetation distribution data collected on these polygonal ground features to a large area of the BEO to provide distributions of plant functional types that can

  14. Understanding erosion process using rare earth element tracers in a preformed interrill-rill system

    Science.gov (United States)

    Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill ...

  15. Process understanding on high shear granulated lactose agglomerates during and after drying

    NARCIS (Netherlands)

    Nieuwmeyer, F.J.S.

    2009-01-01

    In 2001 the FDA launched the Process Analytical Technology initiative as a response to the growing public and industrial awareness that there is a lack of process understanding required to have an optimal control of pharmaceutical manufacturing. The current research project was initiated based upon

  16. Differentiating Processes of Control and Understanding in the Early Development of Emotion and Cognition

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.

    2012-01-01

    In this study, we examined the hypothesis that preschoolers' performance on emotion and cognitive tasks is organized into discrete processes of control and understanding within the domains of emotion and cognition. Additionally, we examined the relations among component processes using mother report, behavioral observation, and physiological…

  17. Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years.

    Science.gov (United States)

    McMurtrie, R E; Medlyn, B E; Dewar, R C

    2001-08-01

    The terrestrial biosphere is currently thought to be a significant sink for atmospheric carbon (C). However, the future course of this sink under rising [CO2] and temperature is uncertain. Some contrasting possibilities that have been suggested are: that the sink is currently increasing through CO2 fertilization of plant growth but will decline over the next few decades because of CO2 saturation and soil nutrient constraints; that the sink will continue to increase over the next century because rising temperature will stimulate the release of plant-available soil nitrogen (N) through increased soil decomposition; that, alternatively, the sink will not be sustained because the additional soil N released will be immobilized in the soil rather than taken up by plants; or that the sink will soon become negative because loss of soil C through temperature stimulation of soil respiration will override any CO2 or temperature stimulation of plant growth. Soil N immobilization is thus a key process; however, it remains poorly understood. In this paper we use a forest ecosystem model of plant-soil C and N dynamics to gauge the importance of this uncertainty for predictions of the future C sink of forests under rising [CO2] and temperature. We characterize soil N immobilization by the degree of variability of soil N:C ratios assumed in the model. We show that the modeled C sink of a stand of Norway spruce (Picea abies (L.) Karst.) in northern Sweden is highly sensitive to this assumption. Under increasing temperature, the model predicts a strong C sink when soil N:C is inflexible, but a greatly reduced C sink when soil N:C is allowed to vary. In complete contrast, increasing atmospheric [CO2] leads to a much stronger C sink when soil N:C is variable. When both temperature and [CO2] increase, the C sink strength is relatively insensitive to variability in soil N:C; significantly, however, with inflexible soil N:C the C sink is primarily a temperature response whereas with

  18. Gestalt Processing in Autism: Failure to Process Perceptual Relationships and the Implications for Contextual Understanding

    Science.gov (United States)

    Brosnan, Mark J.; Scott, Fiona J.; Fox, Simone; Pye, Jackie

    2004-01-01

    Background: Deficits in autism have been characterised as a bias towards local over global processing. This paper examines whether there is a deficit in gestalt grouping in autism. Method: Twenty-five low-functioning children with autism and 25 controls who were matched for chronological age and verbal mental age took part in the study. Results:…

  19. Disruption of ecosystem processes in western North America by invasive species

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Dukes

    2004-09-01

    Full Text Available Many ecosystems of western North America have been dramatically changed by non-native species. Here, we review ecological impacts of 56 plant, animal, fungus, and protist species that were brought to this region by humans. We discuss characteristics of invasive species that can lead to major ecosystem impacts, and explore how invasive species alter many different attributes of ecosystems. Specifically, we include examples of invasive species that affect geomorphology, fire regimes, hydrology, microclimate, atmospheric composition, nutrient cycling, and productivity. Finally, we review the direct consequences of biological invasions for some native species. We summarize examples from this paper in Appendix 1. Our examples illustrate how, as invasive species have become dominant across large areas of western North America's grassland, shrubland, dune, riparian, and estuarine ecosystems, the properties and functioning of these systems have changed. To date, some systems in this region, such as its forests, remain relatively unaffected by invasive species. However, recent attacks of forest pathogens highlight the potential vulnerability of these ecosystemsMuchos ecosistemas de Norteamérica occidental han cambiado dramáticamente a causa del efecto producido por especies no autóctonas. Aquí se muestra una revisión del impacto ecológico producido por 56 especies diferentes de plantas, animales y hongos, y especies de protistas que fueron traídos a esta región por humanos. Discutimos las características de las especies invasoras que pueden producir un gran impacto en el ecosistema, y exploramos cómo las especies invasoras pueden alterar de forma muy diferente los atributos de un ecosistema. Específicamente, incluimos ejemplos de especies invasoras que afectan a la geomorfología, a los regímenes del fuego, a la hidrología, al microclima, a la composición atmosférica, al ciclo de nutrientes, y a la productividad. Finalmente, revisamos las

  20. Radiochronology of marine sediments and its application to the knowledge of the process of environmental pollution in coastal Cuban ecosystems

    International Nuclear Information System (INIS)

    Alonso-Hernández, Carlos M.; Díaz-Asencio, Misael; Gómez-Batista, Miguel; Bolaños-Alvares, Yoelvis; Muñoz-Caravaca, Alain; Morera-Gómez, Yasser

    2016-01-01

    The results achieved in the implementation of the radiochronology of marine sediments for the reconstruction of databases and knowledge of the evolution of environmental pollution in four coastal ecosystems of national significance are presented in this paper Fluxes of selected heavy metals and persistent organic compounds are discussed for the Cienfuegos and Havana bays and Sagua and La Coloma estuaries. Finally, is showed the effectiveness of radiochronology of sediments as a useful tool for environmental management and knowledge of temporal processes of pollution in the aquatic environment. (author)

  1. A Dark Hole in our Understanding of Marine Ecosystems and their Services: Perspectives from the mesopelagic community.

    Directory of Open Access Journals (Sweden)

    Michael Arthur St. John

    2016-03-01

    Full Text Available In the face of increasing anthropogenic pressures acting on the Earth system, urgent actions are needed to guarantee efficient resource management and sustainable development for our growing human population. Our oceans - the largest underexplored component of the Earth system - are potentially home for a large number of new resources, which can directly impact upon food security and the wellbeing of humanity. However, the extraction of these resources has repercussions for biodiversity and the oceans ability to sequester green house gases and thereby climate. In the search for new resources to unlock the economic potential of the global oceans, recent observations have identified a large unexploited biomass of mesopelagic fish living in the deep ocean. This biomass has recently been estimated to be 10 billion metric tonnes, 10 times larger than previous estimates however the real biomass is still in question. If we are able to exploit this community at sustainable levels without impacting upon biodiversity and compromising the oceans’ ability to sequester carbon, we can produce more food and potentially many new nutraceutical products. However, to meet the needs of present generations without compromising the needs of future generations, we need to guarantee a sustainable exploitation of these resources. To do so requires a holistic assessment of the community and an understanding of the mechanisms controlling this biomass, its role in the preservation of biodiversity and its influence on climate as well as management tools able to weigh the costs and benefits of exploitation of this community.

  2. Developing spatial biophysical accounting for multiple ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Schroter, M.; Hein, L.G.

    2014-01-01

    Ecosystem accounting is receiving increasing interest as a way to systematically monitor the conditions of ecosystems and the ecosystem services they provide. A critical element of ecosystem accounting is understanding spatially explicit flows of ecosystem services. We developed spatial biophysical

  3. A Holistic Understanding of Conflicts during the Enterprise Resource Planning Change Process: A Dialectic Perspective

    OpenAIRE

    MUSLEH ALSULAMI

    2017-01-01

    This doctoral study investigates conflicts during ERP change process from a dialectic perspective. A major motivation of this study thus arises from the recognition that a high level of risk is generally associated with the ERP change process. This is due to three reasons: a) limited understanding and experience in supporting the ERP change process, b) highly complex and risky involvement of multiple ERP stakeholders who have contrasting expectations, and c) inherent ERP conflicts in the ERP ...

  4. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    Directory of Open Access Journals (Sweden)

    Enqing Hou

    Full Text Available Nitrogen (N is considered the dominant limiting nutrient in temperate regions, while phosphorus (P limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based in foliage, litter (L layer and mixture of fermentation and humus (F/H layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors. The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  5. Separating drought effects from roof artifacts on ecosystem processes in a grassland drought experiment.

    Science.gov (United States)

    Vogel, Anja; Fester, Thomas; Eisenhauer, Nico; Scherer-Lorenzen, Michael; Schmid, Bernhard; Weisser, Wolfgang W; Weigelt, Alexandra

    2013-01-01

    1: Given the predictions of increased drought probabilities under various climate change scenarios, there have been numerous experimental field studies simulating drought using transparent roofs in different ecosystems and regions. Such roofs may, however, have unknown side effects, called artifacts, on the measured variables potentially confounding the experimental results. A roofed control allows the quantification of potential artifacts, which is lacking in most experiments. 2: We conducted a drought experiment in experimental grasslands to study artifacts of transparent roofs and the resulting effects of artifacts on ecosystems relative to drought on three response variables (aboveground biomass, litter decomposition and plant metabolite profiles). We established three drought treatments, using (1) transparent roofs to exclude rainfall, (2) an unroofed control treatment receiving natural rainfall and (3) a roofed control, nested in the drought treatment but with rain water reapplied according to ambient conditions. 3: Roofs had a slight impact on air (+0.14°C during night) and soil temperatures (-0.45°C on warm days, +0.25°C on cold nights), while photosynthetically active radiation was decreased significantly (-16%). Aboveground plant community biomass was reduced in the drought treatment (-41%), but there was no significant difference between the roofed and unroofed control, i.e., there were no measurable roof artifact effects. 4: Compared to the unroofed control, litter decomposition was decreased significantly both in the drought treatment (-26%) and in the roofed control treatment (-18%), suggesting artifact effects of the transparent roofs. Moreover, aboveground metabolite profiles in the model plant species Medicago x varia were different from the unroofed control in both the drought and roofed control treatments, and roof artifact effects were of comparable magnitude as drought effects. 5: Our results stress the need for roofed control treatments

  6. A Process-Philosophical Understanding of Organizational Learning as "Wayfinding": Process, Practices and Sensitivity to Environmental Affordances

    Science.gov (United States)

    Chia, Robert

    2017-01-01

    Purpose: This paper aims to articulate a practice-based, non-cognitivist approach to organizational learning. Design/methodology/approach: This paper explores the potential contribution of a process-based "practice turn" in social theory for understanding organizational learning. Findings: In complex, turbulent environments, robust…

  7. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  8. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review.

    Science.gov (United States)

    Burggraeve, Anneleen; Monteyne, Tinne; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-01-01

    Fluidized bed granulation is a widely applied wet granulation technique in the pharmaceutical industry to produce solid dosage forms. The process involves the spraying of a binder liquid onto fluidizing powder particles. As a result, the (wetted) particles collide with each other and form larger permanent aggregates (granules). After spraying the required amount of granulation liquid, the wet granules are rapidly dried in the fluid bed granulator. Since the FDA launched its Process Analytical Technology initiative (and even before), a wide range of analytical process sensors has been used for real-time monitoring and control of fluid bed granulation processes. By applying various data analysis techniques to the multitude of data collected from the process analyzers implemented in fluid bed granulators, a deeper understanding of the process has been achieved. This review gives an overview of the process analytical technologies used during fluid bed granulation to monitor and control the process. The fundamentals of the mechanisms contributing to wet granule growth and the characteristics of fluid bed granulation processing are briefly discussed. This is followed by a detailed overview of the in-line applied process analyzers, contributing to improved fluid bed granulation understanding, modeling, control, and endpoint detection. Analysis and modeling tools enabling the extraction of the relevant information from the complex data collected during granulation and the control of the process are highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Six sigma: process of understanding the control and capability of ranitidine hydrochloride tablet.

    Science.gov (United States)

    Chabukswar, Ar; Jagdale, Sc; Kuchekar, Bs; Joshi, Vd; Deshmukh, Gr; Kothawade, Hs; Kuckekar, Ab; Lokhande, Pd

    2011-01-01

    The process of understanding the control and capability (PUCC) is an iterative closed loop process for continuous improvement. It covers the DMAIC toolkit in its three phases. PUCC is an iterative approach that rotates between the three pillars of the process of understanding, process control, and process capability, with each iteration resulting in a more capable and robust process. It is rightly said that being at the top is a marathon and not a sprint. The objective of the six sigma study of Ranitidine hydrochloride tablets is to achieve perfection in tablet manufacturing by reviewing the present robust manufacturing process, to find out ways to improve and modify the process, which will yield tablets that are defect-free and will give more customer satisfaction. The application of six sigma led to an improved process capability, due to the improved sigma level of the process from 1.5 to 4, a higher yield, due to reduced variation and reduction of thick tablets, reduction in packing line stoppages, reduction in re-work by 50%, a more standardized process, with smooth flow and change in coating suspension reconstitution level (8%w/w), a huge cost reduction of approximately Rs.90 to 95 lakhs per annum, an improved overall efficiency by 30% approximately, and improved overall quality of the product.

