WorldWideScience

Sample records for understanding disease dynamics

  1. Epidemiology: Past, Present, and Future Impacts on Understanding Disease Dynamics and Improving Plant Disease Management-A Summary of Focus Issue Articles.

    Science.gov (United States)

    Ojiambo, P S; Yuen, J; van den Bosch, F; Madden, L V

    2017-10-01

    Epidemiology has made significant contributions to plant pathology by elucidating the general principles underlying the development of disease epidemics. This has resulted in a greatly improved theoretical and empirical understanding of the dynamics of disease epidemics in time and space, predictions of disease outbreaks or the need for disease control in real-time basis, and tactical and strategic solutions to disease problems. Availability of high-resolution experimental data at multiple temporal and spatial scales has now provided a platform to test and validate theories on the spread of diseases at a wide range of spatial scales ranging from the local to the landscape level. Relatively new approaches in plant disease epidemiology, ranging from network to information theory, coupled with the availability of large-scale datasets and the rapid development of computer technology, are leading to revolutionary thinking about epidemics that can result in considerable improvement of strategic and tactical decision making in the control and management of plant diseases. Methods that were previously restricted to topics such as population biology or evolution are now being employed in epidemiology to enable a better understanding of the forces that drive the development of plant disease epidemics in space and time. This Focus Issue of Phytopathology features research articles that address broad themes in epidemiology including social and political consequences of disease epidemics, decision theory and support, pathogen dispersal and disease spread, disease assessment and pathogen biology and disease resistance. It is important to emphasize that these articles are just a sample of the types of research projects that are relevant to epidemiology. Below, we provide a succinct summary of the articles that are published in this Focus Issue .

  2. Dynamics of infectious diseases

    International Nuclear Information System (INIS)

    Rock, Kat; Brand, Sam; Moir, Jo; Keeling, Matt J

    2014-01-01

    Modern infectious disease epidemiology has a strong history of using mathematics both for prediction and to gain a deeper understanding. However the study of infectious diseases is a highly interdisciplinary subject requiring insights from multiple disciplines, in particular a biological knowledge of the pathogen, a statistical description of the available data and a mathematical framework for prediction. Here we begin with the basic building blocks of infectious disease epidemiology—the SIS and SIR type models—before considering the progress that has been made over the recent decades and the challenges that lie ahead. Throughout we focus on the understanding that can be developed from relatively simple models, although accurate prediction will inevitably require far greater complexity beyond the scope of this review. In particular, we focus on three critical aspects of infectious disease models that we feel fundamentally shape their dynamics: heterogeneously structured populations, stochasticity and spatial structure. Throughout we relate the mathematical models and their results to a variety of real-world problems. (review article)

  3. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    Science.gov (United States)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  4. Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks.

    Directory of Open Access Journals (Sweden)

    Xiaoke Ma

    2015-06-01

    Full Text Available Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules. We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.

  5. Understanding cardiovascular disease

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000759.htm Understanding cardiovascular disease To use the sharing features on this page, ... lead to heart attack or stroke. Types of Cardiovascular Disease Coronary heart disease (CHD) is the most common ...

  6. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  7. Mathematical modeling of infectious disease dynamics

    Science.gov (United States)

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  8. Coupled disease-behavior dynamics on complex networks: A review

    Science.gov (United States)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  9. Understanding the dynamics of parent involvement in schooling ...

    African Journals Online (AJOL)

    Understanding the dynamics of parent involvement in schooling within the poverty context. ... South African Journal of Education ... understand the realities and dynamics facing parents when attempting to be involved in their child\\'s schooling.

  10. A Systems Biology Approach to Understanding Alcoholic Liver Disease Molecular Mechanism: The Development of Static and Dynamic Models.

    Science.gov (United States)

    Shafaghati, Leila; Razaghi-Moghadam, Zahra; Mohammadnejad, Javad

    2017-11-01

    Alcoholic liver disease (ALD) is a complex disease characterized by damages to the liver and is the consequence of excessive alcohol consumption over years. Since this disease is associated with several pathway failures, pathway reconstruction and network analysis are likely to explicit the molecular basis of the disease. To this aim, in this paper, a network medicine approach was employed to integrate interactome (protein-protein interaction and signaling pathways) and transcriptome data to reconstruct both a static network of ALD and a dynamic model for it. Several data sources were exploited to assemble a set of ALD-associated genes which further was used for network reconstruction. Moreover, a comprehensive literature mining reveals that there are four signaling pathways with crosstalk (TLR4, NF- [Formula: see text]B, MAPK and Apoptosis) which play a major role in ALD. These four pathways were exploited to reconstruct a dynamic model of ALD. The results assure that these two models are consistent with a number of experimental observations. The static network of ALD and its dynamic model are the first models provided for ALD which offer potentially valuable information for researchers in this field.

  11. Ecophysiology meets conservation: understanding the role of disease in amphibian population declines

    Science.gov (United States)

    Blaustein, Andrew R.; Gervasi, Stephanie S.; Johnson, Pieter T. J.; Hoverman, Jason T.; Belden, Lisa K.; Bradley, Paul W.; Xie, Gisselle Y.

    2012-01-01

    Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role that infectious disease plays within ecological communities is complex. The complex effects of infectious disease at the scale of communities and ecosystems are driven by the interaction between host and pathogen. Whether or not a given host–pathogen interaction results in progression from infection to disease is largely dependent on the physiological characteristics of the host within the context of the external environment. Here, we highlight the importance of understanding the outcome of infection and disease in the context of host ecophysiology using amphibians as a model system. Amphibians are ideal for such a discussion because many of their populations are experiencing declines and extinctions, with disease as an important factor implicated in many declines and extinctions. Exposure to pathogens and the host's responses to infection can be influenced by many factors related to physiology such as host life history, immunology, endocrinology, resource acquisition, behaviour and changing climates. In our review, we discuss the relationship between disease and biodiversity. We highlight the dynamics of three amphibian host–pathogen systems that induce different effects on hosts and life stages and illustrate the complexity of amphibian–host–parasite systems. We then review links between environmental stress, endocrine–immune interactions, disease and climate change. PMID:22566676

  12. A dynamic model for infectious diseases: The role of vaccination and treatment

    International Nuclear Information System (INIS)

    Raja Sekhara Rao, P.; Naresh Kumar, M.

    2015-01-01

    Understanding dynamics of an infectious disease helps in designing appropriate strategies for containing its spread in a population. Recent mathematical models are aimed at studying dynamics of some specific types of infectious diseases. In this paper we propose a new model for infectious diseases spread having susceptible, infected, and recovered populations and study its dynamics in presence of incubation delays and relapse of the disease. The influence of treatment and vaccination efforts on the spread of infection in presence of time delays are studied. Sufficient conditions for local stability of the equilibria and change of stability are derived in various cases. The problem of global stability is studied for an important special case of the model. Simulations carried out in this study brought out the importance of treatment rate in controlling the disease spread. It is observed that incubation delays have influence on the system even under enhanced vaccination. The present study has clearly brought out the fact that treatment rate even in presence of time delays would contain the disease as compared to popular belief that eradication can only be done through vaccination

  13. Understanding Service-Oriented Systems Using Dynamic Analysis

    NARCIS (Netherlands)

    Espinha, T.; Zaidman, A.; Gross, H.G.

    2011-01-01

    When trying to understand a system that is based on the principles of Service-Oriented Architecture (SOA), it is typically not enough to understand the individual services in the architecture, but also the interactions between the services. In this paper, we present a technique based on dynamic

  14. Dynamic computed tomography findings in cerebrovascular diseases

    International Nuclear Information System (INIS)

    Araki, Yutaka; Tomoda, Kaname; Kariya, Mitsumasa; Mori, Shigeru; Mitomo, Masanori.

    1988-01-01

    Dynamic CT was performed with 41 patients with the clinically diagnosed cerebrovascular diseases. A visual evaluation based on the dynamic CT images classified six patterns of brain parenchymal enhancement, especially four patterns of which could only be detected by dynamic CT technique. Dynamic CT was proved of great value in detecting regional cerebral tissue filled by collaterals in retrograde fashion because of the occlusion of main arteries, namely brain tissue perfusion of internal carotid occlusion disease and moyamoya disease was best understood by dynamic CT with adequate resolution. (author)

  15. Understanding Digital Learning from the Perspective of Systems Dynamics

    Science.gov (United States)

    Kok, Ayse

    2009-01-01

    The System Dynamics approach can be seen as a new way of understanding dynamical phenonema (natural, physical, biological, etc.) that occur in our daily lives taking into consideration not only single pairs of cause-effect variables, but the functioning of the system as a whole. This approach also provides the students with a new understanding in…

  16. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology.

    Science.gov (United States)

    Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H

    2017-05-05

    Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  17. Ideas and things: understanding the dynamic dimension of intellectual capital

    NARCIS (Netherlands)

    Christiaan Stam

    2010-01-01

    In today’s intellectual capital literature, we see a shift from identifying intangibles towards understanding the dynamics of value creation. As it is not clear what “dynamic” stands for, the aim of this explorative and conceptual paper is to contribute to a better understanding of the dynamic

  18. Understanding the HIV coreceptor switch from a dynamical perspective

    Directory of Open Access Journals (Sweden)

    Kamp Christel

    2009-11-01

    Full Text Available Abstract Background The entry of HIV into its target cells is facilitated by the prior binding to the cell surface molecule CD4 and a secondary coreceptor, mostly the chemokine receptors CCR5 or CXCR4. In early infection CCR5-using viruses (R5 viruses are mostly dominant while a receptor switch towards CXCR4 occurs in about 50% of the infected individuals (X4 viruses which is associated with a progression of the disease. There are many hypotheses regarding the underlying dynamics without yet a conclusive understanding. Results While it is difficult to isolate key factors in vivo we have developed a minimal in silico model based on the approaches of Nowak and May to investigate the conditions under which the receptor switch occurs. The model allows to investigate the evolution of viral strains within a probabilistic framework along the three stages of disease from primary and latent infection to the onset of AIDS with a a sudden increase in viral load which goes along with the impairment of the immune response. The model is specifically applied to investigate the evolution of the viral quasispecies in terms of R5 and X4 viruses which directly translates into the composition of viral load and consequently the question of the coreceptor switch. Conclusion The model can explain the coreceptor switch as a result of a dynamical change in the underlying environmental conditions in the host. The emergence of X4 strains does not necessarily result in the dominance of X4 viruses in viral load which is more likely to occur in the model after some time of chronic infection. A better understanding of the conditions leading to the coreceptor switch is especially of interest as CCR5 blockers have recently been licensed as drugs which suppress R5 viruses but do not seem to necessarily induce a coreceptor switch.

  19. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    Science.gov (United States)

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  20. Understanding the disease of addiction.

    Science.gov (United States)

    Detar, D Todd

    2011-03-01

    Addiction is a chronic brain disease. Drug addiction manifests as a compulsive obsession to use a substance despite serious detrimental and sometimes irreversible consequences. Drug addiction is not the same as drug dependency because dependency may not manifest as an addictive behavior. This problem is fundamental to understanding the disease of addiction. This article discusses the neurobiology and genetics of drug addiction. Copyright © 2011. Published by Elsevier Inc.

  1. Understanding Parkinson Disease: A Complex and Multifaceted Illness.

    Science.gov (United States)

    Gopalakrishna, Apoorva; Alexander, Sheila A

    2015-12-01

    Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.

  2. The Role of Caretakers in Disease Dynamics

    Science.gov (United States)

    Noble, Charleston; Bagrow, James P.; Brockmann, Dirk

    2013-08-01

    One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals. We find that, for both homogeneous networks and networks possessing large topological variability, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.

  3. Understanding the natural history of Gaucher disease.

    Science.gov (United States)

    Mistry, Pramod K; Belmatoug, Nadia; vom Dahl, Stephan; Giugliani, Roberto

    2015-07-01

    Gaucher disease is a rare and extraordinarily heterogeneous inborn error of metabolism that exhibits diverse manifestations, a broad range of age of onset of symptoms, and a wide clinical spectrum of disease severity, from lethal disease during infancy to first age of onset of symptoms in octogenarians. Before the advent of the International Collaborative Gaucher Group (ICGG) Gaucher Registry, the understanding of the natural history and phenotypic range of Gaucher disease was based on isolated case reports and small case series. Limited data hindered understanding of the full spectrum of the disease leading to some early misconceptions about Gaucher disease, notably, that nonneuronopathic (type 1) disease was a disease of adults only. The global scope of the ICGG Gaucher Registry, with its vast body of longitudinal data, has enabled a real appreciation of both the phenotypic spectrum of Gaucher disease and its natural history. This body of evidence represents the foundation for accurate assessment of the response to specific therapies for Gaucher disease and to the development of standard-of-care to monitor disease activity. Here, we outline the key developments in delineating the natural history of this highly complex disease and role of the ICGG Gaucher Registry in this effort. © 2015 Wiley Periodicals, Inc.