  10. Using process elicitation and validation to understand and improve chemotherapy ordering and delivery.

    Science.gov (United States)

    Mertens, Wilson C; Christov, Stefan C; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Cassells, Lucinda J; Marquard, Jenna L

    2012-11-01

    Chemotherapy ordering and administration, in which errors have potentially severe consequences, was quantitatively and qualitatively evaluated by employing process formalism (or formal process definition), a technique derived from software engineering, to elicit and rigorously describe the process, after which validation techniques were applied to confirm the accuracy of the described process. The chemotherapy ordering and administration process, including exceptional situations and individuals' recognition of and responses to those situations, was elicited through informal, unstructured interviews with members of an interdisciplinary team. The process description (or process definition), written in a notation developed for software quality assessment purposes, guided process validation (which consisted of direct observations and semistructured interviews to confirm the elicited details for the treatment plan portion of the process). The overall process definition yielded 467 steps; 207 steps (44%) were dedicated to handling 59 exceptional situations. Validation yielded 82 unique process events (35 new expected but not yet described steps, 16 new exceptional situations, and 31 new steps in response to exceptional situations). Process participants actively altered the process as ambiguities and conflicts were discovered by the elicitation and validation components of the study. Chemotherapy error rates declined significantly during and after the project, which was conducted from October 2007 through August 2008. Each elicitation method and the subsequent validation discussions contributed uniquely to understanding the chemotherapy treatment plan review process, supporting rapid adoption of changes, improved communication regarding the process, and ensuing error reduction.

  11. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  12. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  13. Exploring potentials of sense-making theory for understanding social processes in public hearing

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    This paper has point of departure in a planning process on energy infrastructure in Denmark and focuses on a particular public hearing meeting characterised by trenchant opposition and distrust to the authorities among the public. It points at the need to understand the interaction between author...... of such a public meeting and the importance of trust and openness in the social processes in a public hearing....... authorities and the public in such planning often characterised by conflict. A sense-making framework is developed based on Karl Weick's theory to investigate how participants at the meeting change their understanding aspects like other actors' opinions and the infrastructure project. Through interviews...

  14. Measurements and modeling of CO2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph F. [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-29

    The major goal of this project was to improve understanding of processes that control the exchanges of CO2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO2 concentration and the isotopes of CO2 (13C/12C and 18O/16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years and to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/12C. The core element of this project was providing partial support for continuing measurements of CO2 concentrations and isotopes from the Scripps CO2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/12C of CO2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College

  15. Monetary accounting of ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Edens, Bram; Schröter, Matthias; Hein, Lars

    2015-01-01

    Ecosystem accounting aims to provide a better understanding of ecosystem contributions to the economy in a spatially explicit way. Ecosystem accounting monitors ecosystem services and measures their monetary value using exchange values consistent with the System of National Accounts (SNA). We

  16. Contribution to the Themed Section: Scaling from individual plankton to marine ecosystems HORIZONS Small bugs with a big impact: linking plankton ecology with ecosystem processes

    DEFF Research Database (Denmark)

    Menden-Deuer, Susanne; Kiørboe, Thomas

    2016-01-01

    As an introduction to the following Themed Section on the significance of planktonic organisms to the functioning of marine ecosystems and global biogeochemical cycles we discuss the ramifications size imparts on the biology of plankton. We provide examples of how the characteristics of these mic...

  17. Hotter Drought, Disturbance Process Thresholds, and Reorganization of Forest Ecosystems and Watersheds in the Southwestern USA, and Beyond

    Science.gov (United States)

    Allen, C. D.

    2015-12-01

    Extensive high-severity wildfires and drought-induced tree mortality (including drought-and-heat-related insect pest outbreaks), along with associated major alterations of watershed conditions and hydrological processes, have intensified over the last two decades in Southwest USA forests and woodlands—on a scale unseen regionally since at least pre-1900, and quite possibly not for millennia, based on diverse lines of paleo-ecological and geomorphic evidence. Historical land-use patterns, decadal-scale climate variability (e.g., drought linked to the Pacific Decadal Oscillation), and warming temperatures in recent decades (resulting in "hotter drought" conditions) have been important interactive drivers of observed nonlinear threshold changes in these forest disturbance processes. In response, Southwest forest landscapes have been rapidly transitioning toward more open and drought-tolerant ecosystems, with altered ecohydrological patterns. If regional temperatures increase as projected by climate models, multiple lines of evidence (experiments, observations, empirical models, process models) suggest that Southwest drought stress after ca. 2050 will increasingly exceed that of the most severe droughts in the past 1,000 years, putting current historical forests at grave risk—in particular the tallest (& often the oldest) trees and forests. These findings point toward the emergence of increasingly novel vegetation patterns over the course of this century. Forests globally exhibit great diversity in environmental drivers, histories, dominant ecological patterns and processes, biodiversity, etc., which are expected to produce diverse forest responses (and levels of resilience) to projected global changes in climate and human uses this century. Even given this planetary diversity of forests and expected global change responses, the observed reorganization of forests underway in the Southwest USA - driven by the convergence of changes in land use patterns, disturbance

  18. Global Ecosystem Restoration Index

    DEFF Research Database (Denmark)

    Fernandez, Miguel; Garcia, Monica; Fernandez, Nestor

    2015-01-01

    The Global ecosystem restoration index (GERI) is a composite index that integrates structural and functional aspects of the ecosystem restoration process. These elements are evaluated through a window that looks into a baseline for degraded ecosystems with the objective to assess restoration...

  19. Macrosystems ecology: novel methods and new understanding of multi-scale patterns and processes

    Science.gov (United States)

    Songlin Fei; Qinfeng Guo; Kevin Potter

    2016-01-01

    As the global biomes are increasingly threatened by human activities, understanding of macroscale patterns and processes is pressingly needed for effective management and policy making. Macrosystems ecology, which studies multiscale ecologicalpatterns and processes, has gained growing interest in the research community. However, as a relatively new field in...

  20. Mapping and modelling ecosystem services for science, policy and practice

    NARCIS (Netherlands)

    Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R.

    2013-01-01

    Ecosystem services are a significant research and policy topic and there are many modelling and mapping approaches aimed at understanding the stocks, demands and flows of ecosystem services on different spatial and temporal scales. The integration of geo-biophysical processes and structure

  1. Modern Microbial Ecosystems are a Key to Understanding Our Biosphere's Early Evolution and its Contributions To The Atmosphere and Rock Record

    Science.gov (United States)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater

  2. Understanding Customer Product Choices: A Case Study Using the Analytical Hierarchy Process

    Science.gov (United States)

    Robert L. Smith; Robert J. Bush; Daniel L. Schmoldt

    1996-01-01

    The Analytical Hierarchy Process (AHP) was used to characterize the bridge material selection decisions of highway officials across the United States. Understanding product choices by utilizing the AHP allowed us to develop strategies for increasing the use of timber in bridge construction. State Department of Transportation engineers, private consulting engineers, and...

  3. Understanding Teachers' Cognitive Processes during Online Professional Learning: A Methodological Comparison

    Science.gov (United States)

    Beach, Pamela; Willows, Dale

    2017-01-01

    This study examined the effectiveness of three types of think aloud methods for understanding elementary teachers' cognitive processes as they used a professional development website. A methodology combining a retrospective think aloud procedure with screen capture technology (referred to as the virtual revisit) was compared with concurrent and…

  4. Videogame Construction by Engineering Students for Understanding Modelling Processes: The Case of Simulating Water Behaviour

    Science.gov (United States)

    Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel

    2015-01-01

    We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…

  5. Embedded Formative Assessment and Classroom Process Quality: How Do They Interact in Promoting Science Understanding?

    Science.gov (United States)

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, A. Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment--a well-known teaching practice--and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of…

  6. Utilizing the Theoretical Framework of Collective Identity to Understand Processes in Youth Programs

    Science.gov (United States)

    Futch, Valerie A.

    2016-01-01

    This article explores collective identity as a useful theoretical framework for understanding social and developmental processes that occur in youth programs. Through narrative analysis of past participant interviews (n = 21) from an after-school theater program, known as "The SOURCE", it was found that participants very clearly describe…

  7. The Role of Regulation and Processing Strategies in Understanding Science Text among University Students

    Science.gov (United States)

    Vilppu, Henna; Mikkila-Erdmann, Mirjamaija; Ahopelto, Ilona

    2013-01-01

    The aim of the study was to investigate the role of regulation and processing strategies in understanding science text. A total of 91 student teachers answered open-ended questions concerning photosynthesis before and after reading either a traditional or a refutational science text. After this, they also answered parts of the Inventory of…

  8. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    Science.gov (United States)

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2011-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of…

  9. Non-equilbrium dynamics of ecosystem processes in a changing world

    Science.gov (United States)

    Reid, Joseph Pignatello

    The relatively mild and stable climate of the last 10,000 years betrays a history of environmental variability and rapid changes. Humans have recently accelerated global environmental change, ushering in the Anthropocene. Meeting accelerating demands for food, energy, and goods and services has accelerated species extinctions, shows of reactive nitrogen and phosphorus, and warming of the atmosphere. I address the over- arching question of how ecosystems will respond to changing and variable environments through several focused studies. Each study examines an ecosystem response to ex- pected environmental changes in the future. To address how the changing environment affects the sizes and turnover rates of slowly and quickly cycling soil carbon pools, I analyzed the responses of grassland soils to simulated species diversity loss, increased deposition of nitrogen and increased atmospheric CO2. I used a soil respiration experiment to fit models of soil carbon pool turnover to respired carbon dioxide. Species diversity, nitrogen deposition and atmospheric CO2 had no effect on the total soil carbon after 8 years of treatments. Although total soil carbon did not change, the rates of cycling in the fast and slow pools changed in response to elevated CO2 and diversity loss treatments. Nitrogen treatments increased the size of the slowly cycling carbon pool. Precipitation variability has increased around most of the world since the industrial revolution. I used plant mesocosms in a greenhouse experiment to manipulate rainfall variability and mycorrhizal associations. I hypothesized that 1) rewetting events re- sult in higher nitrogen uxes from dry soils than moist soils, 2) a repeated pattern of events caused by low-frequency simulated rainfall results in higher nitrogen uxes and 3) the better ability of ectomycorrhizal fungi relative to arbuscular mycorrhizal fungi to decompose and assimilate organic nitrogen reduces leaching losses of nitrogen caused by both rewetting

  10. Validation of a Process-Based Agro-Ecosystem Model (Agro-IBIS for Maize in Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Tureniguli Amuti

    2018-03-01

    Full Text Available Agricultural oasis expansion and intensive management practices have occurred in arid and semiarid regions of China during the last few decades. Accordingly, regional carbon and water budgets have been profoundly impacted by agroecosystems in these regions. Therefore, study on the methods used to accurately estimate energy, water, and carbon exchanges is becoming increasingly important. Process-based models can represent the complex processes between land and atmosphere among agricultural ecosystems. However, before the models can be applied they must be validated under different environmental and climatic conditions. In this study, a process-based agricultural ecosystem model (Agro-IBIS was validated for maize crops using 3 years of soil and biometric measurements at Wulanwusu agrometeorological site (WAS located in the Shihezi oasis in Xinjiang, northwest China. The model satisfactorily represented leaf area index (LAI during the growing season, simulating its peak values within the magnitude of 0–10%. The total biomass carbon was overestimated by 15%, 8%, and 16% in 2004, 2005, and 2006, respectively. The model satisfactorily simulated the soil temperature (0–10 cm and volumetric water content (VWC (0–25 cm of farmland during the growing season. However, it overestimated soil temperature approximately by 4 °C and VWC by 15–30% during the winter, coinciding with the period of no vegetation cover in Xinjiang. Overall, the results indicate that the model could represent crop growth, and seems to be applicable in multiple sites in arid oases agroecosystems of Xinjiang. Future application of the model will impose more comprehensive validation using eddy covariance flux data, and consider including dynamics of crop residue and improving characterization of the final stage of leaf development.

  11. Toward theoretical understanding of the fertility preservation decision-making process: examining information processing among young women with cancer.

    Science.gov (United States)

    Hershberger, Patricia E; Finnegan, Lorna; Altfeld, Susan; Lake, Sara; Hirshfeld-Cytron, Jennifer

    2013-01-01

    Young women with cancer now face the complex decision about whether to undergo fertility preservation. Yet little is known about how these women process information involved in making this decision. The purpose of this article is to expand theoretical understanding of the decision-making process by examining aspects of information processing among young women diagnosed with cancer. Using a grounded theory approach, 27 women with cancer participated in individual, semistructured interviews. Data were coded and analyzed using constant-comparison techniques that were guided by 5 dimensions within the Contemplate phase of the decision-making process framework. In the first dimension, young women acquired information primarily from clinicians and Internet sources. Experiential information, often obtained from peers, occurred in the second dimension. Preferences and values were constructed in the third dimension as women acquired factual, moral, and ethical information. Women desired tailored, personalized information that was specific to their situation in the fourth dimension; however, women struggled with communicating these needs to clinicians. In the fifth dimension, women offered detailed descriptions of clinician behaviors that enhance or impede decisional debriefing. Better understanding of theoretical underpinnings surrounding women's information processes can facilitate decision support and improve clinical care.

  12. Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality.