  4. Developing stochastic epidemiological models to quantify the dynamics of infectious diseases in domestic livestock.

    Science.gov (United States)

    MacKenzie, K; Bishop, S C

    2001-08-01

    A stochastic model describing disease transmission dynamics for a microparasitic infection in a structured domestic animal population is developed and applied to hypothetical epidemics on a pig farm. Rational decision making regarding appropriate control strategies for infectious diseases in domestic livestock requires an understanding of the disease dynamics and risk profiles for different groups of animals. This is best achieved by means of stochastic epidemic models. Methodologies are presented for 1) estimating the probability of an epidemic, given the presence of an infected animal, whether this epidemic is major (requires intervention) or minor (dies out without intervention), and how the location of the infected animal on the farm influences the epidemic probabilities; 2) estimating the basic reproductive ratio, R0 (i.e., the expected number of secondary cases on the introduction of a single infected animal) and the variability of the estimate of this parameter; and 3) estimating the total proportion of animals infected during an epidemic and the total proportion infected at any point in time. The model can be used for assessing impact of altering farm structure on disease dynamics, as well as disease control strategies, including altering farm structure, vaccination, culling, and genetic selection.

  5. Understanding and Modeling Teams As Dynamical Systems

    Science.gov (United States)

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  6. Understanding gene functions and disease mechanisms

    DEFF Research Database (Denmark)

    Fuchs, Helmut; Aguilar-Pimentel, Juan Antonio; Amarie, Oana V.

    2018-01-01

    Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order...... to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas...

  7. Understanding the Entrepreneurial Process: a Dynamic Approach

    Directory of Open Access Journals (Sweden)

    Vânia Maria Jorge Nassif

    2010-04-01

    Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.

  8. Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach

    Science.gov (United States)

    Johnson, Leah R.; Ben-Horin, Tal; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.

    2015-01-01

    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15°C to 25°C; fecundity across all temperatures, but especially ~25–32°C; mortality from 20°C to 30°C; parasite development rate at ~15–16°C and again at ~33–35°C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.

  9. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  10. Understanding the dynamics of parent involvement in schooling ...

    African Journals Online (AJOL)

    Erna Kinsey

    A qualitative study was undertaken to understand the realities and dynamics facing parents when attempting to be ... programmatic efforts for promoting children's adjustment and com- ... then conducted with six parents of two community-based support .... included in important issues regarding the education of their children.

  11. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  12. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  13. What an understanding of the dynamics of gossip has to teach about group dynamics and group leadership.

    Science.gov (United States)

    Gans, Jerome S

    2014-01-01

    Although what transpires in group therapy is not gossip per se-except perhaps when absent or former members are discussed-listening to group interaction through an understanding of the dynamics of gossip can contribute to a greater appreciation of group dynamics and group leadership as well as enlarge therapeutic space. After examining the interpersonal dynamics of gossip, this paper discusses six ways in which an understanding of these dynamics can inform group leadership and shed light on group psychotherapy. Central features of gossip that appear in group interactions are explored: These include projection, displacement, self-esteem regulation, clarification of motivation, unself-consciousness, social comparison and bonding, avoidance of psychic pain, and making the ego-syntonic dystonic. The lively use of imagination in the mature phase of group therapy is conceived of as the time when the darker side of human nature-imagined gossip harnessed for therapeutic purposes-can be welcomed in and processed in a kind, playful, and compassionate manner.

  14. Dynamic diseases in neurology and psychiatry

    Science.gov (United States)

    Milton, John; Black, Deborah

    1995-03-01

    Thirty-two (32) periodic diseases of the nervous system are identified in which symptoms and/or signs recur. In 10/32, the recurrence of a symptom complex is one of the defining features of the illness, whereas in 22/32 oscillatory signs occur in the setting of an ongoing nervous system disorder. We discuss the possibility that these disorders may be dynamic diseases.

  15. Evaluation of bone diseases using dynamic bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Machiko; Tamura, Kenji; Hamada, Tatsumi; Ishida, Osamu [Kinki Univ., Higashi-Osaka, Osaka (Japan); Kajita, Akiyoshi

    1983-12-01

    Dynamic bone scintigraphy with sup(99m)Tc-EHDP was performed on 96 patients with various bone diseases. The dynamic scintigrams obtained were then used to aid in the differential diagnosis of malignant (49 cases) and benign (8 cases) diseases. Short-term local deposition of the tracer in all cases of malignant bone diseases was observed in vascular (10-40 sec. after injection), and blood pool (1-3 min. after injection) phases. In the cases of malignant bone tumors where osteosclerotic lesions were present, tracer accumulation appeared in the blood pool phase. If osteolytic lesions were present, accumulation appeared in the vascular phase, and when the lesion was larger than 2 cm, accumulation was frequently found in the arterial phase. Scintigraphic differentiation of early primary and metastatic bone tumors from other lesions was facilitated by performing the dynamic scintigraphy with sup(99m)Tc-EHDP. Dynamic bone scintigraphy also allowed early diagnosis of avascular necrosis (14 cases) prior to the appearance of minimally abnormal X-ray findings, especially in cases of corticosteroid-induced necrosis.

  16. Understanding dynamics using sensitivity analysis: caveat and solution

    Science.gov (United States)

    2011-01-01

    Background Parametric sensitivity analysis (PSA) has become one of the most commonly used tools in computational systems biology, in which the sensitivity coefficients are used to study the parametric dependence of biological models. As many of these models describe dynamical behaviour of biological systems, the PSA has subsequently been used to elucidate important cellular processes that regulate this dynamics. However, in this paper, we show that the PSA coefficients are not suitable in inferring the mechanisms by which dynamical behaviour arises and in fact it can even lead to incorrect conclusions. Results A careful interpretation of parametric perturbations used in the PSA is presented here to explain the issue of using this analysis in inferring dynamics. In short, the PSA coefficients quantify the integrated change in the system behaviour due to persistent parametric perturbations, and thus the dynamical information of when a parameter perturbation matters is lost. To get around this issue, we present a new sensitivity analysis based on impulse perturbations on system parameters, which is named impulse parametric sensitivity analysis (iPSA). The inability of PSA and the efficacy of iPSA in revealing mechanistic information of a dynamical system are illustrated using two examples involving switch activation. Conclusions The interpretation of the PSA coefficients of dynamical systems should take into account the persistent nature of parametric perturbations involved in the derivation of this analysis. The application of PSA to identify the controlling mechanism of dynamical behaviour can be misleading. By using impulse perturbations, introduced at different times, the iPSA provides the necessary information to understand how dynamics is achieved, i.e. which parameters are essential and when they become important. PMID:21406095

  17. Understanding conflict’s dynamics in participatory natural resources management

    NARCIS (Netherlands)

    Idrissou, L.; Aarts, M.N.C.; Leeuwis, C.; Paassen, van A.

    2018-01-01

    This paper investigated conflicts in participatory protected areas management in Benin to better understand their dynamics. This review paper is based on four articles written from three case-studies of conflicts that emerged and evolved in participatory protected areas management in Benin and a

  18. Adaptive contact networks change effective disease infectiousness and dynamics.

    Science.gov (United States)

    Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M

    2010-08-19

    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).

  19. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.

    Science.gov (United States)

    Rubino, V; Rosakis, A J; Lapusta, N

    2017-06-29

    Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

  20. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  1. Scaling up complexity in host-pathogens interaction models. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Aguiar, Maíra

    2015-12-01

    Caused by micro-organisms that are pathogenic to the host, infectious diseases have caused debilitation and premature death to large portions of the human population, leading to serious social-economic concerns. The persistence and increase in the occurrence of infectious diseases as well the emergence or resurgence of vector-borne diseases are closely related with demographic factors such as the uncontrolled urbanization and remarkable population growth, political, social and economical changes, deforestation, development of resistance to insecticides and drugs and increased human travel. In recent years, mathematical modeling became an important tool for the understanding of infectious disease epidemiology and dynamics, addressing ideas about the components of host-pathogen interactions. Acting as a possible tool to understand, predict the spread of infectious diseases these models are also used to evaluate the introduction of intervention strategies like vector control and vaccination. Many scientific papers have been published recently on these topics, and most of the models developed try to incorporate factors focusing on several different aspects of the disease (and eventually biological aspects of the vector), which can imply rich dynamic behavior even in the most basic dynamical models. As one example to be cited, there is a minimalistic dengue model that has shown rich dynamic structures, with bifurcations (Hopf, pitchfork, torus and tangent bifurcations) up to chaotic attractors in unexpected parameter regions [1,2], which was able to describe the large fluctuations observed in empirical outbreak data [3,4].

  2. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington's Disease and Myotonic Dystrophy Type 1.

    Science.gov (United States)

    Chen, Jonathan L; VanEtten, Damian M; Fountain, Matthew A; Yildirim, Ilyas; Disney, Matthew D

    2017-07-11

    RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.

  3. Can Dynamic Visualizations Improve Middle School Students' Understanding of Energy in Photosynthesis?

    Science.gov (United States)

    Ryoo, Kihyun; Linn, Marcia C.

    2012-01-01

    Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…

  4. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    Science.gov (United States)

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  5. Challenges and opportunities for improved understanding of regional climate dynamics

    Science.gov (United States)

    Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga

    2018-01-01

    Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

  6. Stochastic dynamics for reinfection by transmitted diseases

    Science.gov (United States)

    Barros, Alessandro S.; Pinho, Suani T. R.

    2017-06-01

    The use of stochastic models to study the dynamics of infectious diseases is an important tool to understand the epidemiological process. For several directly transmitted diseases, reinfection is a relevant process, which can be expressed by endogenous reactivation of the pathogen or by exogenous reinfection due to direct contact with an infected individual (with smaller reinfection rate σ β than infection rate β ). In this paper, we examine the stochastic susceptible, infected, recovered, infected (SIRI) model simulating the endogenous reactivation by a spontaneous reaction, while exogenous reinfection by a catalytic reaction. Analyzing the mean-field approximations of a site and pairs of sites, and Monte Carlo (MC) simulations for the particular case of exogenous reinfection, we obtained continuous phase transitions involving endemic, epidemic, and no transmission phases for the simple approach; the approach of pairs is better to describe the phase transition from endemic phase (susceptible, infected, susceptible (SIS)-like model) to epidemic phase (susceptible, infected, and removed or recovered (SIR)-like model) considering the comparison with MC results; the reinfection increases the peaks of outbreaks until the system reaches endemic phase. For the particular case of endogenous reactivation, the approach of pairs leads to a continuous phase transition from endemic phase (SIS-like model) to no transmission phase. Finally, there is no phase transition when both effects are taken into account. We hope the results of this study can be generalized for the susceptible, exposed, infected, and removed or recovered (SEIRIE) model, for which the state exposed (infected but not infectious), describing more realistically transmitted diseases such as tuberculosis. In future work, we also intend to investigate the effect of network topology on phase transitions when the SIRI model describes both transmitted diseases (σ social contagions (σ >1 ).

  7. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    Directory of Open Access Journals (Sweden)

    David J. Klinke

    2012-01-01

    type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  8. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    Understanding gene expression in coronary artery disease through global profiling, network analysis ... A_33_P3249595 B-cell CLL/lymphoma 11A (zinc finger protein). BCL11A. 2.29 ..... It acts as a cytoplasmic sensor for viral infection and ...

  9. Neutrophil programming dynamics and its disease relevance.

    Science.gov (United States)

    Ran, Taojing; Geng, Shuo; Li, Liwu

    2017-11-01

    Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

  10. Integrating survey and molecular approaches to better understand wildlife disease ecology.

    Directory of Open Access Journals (Sweden)

    Brendan D Cowled

    Full Text Available Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design versus transmission (molecular case series study design and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%. The median Salmonella DICE coefficient (or Salmonella genetic similarity was 52% (interquartile range [IQR]: 42-62%. Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is

  11. Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

    Science.gov (United States)

    Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.

    2012-01-01

    Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by

  12. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  13. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases.

    Directory of Open Access Journals (Sweden)

    Christine Tempelaere

    Full Text Available MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases.Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI.The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear and without tears (tendinopathy (p = 0.012. The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm than in normals (3.4mm (p = 0.02. The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm and supraspinatus tear (9.3 mm shoulders compared to normals (3.5mm and tendinopathy (4.8mm shoulders (p = 0.05.The Dynamic MRI enabled a novel measure; 'Looseness', i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position.

  14. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng; Bougouffa, Salim; Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  15. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  16. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  17. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography.

    Science.gov (United States)

    Nonnekes, Jorik; de Kam, Digna; Geurts, Alexander C H; Weerdesteyn, Vivian; Bloem, Bastiaan R

    2013-12-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also improve our ability to timely identify patients at risk of falling. Dynamic posturography is a promising avenue to achieve these goals. The latest moveable platforms can deliver 'real-life' balance perturbations, permitting study of everyday fall circumstances. Dynamic posturography studies have shown that PD patients have fundamental problems in scaling their postural responses in accordance with the need of the actual balance task at hand. On-going studies evaluate the predictive ability of impaired posturography performance for daily life falls. We also review recent work aimed at exploring balance correcting steps in PD, and the presumed interaction between startle pathways and postural responses.

  18. Dynamics of epidemic diseases on a growing adaptive network.

    Science.gov (United States)

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-10

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  19. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  20. Understanding gene expression in coronary artery disease through ...

    Indian Academy of Sciences (India)

    Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. Prathima ... Table 2. Differentially expressed genes in CAD compared to age and gender matched controls. .... Regulation of nuclear pre-mRNA domain containing 1A.

  1. Integrating the social sciences to understand human-water dynamics

    Science.gov (United States)

    Carr, G.; Kuil, L., Jr.

    2017-12-01

    Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that

  2. Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples

    Science.gov (United States)

    Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun

    2014-01-01

    System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…

  3. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    This paper discusses the development and safety evaluation of a nuclear waste geologic repository. Scientific understanding dependent upon information from a number of geoscience disciplines is described. A discussion is given on the dynamic use of the information through the different stages. The authors point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure

  4. Level of understanding of Alzheimer disease among caregivers and the general population.

    Science.gov (United States)

    Jorge, C; Cetó, M; Arias, A; Blasco, E; Gil, M P; López, R; Dakterzada, F; Purroy, F; Piñol-Ripoll, G

    2018-05-11

    Understanding of Alzheimer disease is fundamental for early diagnosis and to reduce caregiver burden. The objective of this study is to evaluate the degree of understanding of Alzheimer disease among informal caregivers and different segments of the general population through the Alzheimer's Disease Knowledge Scale. We assessed the knowledge of caregivers in different follow-up periods (less than one year, between 1 and 5 years, and over 5 years since diagnosis) and individuals from the general population. Alzheimer's Disease Knowledge Scale scores were grouped into different items: life impact, risk factors, symptoms, diagnosis, treatment, disease progression, and caregiving. A total of 419 people (215 caregivers and 204 individuals from the general population) were included in the study. No significant differences were found between groups for overall Alzheimer's Disease Knowledge Scale score (19.1 vs. 18.8, P = .9). There is a scarce knowledge of disease risk factors (49.3%) or the care needed (51.2%), while symptoms (78.6%) and course of the disease (77.2%) were the best understood aspects. Older caregiver age was correlated with worse Alzheimer's Disease Knowledge Scale scores overall and for life impact, symptoms, treatment, and disease progression (P < .05). Time since diagnosis improved caregivers' knowledge of Alzheimer disease symptoms (P = .00) and diagnosis (P = .05). Assessing the degree of understanding of Alzheimer disease is essential to the development of health education strategies both in the general population and among caregivers. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Coupled contagion dynamics of fear and disease: mathematical and computational explorations.

    Directory of Open Access Journals (Sweden)

    Joshua M Epstein

    Full Text Available BACKGROUND: In classical mathematical epidemiology, individuals do not adapt their contact behavior during epidemics. They do not endogenously engage, for example, in social distancing based on fear. Yet, adaptive behavior is well-documented in true epidemics. We explore the effect of including such behavior in models of epidemic dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Using both nonlinear dynamical systems and agent-based computation, we model two interacting contagion processes: one of disease and one of fear of the disease. Individuals can "contract" fear through contact with individuals who are infected with the disease (the sick, infected with fear only (the scared, and infected with both fear and disease (the sick and scared. Scared individuals--whether sick or not--may remove themselves from circulation with some probability, which affects the contact dynamic, and thus the disease epidemic proper. If we allow individuals to recover from fear and return to circulation, the coupled dynamics become quite rich, and can include multiple waves of infection. We also study flight as a behavioral response. CONCLUSIONS/SIGNIFICANCE: In a spatially extended setting, even relatively small levels of fear-inspired flight can have a dramatic impact on spatio-temporal epidemic dynamics. Self-isolation and spatial flight are only two of many possible actions that fear-infected individuals may take. Our main point is that behavioral adaptation of some sort must be considered.

  6. Progress toward an integrated understanding of Parkinson's disease [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Maxime W.C. Rousseaux

    2017-07-01

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder after Alzheimer's disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i advances in our understanding of disease susceptibility, (ii improved knowledge of cellular dysfunction, and (iii insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.

  7. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are nonequilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networkshemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to

  8. Stress and Systemic Inflammation: Yin-Yang Dynamics in Health and Diseases.

    Science.gov (United States)

    Yan, Qing

    2018-01-01

    Studies in psychoneuroimmunology (PNI) would provide better insights into the "whole mind-body system." Systems biology models of the complex adaptive systems (CASs), such as a conceptual framework of "Yin-Yang dynamics," may be helpful for identifying systems-based biomarkers and targets for more effective prevention and treatment. The disturbances in the Yin-Yang dynamical balance may result in stress, inflammation, and various disorders including insomnia, Alzheimer's disease, obesity, diabetes, cardiovascular diseases, skin disorders, and cancer. At the molecular and cellular levels, the imbalances in the cytokine pathways, mitochondria networks, redox systems, and various signaling pathways may contribute to systemic inflammation. In the nervous system, Yin and Yang may represent the dynamical associations between the progressive and regressive processes in aging and neurodegenerative diseases. In response to the damages to the heart, the Yin-Yang dynamical balance between proinflammatory and anti-inflammatory cytokine networks is crucial. The studies of cancer have revealed the importance of the Yin-Yang dynamics in the tumoricidal and tumorigenic activities of the immune system. Stress-induced neuroimmune imbalances are also essential in chronic skin disorders including atopic dermatitis and psoriasis. With the integrative framework, the restoration of the Yin-Yang dynamics can become the objective of dynamical systems medicine.

  9. How evolutionary principles improve the understanding of human health and disease.

    Science.gov (United States)

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  10. Computer Assisted Comprehension of Distant Worlds: Understanding Hunger Dynamics in Africa.

    Science.gov (United States)

    Moseley, William G.

    2001-01-01

    Describes a computer program called RiskMap. Explains that after completing an assignment on rural economics and hunger dynamics in Africa, students showed an increased level of understanding and felt that using RiskMap was helpful in learning the material. Includes references. (DAJ)

  11. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs

  12. Perceptions of risk: understanding cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Ruth Webster

    2010-09-01

    Full Text Available Ruth Webster1, Emma Heeley21Cardiovascular Division, 2Neurological and Mental Health Division, The George Institute for International Health, Camperdown, NSW, AustraliaAbstract: Cardiovascular disease (CVD is still the leading cause of death and disability worldwide despite the availability of well-established and effective preventive options. Accurate perception of a patient’s risk by both the patient and the doctors is important as this is one of the components that determine health-related behavior. Doctors tend to not use cardiovascular (CV risk calculators and underestimate the absolute CV risk of their patients. Patients show optimistic bias when considering their own risk and consistently underestimate it. Poor patient health literacy and numeracy must be considered when thinking about this problem. Patients must possess a reasonably high level of understanding of numerical processes when doctors discuss risk, a level that is not possessed by large numbers of the population. In order to overcome this barrier, doctors need to utilize various tools including the appropriate use of visual aids to accurately communicate risk with their patients. Any intervention has been shown to be better than nothing in improving health understanding. The simple process of repeatedly conveying risk information to a patient has been shown to improve accuracy of risk perception. Doctors need to take responsibility for the accurate assessment and effective communication of CV risk in their patients in order to improve patient uptake of cardioprotective lifestyle choices and preventive medications.Keywords: risk perception, cardiovascular disease, cardioprotective lifestyle

  13. Understanding bicycling in cities using system dynamics modelling.

    Science.gov (United States)

    Macmillan, Alexandra; Woodcock, James

    2017-12-01

    Increasing urban bicycling has established net benefits for human and environmental health. Questions remain about which policies are needed and in what order, to achieve an increase in cycling while avoiding negative consequences. Novel ways of considering cycling policy are needed, bringing together expertise across policy, community and research to develop a shared understanding of the dynamically complex cycling system. In this paper we use a collaborative learning process to develop a dynamic causal model of urban cycling to develop consensus about the nature and order of policies needed in different cycling contexts to optimise outcomes. We used participatory system dynamics modelling to develop causal loop diagrams (CLDs) of cycling in three contrasting contexts: Auckland, London and Nijmegen. We combined qualitative interviews and workshops to develop the CLDs. We used the three CLDs to compare and contrast influences on cycling at different points on a "cycling trajectory" and drew out policy insights. The three CLDs consisted of feedback loops dynamically influencing cycling, with significant overlap between the three diagrams. Common reinforcing patterns emerged: growing numbers of people cycling lifts political will to improve the environment; cycling safety in numbers drives further growth; and more cycling can lead to normalisation across the population. By contrast, limits to growth varied as cycling increases. In Auckland and London, real and perceived danger was considered the main limit, with added barriers to normalisation in London. Cycling congestion and "market saturation" were important in the Netherlands. A generalisable, dynamic causal theory for urban cycling enables a more ordered set of policy recommendations for different cities on a cycling trajectory. Participation meant the collective knowledge of cycling stakeholders was represented and triangulated with research evidence. Extending this research to further cities, especially in low

  14. Determining T-cell specificity to understand and treat disease

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Newell, Evan W.

    2017-01-01

    Adaptive immune responses and immunopathogeneses are based on the ability of T cells to respond to specific antigens. Consequently, understanding T-cell recognition patterns in health and disease involves studying the complexity and genetic heterogeneity of the antigen recognition pathway, which...

  15. An Evaluation of the Training Program: "The Alzheimer's Disease Afflicted: Understanding the Disease and the Resident."

    Science.gov (United States)

    Miah, M. Mizanur Rahman

    This study was undertaken to evaluate a training program on understanding Alzheimer's disease for nursing home caregivers of those with the disease. A pretest/posttest design control group methodology was used to evaluate 81 staff members. Results of the study showed that: (1) staff satisfaction with working with mentally impaired and demented…

  16. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.

    Science.gov (United States)

    Krylova, Olga; Earn, David J D

    2013-07-06

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced 'susceptible-exposed-infectious-removed' (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible-infectious-removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.

  17. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, Thierry M.; Richardson, Laurie L.; Reynolds, T.L.; Willis, Bette L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  18. Interacting opinion and disease dynamics in multiplex networks: Discontinuous phase transition and nonmonotonic consensus times

    Science.gov (United States)

    Velásquez-Rojas, Fátima; Vazquez, Federico

    2017-05-01

    Opinion formation and disease spreading are among the most studied dynamical processes on complex networks. In real societies, it is expected that these two processes depend on and affect each other. However, little is known about the effects of opinion dynamics over disease dynamics and vice versa, since most studies treat them separately. In this work we study the dynamics of the voter model for opinion formation intertwined with that of the contact process for disease spreading, in a population of agents that interact via two types of connections, social and contact. These two interacting dynamics take place on two layers of networks, coupled through a fraction q of links present in both networks. The probability that an agent updates its state depends on both the opinion and disease states of the interacting partner. We find that the opinion dynamics has striking consequences on the statistical properties of disease spreading. The most important is that the smooth (continuous) transition from a healthy to an endemic phase observed in the contact process, as the infection probability increases beyond a threshold, becomes abrupt (discontinuous) in the two-layer system. Therefore, disregarding the effects of social dynamics on epidemics propagation may lead to a misestimation of the real magnitude of the spreading. Also, an endemic-healthy discontinuous transition is found when the coupling q overcomes a threshold value. Furthermore, we show that the disease dynamics delays the opinion consensus, leading to a consensus time that varies nonmonotonically with q in a large range of the model's parameters. A mean-field approach reveals that the coupled dynamics of opinions and disease can be approximately described by the dynamics of the voter model decoupled from that of the contact process, with effective probabilities of opinion and disease transmission.

  19. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    Science.gov (United States)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  20. Understanding the Dynamics of EngagingIinteraction in Public Spaces

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Dindler, Christian; Halskov, Kim

    We present an analysis of three interactive installations in public spaces, in terms of their support of engagement as an evolving process. In particular, we focus on how engagement unfolds as a dynamic process that may be understood in terms of evolving relations between cultural, physical......, content-related, and social elements of interactive environments. These elements are explored through the literature on engagement with interaction design, and it is argued that, although valuable contributions have been made towards understanding engagement with interactive environments, the ways...

  1. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    NARCIS (Netherlands)

    Ziech, M. L. W.; Lavini, C.; Caan, M. W. A.; Nio, C. Y.; Stokkers, P. C. F.; Bipat, S.; Ponsioen, C. Y.; Nederveen, A. J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of

  2. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    Science.gov (United States)

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  3. Understandings of psychological difficulties in people with the Huntington's disease gene and their expectations of psychological therapy.