    Science.gov (United States)

    Sokolov, Michael; Ritscher, Jonathan; MacKinnon, Nicola; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo; Butté, Alessandro

    2017-09-01

    This work investigates the insights and understanding which can be deduced from predictive process models for the product quality of a monoclonal antibody based on designed high-throughput cell culture experiments performed at milliliter (ambr-15 ® ) scale. The investigated process conditions include various media supplements as well as pH and temperature shifts applied during the process. First, principal component analysis (PCA) is used to show the strong correlation characteristics among the product quality attributes including aggregates, fragments, charge variants, and glycans. Then, partial least square regression (PLS1 and PLS2) is applied to predict the product quality variables based on process information (one by one or simultaneously). The comparison of those two modeling techniques shows that a single (PLS2) model is capable of revealing the interrelationship of the process characteristics to the large set product quality variables. In order to show the dynamic evolution of the process predictability separate models are defined at different time points showing that several product quality attributes are mainly driven by the media composition and, hence, can be decently predicted from early on in the process, while others are strongly affected by process parameter changes during the process. Finally, by coupling the PLS2 models with a genetic algorithm first the model performance can be further improved and, most importantly, the interpretation of the large-dimensioned process-product-interrelationship can be significantly simplified. The generally applicable toolset presented in this case study provides a solid basis for decision making and process optimization throughout process development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1368-1380, 2017. © 2017 American Institute of Chemical Engineers.

  13. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  14. Responses of leaf processing to impacts in streams in Atlantic rain forest, Rio de Janeiro, Brazil--a test of the biodiversity-ecosystem functioning relationship?

    Science.gov (United States)

    Moulton, T P; Magalhães, S A P

    2003-02-01

    The relationship between biodiversity and ecosystem functioning has been intensely debated and researched in recent times. It is generally agreed that there is redundancy of species in ecosystems such that loss of species does not necessarily result in change in the functioning of the ecosystem in which they occur. However the state of our knowledge does not allow prediction of sensitivity or specificity of this relationship for any particular ecosystem. A widely-held opinion is that ecosystem functioning is relatively stable to environmental impact, whereas biodiversity is more sensitive. We tested this in streams of the Atlantic forest using leaf decomposition as an aspect of ecosystem functioning and measuring the diversity of the associated fauna. In lightly impacted streams of the urban park Parque Estadual da Pedra Branca, RJ, leaf processing rate of a hard-leaf species, Myrcia rostrata (Myrtaceae) was more than 50% slower than in "intact" streams at the biological reserve of Ilha Grande, RJ. Taxon diversity of fauna of the leaves was not significantly lower in the impacted than the intact streams. We construe this as preliminary evidence contrary to the notion that ecosystem functioning is less sensitive than biodiversity to impacts in this system.

  15. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    Science.gov (United States)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  16. Monitoring Trends in Productivity to Identify Vulnerable Ecosystems: Measuring Ecosystem Condition and Drought Resistance Across California Ecosystems

    Science.gov (United States)

    Malone, S. L.; Tulbure, M. G.; Pérez-Luque, A. J.; Ryan, M. G.; Joyce, L. A.

    2016-12-01

    Terrestrial ecosystems are vital for their role in fixing and storing carbon and recycling water and nutrients. Ecosystems buffer the atmosphere from large changes in carbon dioxide through processes (i.e. photosynthesis, respiration, evapotranspiration, and nutrient cycling) that are both driven by and an important feedback to climate and disturbance regimes. Although we understand the carbon value provided by ecosystems, the persistence of carbon sinks is a concern because the processes promoting carbon storage change overtime, shift with climate, and are heavily influenced by disturbance regimes. Combined with the diversity of natural ecosystems, the recent occurrence of drought make California an important case study to examine variations in productivity and drought resistance. We used a time series (2002-2014) of climate and productivity indices to identify drivers of ecosystem condition and drought resistance. Our results show distinct patterns in water use efficiency (WUE) in resilient and vulnerable ecosystems. Under normal conditions WUE varied across California (0.08 to 3.85 g C mm-1 H2O) and WUE generally increased under severe drought conditions in 2014 (pdrought conditions. Strong correlations between changes in WUE, precipitation and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e. grasslands) also had greater C uptake rates and higher rates of carbon uptake efficiency (CUE = NPP/ LAI) under severe drought conditions. Drought severity, precipitation and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.

  17. Short- and longterm impacts of Acacia longifolia invasion on belowground processes of a Mediterranean coastal dune ecosystem

    DEFF Research Database (Denmark)

    Marchante, Elizabete; Kjøller, Annelise; Struwe, Sten

    2008-01-01

    ) by A. longifolia by analyzing a range of chemical and microbial parameters. Both invaded areas accumulated higher litter densities with greater N contents and lower C/N ratios than the native areas, which corresponded to lower C/N ratio and to higher potential rates of nitrification in the invaded...... soils. Long-term occupation by A. longifolia has significantly altered the soil properties with increased levels of organic C, total N and exchangeable cations resulting in higher microbial biomass, basal respiration, and p-glucosaminidase activity. However, basal respiration and microbial biomass were...... significantly higher within recent invasion sites when calculated relative to soil organic C. The results from this study show that invasions by A. longifolia have altered the original native ecosystem processes and that the impacts are more pronounced within long-term invaded sites. A positive feedback...

  18. Understanding Craftsman’s Creativity in a Framework of Person, Process, Product and Press (4Ps)

    DEFF Research Database (Denmark)

    Zhang, Hui; Zhou, Chunfang; Tanggaard, Lene

    2016-01-01

    , Process, Product, and Press (4Ps) This research question drives to develop a theoretical study bridging two areas of creativity and craftsman’s work. This will further indicate craftsman’s working practice is full of complexity that stimulates creative behavior and that also requires a systematic view......The recent work has emphasized craftsmen are key actors in developing creative industries. However, little attention has been paid to the particular study on creativity of craftsmen. This paper aims to explore how can we understand craftsman’s creativity in a theoretical framework of Person...... to understand craftsman’s creativity as involving interaction between 4Ps....

  19. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems.

    Science.gov (United States)

    Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John

    2015-08-15

    Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. UNDERSTANDING THAI CULTURE AND ITS IMPACT ON REQUIREMENTS ENGINEERING PROCESS MANAGEMENT DURING INFORMATION SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Theerasak Thanasankit

    2002-01-01

    Full Text Available This paper explores the impact of Thai culture on managing the decision making process in requirements engineering and contribution a better understand of its influence on the management of requirements engineering process. The paper illustrates the interaction of technology and culture and shows that rather than technology changing culture, culture can change the way technology is used. Thai culture is naturally inherent in Thai daily life and Thais bring that into their work practices. The concepts of power and uncertainty in Thai culture contribute toward hierarchical forms of communication and decision making process in Thailand, especially during requirements engineering, where information systems requirements need to be established for further development. The research shows that the decision making process in Thailand tends to take a much longer time, as every stage during requirements engineering needs to be reported to management for final decisions. The tall structure of Thai organisations also contributes to a bureaucratic, elongated decision-making process during information systems development. Understanding the influence of Thai culture on requirements engineering and information systems development will assist multinational information systems consulting organisations to select, adapt, better manage, or change requirements engineering process and information systems developments methodologies to work best with Thai organisations.

  1. Integrating fuel treatment into ecosystem management: A proposed project planning process

    Science.gov (United States)

    Keith D. Stockmann; Kevin D. Hyde; J. Greg Jones; Dan R. Loeffler; Robin P. Silverstein

    2010-01-01

    Concern over increased wildland fire threats on public lands throughout the western United States makes fuel reduction activities the primary driver of many management projects. This single-issue focus recalls a management planning process practiced frequently in recent decades - a least-harm approach where the primary objective is first addressed and then plans are...

  2. Using the Analytic Hierarchy Process for Decision-Making in Ecosystem Management

    Science.gov (United States)

    Daniel L. Schmoldt; David L. Peterson

    1997-01-01

    Land management activities on public lands combine multiple objectives in order to create a plan of action over a finite time horizon. Because management activities are constrained by time and money, it is critical to make the best use of available agency resources. The Analytic Hierarchy Process (AHP) offers a structure for multi-objective decisionmaking so that...

  3. Societal rationality; towards an understanding of decision making processes in society

    International Nuclear Information System (INIS)

    Wahlstroem, Bjoern

    2001-01-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  4. Societal rationality; towards an understanding of decision making processes in society

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Bjoern [Technical Research Centre of Finland, Espoo (Finland)

    2001-07-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  5. Uncertainty towards the use of the angle-of-attack corrections for eddy-covariance data processing in French ecosystems

    Science.gov (United States)

    Moreaux, Virginie; Delpierre, Nicolas; Dufrêne, Eric; Joffre, Richard; Klumpp, Katja; Loustau, Denis; Berveiller, Daniel; Darsonville, Olivier; Limousin, Jean-Marc; Ourcival, Jean-Marc; Piquemal, Karim; Longdoz, Bernard

    2017-04-01

    The production/absorption of the long lived greenhouse gas (GHG) and the albedo and evapotranspiration fluctuations in forests, grasslands and croplands are responsible of atmospheric radiative forcing but the quantification of these forcings remains uncertain. The CESEC program aims to quantify the impact of climatic drifts or anthropogenic and meteorological events on the ecosystem-atmosphere exchanges of French sites by analysing the long series (at least 9 years between 2003 and 2015) of eddy covariance (EC) fluxes. One part of the CESEC project is to repost-processed homogeneously the raw EC data across the sites and the years to try to reduce the influence of the methodology and experimental design on the temporal and spatial variability. These new processed data are put together with the corresponding climatic and edaphic data and with the carbon stock inventory. A number of French experimental sites have initially used a sonic anemometer from the GILL company, such as the GILL-R3 or the GILL R3-50, coupled with a GHG analyzer to perform EC measurements and deduce GHG exchanges from different ecosystems. Within the data processing procedure of eddy flux measurements, a recent type of correction has raised among the scientific community to account for the angle of attack error due to a distorsion of the flow when the wind approaches these GILL frame-type, resulting in an imperfect sine and cosine response. Nakai and co-authors proposed a correction to compensate for this error, which is expected to improve energy balance closure. No consensus has been clearly made on the application of this correction, but it has mostly been recommanded for recent data processing. The universal flux calculation EddyPro software that we are using in our project, incorporate and recommand this correction. Based on the analysis from two forests ecosystems (FR-Fon and FR-Pue) and a grassland (FR-Lq2) in France, we performed a re-analysis of EC measurements using the corrections

  6. Benchmarking Terrestrial Ecosystem Models in the South Central US

    Science.gov (United States)

    Kc, M.; Winton, K.; Langston, M. A.; Luo, Y.

    2016-12-01

    Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study was conducted to find the state of the science of ecosystem models in the South-Central region of US. The ecosystem models were benchmarked using ILAMB diagnostic package developed as a result of International Land Model Benchmarking (ILAMB) project on four main categories; viz, Ecosystem and Carbon Cycle, Hydrology Cycle, Radiation and Energy Cycle and Climate forcings. A cumulative assessment was generated with weighted seven different skill assessment metrics for the ecosystem models. This synthesis on the current state of the science of ecosystem modeling in the South-Central region of US will be highly useful towards coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.

  7. Using a Design Science Perspective to Understand a Complex Design-Based Research Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2012-01-01

    The purpose of the paper is to demonstrate how a design science perspective can be used to describe and understand a set of related design-based research processes. We describe and analyze a case study in a manner that is inspired by design science. The case study involves the design of modeling......-based research processes. And we argue that a design science perspective may be useful for both researchers and practitioners....... tools and the redesign of an information service in a library. We use a set of guidelines from a design science perspective to organize the description and analysis of the case study. By doing this we demonstrate the usefulness of design science as an analytical tool for understanding related design...

  8. Embedded formative assessment and classroom process quality. How do they interact in promoting students' science understanding

    OpenAIRE

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, Anna Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment-a well-known teaching practice-and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of floating and sinking. We used data from a cluster-randomized controlled trial and compared curriculum-embedded formative assessment (17 classes) with a cont...

  9. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    OpenAIRE

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2011-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence pr...

  10. Neural Information Processing in Cognition: We Start to Understand the Orchestra, but Where is the Conductor?

    Science.gov (United States)

    Palm, Günther

    2016-01-01

    Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article. PMID:26858632

  11. Powder stickiness in milk drying: uncertainty and sensitivity analysis for process understanding

    DEFF Research Database (Denmark)

    Ferrari, Adrián; Gutiérrez, Soledad; Sin, Gürkan

    2017-01-01

    A powder stickiness model based in the glass transition temperature (Gordon – Taylor equations) was built for a production scale milk drying process (including a spray chamber, and internal/external fluid beds). To help process understanding, the model was subjected to sensitivity analysis (SA......) of inputs/parameters, and uncertainty analysis (UA) to estimate confidence intervals on model predictions. For SA, a differential local and also a global approach were used. A variance decomposition method (e.g. Sobol first order sensitivity index) was implemented for global SA, and Monte Carlo technique...

  12. Referral to a periodontist by a general dentist: An understanding of the referral process

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Bhati

    2016-01-01

    Full Text Available Periodontal disease is one of the most common health care problems. The type of treatment of periodontal disease depends on the diagnosis. The treatment plan should also focus on managing the risk factors and modifying factors which affect the periodontal disease and treatment. The evidence-based advancements have given a success predictability level to the periodontal diagnosis and treatment plan. The level of specialty education is limited in the curriculum for undergraduates. Patients should receive the same quality of treatment whether administered by a specialist or general practitioner. Therefore, general dentists need to be well informed about how to make timely and appropriate referrals to periodontists when necessary. An online literature search was done through PubMed, PMC, and open access journals to understand the referral process. Articles pertaining to referral process were selected. Based on the search, it was found that knowledge of elements of the referral process, conditions (general and periodontal requiring referral, and selection of periodontist are important aspects of the referral process. This short communication will help the general dentist to understand the referral process that will enable them to provide the timely periodontal referral and treatment to the patients.