    Science.gov (United States)

    Theed, Rachael; Eccles, Fiona J R; Simpson, Jane

    2018-06-01

    This study sought to investigate how people who had tested positive for the Huntington's disease (HD) gene mutation understood and experienced psychological distress and their expectations of psychological therapy. A qualitative methodology was adopted involving semi-structured interviews and interpretative phenomenological analysis (IPA). A total of nine participants (five women and four men) who had opted to engage in psychological therapy were recruited and interviewed prior to the start of this particular psychological therapeutic intervention. Interviews were transcribed verbatim and analysed using IPA whereby themes were analysed within and across transcripts and classified into superordinate themes. Three superordinate themes were developed: Attributing psychological distress to HD: 'you're blaming everything on that now'; Changes in attributions of distress over time: 'in the past you'd just get on with it'; and Approaching therapy with an open mind, commitment, and hope: 'a light at the end of the tunnel'. Understandings of psychological distress in HD included biological and psychological explanations, with both often being accepted simultaneously by the same individual but with biomedical accounts generally dominating. Individual experience seemed to reflect a dynamic process whereby people's understanding and experience of their distress changed over time. Psychological therapy was accepted as a positive alternative to medication, providing people with HD with hope that their psychological well-being could be enhanced. People with the Huntington's disease gene mutation have largely biomedical understandings of their psychological distress. This largely biomedical understanding does not, however, preclude them for being interested in the potential gains resulting from psychological therapy. The mechanisms of psychological therapy should be explained in detail before therapy and explored along with current attributions of distress. © 2017 The British

  4. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments

    Science.gov (United States)

    Kwakwa, Kristin A.; Vanderburgh, Joseph P.; Guelcher, Scott A.

    2018-01-01

    Purpose of Review Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. Recent Findings 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. Summary 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes. PMID:28646444

  5. Skipping Posterior Dynamic Transpedicular Stabilization for Distant Segment Degenerative Disease

    Directory of Open Access Journals (Sweden)

    Bilgehan Solmaz

    2012-01-01

    Full Text Available Objective. To date, there is still no consensus on the treatment of spinal degenerative disease. Current surgical techniques to manage painful spinal disorders are imperfect. In this paper, we aimed to evaluate the prospective results of posterior transpedicular dynamic stabilization, a novel surgical approach that skips the segments that do not produce pain. This technique has been proven biomechanically and radiologically in spinal degenerative diseases. Methods. A prospective study of 18 patients averaging 54.94 years of age with distant spinal segment degenerative disease. Indications consisted of degenerative disc disease (57%, herniated nucleus pulposus (50%, spinal stenosis (14.28%, degenerative spondylolisthesis (14.28%, and foraminal stenosis (7.1%. The Oswestry Low-Back Pain Disability Questionnaire and visual analog scale (VAS for pain were recorded preoperatively and at the third and twelfth postoperative months. Results. Both the Oswestry and VAS scores showed significant improvement postoperatively (P<0.05. We observed complications in one patient who had spinal epidural hematoma. Conclusion. We recommend skipping posterior transpedicular dynamic stabilization for surgical treatment of distant segment spinal degenerative disease.

  6. Mean-field modeling approach for understanding epidemic dynamics in interconnected networks

    International Nuclear Information System (INIS)

    Zhu, Guanghu; Fu, Xinchu; Tang, Qinggan; Li, Kezan

    2015-01-01

    Modern systems (e.g., social, communicant, biological networks) are increasingly interconnected each other formed as ‘networks of networks’. Such complex systems usually possess inconsistent topologies and permit agents distributed in different subnetworks to interact directly/indirectly. Corresponding dynamics phenomena, such as the transmission of information, power, computer virus and disease, would exhibit complicated and heterogeneous tempo-spatial patterns. In this paper, we focus on the scenario of epidemic spreading in interconnected networks. We intend to provide a typical mean-field modeling framework to describe the time-evolution dynamics, and offer some mathematical skills to study the spreading threshold and the global stability of the model. Integrating the research with numerical analysis, we are able to quantify the effects of networks structure and epidemiology parameters on the transmission dynamics. Interestingly, we find that the diffusion transition in the whole network is governed by a unique threshold, which mainly depends on the most heterogenous connection patterns of network substructures. Further, the dynamics is highly sensitive to the critical values of cross infectivity with switchable phases.

  7. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  8. Utility of dynamic computed tomography in diffuse liver diseases

    International Nuclear Information System (INIS)

    Fujikawa, Koichi; Inagawa, Akira; Yokoyama, Tatsushi; Iwamoto, Toshiyuki; Katayama, Hiroshi; Mori, Masaki; Ito, Katsuhide; Katsuta, Shizutomo.

    1985-01-01

    We tested the diagnostic abilities of dynamic CT in diffuse liver diseases. The material includes 23 cases of chronic active hepatitis (CAH), 32 cases of liver cirrhosis (LC) and 15 cases with normal liver. For each case, time-density curve was obtained from the right lobe of the liver. To allow numerical evaluation of the curve, gamma variate fit techniques were employed. Changes in the curves were analyzed by comparing three parameters-rise time (RT), decay time (DT) and corrected first moment (MC)-derived from two coefficients of the fitting equation. Values of three parameters increased with the severity of the diseases reflecting prolonged curves with delayed peak and gradual downslope in damaged livers. MC values showed most significant correlation with the degree of the diseases. High MC value (>95) were associated with 30 cases of LC and 3 cases of CHA, and moderate MC value (70< MC<=95) with 19 cases of CAH and 2 controls, and low MC value (<=70) with 15 controls and a case of CAH. We conclude that dynamic CT time-density study with gamma variate fitting is useful in the differential diagnosis of the diffuse liver diseases. (author)

  9. Using biological networks to improve our understanding of infectious diseases

    Directory of Open Access Journals (Sweden)

    Nicola J. Mulder

    2014-08-01

    Full Text Available Infectious diseases are the leading cause of death, particularly in developing countries. Although many drugs are available for treating the most common infectious diseases, in many cases the mechanism of action of these drugs or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that facilitate infection and disease progression are often not well understood. Since proteins do not work in isolation, understanding biological systems requires a better understanding of the interconnectivity between proteins in different pathways and processes, which includes both physical and other functional interactions. Such biological networks can be generated within organisms or between organisms sharing a common environment using experimental data and computational predictions. Though different data sources provide different levels of accuracy, confidence in interactions can be measured using interaction scores. Connections between interacting proteins in biological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from graph theory. There are many different applications of biological networks, and here we discuss three such applications, specifically applied to the infectious disease tuberculosis, with its causative agent Mycobacterium tuberculosis and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of networks for evolutionary studies, and the generation and use of host–pathogen interaction networks.

  10. The role of radiology in the evolution of the understanding of articular disease.

    Science.gov (United States)

    Huang, Mingqian; Schweitzer, Mark E

    2014-11-01

    Both the clinical practice of radiology and the journal Radiology have had an enormous effect on our understanding of articular disease. Early descriptions of osteoarthritis (OA) appeared in Radiology. More recently, advanced physiologic magnetic resonance (MR) techniques have furthered our understanding of the early prestructural changes in patients with OA. Sodium imaging, delayed gadolinium-enhanced MR imaging of cartilage, and spin-lattice relaxation in the rotating frame (or T1ρ) sequences have advanced understanding of the pathophysiology and pathoanatomy of OA. Many pioneering articles on rheumatoid arthritis (RA) also have been published in Radiology. In the intervening decades, our understanding of the natural history of RA has been altered by these articles. Many of the first descriptions of crystalline arthropathies, including gout, calcium pyrophosphate deposition, and hydroxyapatite deposition disease, appeared in Radiology.

  11. Geophysical fluid dynamics understanding (almost) everything with rotating shallow water models

    CERN Document Server

    Zeitlin, Vladimir

    2018-01-01

    The book explains the key notions and fundamental processes in the dynamics of the fluid envelopes of the Earth (transposable to other planets), and methods of their analysis, from the unifying viewpoint of rotating shallow-water model (RSW). The model, in its one- or two-layer versions, plays a distinguished role in geophysical fluid dynamics, having been used for around a century for conceptual understanding of various phenomena, for elaboration of approaches and methods, to be applied later in more complete models, for development and testing of numerical codes and schemes of data assimilations, and many other purposes. Principles of modelling of large-scale atmospheric and oceanic flows, and corresponding approximations, are explained and it is shown how single- and multi-layer versions of RSW arise from the primitive equations by vertical averaging, and how further time-averaging produces celebrated quasi-geostrophic reductions of the model. Key concepts of geophysical fluid dynamics are exposed and inte...

  12. Outbreak and Extinction Dynamics in a Stochastic Ebola Model

    Science.gov (United States)

    Nieddu, Garrett; Bianco, Simone; Billings, Lora; Forgoston, Eric; Kaufman, James

    A zoonotic disease is a disease that can be passed between animals and humans. In many cases zoonotic diseases can persist in the animal population even if there are no infections in the human population. In this case we call the infected animal population the reservoir for the disease. Ebola virus disease (EVD) and SARS are both notable examples of such diseases. There is little work devoted to understanding stochastic disease extinction and reintroduction in the presence of a reservoir. Here we build a stochastic model for EVD and explicitly consider the presence of an animal reservoir. Using a master equation approach and a WKB ansatz, we determine the associated Hamiltonian of the system. Hamilton's equations are then used to numerically compute the 12-dimensional optimal path to extinction, which is then used to estimate mean extinction times. We also numerically investigate the behavior of the model for dynamic population size. Our results provide an improved understanding of outbreak and extinction dynamics in diseases like EVD.

  13. Dynamic isotope studies in liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Weits, J

    1978-01-01

    Much information in the field of liver research has been gained by dynamic isotope studies. Clinically, these studies can help to settle selection criteria for different types of surgical shunt, which relieve the complications of portal hypertension. By performing splenoportoscintigraphy, splenic and portal vein thrombosis can be easily and safely excluded. So-called hypoxaemia of cirrhosis can most easily be diagnosed. Suprahepatic caval vein obstruction in a patient with cryptogenic liver disease is easily excluded by a radionuclide cavogram after injection of pertechnetate into a foot vein.

  14. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting.

    Directory of Open Access Journals (Sweden)

    Clement N Mweya

    Full Text Available Rift Valley Fever (RVF is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics.Time-varying distributed delays (TVDD and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district.Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.

  15. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting.

    Science.gov (United States)

    Mweya, Clement N; Holst, Niels; Mboera, Leonard E G; Kimera, Sharadhuli I

    2014-01-01

    Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.

  16. The vascular phenotype in pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification.

    Directory of Open Access Journals (Sweden)

    Georges eLeftheriotis

    2013-02-01

    Full Text Available Vascular calcification is a complex and dynamic process occurring in various physiological conditions such as aging and exercise or in acquired metabolic disorders like diabetes or chronic renal insufficiency. Arterial calcifications are also observed in several genetic diseases revealing the important role of unbalanced or defective anti- or pro-calcifying factors. Pseudoxanthoma elasticum (PXE is an inherited disease (OMIM 264800 characterized by elastic fiber fragmentation and calcification in various soft conjunctive tissues including the skin, eyes and arterial media. The PXE disease results from mutations in the ABCC6 gene, encoding an ATP-binding cassette transporter primarily expressed in the liver, kidneys suggesting that it is a prototypic metabolic soft-tissue calcifying disease of genetic origin. The clinical expression of the PXE arterial disease is characterized by an increased risk for coronary (myocardial infarction, cerebral (aneurysm and stroke and lower limb peripheral artery disease. However, the structural and functional changes in the arterial wall induced by PXE are still unexplained. The use of a recombinant mouse model inactivated for the Abcc6 gene is an important tool for the understanding of the PXE pathophysiology although the vascular impact in this model remains limited to date. Overlapping of the PXE phenotype with other inherited calcifying diseases could bring important informations to our comprehension of the PXE disease.

  17. Challenges in microbial ecology: Building predictive understanding of community function and dynamics

    DEFF Research Database (Denmark)

    Widder, Stefanie; Allen, Rosalind J.; Pfeiffer, Thomas

    2016-01-01

    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly...... complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development...... is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved....

  18. Systems thinking in combating infectious diseases.

    Science.gov (United States)

    Xia, Shang; Zhou, Xiao-Nong; Liu, Jiming

    2017-09-11

    The transmission of infectious diseases is a dynamic process determined by multiple factors originating from disease pathogens and/or parasites, vector species, and human populations. These factors interact with each other and demonstrate the intrinsic mechanisms of the disease transmission temporally, spatially, and socially. In this article, we provide a comprehensive perspective, named as systems thinking, for investigating disease dynamics and associated impact factors, by means of emphasizing the entirety of a system's components and the complexity of their interrelated behaviors. We further develop the general steps for performing systems approach to tackling infectious diseases in the real-world settings, so as to expand our abilities to understand, predict, and mitigate infectious diseases.

  19. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    International Nuclear Information System (INIS)

    Ziech, M.L.W.; Lavini, C.; Caan, M.W.A.; Nio, C.Y.; Stokkers, P.C.F.; Bipat, S.; Ponsioen, C.Y.; Nederveen, A.J.; Stoker, J.

    2012-01-01

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of gadobutrol, single shot fast spin echo sequence and 3D T1-weighted spoiled gradient echo sequence, a dynamic coronal 3D T1-weighted fast spoiled gradient were performed before and after gadobutrol. Maximum enhancement (ME) and initial slope of increase (ISI) were calculated for four colon segments (ascending colon + coecum, transverse colon, descending colon + sigmoid, rectum) and (neo)terminal ileum. C-reactive protein (CRP), Crohn's disease activity index (CDAI), per patient and per segment Crohn's disease endoscopic index of severity (CDEIS) and disease duration were determined. Mean values of the (DCE-)MRI parameters in each segment from each patient were compared between four disease activity groups (normal mucosa, non-ulcerative lesions, mild ulcerative and severe ulcerative disease) with Mann–Whitney test with Bonferroni adjustment. Spearman correlation coefficients were calculated for continuous variables. Results: Thirty-three patients were included (mean age 37 years; 23 females, median CDEIS 4.4). ME and ISI correlated weakly with segmental CDEIS (r = 0.485 and r = 0.206) and ME per patient correlated moderately with CDEIS (r = 0.551). ME was significantly higher in segments with mild (0.378) or severe (0.388) ulcerative disease compared to normal mucosa (0.304) (p < 0.001). No ulcerations were identified at conventional sequences. ME correlated with disease duration in diseased segments (r = 0.492), not with CDAI and CRP. Conclusions: DCE-MRI can be used as a method for detecting Crohn's disease ulcerative lesions.

  20. Asymmetric Dynamic Attunement of Speech and Gestures in the Construction of Children's Understanding.

    Science.gov (United States)

    De Jonge-Hoekstra, Lisette; Van der Steen, Steffie; Van Geert, Paul; Cox, Ralf F A

    2016-01-01

    As children learn they use their speech to express words and their hands to gesture. This study investigates the interplay between real-time gestures and speech as children construct cognitive understanding during a hands-on science task. 12 children (M = 6, F = 6) from Kindergarten (n = 5) and first grade (n = 7) participated in this study. Each verbal utterance and gesture during the task were coded, on a complexity scale derived from dynamic skill theory. To explore the interplay between speech and gestures, we applied a cross recurrence quantification analysis (CRQA) to the two coupled time series of the skill levels of verbalizations and gestures. The analysis focused on (1) the temporal relation between gestures and speech, (2) the relative strength and direction of the interaction between gestures and speech, (3) the relative strength and direction between gestures and speech for different levels of understanding, and (4) relations between CRQA measures and other child characteristics. The results show that older and younger children differ in the (temporal) asymmetry in the gestures-speech interaction. For younger children, the balance leans more toward gestures leading speech in time, while the balance leans more toward speech leading gestures for older children. Secondly, at the group level, speech attracts gestures in a more dynamically stable fashion than vice versa, and this asymmetry in gestures and speech extends to lower and higher understanding levels. Yet, for older children, the mutual coupling between gestures and speech is more dynamically stable regarding the higher understanding levels. Gestures and speech are more synchronized in time as children are older. A higher score on schools' language tests is related to speech attracting gestures more rigidly and more asymmetry between gestures and speech, only for the less difficult understanding levels. A higher score on math or past science tasks is related to less asymmetry between gestures and

  1. Modules, networks and systems medicine for understanding disease and aiding diagnosis

    DEFF Research Database (Denmark)

    Gustafsson, Mika; Nestor, Colm E.; Zhang, Huan

    2014-01-01

    Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics dat...

  2. Modules, networks and systems medicine for understanding disease and aiding diagnosis

    NARCIS (Netherlands)

    Gustafsson, Mika; Nestor, Colm E.; Zhang, Huan; Barabási, Albert-László; Baranzini, Sergio; Brunak, Sören; Chung, Kian Fan; Federoff, Howard J.; Gavin, Anne-Claude; Meehan, Richard R.; Picotti, Paola; Pujana, Miguel Àngel; Rajewsky, Nikolaus; Smith, Kenneth Gc; Sterk, Peter J.; Villoslada, Pablo; Benson, Mikael

    2014-01-01

    Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics data

  3. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Singh

    2018-04-01

    Full Text Available Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host–pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.

  4. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis

    Science.gov (United States)

    Lohr, Kathryn E.; Cameron, Caitlin M.; Williams, Dana E.; Peters, Esther C.

    2014-01-01

    The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys. PMID:25210660

  5. Human seizures couple across spatial scales through travelling wave dynamics

    Science.gov (United States)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  6. Hepatic blood flow mapping by dynamic CT method in liver diseases

    International Nuclear Information System (INIS)

    Sugano, Shigeo; Mizuyosi, Hideo; Okajima, Tsugio; Ishii, Kouji; Abei, Tohru; Machida, Keiichi

    1986-01-01

    Two parameters of dynamic CT, peak time (PT) and first moment (M1), were compared among healthy control, chronic hepatitis (CH) and liver cirrhosis (LC). The means of PT and M1 in each 9 (3 x 3) pixels on a slice of hepatic CT were computed and converted to gray spots by gray scale, so that deep gray represented high values and light gray low values of these parameters. The distribution of these gray spots in each pixels was depicted on the slice as a blood flow mapping, and it was compared among the groups. In normal control, dynamic CT showed the shortest PT and deep gray spots were distributed diffusely in the slice. In CH, where PT was longer than control, lighter gray spots were diffusely seen. LC had the longest PT and its mapping showed mottles of light gray and black, the latter indicating the presence of spots with scanty blood flow, scattering throughout the slice. The mapping of M1 gave almost the same picture as PT for each group, revieling that the disappearring time of the media in CH and LC was impaired in the same manner as in PT. This method of hepatic blood flow mapping was thought to be useful to add evidences for the understanding of abnormal blood flow in liver diseases. (author)

  7. Understanding vaginal microbiome complexity from an ecological perspective

    Science.gov (United States)

    Hickey, Roxana J.; Zhou, Xia; Pierson, Jacob D.; Ravel, Jacques; Forney, Larry J.

    2012-01-01

    The various microbiota normally associated with the human body have an important influence on human development, physiology, immunity, and nutrition. This is certainly true for the vagina wherein communities of mutualistic bacteria constitute the first line of defense for the host by excluding invasive, nonindigenous organisms that may cause disease. In recent years much has been learned about the bacterial species composition of these communities and how they differ between individuals of different ages and ethnicities. A deeper understanding of their origins and the interrelationships of constituent species is needed to understand how and why they change over time or in response to changes in the host environment. Moreover, there are few unifying theories to explain the ecological dynamics of vaginal ecosystems as they respond to disturbances caused by menses and human activities such as intercourse, douching, and other habits and practices. This fundamental knowledge is needed to diagnose and assess risk to disease. Here we summarize what is known about the species composition, structure, and function of bacterial communities in the human vagina and the applicability of ecological models of community structure and function to understanding the dynamics of this and other ecosystems that comprise the human microbiome. PMID:22683415

  8. Seasonality in cholera dynamics : a rainfall-driven model explains the wide range of patterns of an infectious disease in endemic areas

    Science.gov (United States)

    Baracchini, Theo; Pascual, Mercedes; King, Aaron A.; Bouma, Menno J.; Bertuzzo, Enrico; Rinaldo, Andrea

    2015-04-01

    An explanation for the spatial variability of seasonal cholera patterns has remained an unresolved problem in tropical medicine te{pascual_2002}. Previous studies addressing the role of climate drivers in disease dynamics have focused on interannual variability and modelled seasonality as given te{king_nature}. Explanations for seasonality have relied on complex environmental interactions that vary with spatial location (involving regional hydrological models te{bertuzzo_2012}, river discharge, sea surface temperature, and plankton blooms). Thus, no simple and unified theory based on local climate variables has been formulated te{emch_2008}, leaving our understanding of seasonal variations of cholera outbreaks in different regions of the world incomplete. Through the analysis of a unique historical dataset containing 50 years of monthly meteorological, demographic and epidemiological records, we propose a mechanistic, SIR-based stochastic model for the population dynamics of cholera driven by local rainfall and temperature that is able to capture the full range of seasonal patterns in this large estuarine region, which encompasses the variety of patterns worldwide. Parameter inference was implemented via new statistical methods that allow the computation of maximum-likelihood estimates for partially observed Markov processes through sequential Monte-Carlo te{ionides_2011}. Such a model may provide a unprecedented opportunity to gain insights on the conditions and factors responsible for endemicity around the globe, and therefore, to also revise our understanding of the ecology of Vibrio cholerae. Results indicate that the hydrological regime is a decisive driver determining the seasonal dynamics of cholera. It was found that rainfall and longer water residence times tend to buffer the propagation of the disease in wet regions due to a dilution effect, while also enhancing cholera incidence in dry regions. This indicates that overall water levels matter and appear

  9. Understanding Action and Adventure Sports Participation-An Ecological Dynamics Perspective.

    Science.gov (United States)

    Immonen, Tuomas; Brymer, Eric; Orth, Dominic; Davids, Keith; Feletti, Francesco; Liukkonen, Jarmo; Jaakkola, Timo

    2017-12-01

    Previous research has considered action and adventure sports using a variety of associated terms and definitions which has led to confusing discourse and contradictory research findings. Traditional narratives have typically considered participation exclusively as the pastime of young people with abnormal characteristics or personalities having unhealthy and pathological tendencies to take risks because of the need for thrill, excitement or an adrenaline 'rush'. Conversely, recent research has linked even the most extreme forms of action and adventure sports to positive physical and psychological health and well-being outcomes. Here, we argue that traditional frameworks have led to definitions, which, as currently used by researchers, ignore key elements constituting the essential merit of these sports. In this paper, we suggest that this lack of conceptual clarity in understanding cognitions, perception and action in action and adventure sports requires a comprehensive explanatory framework, ecological dynamics which considers person-environment interactions from a multidisciplinary perspective. Action and adventure sports can be fundamentally conceptualized as activities which flourish through creative exploration of novel movement experiences, continuously expanding and evolving beyond predetermined environmental, physical, psychological or sociocultural boundaries. The outcome is the emergence of a rich variety of participation styles and philosophical differences within and across activities. The purpose of this paper is twofold: (a) to point out some limitations of existing research on action and adventure sports; (b) based on key ideas from emerging research and an ecological dynamics approach, to propose a holistic multidisciplinary model for defining and understanding action and adventure sports that may better guide future research and practical implications.

  10. Biometrics Technology: Understanding Dynamics Influencing Adoption for Control of Identification Deception within Nigeria

    Science.gov (United States)

    Nwatu, Gideon U.

    2011-01-01

    One of the objectives of any government is the establishment of an effective solution to significantly control crime. Identity fraud in Nigeria has generated global attention and negative publicity toward its citizens. The research problem addressed in this study was the lack of understanding of the dynamics that influenced the adoption and…

  11. Sepsis progression and outcome: a dynamical model

    Directory of Open Access Journals (Sweden)

    Gessler Damian DG

    2006-02-01

    Full Text Available Abstract Background Sepsis (bloodstream infection is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions. Results We present an initial mathematical model of sepsis, based on metabolic rate theory that links basic vascular and immunological dynamics. The model includes the rate of vascular circulation, a surrogate for the metabolic rate that is mechanistically associated with disease progression. We use the mass-specific rate of blood circulation (SRBC, a correlate of the body mass index, to build a differential equation model of circulation, infection, organ damage, and recovery. This introduces a vascular component into an infectious disease model that describes the interaction between a pathogen and the adaptive immune system. Conclusion The model predicts that deviations from normal SRBC correlate with disease progression and adverse outcome. We compare the predictions with population mortality data from cardiovascular disease and cancer and show that deviations from normal SRBC correlate with higher mortality rates.

  12. Framework for Understanding Balance Dysfunction in Parkinson’s Disease

    Science.gov (United States)

    Schoneburg, Bernadette; Mancini, Martina; Horak, Fay; Nutt, John G.

    2013-01-01

    People with Parkinson’s disease (PD) suffer from progressive impairment in their mobility. Locomotor and balance dysfunction that impairs mobility in PD is an important cause of physical and psychosocial disability. The recognition and evaluation of balance dysfunction by the clinician is an essential component of managing PD. In this review, we describe a framework for understanding balance dysfunction in PD to help clinicians recognize patients that are at risk for falling and impaired mobility. PMID:23925954

  13. Young children’s understanding of angles in a dynamic geometry environment

    OpenAIRE

    Kaur, Harpreet

    2017-01-01

    Angle is an important topic in geometry. It is a concept that children find challenging to learn, in part because of its multifaceted nature. The purpose of this study is to understand how children’s thinking about angles evolves as they participate in a classroom setting featuring the use of a dynamic geometry environment (DGE) in which the concept of angle as turn was privileged, a concept that does not require a quantitative dimension. Three research questions were proposed for the study, ...

  14. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    Science.gov (United States)

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  15. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films.

    Science.gov (United States)

    Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  16. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    Science.gov (United States)

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  18. Dynamics of sylvatic Chagas disease vectors in coastal Ecuador is driven by changes in land cover.