  13. Pan-Eurasian experiment (PEEX) establishing a process towards high level Pan-Eurasian atmosphere-ecosystem observation networks

    Science.gov (United States)

    Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or

  14. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  15. N cycling in soils and emission of nitrogen gases: how well do we understand the processes and their controls (Vladimir Ivanovich Vernadsky Medal Lecture)

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf

    2014-05-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O) and an important source for nitric oxide (NO), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant-microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant-microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil-atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of BO and N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use.

  16. Large-scale processes underpinning fish species composition patterns in estuarine ecosystems worldwide

    Directory of Open Access Journals (Sweden)

    Pedro Cardoso

    2015-10-01

    Full Text Available The present study aimed to understand how assembly mechanisms drive the global and regional patterns of fish assemblage composition in estuaries. The approach used applied a bootstrapped hierarchical cluster analysis based on pairwise beta-dissimilarities (Beta sim of fish assemblages between 393 estuaries to define biogeographical units. A set of large and small-scale filters were then used to test their influence on beta-dissimilarity patterns, through distance-based linear models (DISTLM. The global pattern obtained (i.e. seven major biogeographical units was explained by large-scale filters related with geographic barriers (e.g. Isthmus of Panama and temperature/current filters, in addition to their evolutionary history. Meanwhile, species composition within each biogeographical unit was also determined by large-scale filters, with only a minor influence of a few small-scale filters (i.e. tide range, estuary type and estuary area. Overall, the global pattern of fish composition in estuaries was mainly driven by dispersal limitation assembly mechanism (i.e. evolutionary history and geographical barriers/filters. In contrast with known species richness patterns, results support a weak influence of environmental filtering on species composition at regional scales, which was also driven by dispersal limitation. Results suggest a hierarchical influence of environmental filtering mechanism that acts at increasingly finer scales.

  17. Surficial Expressions of Deeper Processes- Ridge 2000 Spurs Understanding of Mantle-Hydrothermal Connections and the Role of Crustal Processes at Oceanic Spreading Centers

    Science.gov (United States)

    Blackman, D. K.

    2011-12-01

    A decade ago the Ridge 2000 (R2K) program began implementing the Integrated Studies Site (ISS) strategy as a means to advance understanding of the linked magmatic/tectonic/hydrothermal systems that dictate the structure and ecosystems observed in young crust along the spreading axis. Through comparison amongst ISSs and other well-studied sites, where controlling factors such as spreading rate or tectonic/thermal setting differ, a number of new insights have been gained. I will review progress on 3 aspects, emphasizing R2K contributions but also noting a few other recent results: the pattern of magma supply, along and across axis; ridge segmentation and crust/mantle interplay; threshold behavior and limiting processes that are manifested in crustal properties. The results are derived from petrological/geochemical, seismic (imaging, seismicity, compliance), electromagnetic, modeling, and mapping investigations, so I will touch on each of these types of constraint. The breadth of the melt supply zone is an example where R2K results document that influx to at least the lower crust can extend out several km beyond the axial graben. Such knowledge addresses a fundamental problem in Earth Sciences- how magmatism and faulting interact and the potential for hydrothermal circulation to both influence, and be influenced by, their distributions. In addition to briefly summarizing work already completed, I will highlight efforts on the mantle portions of the Juan de Fuca and Lau ISS that are currently underway, using data/modeling from the final phase of R2K, to tease out further connections between mantle processes and crustal structure, within which the now-known-to-be-ubiquitous hydrothermal systems develop.

  18. Forest-land conversion, ecosystem services, and economic issues for policy: a review

    Science.gov (United States)

    Robert A. Smail; David J. Lewis

    2009-01-01

    The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....

  19. The cocoa bean fermentation process: from ecosystem analysis to starter culture development.

    Science.gov (United States)

    De Vuyst, L; Weckx, S

    2016-07-01

    Cocoa bean fermentation is still a spontaneous curing process to facilitate drying of nongerminating cocoa beans by pulp removal as well as to stimulate colour and flavour development of fermented dry cocoa beans. As it is carried out on farm, cocoa bean fermentation is subjected to various agricultural and operational practices and hence fermented dry cocoa beans of variable quality are obtained. Spontaneous cocoa bean fermentations carried out with care for approximate four days are characterized by a succession of particular microbial activities of three groups of micro-organisms, namely yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB), which results in well-fermented fully brown cocoa beans. This has been shown through a plethora of studies, often using a multiphasic experimental approach. Selected strains of several of the prevailing microbial species have been tested in appropriate cocoa pulp simulation media to unravel their functional roles and interactions as well as in small plastic vessels containing fresh cocoa pulp-bean mass to evaluate their capacity to dominate the cocoa bean fermentation process. Various starter cultures have been proposed for successful fermentation, encompassing both cocoa-derived and cocoa nonspecific strains of (hybrid) yeasts, LAB and AAB, some of which have been implemented on farms successfully. © 2016 The Society for Applied Microbiology.

  20. Functional traits in agriculture: agrobiodiversity and ecosystem services.

    Science.gov (United States)

    Wood, Stephen A; Karp, Daniel S; DeClerck, Fabrice; Kremen, Claire; Naeem, Shahid; Palm, Cheryl A

    2015-09-01

    Functional trait research has led to greater understanding of the impacts of biodiversity in ecosystems. Yet, functional trait approaches have not been widely applied to agroecosystems and understanding of the importance of agrobiodiversity remains limited to a few ecosystem processes and services. To improve this understanding, we argue here for a functional trait approach to agroecology that adopts recent advances in trait research for multitrophic and spatially heterogeneous ecosystems. We suggest that trait values should be measured across environmental conditions and agricultural management regimes to predict how ecosystem services vary with farm practices and environment. This knowledge should be used to develop management strategies that can be easily implemented by farmers to manage agriculture to provide multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing, and effects on the river ecosystem

    Science.gov (United States)

    Houser, J.N.; Richardson, W.B.

    2010-01-01

    Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in

  2. Aeolian process effects on vegetation communities in an arid grassland ecosystem.

    Science.gov (United States)

    Alvarez, Lorelei J; Epstein, Howard E; Li, Junran; Okin, Gregory S

    2012-04-01

    Many arid grassland communities are changing from grass dominance to shrub dominance, but the mechanisms involved in this conversion process are not completely understood. Aeolian processes likely contribute to this conversion from grassland to shrubland. The purpose of this research is to provide information regarding how vegetation changes occur in an arid grassland as a result of aeolian sediment transport. The experimental design included three treatment blocks, each with a 25 × 50 m area where all grasses, semi-shrubs, and perennial forbs were hand removed, a 25 × 50 m control area with no manipulation of vegetation cover, and two 10 × 25 m plots immediately downwind of the grass-removal and control areas in the prevailing wind direction, 19° north of east, for measuring vegetation cover. Aeolian sediment flux, soil nutrients, and soil seed bank were monitored on each treatment area and downwind plot. Grass and shrub cover were measured on each grass-removal, control, and downwind plot along continuous line transects as well as on 5 × 10 m subplots within each downwind area over four years following grass removal. On grass-removal areas, sediment flux increased significantly, soil nutrients and seed bank were depleted, and Prosopis glandulosa shrub cover increased compared to controls. Additionally, differential changes for grass and shrub cover were observed for plots downwind of vegetation-removal and control areas. Grass cover on plots downwind of vegetation-removal areas decreased over time (2004-2007) despite above average rainfall throughout the period of observation, while grass cover increased downwind of control areas; P. glandulosa cover increased on plots downwind of vegetation-removal areas, while decreasing on plots downwind of control areas. The relationships between vegetation changes and aeolian sediment flux were significant and were best described by a logarithmic function, with decreases in grass cover and increases in shrub cover

  3. Understanding Nutrient Processing Under Similar Hydrologic Conditions Along a River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Mortensen, J.; Van Horn, D. J.; Gonzalez-Pinzon, R.

    2015-12-01

    Eutrophication is one of the main causes of water impairment across the US. The fate of nutrients in streams is typically described by the dynamic coupling of physical processes and biochemical processes. However, isolating each of these processes and determining its contribution to the whole system is challenging due to the complexity of the physical, chemical and biological domains. We conducted column experiments seeking to understand nutrient processing in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (eight stream orders), in New Mexico (USA). For each stream order, we used a set of 6 columns packed with 3 different sediments, i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (> 2mm) and native sediments from each site. We incubated the sediments for three months and performed tracer experiments in the laboratory under identical flow conditions, seeking to normalize the physical processes along the river continuum. We added a short-term pulse injection of NO3, resazurin and NaCl to each column and determined metabolism and NO3 processing using the Tracer Additions for Spiraling Curve Characterization method (TASCC). Our methods allowed us to study how changes in bacterial communities and sediment composition along the river continuum define nutrient processing.

  4. Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory.

    Science.gov (United States)

    Devine, Sean D

    2016-02-01

    Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by ΔH bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Processes of enhanced self-understanding during a counselling programme for parents of children with disabilities.

    Science.gov (United States)

    Haugstvedt, Karen Therese Sulheim; Graff-Iversen, Sidsel; Bukholm, Ida Rashida Khan; Haugli, Liv; Hallberg, Ulrika

    2013-03-01

    The stress and burden on parents of children with disabilities are well documented, and the parents' way of handling the situation is crucial to the health and well-being of all family members, including the child with special needs. We conducted a group-based counselling programme for parents, based mainly on Gestalt education and personal construct theories, aiming at increasing the parents' ability to handle the situation. To explore the parents' experiences from processes of change after the counselling programme. METHOD DESIGN: This qualitative study is based on modified grounded theory. The study conducted in Norway examines the experiences of 67 parents (of whom 29 fathers) of children with disabilities. Information was collected through focus group discussions after finishing their sessions of the counselling programme. From the parents' experiences, the following categories were developed: feeling motivated to communicate, describing oneself in new words, being inspired to experience one's own emotions, being more present and in charge and making a difference by taking new steps. The core category in our analysis turned out to be Improved handling of the situation by enhanced self-understanding. The parents seemed to redevelop their self-understanding through new experiences of themselves. They emphasized the importance of a secure setting of peers with similar experiences and skilled counsellors to feel free to explore one's own emotions with connecting thoughts and bodily reactions. Discussion of existential issues as one's own values also contributed to enhanced self-understanding, which strengthened the parents to find new possibilities and priorities in handling the situation. The parents described subjective processes of awareness and self-reflection as important for being able to start a process towards enhanced self-understanding, which helped to detect one's own values and new ways of acting. These experiences may be relevant for the parents and

  6. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  7. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

    2009-07-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  8. Process oriented thinking as a key for integration of ecohydrology, biotechnology and engineering for sustainable water resources management and ecosystems

    Science.gov (United States)

    Zalewski, M.

    2015-04-01

    The recent high rate of environmental degradation due to unsustainable use of water and other natural resources and mismanagement, is, in many cases, the result of a dominant sectoral approach, limited communication between different users and agencies, and lack of knowledge transfer between different disciplines, and especially lack of dialogue between environmental scientists and engineers. There is no doubt that the genuine improvement of human well-being has to be based on understanding the complexity of interactions between abiotic, biotic and socio-economic systems. The major drivers of biogeosphere evolution and function have been the cycles of water and nutrients in a complex array of differing climates and catchment geomorphologies. In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science. Thus the principles of ecohydrology should be the basis for further integration of ecology, hydrology, engineering, biotechnology and other environmental sciences. Examples from UNESCO IHP VII show how the integration of these will not only increase the efficiency of measures to harmonize ecosystem potentials with societal needs, but also significantly reduce the costs of sustainable environmental management.

  9. Fishing for ecosystem services

    Science.gov (United States)

    Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.

    2016-01-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  10. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  11. Do You Have 5 Minutes To Spare? –The Challenges Of Stakeholder Processes In Ecosystem Services Studies

    Directory of Open Access Journals (Sweden)

    Koschke, L.

    2014-10-01

    Full Text Available Operationalization of the ecosystem services (ES concept for improved natural resource management and decision support cannot, thus far, be rated as satisfactory. Participation of stakeholders is still a major methodical and conceptual challenge for implementing ES. Therefore, we conducted an online survey and a literature analysis to identify benefits and challenges of the application of ES in participatory processes. The results show that the purpose of stakeholder engagement is very diverse as a result of varying objectives, spatial scales and institutional levels of analysis. The complexity, terminology and (lacking coherent classification of ES are pivotal aspects that should be accounted for in the design of studies to improve stakeholder participation. Although limitations of time and financial resources are bigger challenges than ES related ones, tailoring communication strategies and information for different stakeholder groups are of major importance for the success of ES studies. Results support the view that the potential benefits of applying ES, e.g., consensus finding, and development of integrated solutions, cannot be realized consistently across the different spatial scales and decision-making levels. Focusing on stakeholder processes represents a means to increase the relevance, reliability and impact of study results and to move participation in ES research from theory to reality.