    Directory of Open Access Journals (Sweden)

    Mario J Grijalva

    2014-06-01

    Full Text Available Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics' dynamics.The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1 sylvatic triatomines had very high T. cruzi infection rates (71% and 2 densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts.We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better understanding of the dynamics of such socio

  19. An Analytical Study of Prostate-Specific Antigen Dynamics.

    Science.gov (United States)

    Esteban, Ernesto P; Deliz, Giovanni; Rivera-Rodriguez, Jaileen; Laureano, Stephanie M

    2016-01-01

    The purpose of this research is to carry out a quantitative study of prostate-specific antigen dynamics for patients with prostatic diseases, such as benign prostatic hyperplasia (BPH) and localized prostate cancer (LPC). The proposed PSA mathematical model was implemented using clinical data of 218 Japanese patients with histological proven BPH and 147 Japanese patients with LPC (stages T2a and T2b). For prostatic diseases (BPH and LPC) a nonlinear equation was obtained and solved in a close form to predict PSA progression with patients' age. The general solution describes PSA dynamics for patients with both diseases LPC and BPH. Particular solutions allow studying PSA dynamics for patients with BPH or LPC. Analytical solutions have been obtained and solved in a close form to develop nomograms for a better understanding of PSA dynamics in patients with BPH and LPC. This study may be useful to improve the diagnostic and prognosis of prostatic diseases.

  20. Models of marine molluscan diseases: Trends and challenges.

    Science.gov (United States)

    Powell, Eric N; Hofmann, Eileen E

    2015-10-01

    Disease effects on host population dynamics and the transmission of pathogens between hosts are two important challenges for understanding how epizootics wax and wane and how disease influences host population dynamics. For the management of marine shellfish resources, marine diseases pose additional challenges in early intervention after the appearance of disease, management of the diseased population to limit a decline in host abundance, and application of measures to restrain that decline once it occurs. Mathematical models provide one approach for quantifying these effects and addressing the competing goals of managing the diseased population versus managing the disease. The majority of models for molluscan diseases fall into three categories distinguished by these competing goals. (1) Models that consider disease effects on the host population tend to focus on pathogen proliferation within the host. Many of the well-known molluscan diseases are pandemic, in that they routinely reach high prevalence rapidly over large geographic expanses, are characterized by transmission that does not depend upon a local source, and exert a significant influence on host population dynamics. Models focused on disease proliferation examine the influence of environmental change on host population metrics and provide a basis to better manage diseased stocks. Such models are readily adapted to questions of fishery management and habitat restoration. (2) Transmission models are designed to understand the mechanisms triggering epizootics, identify factors impeding epizootic development, and evaluate controls on the rate of disease spread over the host's range. Transmission models have been used extensively to study terrestrial diseases, yet little attention has been given to their potential for understanding the epidemiology of marine molluscan diseases. For management of diseases of wild stocks, transmission models open up a range of options, including the application of area

  1. Concepts Concerning 'Disease\\' Causation, Control, and the current ...

    African Journals Online (AJOL)

    There is an ethical necessity that doctors understand the complex social, political, environmental and economic dynamics involved in infectious disease outbreaks. This article discusses some important concepts concerning 'disease' causation and control with specific reference to the current cholera outbreak in Zimbabwe ...

  2. Understanding Mircrobial Sensing in Inflammatory Bowel Disease Using Click Chemistry

    Science.gov (United States)

    2016-10-01

    chemistry , microbiology and worked with the second fellow from von Andrian lab on the immunology and microscopy. Teaching has come from several...to follow essentially any bacteria using fluorescent techniques into the host or other environments. This chemistry is also a potential method for...AWARD NUMBER: W81XWH-15-1-0367 TITLE: Understanding Microbial Sensing in Inflammatory Bowel Disease Using Click Chemistry PRINCIPAL

  3. Understanding rare disease pathogenesis: a grand challenge for model organisms.

    Science.gov (United States)

    Hieter, Philip; Boycott, Kym M

    2014-10-01

    In this commentary, Philip Hieter and Kym Boycott discuss the importance of model organisms for understanding pathogenesis of rare human genetic diseases, and highlight the work of Brooks et al., "Dysfunction of 60S ribosomal protein L10 (RPL10) disrupts neurodevelopment and causes X-linked microcephaly in humans," published in this issue of GENETICS. Copyright © 2014 by the Genetics Society of America.

  4. Microscopic dynamics in simple liquids: a clue to understanding the basic thermodynamics of the liquid state

    International Nuclear Information System (INIS)

    Cabrillo, C; Bermejo, F J; Maira-Vidal, A; Fernandez-Perea, R; Bennington, S M; Martin, D

    2004-01-01

    The advent of inelastic x-ray scattering techniques has prompted a reawakened interest in the dynamics of simple liquids. Such studies are often carried out using simplified models to account for the stochastic dynamics that give rise to quasielastic scattering. The vibrational and diffusive dynamics of molten potassium are studied here by an experiment using neutron scattering and are shown to provide some clues to understand the basic thermodynamics of the liquid state. The findings reported here suggest ways in which the true complementarity of neutron and x-ray scattering may be profitably exploited

  5. Frequency-Dependent Disease Transmission and the Dynamics of the Silene-Ustilago Host-Pathogen System

    NARCIS (Netherlands)

    Thrall, P.H.; Biere, A.; Uyenoyama, M.K.

    1995-01-01

    Models incorporating density-dependent disease transmission functions generally provide a good fit for airborne and directly transmitted bacterial or viral diseases. However, the transmission dynamics of sexually transmitted and vector-borne diseases are likely to be frequency- rather than density-

  6. Retrospective Analysis of Communication Events - Understanding the Dynamics of Collaborative Multi-Party Discourse

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, Andrew J.; Haack, Jereme N.; McColgin, Dave W.

    2006-06-08

    This research is aimed at understanding the dynamics of collaborative multi-party discourse across multiple communication modalities. Before we can truly make sig-nificant strides in devising collaborative communication systems, there is a need to understand how typical users utilize com-putationally supported communications mechanisms such as email, instant mes-saging, video conferencing, chat rooms, etc., both singularly and in conjunction with traditional means of communication such as face-to-face meetings, telephone calls and postal mail. Attempting to un-derstand an individual’s communications profile with access to only a single modal-ity is challenging at best and often futile. Here, we discuss the development of RACE – Retrospective Analysis of Com-munications Events – a test-bed prototype to investigate issues relating to multi-modal multi-party discourse.

  7. Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding

    Directory of Open Access Journals (Sweden)

    Birgit Kopainsky

    2015-10-01

    Full Text Available Prior exploration is an instructional strategy that has improved performance and understanding in system-dynamics-based simulators, but only to a limited degree. This study investigates whether model transparency, that is, showing users the internal structure of models, can extend the prior exploration strategy and improve learning even more. In an experimental study, participants in a web-based simulation learned about and managed a small developing nation. All participants were provided the prior exploration strategy but only half received prior exploration embedded in a structure-behavior diagram intended to make the underlying model’s structure more transparent. Participants provided with the more transparent strategy demonstrated better understanding of the underlying model. Their performance, however, was the equivalent to those in the less transparent condition. Combined with previous studies, our results suggest that while prior exploration is a beneficial strategy for both performance and understanding, making the model structure transparent with structure-behavior diagrams is more limited in its effect.

  8. The collective construction of safety: a trade-off between "understanding" and "doing" in managing dynamic situations.

    Science.gov (United States)

    Cuvelier, L; Falzon, P

    2015-03-01

    This exploratory research aims to understand how teams organize themselves and collectively manage risky dynamic situations. The objective is to assess the plausibility of a model of a collective trade-off between "understanding" and "doing". The empirical study, conducted in the pediatric anesthesia service of a French university hospital, was supported by a "high fidelity" simulation with six teams. Data on the teams' behavior and on the verbal communications were collected through video recordings. The results highlight three modes for management of dynamic situations (determined management, cautious management, and overwhelmed management). These modes are related to the way in which teams manage their cognitive resources. More precisely, they are related to the teams' ability to collectively elaborate a trade-off between "understanding" and "doing". These results question existing perspectives on safety and suggest improvements in the design of crisis management training (concerning for example the recommendation of "calling for help"). Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Asymmetric dynamic attunement of speech and gestures in the construction of children’s understanding

    Directory of Open Access Journals (Sweden)

    Lisette eDe Jonge-Hoekstra

    2016-03-01

    Full Text Available As children learn they use their speech to express words and their hands to gesture. This study investigates the interplay between real-time gestures and speech as children construct cognitive understanding during a hands-on science task. 12 children (M = 6, F = 6 from Kindergarten (n = 5 and first grade (n = 7 participated in this study. Each verbal utterance and gesture during the task were coded, on a complexity scale derived from dynamic skill theory. To explore the interplay between speech and gestures, we applied a cross recurrence quantification analysis (CRQA to the two coupled time series of the skill levels of verbalizations and gestures. The analysis focused on 1 the temporal relation between gestures and speech, 2 the relative strength and direction of the interaction between gestures and speech, 3 the relative strength and direction between gestures and speech for different levels of understanding, and 4 relations between CRQA measures and other child characteristics. The results show that older and younger children differ in the (temporal asymmetry in the gestures-speech interaction. For younger children, the balance leans more towards gestures leading speech in time, while the balance leans more towards speech leading gestures for older children. Secondly, at the group level, speech attracts gestures in a more dynamically stable fashion than vice versa, and this asymmetry in gestures and speech extends to lower and higher understanding levels. Yet, for older children, the mutual coupling between gestures and speech is more dynamically stable regarding the higher understanding levels. Gestures and speech are more synchronized in time as children are older. A higher score on schools’ language tests is related to speech attracting gestures more rigidly and more asymmetry between gestures and speech, only for the less difficult understanding levels. A higher score on math or past science tasks is related to less asymmetry between

  10. Comparison of cardiovascular response to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone in patients with chronic ischemic heart disease

    International Nuclear Information System (INIS)

    Hung, J.; McKillip, J.; Savin, W.; Magder, S.; Kraus, R.; Houston, N.; Goris, M.; Haskell, W.; DeBusk, R.

    1982-01-01

    The cardiovascular responses to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone were evaluated by upright bicycle ergometry during equilibrium-gated blood pool scintigraphy in 24 men, mean age 59 +/- 8 years, with chronic ischemic heart disease. Combined static-dynamic effort and the postprandial state elicited a peak cardiovascular response similar to that of dynamic effort alone. Heart rate, intraarterial systolic and diastolic pressures, rate-pressure product and ejection fraction were similar for the three test conditions at the onset of ischemia and at peak effort. The prevalence and extent of exercise-induced ischemic left ventricular dysfunction, ST-segment depression, angina pectoris and ventricular ectopic activity were also similar during the three test conditions. Direct and indirect measurements of systolic and diastolic blood pressure were highly correlated. The onset of ischemic ST-segment depression and angina pectoris correlated as strongly with heart rate alone as with the rate-pressure product during all three test conditions. The cardiovascular response to combined static-dynamic effort and to postprandial dynamic effort becomes more similar to that of dynamic effort alone as dynamic effort reaches a symptom limit. If significant ischemic and arrhythmic abnormalities are absent during symptom-limited dynamic exercise testing, they are unlikely to appear during combined static-dynamic or postprandial dynamic effort

  11. Training the Next Generation of Scientists: System Dynamics Modeling of Chagas Disease (American Trypanosomiasis) transmission.

    Science.gov (United States)

    Goff, P.; Hulse, A.; Harder, H. R.; Pierce, L. A.; Rizzo, D.; Hanley, J.; Orantes, L.; Stevens, L.; Justi, S.; Monroy, C.

    2015-12-01

    A computational simulation has been designed as an investigative case study by high school students to introduce system dynamics modeling into high school curriculum. This case study approach leads users through the forensics necessary to diagnose an unknown disease in a Central American village. This disease, Chagas, is endemic to 21 Latin American countries. The CDC estimates that of the 110 million people living in areas with the disease, 8 million are infected, with as many as 300,000 US cases. Chagas is caused by the protozoan parasite, Trypanosoma cruzi, and is spread via blood feeding insect (vectors), that feed on vertebrates and live in crevasses in the walls and roofs of adobe homes. One-third of the infected people will develop chronic Chagas who are asymptomatic for years before their heart or GI tract become enlarged resulting in death. The case study has three parts. Students play the role of WHO field investigators and work collaboratively to: 1) use genetics to identify the host(s) and vector of the disease 2) use a STELLA™ SIR (Susceptible, Infected, Recovered) system dynamics model to study Chagas at the village scale and 3) develop management strategies. The simulations identify mitigation strategies known as Ecohealth Interventions (e.g., home improvements using local materials) to help stakeholders test and compare multiple optima. High school students collaborated with researchers from the University of Vermont, Loyola University and Universidad de San Carlos, Guatemala, working in labs, interviewing researchers, and incorporating mulitple field data as part of a NSF-funded multiyear grant. The model displays stable equilibria of hosts, vectors, and disease-states. Sensitivity analyses show measures of household condition and presence of vertebrates were significant leverage points, supporting other findings by the University research team. The village-scale model explores multiple solutions to disease mitigation for the purpose of producing

  12. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Syphilis: using modern approaches to understand an old disease

    Science.gov (United States)

    Ho, Emily L.; Lukehart, Sheila A.

    2011-01-01

    Syphilis is a fascinating and perplexing infection, with protean clinical manifestations and both diagnostic and management ambiguities. Treponema pallidum subsp. pallidum, the agent of syphilis, is challenging to study in part because it cannot be cultured or genetically manipulated. Here, we review recent progress in the application of modern molecular techniques to understanding the biological basis of this multistage disease and to the development of new tools for diagnosis, for predicting efficacy of treatment with alternative antibiotics, and for studying the transmission of infection through population networks. PMID:22133883

  14. Global dynamics of multi-group SEI animal disease models with indirect transmission

    International Nuclear Information System (INIS)

    Wang, Yi; Cao, Jinde

    2014-01-01

    A challenge to multi-group epidemic models in mathematical epidemiology is the exploration of global dynamics. Here we formulate multi-group SEI animal disease models with indirect transmission via contaminated water. Under biologically motivated assumptions, the basic reproduction number R 0 is derived and established as a sharp threshold that completely determines the global dynamics of the system. In particular, we prove that if R 0 <1, the disease-free equilibrium is globally asymptotically stable, and the disease dies out; whereas if R 0 >1, then the endemic equilibrium is globally asymptotically stable and thus unique, and the disease persists in all groups. Since the weight matrix for weighted digraphs may be reducible, the afore-mentioned approach is not directly applicable to our model. For the proofs we utilize the classical method of Lyapunov, graph-theoretic results developed recently and a new combinatorial identity. Since the multiple transmission pathways may correspond to the real world, the obtained results are of biological significance and possible generalizations of the model are also discussed

  15. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    Science.gov (United States)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  16. Understanding dynamic capabilities through knowledge management

    DEFF Research Database (Denmark)

    Nielsen, Anders Paarup

    2006-01-01

    In the paper eight knowledge management activities are identified; knowledge creation, acquisition, capture, assembly, sharing, integration, leverage and exploitation. These activities are assembled into the three dynamic capabilities of knowledge development, knowledge (re......)combination and knowledge use. The dynamic capabilities and the associated knowledge management activities create flows to and from the firm’s stock of knowledge and they support the creation and use of organizational capabilities....

  17. Dynamics of the aorta and its sidebranches : implications for endovascular treatment of aortic disease

    NARCIS (Netherlands)

    Muhs, B.E.

    2007-01-01

    The main objective of this thesis is to critically evaluate the clinical results of emerging aortic endovascular therapies and then to utilize dynamic imaging modalities [EKG gated dynamic computerized tomographic angiography (CTA) and magnetic resonance angiography (MRA)] to understand the

  18. Understanding ageing in older Australians: The contribution of the Dynamic Analyses to Optimise Ageing (DYNOPTA) project to the evidenced base and policy

    Science.gov (United States)

    Anstey, Kaarin J; Bielak, Allison AM; Birrell, Carole L; Browning, Colette J; Burns, Richard A; Byles, Julie; Kiley, Kim M; Nepal, Binod; Ross, Lesley A; Steel, David; Windsor, Timothy D

    2014-01-01

    Aim To describe the Dynamic Analyses to Optimise Ageing (DYNOPTA) project and illustrate its contributions to understanding ageing through innovative methodology, and investigations on outcomes based on the project themes. DYNOPTA provides a platform and technical expertise that may be used to combine other national and international datasets. Method The DYNOPTA project has pooled and harmonized data from nine Australian longitudinal studies to create the largest available longitudinal dataset (N=50652) on ageing in Australia. Results A range of findings have resulted from the study to date, including methodological advances, prevalence rates of disease and disability, and mapping trajectories of ageing with and without increasing morbidity. DYNOPTA also forms the basis of a microsimulation model that will provide projections of future costs of disease and disability for the baby boomer cohort. Conclusion DYNOPTA contributes significantly to the Australian evidence-base on ageing to inform key social and health policy domains. PMID:22032767

  19. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    Science.gov (United States)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  20. Clinical application of dynamic digital subtraction angiography in cerebrovascular ischemic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshifumi; Nonaka, Nobuhito; Matsukado, Yasuhiko; Takahashi, Mutsumasa

    1987-09-01

    Dynamic intravenous digital subtraction angiography (IV-DSA) was performed in 37 patients with cerebrovascular ischemic diseases. The time density curve of IV-DSA was analysed, and peak time, mean transit time and mode of transit time were obtained in each patient. On the basis of these values, cerebral perfusion was classified into low, normal and high perfusion patterns. Normal perfusion pattern was noted in 40% of patients with transient ischemic attack (TIA) and 7 % of patients with cerebral infarction. Low perfusion pattern was observed in 60 % of patients with TIA and 87 % of patients with cerebral infarction. High perfusion pattern was encountered only in 7 % of patients with cerebral infarction. In ischemic patients with moyamoya disease, extremely prolonged cerebral circulation time was evidenced by the presence of a flat or uphill type of the time density curve. This finding well correlated with decreased cerebral blood flow on single photon emission tomography. These findings suggest that the analysis of dynamic DSA is very important and useful in the clinical evaluation of patients with cerebrovascular ischemic diseases.

  1. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...

  2. What shakes the FX tree? Understanding currency dominance, dependence, and dynamics (Keynote Address)

    Science.gov (United States)

    Johnson, Neil F.; McDonald, Mark; Suleman, Omer; Williams, Stacy; Howison, Sam

    2005-05-01

    There is intense interest in understanding the stochastic and dynamical properties of the global Foreign Exchange (FX) market, whose daily transactions exceed one trillion US dollars. This is a formidable task since the FX market is characterized by a web of fluctuating exchange rates, with subtle inter-dependencies which may change in time. In practice, traders talk of particular currencies being 'in play' during a particular period of time -- yet there is no established machinery for detecting such important information. Here we apply the construction of Minimum Spanning Trees (MSTs) to the FX market, and show that the MST can capture important features of the global FX dynamics. Moreover, we show that the MST can help identify momentarily dominant and dependent currencies.

  3. Understanding role of genome dynamics in host adaptation of gut commensal, L. reuteri

    Directory of Open Access Journals (Sweden)

    Shikha Sharma

    2017-10-01

    Full Text Available Lactobacillus reuteri is a gram-positive gut commensal and exhibits noteworthy adaptation to its vertebrate hosts. Host adaptation is often driven by inter-strain genome dynamics like expansion of insertion sequences that lead to acquisition and loss of gene(s and creation of large dynamic regions. In this regard we carried in-house genome sequencing of large number of L. reuteri strains origination from human, chicken, pig and rodents. We further next generation sequence data in understanding invasion and expansion of an IS element in shaping genome of strains belonging to human associated lineage. Finally, we share our experience in high-throughput genomic library preparation and generating high quality sequence data of a very low GC bacterium like L. reuteri.

  4. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  5. Influence of network dynamics on the spread of sexually transmitted diseases.

    Science.gov (United States)

    Risau-Gusman, Sebastián

    2012-06-07

    Network epidemiology often assumes that the relationships defining the social network of a population are static. The dynamics of relationships is only taken indirectly into account by assuming that the relevant information to study epidemic spread is encoded in the network obtained, by considering numbers of partners accumulated over periods of time roughly proportional to the infectious period of the disease. On the other hand, models explicitly including social dynamics are often too schematic to provide a reasonable representation of a real population, or so detailed that no general conclusions can be drawn from them. Here, we present a model of social dynamics that is general enough so its parameters can be obtained by fitting data from surveys about sexual behaviour, but that can still be studied analytically, using mean-field techniques. This allows us to obtain some general results about epidemic spreading. We show that using accumulated network data to estimate the static epidemic threshold lead to a significant underestimation of that threshold. We also show that, for a dynamic network, the relative epidemic threshold is an increasing function of the infectious period of the disease, implying that the static value is a lower bound to the real threshold. A practical example is given of how to apply the model to the study of a real population.

  6. Understanding Conflict Dynamics: A Comparative Analysis of Ethno-Separatist Conflicts in India and the Philippines

    NARCIS (Netherlands)

    Reed, A.G.

    2013-01-01

    This thesis is a comparative analysis of three contemporary separatist conflicts in Asia: The Naga Insurgency, the Punjab Crisis and the Moro Rebellion. The objective of this thesis is the understanding of conflict dynamics: how and why conflicts escalate or de-escalate over time. Previous research

  7. Modeling proteasome dynamics in Parkinson's disease

    International Nuclear Information System (INIS)

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H; Pigolotti, Simone; Otzen, Daniel

    2009-01-01

    In Parkinson's disease (PD), there is evidence that α-synuclein (αSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin–proteasome system. Here, we develop a simple dynamical model for the on-going conflict between αSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature αSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the αSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system

  8. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    Science.gov (United States)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  9. Dynamic contrast-enhanced MRI in patients with luminal Crohn's disease

    Energy Technology Data Exchange (ETDEWEB)

    Ziech, M.L.W., E-mail: m.l.ziech@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Lavini, C., E-mail: c.lavini@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Caan, M.W.A., E-mail: m.w.a.caan@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Nio, C.Y., E-mail: C.Y.Nio@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Stokkers, P.C.F., E-mail: p.stokkers@slaz.nl [Academic Medical Center, Department of Gastroenterology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Sint Lucas Andreas Ziekenhuis, Department of Gastroenterology, Jan Tooropstraat 164, 1061 AE, Amsterdam (Netherlands); Bipat, S., E-mail: S.Bipat@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Ponsioen, C.Y., E-mail: c.y.ponsioen@amc.uva.nl [Academic Medical Center, Department of Gastroenterology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Nederveen, A.J., E-mail: a.j.nederveen@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Stoker, J., E-mail: j.stoker@amc.uva.nl [Academic Medical Center, Department of Radiology, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands)

    2012-11-15

    Objectives: To prospectively assess dynamic contrast-enhanced (DCE-)MRI as compared to conventional sequences in patients with luminal Crohn's disease. Methods: Patients with Crohn's disease undergoing MRI and ileocolonoscopy within 1 month had DCE-MRI (3T) during intravenous contrast injection of gadobutrol, single shot fast spin echo sequence and 3D T1-weighted spoiled gradient echo sequence, a dynamic coronal 3D T1-weighted fast spoiled gradient were performed before and after gadobutrol. Maximum enhancement (ME) and initial slope of increase (ISI) were calculated for four colon segments (ascending colon + coecum, transverse colon, descending colon + sigmoid, rectum) and (neo)terminal ileum. C-reactive protein (CRP), Crohn's disease activity index (CDAI), per patient and per segment Crohn's disease endoscopic index of severity (CDEIS) and disease duration were determined. Mean values of the (DCE-)MRI parameters in each segment from each patient were compared between four disease activity groups (normal mucosa, non-ulcerative lesions, mild ulcerative and severe ulcerative disease) with Mann-Whitney test with Bonferroni adjustment. Spearman correlation coefficients were calculated for continuous variables. Results: Thirty-three patients were included (mean age 37 years; 23 females, median CDEIS 4.4). ME and ISI correlated weakly with segmental CDEIS (r = 0.485 and r = 0.206) and ME per patient correlated moderately with CDEIS (r = 0.551). ME was significantly higher in segments with mild (0.378) or severe (0.388) ulcerative disease compared to normal mucosa (0.304) (p < 0.001). No ulcerations were identified at conventional sequences. ME correlated with disease duration in diseased segments (r = 0.492), not with CDAI and CRP. Conclusions: DCE-MRI can be used as a method for detecting Crohn's disease ulcerative lesions.

  10. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  11. Dynamic and quantitative evaluation of degenerative mitral valve disease: a dedicated framework based on cardiac magnetic resonance imaging.

    Science.gov (United States)

    Sturla, Francesco; Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto

    2017-04-01

    Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow's disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. On average, annular dimensions were significantly (Pframework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment.

  12. Assessing neuronal networks: understanding Alzheimer's disease.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    Findings derived from neuroimaging of the structural and functional organization of the human brain have led to the widely supported hypothesis that neuronal networks of temporally coordinated brain activity across different regional brain structures underpin cognitive function. Failure of integration within a network leads to cognitive dysfunction. The current discussion on Alzheimer\\'s disease (AD) argues that it presents in part a disconnection syndrome. Studies using functional magnetic resonance imaging, positron emission tomography and electroencephalography demonstrate that synchronicity of brain activity is altered in AD and correlates with cognitive deficits. Moreover, recent advances in diffusion tensor imaging have made it possible to track axonal projections across the brain, revealing substantial regional impairment in fiber-tract integrity in AD. Accumulating evidence points towards a network breakdown reflecting disconnection at both the structural and functional system level. The exact relationship among these multiple mechanistic variables and their contribution to cognitive alterations and ultimately decline is yet unknown. Focused research efforts aimed at the integration of both function and structure hold great promise not only in improving our understanding of cognition but also of its characteristic progressive metamorphosis in complex chronic neurodegenerative disorders such as AD.