  12. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    Science.gov (United States)

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-02-27

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Transporting dynamics of radioactive cesium in a forest ecosystem and its discharge processes

    Energy Technology Data Exchange (ETDEWEB)

    Iseda, Kohei; Ohte, Nobuhito; Tanoi, Keitaro; Endo, Izuki; Oda, Tomoki; Kato, Hiroyu [Graduate School of Agricultural and Life Sciences, University of Tokyo (Japan)

    2014-07-01

    A lot of radioactive substance including {sup 137}Cs, {sup 134}Cs fell out to Tohoku and Kanto region in particular Fukushima prefecture after the accident of Fukushima-daiichi nuclear power plant. Generally, cesium tends to attach to clay particle and organic matter. These clay particle and organic matter can potentially flow out from the forest through the river to the downstream not only as particulate matter but also dissolved matter. It is likely that behavior of cesium is similar to sediment locomotion. The objective of this study is to understand transporting dynamics of radioactive cesium inside and outside of the forest. We started investigations on transporting dynamics of cesium in the forest upper stream of Kami-Oguni river in Date city Fukushima prefecture located in about 50 km from the nuclear power plant since July 2012. We conducted river water sampling at 9 points along the river from the uppermost stream to the middle reaches during low flow condition once a month. We also sampled river water during storm event for 5 times in order to capture the change of {sup 137}Cs concentration in a flood stage. Samples were filtered and separated into particulate and dissolved matters using glass micro-fiber filters (GF/F). Samples were analyzed their {sup 137}Cs concentration by Germanium semiconductor detector at University of Tokyo. During low flow condition, {sup 137}Cs was detected only a very small amount both in particulate and dissolved matters. In contrast, during high flow condition, {sup 137}Cs was detected about 10-100 times higher than that of during low flow condition in particulate matter. We estimated discharge flux of {sup 137}Cs from the forest using the relations between water discharge and {sup 137}Cs concentration. It was 0.977 Bq/(m2 day ) (2012/8/31-2013/4/19). In the forest, we set 2 deciduous tree plots (Quercus serrata, Zelkova serrata and so on) and 1 evergreen confer plot (Cyptomeria japonica). Atmospheric depositions of {sup 137

  14. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    Science.gov (United States)

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  15. Cognitive analysis as a way to understand students' problem-solving process in BODMAS rule

    Science.gov (United States)

    Ung, Ting Su; Kiong, Paul Lau Ngee; Manaf, Badron bin; Hamdan, Anniza Binti; Khium, Chen Chee

    2017-04-01

    Students tend to make lots of careless mistake during the process of mathematics solving. To facilitate effective learning, educators have to understand which cognitive processes are used by students and how these processes help them to solve problems. This paper is only aimed to determine the common errors in mathematics by pre-diploma students that took Intensive Mathematics I (MAT037) in UiTM Sarawak. Then, concentrate on the errors did by the students on the topic of BODMAS rule and the mental processes corresponding to these errors that been developed by students. One class of pre-diploma students taking MAT037 taught by the researchers was selected because they performed poorly in SPM mathematics. It is inevitable that they finished secondary education with many misconceptions in mathematics. The solution scripts for all the tutorials of the participants were collected. This study was predominately qualitative and the solution scripts were content analyzed to identify the common errors committed by the participants, and to generate possible mental processes to these errors. Selected students were interviewed by the researchers during the progress. BODMAS rule could be further divided into Numerical Simplification and Powers Simplification. Furthermore, the erroneous processes could be attributed to categories of Basic Arithmetic Rules, Negative Numbers and Powers.

  16. Understanding the implementation of complex interventions in health care: the normalization process model

    Directory of Open Access Journals (Sweden)

    Rogers Anne

    2007-09-01

    Full Text Available Abstract Background The Normalization Process Model is a theoretical model that assists in explaining the processes by which complex interventions become routinely embedded in health care practice. It offers a framework for process evaluation and also for comparative studies of complex interventions. It focuses on the factors that promote or inhibit the routine embedding of complex interventions in health care practice. Methods A formal theory structure is used to define the model, and its internal causal relations and mechanisms. The model is broken down to show that it is consistent and adequate in generating accurate description, systematic explanation, and the production of rational knowledge claims about the workability and integration of complex interventions. Results The model explains the normalization of complex interventions by reference to four factors demonstrated to promote or inhibit the operationalization and embedding of complex interventions (interactional workability, relational integration, skill-set workability, and contextual integration. Conclusion The model is consistent and adequate. Repeated calls for theoretically sound process evaluations in randomized controlled trials of complex interventions, and policy-makers who call for a proper understanding of implementation processes, emphasize the value of conceptual tools like the Normalization Process Model.

  17. Functional traits can improve our understanding of niche- and dispersal-based processes.

    Science.gov (United States)

    Jiang, Feng; Xun, Yanhan; Cai, Huiying; Jin, Guangze

    2018-03-01

    Ecologists often determine the relative importance of niche- and dispersal-based processes via variation partitioning based on species composition. Functional traits and their proxies of phylogeny are expected to increase the detection of niche-based processes and reduce the unexplained variation relative to species identity. We collected eight adult tree traits and phylogenetic data of 41 species and employed a phylogenetic fuzzy weighting method to address this issue in a 9-ha temperate forest dynamics plot. We used redundancy analysis to relate species, phylogenetic and functional compositions to environmental (soil resources and topography) and spatial variables. We also performed multi-scaled analyses on spatial variables by adding environment as the covariates to determine if functional traits increase the detection of niche-based processes at broad scales. The functional traits and intraspecific variation of the wood density among ontogenetic stages could dramatically increase the detection of niche-based processes and reduce the unexplained variation relative to species identity. Phylogenetic and functional compositions were mainly driven by total soil P and elevation, while species composition was weakly affected by multiple environmental variables. After controlling for the environment, a larger amount of the compositional variations in seed mass and maximum height were explained by finer-scaled spatial variables, indicating that dispersal processes may be important at fine spatial scales. Our results suggested that considering functional traits and their intraspecific variations could improve our understanding of ecological processes and increase our ability to predict the responses of plants to environmental change.

  18. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    Directory of Open Access Journals (Sweden)

    Luca Malatesta

    Full Text Available Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature, was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for

  19. Evidence of Facilitation Cascade Processes as Drivers of Successional Patterns of Ecosystem Engineers at the Upper Altitudinal Limit of the Dry Puna.

    Science.gov (United States)

    Malatesta, Luca; Tardella, Federico Maria; Piermarteri, Karina; Catorci, Andrea

    2016-01-01

    Facilitation processes constitute basic elements of vegetation dynamics in harsh systems. Recent studies in tropical alpine environments demonstrated how pioneer plant species defined as "ecosystem engineers" are capable of enhancing landscape-level richness by adding new species to the community through the modification of microhabitats, and also provided hints about the alternation of different ecosystem engineers over time. Nevertheless, most of the existing works analysed different ecosystem engineers separately, without considering the interaction of different ecosystem engineers. Focusing on the altitudinal limit of Peruvian Dry Puna vegetation, we hypothesized that positive interactions structure plant communities by facilitation cascades involving different ecosystem engineers, determining the evolution of the microhabitat patches in terms of abiotic resources and beneficiary species hosted. To analyze successional mechanisms, we used a "space-for-time" substitution to account for changes over time, and analyzed data on soil texture, composition, and temperature, facilitated species and their interaction with nurse species, and surface area of engineered patches by means of chemical analyses, indicator species analysis, and rarefaction curves. A successional process, resulting from the dynamic interaction of different ecosystem engineers, which determined a progressive amelioration of soil conditions (e.g. nitrogen and organic matter content, and temperature), was the main driver of species assemblage at the community scale, enhancing species richness. Cushion plants act as pioneers, by starting the successional processes that continue with shrubs and tussocks. Tussock grasses have sometimes been found to be capable of creating microhabitat patches independently. The dynamics of species assemblage seem to follow the nested assemblage mechanism, in which the first foundation species to colonize a habitat provides a novel substrate for colonization by other

  20. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

    Science.gov (United States)

    Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E

    2014-01-01

    capability to represent some of the controls of these hydrological variables, but also that improvement in parameterization and input datasets are needed for more realistic simulations. We found large sensitivity in model-diagnosed wetland and inundated area to the depth of conductive soil and the parameterization of macroporosity. With improved parameterization and inclusion of peatland biogeochemical processes, the model could provide a new approach to investigating the vulnerability of Boreal peatland carbon to climate change in ESMs.

  1. The problem of “culture” in the process of intercultural understanding

    Directory of Open Access Journals (Sweden)

    Andreana Marchi

    2016-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2016v69n1p251 The problem of “culture” in the process of intercultural understanding is one of the most discussed issues among scholars today. Anthropologists, linguists, literary critics, and philosophers, just to name a few, study this issue in a problem-based and research format. Culture and cultural understanding are hereby presented by demonstrating studies and observations of two cultural anthropologists, R. H. Robbins and Clifford Geertz, a literary critic, Lionel Trilling, and C. S. Lewis, a famous writer of both fiction and non-fiction. My intention here is to answer the question: how to describe and analyze a culture that is so different from the perspective of our own? In this sense, language and discourse are also analyzed in this paper as part of culture and can indicate some of our own moral perspectives and judgments on others’ cultures.

  2. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  3. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    Science.gov (United States)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    landscapes and climatic variability. The monitoring is carried out in one of the stations of the ClimaDat network, which consists of eight GHG monitoring stations in highly preserved ecosystems which are very sensitive to climate change in Spain. This constant monitoring will allow relating changes in terrestrial ecosystems, hydrological processes and atmospheric transport of GHG. The goal of the presentation is to show the results obtained since September 2013 through continuous monitoring, focusing on the seasonal changes in precipitation, temperature, and CO2 and CH4 changes in atmospheric concentrations.

  4. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation.

    Science.gov (United States)

    Kwak, Doyeon; Kim, Wonjoon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks.

  5. Ecosystem services provided by waterbirds.

    Science.gov (United States)

    Green, Andy J; Elmberg, Johan

    2014-02-01

    Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  6. Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model

    Science.gov (United States)

    Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.

    2013-12-01

    Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to

  7. Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors.

    Science.gov (United States)

    Maltby, Lorraine

    2013-04-01

    Ecosystem services-the benefits people obtain from ecosystem structures and processes-are essential for human survival and well-being. Chemicals are also an essential component of modern life; however, they may cause adverse ecological effects and reduce ecosystem service provision. Environmental policy makers are increasingly adopting the ecosystem services concept, but applying this approach to the protection, restoration, and management of ecosystems requires the development of new understanding, tools, and frameworks. There is an urgent need to understand and predict the effect of single and multiple stressors on ecosystem service delivery across different spatial scales (local to global), to develop indicators that can be used to quantify and map services and identify synergies and trade-offs between them, to establish protection goals and restoration targets defined in terms of the types and levels of service delivery required, and to develop approaches for the assessment and management of chemical risk to ecosystem services that consider the whole life cycle of products and processes. These are major research challenges for the environmental science community in general and for ecotoxicologists and risk assessors in particular. Copyright © 2013 SETAC.

  8. Atmospheric composition change: Ecosystems-Atmosphere interactions

    NARCIS (Netherlands)

    Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; Granier, C.; Neftel, A.; Isaksen, I.S.A.; Laj, P.; Maione, M.; Monks, P.S.; Burkhardt, J.; Daemmgen, U.; Neirynck, J.; Personne, E.; Wichink Kruit, R.J.; Butterbach-Bahl, K.; Flechard, C.; Tuovinen, J.P.; Coyle, M.; Gerosa, G.; Loubet, B.; Altimir, N.; Gruenhage, L.; Ammann, C.; Cieslik, S.; Paoletti, E.; Mikkelsen, T.N.; Ro-Poulsen, H.; Cellier, P.; Cape, J.N.; Horvath, L.; Loreto, F.; Niinemets, U.; Palmer, P.I.; Rinne, J.; Misztal, P.; Nemitz, E.; Nilsson, D.; Pryor, S.; Gallagher, M.W.; Vesala, T.; Skiba, U.; Brueggemann, N.; Zechmeister-Boltenstern, S.; Williams, J.; O'Dowd, C.; Facchini, M.C.; Leeuw, de G.; Flossman, A.; Chaumerliac, N.; Erisman, J.W.

    2009-01-01

    Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles

  9. The Global Ecosystem Dynamics Investigation

    Science.gov (United States)

    Dubayah, R.; Goetz, S. J.; Blair, J. B.; Fatoyinbo, T. E.; Hansen, M.; Healey, S. P.; Hofton, M. A.; Hurtt, G. C.; Kellner, J.; Luthcke, S. B.; Swatantran, A.

    2014-12-01

    Spaceborne lidar has been identified as a key technology by the international ecosystem science community because it enables accurate estimates of canopy structure and biomass and forms the basis for fusion approaches that extend the capabilities of existing and planned radar missions, such as the NASA-ISRO SAR and the ESA BIOMASS mission. The Global Ecosystems Dynamics Investigation Lidar (GEDI Lidar) was recently selected by NASA's Earth Ventures Instrument (EVI) program. From its vantage point on the International Space Station, GEDI Lidar provides high-resolution observations of forest vertical structure and addresses three, core science questions: What is the aboveground carbon balance of the land surface? What role will the land surface play in mitigating atmospheric CO2 in the coming decades? How does ecosystem structure affect habitat quality and biodiversity? GEDI informs these science questions by making billions of lidar waveform observations of canopy structure over its nominal one year mission length. The instrument uses three laser transmitters to produce 14 parallel tracks of 25 m footprints. These canopy measurements are then used to measure biomass and in fusion with radar and other remote sensing data to quantify changes in biomass resulting from disturbance and recovery. GEDI further marries ecosystem structure from lidar with ecosystem modeling to predict the sequestration potential of existing forests and to evaluate the impact of policy-driven afforestation and reforestation actions on sequestering additional carbon. Lastly, GEDI's observations of ecosystem structure provide a mapping of critical habitat metrics at the fine scales required for understanding the patterns, processes, and controls on biodiversity and habitat quality. The selection of GEDI Lidar, when combined with the rapid advancement of new radar missions and the availability of long-term land cover archives from passive optical sensors, ushers in an exciting new era of land

  10. Data-Model Assimilation at the FACE and AmeriFlux Sites Toward Predictive Understanding of Carbon Sequestration at Ecosystem and Regional Scales

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2013-01-09

    The project was conducted during the period from 9/1/2007 to 8/31/2011 with three major tasks: (1) development of data assimilation (DA) techniques for terrestrial carbon research; (2) applications of DA techniques to analysis of carbon cycle at Duke and other FACE sites; and (3) inverse analysis at AmeriFlux sites. During this period, we have developed a variety of techniques, including (1) ensemble Kalman filter to estimate model parameters or state variables (Gao et al. 2011), (2) Conditional inversion to estimate parameters of a carbon cycle model (Wu et al. 2009), and (3) various methods to quantify uncertainty of estimated parameters and predicted C sinks (e.g., Weng et al. 2011), and (4) information theory to evaluate information content of different model structures and data sets (Weng and Luo 2011). We applied the DA techniques to and did modeling at the Duke FACE and other global change experimental sites. We addressed the following issues: (1) interactive effects of CO2, warming and precipitation on ecosystem processes (e.g., Luo et al. 2008, Weng and Luo 2008, Zhou et al. 2008), (2) effects of warming on estimated parameters related to photosynthesis and residence times (Zhou et al. 2010); and (3) uncertainty in estimated parameters and predicted C sequestration (Gao et al. 2011, Weng and Luo 2011). In addition, we have done data assimilation to estimate carbon residence and carbon sequestration in US continent (Zhou and Luo 2008) and temperature sensitivity at the global scale (Zhou et al. 2009).

  11. Two examples of the use of Habitus to understand processes of marginalisation

    DEFF Research Database (Denmark)

    Arp Fallov, Mia; Armstrong, Jo E.

    This paper offers an evaluation of the concept of habitus from a policy oriented perspective, drawing on empirical material from two research projects; one on urban regeneration, and one on women’s working lives. Addressing different substantive areas, these projects found common strengths...... and weaknesses in applying habitus to understand processes of continuity and change in institutions and individuals’ lives. The concept provides a temporal and spatial framework that is valuable in explaining the embodiment and reproduction of inequality. Using habitus points to the importance of social...

  12. Pharmaceutical quality by design: product and process development, understanding, and control.

    Science.gov (United States)

    Yu, Lawrence X

    2008-04-01

    The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.

  13. Importance of regional species pools and functional traits in colonization processes: predicting re-colonization after large-scale destruction of ecosystems

    NARCIS (Netherlands)

    Kirmer, A.; Tischew, S.; Ozinga, W.A.; Lampe, von M.; Baasch, A.; Groenendael, van J.M.

    2008-01-01

    Large-scale destruction of ecosystems caused by surface mining provides an opportunity for the study of colonization processes starting with primary succession. Surprisingly, over several decades and without any restoration measures, most of these sites spontaneously developed into valuable biotope

  14. Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching

    Science.gov (United States)

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  15. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    Science.gov (United States)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  16. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  17. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  18. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  19. Beyond Engagement to Reflection and Understanding: Focusing on the process of science

    Science.gov (United States)

    Scotchmoor, J. G.; Mitchell, B. J.

    2011-12-01

    We must engage the public and make science more accessible to all...It is important that the scientific community, in its outreach, help people not only to see the fun of science but also to understand what science is, what a scientific theory is, how science is done, that accepted scientific models or theories are based on evidence, that hypotheses are tested by experiment, and that theories change as new evidence emerges. Shirley Ann Jackson, AAAS Presidential Address, 2005 The nature of science is noted as a critical topic for science literacy; however, by all accounts, Americans' understanding of the nature of science is inadequate, and students and teachers at all grade levels have inaccurate understandings of what science is and how it works. Such findings do not bode well for the future of scientific literacy in the United States. In large part, the current confusions about evolution, global warming, stem cell research, and other aspects of science deemed by some as "controversial" are symptomatic of a general misunderstanding of what science is and what it is not. Too few of our citizens view science as a dynamic process through which we gain a reliable understanding of the natural world. As a result, the public becomes vulnerable to misinformation and the very real benefits of science are obscured. New opportunities are emerging for members of the scientific community to share their science with segments of the public - both informally through science cafés and science festivals, and more formally through science competitions and classroom visits. Each of these helps to make science more accessible and provides a critical first step toward connecting the public to the "fun and excitement" of science. Less often these activities focus on how science works - what science is, what it is not, and what is not science - as well as the creativity, curiosity, exploration, dead-ends, and a-ha moments that inspire scientists. This talk will share a teacher

  20. Understanding non-radiative recombination processes of the optoelectronic materials from first principles

    Science.gov (United States)

    Shu, Yinan

    The annual potential of the solar energy hit on the Earth is several times larger than the total energy consumption in the world. This huge amount of energy source makes it appealing as an alternative to conventional fuels. Due to the problems, for example, global warming, fossil fuel shortage, etc. arising from utilizing the conventional fuels, a tremendous amount of efforts have been applied toward the understanding and developing cost effective optoelectrical devices in the past decades. These efforts have pushed the efficiency of optoelectrical devices, say solar cells, increases from 0% to 46% as reported until 2015. All these facts indicate the significance of the optoelectrical devices not only regarding protecting our planet but also a large potential market. Empirical experience from experiment has played a key role in optimization of optoelectrical devices, however, a deeper understanding of the detailed electron-by-electron, atom-by-atom physical processes when material upon excitation is the key to gain a new sight into the field. It is also useful in developing the next generation of solar materials. Thanks to the advances in computer hardware, new algorithms, and methodologies developed in computational chemistry and physics in the past decades, we are now able to 1). model the real size materials, e.g. nanoparticles, to locate important geometries on the potential energy surfaces(PESs); 2). investigate excited state dynamics of the cluster models to mimic the real systems; 3). screen large amount of possible candidates to be optimized toward certain properties, so to help in the experiment design. In this thesis, I will discuss the efforts we have been doing during the past several years, especially in terms of understanding the non-radiative decay process of silicon nanoparticles with oxygen defects using ab initio nonadiabatic molecular dynamics as well as the accurate, efficient multireference electronic structure theories we have developed to

  1. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  2. UNDERSTANDING AND PERCEPTION OF THE CHARACTER IMAGE BY PRIMARY SCHOOLCHILDREN IN THE PROCESS OF TEXT INTERPRETATION

    Directory of Open Access Journals (Sweden)

    Kateryna Hnatenko

    2017-07-01

    Full Text Available Modern literature research works practically assert that literature is a way of thinking in imagery, and the interpretation of art works is almost always the interpretation of imagery, in other words perfect reality. Psychologists confirm that educational process in primary school should be formed on the account of both present and potential abilities of the children. Literature is an important means of pupils’ development. Reading in grades 1 − 4 promotes the development of children’s positive moral and will-power qualitie. With its help children perceive the world, learn to understand and love beautiful things. The writer’s ideological content of a piece of literature can be revealed in images. The main objective of text interpretation in grades 1 − 4 is to promote pupils’ perception and comprehension. Nowadays the changes in educational sphere require more attention to the issue of literary perception. In 2011, primary school changed the training course of "Reading" into "Literary reading," which aims at the development of the following reader’s qualities: to be capable to independent reading,to perform different communicative and creative activities. However, the educational process observation showed the existence of problems in young learners’ perception and understanding of literary art, and especially the role of character and its images. Today, the methodology pays attention to the quality of the perception, its depth and awareness. The efficiency level of children’s literary work perception is set on the analysis of readers’ activity results. Difficulties in the determination of the literary work perception level lie in various interpretations, complexity of the perception process, necessity to reflect different sides and emotions of imagination and thinking. Many scientific works are devoted to the analysis of literary texts understanding, to the role of visual images and imagination in literary text understanding

  3. Elementary education preservice teachers' understanding of biotechnology and its related processes.

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-07-01

    This study examined preservice teachers' understanding of biotechnology and its related processes. A sample comprised 88 elementary education preservice teachers at a large university in the Midwest of the USA. A total of 60 and 28 of the participants were enrolled in introductory and advanced science methods courses, respectively. Most participants had taken two integrated science courses at the college level. Data were collected using a questionnaire, which had open-ended items and which required participants to write the definitions and examples of the following terms: biotechnology, genetic engineering, cloning and genetically modified foods. The results indicate that preservice teachers had limited understanding of biotechnology and its related processes. The majority of the preservice teachers provided poor definitions, explanations, and examples of biotechnology, genetic engineering and genetically modified foods. Surprisingly, however, a moderate number of preservice teachers correctly defined cloning and provided correct examples of cloning. Implications for science teacher education, science curriculum, as well as recommendations for further research are discussed. Copyright © 2011 Wiley Periodicals, Inc.

  4. Making and Unmaking the Endangered in India (1880-Present: Understanding Animal-Criminal Processes

    Directory of Open Access Journals (Sweden)

    Varun Sharma

    2015-01-01

    Full Text Available The concerns of the present paper emerge from the single basic question of whether the available histories of the tiger are comprehensive enough to enable an understanding of how this nodular species comprises/contests the power dynamics of the present. Starting with this basic premise, this paper retells a series of events which go to clarify that a nuanced understanding of the manner in which a species serves certain political purposes is not possible by tracking the animal alone. A discourse on endangerment has beginnings in the body and being of species that are remarkably cut off from the tiger-the elephant, birds, and the rhino (and man if we might add-and develops with serious implications for power, resource appropriation, and criminality, over a period of time, before more directly recruiting the tiger itself. If we can refer to this as the intermittent making and unmaking of the endangered, it is by turning to the enunciations of Michel Foucault that we try to canvas a series of events that can be described as animal-criminal processes. The role of such processes in the construction of endangerment, the structuring of space, and shared ideas of man-animal relations is further discussed in this paper.

  5. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  6. Hydrologic Connectivity for Understanding Watershed Processes: Brand-new Puzzle or Emerging Panacea?

    Science.gov (United States)

    Ali, G. A.; Roy, A. G.; Tetzlaff, D.; Soulsby, C.; McDonnell, J. J.

    2011-12-01

    As a way to develop a more holistic approach to watershed assessment and management, the concept of hydrologic connectivity (HC) is often put at the forefront. HC can be seen as the strength of the water-mediated linkages between discrete units of the landscape and as such, it facilitates our intuitive understanding of the mechanisms driving runoff initiation and cessation. Much of the excitement surrounding HC is attributable to its potential to enhance our ability to gain insights into multiple areas including process dynamics, numerical model building, the effects of human elements in our landscape conceptualization, and the development of simplified watershed management tools. However, before such potential can be fully demonstrated, many issues must be resolved with regards to the measure of HC. Here we provide examples highlighting how connectivity can be useful towards understanding water routing in river basins, ecohydrological systems coupling, and intermittent rainfall-runoff dynamics. First, the use of connectivity metrics to examine the relative influence of surface/subsurface topography and soil characteristics on runoff generation will be discussed. Second, the effectiveness of using geochemical tracers will be examined with respect to identifying non-point runoff sources and linking hillslope-to-channel connectivity with surface water-groundwater exchanges in the biologically sensitive hyporheic zone. Third, the identification of different hydrologic thresholds will be presented as a way to discriminate the establishment of connectivity across a range of contrasted catchments located in Canada, Scotland, the USA, and Sweden. These examples will show that current challenges with regards to HC revolve around the choice of an accurate methodological framework for an appropriate translation of experimental findings into effective watershed management approaches. Addressing these questions simultaneously will lead to the emergence of HC as a powerful tool

  7. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  8. X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes.

    Science.gov (United States)

    Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo

    2015-02-01

    The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Fish biodiversity sampling in stream ecosystems: a process for evaluating the appropriate types and amount of gear

    Science.gov (United States)

    Smith, Joseph M.; Wells, Sarah P.; Mather, Martha E.; Muth, Robert M.

    2014-01-01

    Because human impacts and climate change threaten aquatic ecosystems, a need exists to quantify catchment-scale biodiversity patterns and identify conservation actions that can mitigate adverse human impacts on aquatic biota.

  10. Groundwater-ocean interaction and its effects on coastal ecological processes - are there groundwater-dependant ecosystems in the coastal zone?

    Science.gov (United States)

    Stieglitz, T. C.

    2013-05-01

    Hydrological land-ocean connectivity is an important driver of coastal ecosystems. Rivers are obvious and visible pathways for terrestrial runoff. The critical role of surface water discharge from rivers to coastal ecosystems has been well documented. Hidden from view, 'downstream' effects of coastal (supra-tidal, intertidal and submarine) groundwater discharge are far less well understood. Whilst hydrological and geochemical processes associated with coastal groundwater discharge have received an increasing amount of scientific attention over the past decade or so, the effects of groundwater flow on productivity, composition, diversity and functioning of coastal ecosystems along the world's shorelines have received little attention to date. Coastal groundwater discharge includes both terrestrial (fresh) groundwater fluxes and the recirculation of seawater through sediments, analogous to hyporheic flow in rivers. I will present an overview over relevant coastal hydrological processes, and will illustrate their ecological effects on examples from diverse tropical coastal ecosystems, e.g. (1) perennial fresh groundwater discharge from coastal sand dune systems permitting growth of freshwater-dependent vegetation in the intertidal zone of the Great Barrier Reef (Australia), (2) recirculation of seawater through mangrove forest floors directly affecting tree health and providing a pathway for carbon export from these ecosystems, (3) the local hydrology of groundwater-fed coastal inlets on Mexico's Yucatan peninsula affecting the movement behaviour of and habitat use by the queen conch Strombus gigas, an economically important species in the Caribbean region. These examples for hydrological-ecological coupling in the coastal zone invite the question if we should not consider these coastal ecosystems to be groundwater-dependent, in analogy to groundwater-dependency in freshwater aquatic systems.

  11. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    Science.gov (United States)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-01-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the "Science Process Skills Questionnaire" (SPSQ) with a Cronbach's…

  12. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems

    Science.gov (United States)

    Larsen, Laurel G.; Harvey, Judson W.

    2011-01-01

    It is widely recognized that interactions between vegetation and flow cause the emergence of channel patterns that are distinct from the standard Schumm classification of river channels. Although landscape pattern is known to be linked to ecosystem services such as habitat provision, pollutant removal, and sustaining biodiversity, the mechanisms responsible for the development and stability of different landscape patterns in shallow, vegetated flows have remained poorly understood. Fortunately, recent advances have made possible large-scale models of flow through vegetated environments that can be run over a range of environmental variables and over timescales of millennia. We describe a new, quasi-3D cellular automata model that couples simulations of shallow-water flow, bed shear stresses, sediment transport, and vegetation dynamics in an efficient manner. That efficiency allowed us to apply the model widely in order to determine how different hydroecological feedbacks control landscape pattern and process in various types of wetlands and floodplains. Distinct classes of landscape pattern were uniquely associated with specific types of allogenic and autogenic drivers in wetland flows. Regular, anisotropically patterned wetlands were dominated by allogenic processes (i.e., processes driven by periodic high water levels and flow velocities that redistribute sediment), relative to autogenic processes (e.g., vegetation production, peat accretion, and gravitational erosion). These anistropically patterned wetlands are therefore particularly prone to hydrologic disturbance. Other classes of wetlands that emerged from simulated interactions included maze-patterned, amorphous, and topographically noisy marshes, open marsh with islands, banded string-pool sequences perpendicular to flow, parallel deep and narrow channels flanked by marsh, and ridge-and-slough patterned marsh oriented parallel to flow. Because vegetation both affects and responds to the balance between the

  13. Forest ecosystems and environments scaling up from shoot module to watershed

    CERN Document Server

    Kohyama, Takashi; Ojima, Dennis S

    2005-01-01

    Coastal East and Southeast Asia are characterized by wet growing seasons, and species-rich forest ecosystems develop throughout the latitudinal and altitudinal gradients. In this region, the Global Change Impacts on Terrestrial Ecosystems in Monsoon Asia (TEMA) project was carried out as a unique contribution to the international project Global Change and Terrestrial Ecosystems. TEMA aimed to integrate forest ecosystem processes, from leaf physiology to meteorological budget and prediction of long-term change of vegetation composition and architecture through demographic processes. Special attention was given to watershed processes, where forest ecosystem metabolism affects the properties and biogeochemical budgets of freshwater ecosystems, and where rivers, wetlands, and lakes are subject to direct and indirect effects of environmental change. This volume presents the scaling-up concept for better understanding of ecosystem functioning.

  14. EnviroAtlas’s National Assessment of Cultural Ecosystem Services: Leveraging Social Media to Understand America’s Most Valued Landscapes

    Science.gov (United States)

    While the United States is home to many special places that deliver numerous cultural ecosystem services (CES), there has yet to be a national assessment of these benefits. Identifying and characterizing locations that are appreciated for their beauty, opportunities for outdoor a...

  15. Microbial extracellular enzymes in biogeochemical cycling of ecosystems.

    Science.gov (United States)

    Luo, Ling; Meng, Han; Gu, Ji-Dong

    2017-07-15

    Extracellular enzymes, primarily produced by microorganisms, affect ecosystem processes because of their essential roles in degradation, transformation and mineralization of organic matter. Extracellular enzymes involved in the cycling of carbon (C), nitrogen (N) and phosphorus (P) have been widely investigated in many different ecosystems, and several enzymes have been recognized as key components in regulating C storage and nutrient cycling. In this review, it was the first time to summarize the specific extracellular enzymes related to C storage and nutrient cycling for better understanding the important role of microbial extracellular enzymes in biogeochemical cycling of ecosystems. Subsequently, ecoenzymatic stoichiometry - the relative ratio of extracellular enzyme, has been reviewed and further provided a new perspective for understanding biogeochemical cycling of ecosystems. Finally, the new insights of using microbial extracellular enzyme in indicating biogeochemical cycling and then protecting ecosystems have been suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Understanding Earthquake Processes in the Central and Eastern US and Implications for Nuclear Reactor Safety

    Science.gov (United States)

    Seber, D.; Tabatabai, S.

    2012-12-01

    All of the early site permits and new reactor licensing applications, which have been submitted to the U.S. Nuclear Regulatory Commission (U.S. NRC), are located in the Central and Eastern United States (CEUS). Furthermore, among the 104 commercial nuclear power plants (NPPs) already licensed to operate in the US, 96 are located in the CEUS. While there are many considerations in siting commercial NPPs, the perceived lower seismic hazard in the CEUS compared to the Western United States is one of the reasons why the majority of operating and potential future nuclear reactors are located in the CEUS. However, one important criterion used in the licensing and safe operation of a nuclear power plant is its seismic design basis, which establishes the plant's ability to withstand ground motions produced by moderate- to large-sized earthquakes without suffering any damage to its critical safety related structures, systems, and components. The seismic design basis for a NPP is site specific and determined using up-to-date knowledge and information about seismic sources surrounding the site and seismic wave propagation characteristics. Therefore, an in-depth understanding of the processes generating earthquakes (tectonic or man-made) and the seismic wave propagation characteristics in the CEUS is crucial. The U.S. NRC's seismic review process for evaluating new reactor siting applications heavily relies upon up-to-date scientific knowledge of seismic sources within at least 320 km of a proposed site. However, the availability of up-to-date knowledge and information about potential seismic sources in low-seismicity regions is limited and relevant data are sparse. Recently, the NRC participated in a joint effort to develop new seismic source models to be used in the CEUS seismic hazard studies for nuclear facilities. In addition, efforts are underway to better understand the seismic potential of the Eastern Tennessee Seismic Zone. While very large and successful scientific

  17. Adaptive management for ecosystem services (j/a) | Science ...

    Science.gov (United States)

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with manage

  18. Toward an understanding of methane selectivity in the Fischer-Tropsch process

    Science.gov (United States)

    Psarras, Peter C.

    The purpose of this research is to elucidate a better understanding of the conditions relevant to methane selectivity in the Fischer-Tropsch (FT) process. The development of more efficient FT catalysts can result in great commercial profit. The industrially relevant FT process has long been hampered by the production of methane. Nearly 60 percent of FT capital is devoted to the removal of methane and purification of feed-stock gases through steam-reforming. Naturally, a more efficient FT catalyst would need to have a reasonable balance between catalytic activity and suppression of methane formation (low methane selectivity). Though a significant amount of work has been devoted to understanding the mechanisms involved in methane selectivity, the exact mechanism is still not well understood. Density functional theory (DFT) methods provide an opportunity to explore the FT catalytic process at the molecular level. This work represents a combination of various DFT approaches in an attempt to gather new insight on the conditions relevant to methane selectivity. A thorough understanding of the electronic environment involved in the surface-adsorbate interaction is necessary to the advancement of more efficient Fischer-Tropsch catalysts. This study investigates the promotive effect of four late transition metals (Cu, Ag, Au and Pd) on three FT catalytic surfaces (Fe, Co and Ni). The purpose of this research is to examine the surface-adsorbate interaction from two perspectives: 1) interactions occurring between FT precursors and small, bimetallic surface analogs (clusters), and 2) plane-wave calculations of the interactions between FT precursors and simulated bulk surfaces. Our results suggest that promising candidates for the reduction of FT methane selectivity include Au and Pd on Ni, Au and Ag on Co, and Cu, Ag, and Pd on Fe. Additionally, cluster models were susceptible to effects not encountered in the plane-wave approach. Thermodynamic trends can be made more

  19. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  20. A new method of analysis enabled a better understanding of clinical practice guideline development processes.

    Science.gov (United States)

    Moreira, Tiago; May, Carl; Mason, James; Eccles, Martin

    2006-11-01

    To describe the process by which various forms of evidence are discussed, valued, and interpreted within the process of developing evidence-based clinical practice guidelines and, in so doing, to develop a method for such studies. An observational study. Two guideline development groups were observed by a nonparticipant observer. The 21 meetings were recorded, transcribed, and analyzed using grounded theory and frame analysis. Qualitative analysis was complemented with descriptive statistics. The groups organized their discussion around four domains--'science', 'practice', politics', and 'process'--and used boundary work to mediate between these domains. Both groups spent most time discussing 'science', followed by 'practice' or its relation with 'science'. Our analysis offers an innovative, replicable method of analysis of guideline development that permits the identification of the proportions and interrelations between knowledge domains deployed by guideline groups. This analysis also suggests that the participation hierarchy observed here and by others might be an effect of the imbalanced use of knowledge domains in the construction of clinical guidance. This constitutes an important framework to understand the interplay of participants and knowledge in guideline development.

  1. Understanding soil erosion process within herbaceous vegetative hedges using plant functional traits approach in North-West Europe

    Science.gov (United States)

    Kervroëdan, Léa; Armand, Romain; Saunier, Mathieu; Faucon, Michel-Pierre

    2017-04-01

    Runoff and soil erosion induce major environmental and economic damages. Concentrated runoff control by aboveground plant biomass in upstream areas constitutes a key feature to reduce runoff and soil erosion in Western Europe (WE). Indeed, aboveground plant biomass can reduce runoff and soil erosion respectively by increasing hydraulic roughness and trapping sediments. However, studies of plant effect on runoff reduction are usually based on the taxonomical characterisation of species and do not refer to effect of aboveground plant functional traits. Plant functional traits approach allows to understand ecosystem processes and quantify services. Traits effect could vary depending on hydrological processes (i.e., discharge) and their aggregation could have a synergetic effect on hydraulic roughness and erosion reduction. In this study, objectives are to i) examine effects of aboveground plant functional traits of herbaceous hedges on hydraulic roughness; ii) test the effects of their aggregation on hydraulic roughness. Seven aboveground functional traits were measured on 14 indigenous plant species from North-West Europe with a high morphological variability (stem and leaf densities; stem diameter, stiffness and dry matter content; leaf area and specific leaf area (SLA)). Those species are perennial herbaceous caespitose or comprising dry biomass in winter. Effects of plant functional traits and their abundance within the community on hydraulic roughness were examined using a runoff simulator at four discharges. Furthermore, the effect of plant functional diversity was analysed using four monospecific (mono-trait) conditions compared to multispecific (multi-traits) conditions. Results showed traits and their abundance influence hydraulic roughness. Indeed, leaf density and leaf area (traits), as well as plant community weighted stem, leaf and shoot areas, stem diameter and SLA are significantly correlated to hydraulic roughness. Moreover, leaf density and leaf area

  2. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    Science.gov (United States)

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of

  3. Nonlinear ecosystem services response to groundwater availability under climate extremes

    Science.gov (United States)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital

  4. Dynamic belowground ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W. F.; Santantonio, D.; McGinty, D.

    1979-01-01

    Roots comprise the primary interface between plant and soil for uptake of water and nutrients. Much is known about the biochemistry, cell physiology and membrane physics associated with these important processes. In this paper we discuss the role of the belowground ecosystem, especially the autotrophic root component, in the structure and function of forest ecosystems. Beyond recognizing roles of anchoring terrestrial plants and uptake of water and nutrients, this component of the forest has been largely neglected in an ecosystem context. In order to focus discussion on the properties of the belowground ecosystem, we use the term rhizosphere to include roots, mycorrhizae, microbes, and rhizophagus invertebrates.

  5. Study of a low-dose capsule filling process by dynamic and static tests for advanced process understanding.

    Science.gov (United States)

    Stranzinger, S; Faulhammer, E; Scheibelhofer, O; Calzolari, V; Biserni, S; Paudel, A; Khinast, J G

    2018-04-05

    Precise filling of capsules with doses in the mg-range requires a good understanding of the filling process. Therefore, we investigated the various process steps of the filling process by dynamic and static mode tests. Dynamic tests refer to filling of capsules in a regular laboratory dosator filling machine. Static tests were conducted using a novel filling system developed by us. Three grades of lactose excipients were filled into size 3 capsules with different dosing chamber lengths, nozzle diameters and powder bed heights, and, in the dynamic mode, with two filling speeds (500, 3000 caps/h). The influence of the gap at the bottom of the powder container on the fill weight and variability was assessed. Different gaps resulted in a change in fill weight in all materials, although in different ways. In all cases, the fill weight of highly cohesive Lactohale 220 increased when decreasing the gap. Furthermore, experiments with the stand-alone static test tool indicated that this very challenging powder could successfully be filled without any pre-compression in the range of 5 mg-20 mg with acceptable RSDs. This finding is of great importance since for very fine lactose powders high compression ratios (dosing-chamber-length-to-powder-bed height compression ratios) may result in jamming of the piston. Moreover, it shows that the static mode setup is suitable for studying fill weight and variability. Since cohesive powders, such as Lactohale 220, are hard to fill, we investigated the impact of vibration on the process. Interestingly, we found no correlation between the reported fill weight changes in dynamic mode at 3000 cph and static mode using similar vibration. However, we could show that vibrations during sampling in the static mode dramatically reduced fill weight variability. Overall, our results indicate that by fine-tuning instrumental settings even very challenging powders can be filled with a low-dose dosator capsule filling machine. This study is a

  6. Nursing Students' Experiences of Health Care in Swaziland: Transformational Processes in Developing Cultural Understanding.

    Science.gov (United States)

    Murray, Bethany A

    2015-09-01

    This study examined the experiences of nursing students following a service-learning placement in Swaziland. Students worked in a hospital and implemented community health clinics. Six students were interviewed 1 month after their return from the overseas study experience. A thematic analysis was performed. Four themes emerged. The first theme was transitions-students experienced personal hardships, emotional reactions, and language difficulties that created discomfort. The second theme was perceptions-cultural dissonance was encountered between the health care and nursing cultures of Swaziland and the United States. The third theme was internalization-discomfort and cultural dissonance activated coping mechanisms within students that generated a process of change in attitudes and beliefs. The fourth theme was incorporation-personal and professional growth were demonstrated with greater awareness, compassion, resourcefulness, and comfort with diversity. The stress and cultural dissonance experienced by students led to an increase in cultural understanding and awareness. Copyright 2015, SLACK Incorporated.

  7. Constraining land carbon cycle process understanding with observations of atmospheric CO2 variability

    Science.gov (United States)

    Collatz, G. J.; Kawa, S. R.; Liu, Y.; Zeng, F.; Ivanoff, A.

    2013-12-01

    We evaluate our understanding of the land biospheric carbon cycle by benchmarking a model and its variants to atmospheric CO2 observations and to an atmospheric CO2 inversion. Though the seasonal cycle in CO2 observations is well simulated by the model (RMSE/standard deviation of observations 40N though fluxes match poorly at regional to continental scales. Regional and global fire emissions are strongly correlated with variability observed at northern flask sample sites and in the global atmospheric CO2 growth rate though in the latter case fire emissions anomalies are not large enough to account fully for the observed variability. We discuss remaining unexplained variability in CO2 observations in terms of the representation of fluxes by the model. This work also demonstrates the limitations of the current network of CO2 observations and the potential of new denser surface measurements and space based column measurements for constraining carbon cycle processes in models.

  8. SOCRATE: an optical bench dedicated to the understanding and improvement of a laser conditioning process

    Science.gov (United States)

    Bertussi, Bertrand; Piombini, Hervé; Damiani, David; Pommies, Matthieu; Le Borgne, Xavier; Plessis, Daniel

    2006-11-01

    We present an automatic excimer laser bench (SOCRATE) allowing for the treatment of optical components by laser conditioning. This apparatus, developed at the Commissariat a l'Energie Atomique-Le Ripault, has been designed to add to this conditioning process an in situ, accurate laser-induced damage threshold (LIDT) measurement and different nondestructive optical techniques for the characterization of the component during treatment. Through different examples, we demonstrate the importance of these characterizations to improve the understanding of the laser conditioning. The role of an in situ adapted metrology associated in real time with a laser conditioning bench offers new opportunities to analyze laser-induced damage mechanisms and subsequently to increase the LIDT of optical components.

  9. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  10. Understanding High-Resolution Spatiotemporal Dynamics of Groundwater Recharge Using Process Based Hydrologic Modeling

    Science.gov (United States)

    Kang, G.; Qiu, H.; Li, S. G.; Lusch, D.; Phanikumar, M. S.

    2016-12-01

    Quantifying the natural rates of groundwater recharge and identifying the location and timing of major recharge events are essential for maintaining sustainable water yields and for understanding contaminant transport mechanisms in groundwater systems. Using Ottawa County, Michigan as a case study in sustainable water resources management, this research is part of a larger project that examines the issues of declining water tables and increasing chloride concentrations within the county. A process-based hydrologic model (PAWS) is used to mechanistically evaluate the integrated hydrologic response of both the surface and subsurface systems to further compute daily fluxes due to evapotranspiration, surface runoff, recharge and groundwater-stream interactions. Both rain gauge (NCDC) and NEXRAD precipitation data are used as input for the model. The model is built based on three major watersheds at 300m spatial resolution and daily temporal resolution, covering all of Ottawa County and is calibrated using streamflow data from USGS gauging stations. In addition, synoptic and time-series baseflow data collected using Acoustic Doppler Current Profilers and electromagnetic flow meters during the summer of 2015 are used to test the ability of the model to simulate baseflows and to quantify the uncertainty. The MODIS evapotranspiration product is used to evaluate model performance in simulating ET. The primary objectives of this study are to (1) understand the periods of high and low groundwater recharge in the county between the years 2009 and 2015; and (2) analyze the impacts of different types of land use, soil, elevation, and slope on groundwater recharge.

  11. Preparation and Support of Patients through the Transplant Process: Understanding the Recipients' Perspectives

    Directory of Open Access Journals (Sweden)

    Oliver Mauthner

    2012-01-01

    Full Text Available Preparation for heart transplant commonly includes booklets, instructional videos, personalized teaching sessions, and mentorship. This paper explores heart transplant recipients’ thoughts on their preparation and support through the transplant process. Twenty-five interviews were audio-/videotaped capturing voice and body language and transcribed verbatim. Coding addressed language, bodily gesture, volume, and tone in keeping with our visual methodology. Recipients reported that only someone who had a transplant truly understands the experience. As participants face illness and life-altering experiences, maintaining a positive attitude and hope is essential to coping well. Healthcare professionals provide ongoing care and reassurance about recipients’ medical status. Mentors, family members, and close friends play vital roles in supporting recipients. Participants reported that only heart transplant recipients understood the experience, the hope, and ultimately the suffering associated with living with another persons’ heart. Attention needs to be focused not solely on the use of teaching modalities, but also on the development of innovative support networks. This will promote patient and caregiver engagement in self-management. Enhancing clinicians’ knowledge of the existential aspects of transplantation will provide them with a nuanced understanding of the patients’ experience, which will ultimately enhance their ability to better prepare and support patients and their caregivers.

  12. Classroom virtual lab experiments as teaching tools for explaining how we understand planetary processes

    Science.gov (United States)

    Hill, C. N.; Schools, H.; Research Team Members

    2012-12-01

    This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.

  13. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    Energy Technology Data Exchange (ETDEWEB)

    Suratwala, Tayyab [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) model used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also

  14. Does the Ecosystem Service Concept Reach its Limits in Urban Environments?

    Directory of Open Access Journals (Sweden)

    Simone A. Beichler

    2017-06-01

    Full Text Available There is a rapidly growing body of literature on the theory about the ecosystem service concept and the practical assessment of ecosystem services in different contexts ranging from natural to urban environments. Yet, where does the concept reach its limits? This paper critically reflects the application of the ecosystem service concept in urban environments illustrating the handling of urban structures (incl. built-up areas and the risk that the normative principle of the concept could be missed. It is shown that in theory urban structures refer to a variety of ecosystem concepts. As a starting point for ecosystem service assessments, these could be classified into natural, managed, constructed and overbuilt systems. Since ecosystem service concepts do not directly refer to a specific ecosystem definition, but to biophysical structures and processes, all of these classes could be included. However, the dependency on context and scale makes a differentiation in practical ecosystem services assessment challenging. We conclude that the ecosystem service concept does not reach its limits in urban environments, but urban environments represent an extreme case characterized by multifunctionality and a high degree of modification that enables to uncover research challenges applying in any environment. There is a need for a more transparent reporting of theoretical and methodological assumptions to facilitate the comparability between ecosystem service assessments. Comprehensive approaches that consider multiple ecosystem services and include human input, human modification, the ecosystem status as well as their interactions are required to understand the spatial relations between ecosystem services delivered by different ecosystems.

  15. The Critical Zone: A Necessary Framework for Understanding Surface Earth Processes

    Science.gov (United States)

    Dietrich, W. E.

    2016-12-01

    One definition of the critical zone is: the thin veneer of Earth that extends from the top of the vegetation to the base of weathered bedrock. With this definition we can envision the critical zone as a distinct entity with a well-defined top and a fairly well-defined bottom that is distributed across terrestrial earth landscapes. It is a zone of co-evolving processes and, importantly, much of this zone is well below the soil mantle (and commonly more than 10 times thicker than the soil). Weathering advance into fresh bedrock creates a hydrologically-conductive skin that mediates runoff and solute chemistry, stores water used by vegetation, releases water as baseflow to streams, influences soil production and hillslope evolution, and feeds gasses to the atmosphere. Especially in seasonally dry environments, rock moisture in the critical zone, i.e. moisture that is exchangeable and potentially mobile in the matrix and fractures of the bedrock, can be a significant source of water to plants and is a previously unrecognized large component of the water budget that matters to climate models. First observations on the systematic variation of the critical zone across hillslopes have led to four distinct theories representing four distinct processes for what controls the depth to fresh bedrock (and thus the thickness of this zone across a hillslope). These theories are motivating geophysical surveys, deep drilling, and other actions to parameterize and explore the power of these models. Studies at the NSF-supported Critical Zone Observatories have taught us that the critical zone is an entity and that enduring field studies reveal key processes. A challenge we now face is how to include this emerging understanding of the critical zone into models of reactive transport, hydrologic processes and water supply, critical zone structure, landscape evolution, and climate.

  16. Icepod Plus Potential Field: An Integrated Approach For Understanding Ice Shelf Processes

    Science.gov (United States)

    Frearson, N.

    2015-12-01

    Warm water flowing beneath the large floating ice shelves in Antarctica will play an important role in how fast sea level rises. The lack of detailed bathymetry beneath the large ice shelves and lack of understanding of their internal structure inherently limits our knowledge of how ice shelves will thin and collapse. Understanding the bathymetry beneath the remaining ice shelves is critical to understanding how ice shelves will thin in the future and how that will impact the flux of ice into the global ocean. The Ross Ice Shelf, the largest ice shelf remaining on our planet, buttresses the West Antarctic Ice Sheet. The bathymetry beneath the Ross Ice Shelf is the least explored piece of ocean floor on our planet. The IcePod is a compact integrated ice imaging system developed for use on any C-130 aircraft developed with NSF support. The initial development program was targeted towards investigating glacial and ice-sheet processes. In this program, deep and shallow ice radars were developed. Optical instruments, including a scanning laser, Infra-red camera and visible wave camera were integrated into the pod. We have expanded the IcePod instrument suite to include the potential field measurements of magnetic and gravity anomalies with support from the Moore Foundation. During the development, a total field cesium sensor magnetometer and 3-axis fluxgate from previously funded work were also incorporated into the pod. Their behavioral response to being located close to high-frequency electronics, power supplies and metallic objects were studied. We describe in part some of that development process and the positive findings that resulted. The Icepod group is also actively pursuing the development, modification and incorporation of a new gravimeter into the suite of instruments available to the program and is investigating reduction in size of this that may eventually lead to incorporating the gravimeter into the pod itself. As part of this program we are also

  17. Towards understanding oral health.

    Science.gov (United States)

    Zaura, Egija; ten Cate, Jacob M

    2015-01-01

    During the last century, dental research has focused on unraveling the mechanisms behind various oral pathologies, while oral health was typically described as the mere absence of oral diseases. The term 'oral microbial homeostasis' is used to describe the capacity of the oral ecosystem to maintain microbial community stability in health. However, the oral ecosystem itself is not stable: throughout life an individual undergoes multiple physiological changes while progressing through infancy, childhood, adolescence, adulthood and old age. Recent discussions on the definition of general health have led to the proposal that health is the ability of the individual to adapt to physiological changes, a condition known as allostasis. In this paper the allostasis principle is applied to the oral ecosystem. The multidimensionality of the host factors contributing to allostasis in the oral cavity is illustrated with an example on changes occurring in puberty. The complex phenomenon of oral health and the processes that prevent the ecosystem from collapsing during allostatic changes in the entire body are far from being understood. As yet individual components (e.g. hard tissues, microbiome, saliva, host response) have been investigated, while only by consolidating these and assessing their multidimensional interactions should we be able to obtain a comprehensive understanding of the ecosystem, which in turn could serve to develop rational schemes to maintain health. Adapting such a 'system approach' comes with major practical challenges for the entire research field and will require vast resources and large-scale multidisciplinary collaborations. 2015 S. Karger AG, Basel

  18. Understanding the structured processes followed by organisations prior to engaging in agile processes: A South African Perspective

    Directory of Open Access Journals (Sweden)

    Nimrod Noruwana

    2012-06-01

    Full Text Available There appears to be a lack of knowledge on the phases South African (SA organisations go through while adopting agile methods. As a means to address this gap, this study uncovered empirical evidence on the phases SA organisations go through whilst adopting agile methods as well as the disparities between agile prescriptions and the way SA organisations actually implement agile methods. The data collected using a case study approach was analysed through the lens of Actor-Network Theory (ANT. The results reveal that there is no structured process for adopting agile methods and organisations go through various phases in their attempts to adopt agile methods. During the various phases, organisations face challenges which are culture as well as people related. Through this study South African practitioners could now be aware that before adopting an agile methodology, there has to be a common understanding of the problems at hand and the envisioned solution. The findings also inform aspiring adopters in South Africa that adoption of the methods does not have to be as prescribed. They are free to adopt only those aspects the organisations need most.

  19. Considering direct and indirect habitat influences on stream biota in eco-geomorphology research to better understand, model, and manage riverine ecosystems

    Science.gov (United States)

    Cienciala, P.; Nelson, A. D.

    2017-12-01

    The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influ