  13. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Directory of Open Access Journals (Sweden)

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  14. Modeling infectious disease dynamics in the complex landscape of global health

    NARCIS (Netherlands)

    Heesterbeek, Hans|info:eu-repo/dai/nl/073321427; Anderson, Roy M; Andreasen, Viggo; Bansal, Shweta; De Angelis, Daniela; Dye, Chris; Eames, Ken T D; Edmunds, W John; Frost, Simon D W; Funk, Sebastian; Hollingsworth, T Deirdre; House, Thomas; Isham, Valerie; Klepac, Petra; Lessler, Justin; Lloyd-Smith, James O; Metcalf, C Jessica E; Mollison, Denis; Pellis, Lorenzo; Pulliam, Juliet R C; Roberts, Mick G; Viboud, Cecile

    2015-01-01

    Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales,

  15. The landscape genetics of infectious disease emergence and spread.

    Science.gov (United States)

    Biek, Roman; Real, Leslie A

    2010-09-01

    The spread of parasites is inherently a spatial process often embedded in physically complex landscapes. It is therefore not surprising that infectious disease researchers are increasingly taking a landscape genetics perspective to elucidate mechanisms underlying basic ecological processes driving infectious disease dynamics and to understand the linkage between spatially dependent population processes and the geographic distribution of genetic variation within both hosts and parasites. The increasing availability of genetic information on hosts and parasites when coupled to their ecological interactions can lead to insights for predicting patterns of disease emergence, spread and control. Here, we review research progress in this area based on four different motivations for the application of landscape genetics approaches: (i) assessing the spatial organization of genetic variation in parasites as a function of environmental variability, (ii) using host population genetic structure as a means to parameterize ecological dynamics that indirectly influence parasite populations, for example, gene flow and movement pathways across heterogeneous landscapes and the concurrent transport of infectious agents, (iii) elucidating the temporal and spatial scales of disease processes and (iv) reconstructing and understanding infectious disease invasion. Throughout this review, we emphasize that landscape genetic principles are relevant to infection dynamics across a range of scales from within host dynamics to global geographic patterns and that they can also be applied to unconventional 'landscapes' such as heterogeneous contact networks underlying the spread of human and livestock diseases. We conclude by discussing some general considerations and problems for inferring epidemiological processes from genetic data and try to identify possible future directions and applications for this rapidly expanding field.

  16. Insights into the Molecular Mechanisms of Alzheimer’s and Parkinson’s Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology

    Directory of Open Access Journals (Sweden)

    Orkid Coskuner-Weber

    2018-01-01

    Full Text Available Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs, which are at the center of Alzheimer’s and Parkinson’s disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer’s and Parkinson’s diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer’s and Parkinson’s diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer’s and Parkinson’s diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer’s and Parkinson’s diseases. This information represents an important foundation for the successful and

  17. Understanding apparently non-exponential outbreaks Comment on "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    Science.gov (United States)

    Champredon, David; Earn, David J. D.

    2016-09-01

    Mechanistic mathematical modelling of the population dynamics of infectious diseases has advanced tremendously over the last few decades [1-6]. Transmission models have been applied to countless diseases of public health importance, including seasonal and pandemic influenza [7], childhood diseases such as measles [8,9] and whooping cough [10], vector transmitted diseases such as malaria [11] and dengue [12], and waterborne diseases such as cholera [13-15]. Much attention in recent years has been directed to emergent diseases such as SARS [16], new subtypes of influenza [17,18], Ebola [19,20], and Zika [21], for which an understanding of early outbreak dynamics is critical.

  18. Predicting Subnational Ebola Virus Disease Epidemic Dynamics from Sociodemographic Indicators.

    Directory of Open Access Journals (Sweden)

    Linda Valeri

    Full Text Available The recent Ebola virus disease (EVD outbreak in West Africa has spread wider than any previous human EVD epidemic. While individual-level risk factors that contribute to the spread of EVD have been studied, the population-level attributes of subnational regions associated with outbreak severity have not yet been considered.To investigate the area-level predictors of EVD dynamics, we integrated time series data on cumulative reported cases of EVD from the World Health Organization and covariate data from the Demographic and Health Surveys. We first estimated the early growth rates of epidemics in each second-level administrative district (ADM2 in Guinea, Sierra Leone and Liberia using exponential, logistic and polynomial growth models. We then evaluated how these growth rates, as well as epidemic size within ADM2s, were ecologically associated with several demographic and socio-economic characteristics of the ADM2, using bivariate correlations and multivariable regression models.The polynomial growth model appeared to best fit the ADM2 epidemic curves, displaying the lowest residual standard error. Each outcome was associated with various regional characteristics in bivariate models, however in stepwise multivariable models only mean education levels were consistently associated with a worse local epidemic.By combining two common methods-estimation of epidemic parameters using mathematical models, and estimation of associations using ecological regression models-we identified some factors predicting rapid and severe EVD epidemics in West African subnational regions. While care should be taken interpreting such results as anything more than correlational, we suggest that our approach of using data sources that were publicly available in advance of the epidemic or in real-time provides an analytic framework that may assist countries in understanding the dynamics of future outbreaks as they occur.

  19. Understanding of and attitudes to genetic testing for inherited retinal disease: a patient perspective.

    Science.gov (United States)

    Willis, T A; Potrata, B; Ahmed, M; Hewison, J; Gale, R; Downey, L; McKibbin, M

    2013-09-01

    The views of people with inherited retinal disease are important to help develop health policy and plan services. This study aimed to record levels of understanding of and attitudes to genetic testing for inherited retinal disease, and views on the availability of testing. Telephone questionnaires comprising quantitative and qualitative items were completed with adults with inherited retinal disease. Participants were recruited via postal invitation (response rate 48%), approach at clinic or newsletters of relevant charitable organisations. Questionnaires were completed with 200 participants. Responses indicated that participants' perceived understanding of genetic testing for inherited retinal disease was variable. The majority (90%) considered testing to be good/very good and would be likely to undergo genetic testing (90%) if offered. Most supported the provision of diagnostic (97%) and predictive (92%) testing, but support was less strong for testing as part of reproductive planning. Most (87%) agreed with the statement that testing should be offered only after the individual has received genetic counselling from a professional. Subgroup analyses revealed differences associated with participant age, gender, education level and ethnicity (p<0.02). Participants reported a range of perceived benefits (eg, family planning, access to treatment) and risks (eg, impact upon family relationships, emotional consequences). Adults with inherited retinal disease strongly support the provision of publicly funded genetic testing. Support was stronger for diagnostic and predictive testing than for testing as part of reproductive planning.

  20. Understanding the Effects of Host Evolution and Skin Bacteria Composition on Disease Vector Choices

    Science.gov (United States)

    2016-04-14

    Distribution Unlimited UU UU UU UU 14-04-2016 1-Sep-2014 31-Dec-2015 Final Report: Understanding the effects of host evolution and skin bacteria ...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mosquito, skin, bacteria , primate REPORT...reviewed journals: Final Report: Understanding the effects of host evolution and skin bacteria composition on disease vector choices Report Title Here

  1. Physiology in Medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury.

    Science.gov (United States)

    Nieman, Gary F; Satalin, Josh; Kollisch-Singule, Michaela; Andrews, Penny; Aiash, Hani; Habashi, Nader M; Gatto, Louis A

    2017-06-01

    Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MB P : all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MB P so as to minimize VILI will reduce the morbidity and mortality associated with ARDS. Copyright © 2017 the American Physiological Society.

  2. Perspectives of a systems biology of the brain: the big data conundrum understanding psychiatric diseases.

    Science.gov (United States)

    Mewes, H W

    2013-05-01

    Psychiatric diseases provoke human tragedies. Asocial behaviour, mood imbalance, uncontrolled affect, and cognitive malfunction are the price for the biological and social complexity of neurobiology. To understand the etiology and to influence the onset and progress of mental diseases remains of upmost importance, but despite the much improved care for the patients, more then 100 years of research have not succeeded to understand the basic disease mechanisms and enabling rationale treatment. With the advent of the genome based technologies, much hope has been created to join the various dimension of -omics data to uncover the secrets of mental illness. Big Data as generated by -omics do not come with explanations. In this essay, I will discuss the inherent, not well understood methodological foundations and problems that seriously obstacle in striving for a quick success and may render lucky strikes impossible. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Bayesian dynamic modeling of time series of dengue disease case counts.

    Science.gov (United States)

    Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-07-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful

  4. Understanding the Dynamics of Socio-Hydrological Environment: a Conceptual Framework

    Science.gov (United States)

    Woyessa, Y.; Welderufael, W.; Edossa, D.

    2011-12-01

    Human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threaten to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the change of ecosystems under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting land-use changes. Recently the focus has shifted away from using mathematically oriented models to agent-based modelling (ABM) approach to simulate land use scenarios. A conceptual framework is being developed which integrates climate change scenarios and the human dimension of land use decision into a hydrological model in order to assess its impacts on the socio-hydrological dynamics of a river basin. The following figures present the framework for the analysis and modelling of the socio-hydrological dynamics. Keywords: climate change, land use, river basin

  5. Quantification of Foot-and-mouth Disease Virus Transmission Rates Using Published Data

    NARCIS (Netherlands)

    Goris, N.E.; Eble, P.L.; Jong, de M.C.M.; Clercq, K.

    2009-01-01

    Foot-and-mouth disease is an extremely infectious and devastating disease affecting all species of cloven-hoofed animals. To understand the epidemiology of the causative virus and predict viral transmission dynamics, quantified transmission parameters are essential to decision makers and modellers

  6. Public health impact of disease-behavior dynamics. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Wells, Chad R.; Galvani, Alison P.

    2015-12-01

    In a loop of dynamic feedback, behavior such as the decision to vaccinate, hand washing, or avoidance influences the progression of the epidemic, yet behavior is driven by the individual's and population's perceived risk of infection during an outbreak. In what we believe will become a seminal paper that stimulates future research as well as an informative teaching aid, Wang et. al. comprehensively review methodological advances that have been used to incorporate human behavior into epidemiological models on the effects of coupling disease transmission and behavior on complex social networks [1]. As illustrated by the recent outbreaks of measles and Middle Eastern Respiratory Syndrome (MERS), here we highlight the importance of coupling behavior and disease transmission that Wang et al. address.

  7. Dynamic Stabilisation in the Treatment of Degenerative Disc Disease with Modic Changes

    Directory of Open Access Journals (Sweden)

    Olcay Eser

    2013-01-01

    Full Text Available Objective. Posterior dynamic stabilization is an effective alternative to fusion in the treatment of chronic instability and degenerative disc disease (DDD of the lumbar spine. This study was undertaken to investigate the efficacy of dynamic stabilization in chronic degenerative disc disease with Modic types 1 and 2. Modic types 1 and 2 degeneration can be painful. Classic approach in such cases is spine fusion. We operated 88 DDD patients with Modic types 1 and 2 via posterior dynamic stabilization. Good results were obtained after 2 years of followup. Methods. A total of 88 DDD patients with Modic types 1 and 2 were selected for this study. The patients were included in the study between 2004 and 2010. All of them were examined with lumbar anteroposterior (AP and lateral X-rays. Lordosis of the lumbar spine, segmental lordosis, and ratio of the height of the intervertebral disc spaces (IVSs were measured preoperatively and at 3, 12, and 24 months after surgery. Magnetic resonance imaging (MRI analysis was carried out, and according to the data obtained, the grade of disc degeneration was classified. The quality of life and pain scores were evaluated by visual analog scale (VAS score and Oswestry Disability Index (ODI preoperatively and at 3, 12, and 24 months after surgery. Appropriate statistical method was chosen. Results. The mean 3- and 12-month postoperative IVS ratio was significantly greater than that of the preoperative group (P0.05. Furthermore, the mean preoperative and 1 and 2 postoperative angles of lumbar lordosis and segmental lordosis were not significantly different (P>0.05. The mean VAS score and ODI, 3, 12, and 24 months after surgery, decreased significantly, when compared with the preoperative scores in the groups (P=0.000. Conclusion. Dynamic stabilization in chronic degenerative disc disease with Modic types 1 and 2 was effective.

  8. Nonparametric evaluation of dynamic disease risk: a spatio-temporal kernel approach.

    Directory of Open Access Journals (Sweden)

    Zhijie Zhang

    Full Text Available Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most studies to date have neglected time dimension and focus instead on the "average" spatial pattern of disease risk, thereby masking time trajectories of disease risk. In this study we propose a new idea titled "spatio-temporal kernel density estimation (stKDE" that employs hybrid kernel (i.e., weight functions to evaluate the spatio-temporal disease risks. This approach not only can make full use of sample data but also "borrows" information in a particular manner from neighboring points both in space and time via appropriate choice of kernel functions. Monte Carlo simulations show that the proposed method performs substantially better than the traditional (i.e., frequency-based kernel density estimation (trKDE which has been used in applied settings while two illustrative examples demonstrate that the proposed approach can yield superior results compared to the popular trKDE approach. In addition, there exist various possibilities for improving and extending this method.

  9. Systematic synergy modeling: understanding drug synergy from a systems biology perspective.

    Science.gov (United States)

    Chen, Di; Liu, Xi; Yang, Yiping; Yang, Hongjun; Lu, Peng

    2015-09-16

    Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose-response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and "omic"-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.

  10. Short term outcome of posterior dynamic stabilization system in degenerative lumbar diseases

    Directory of Open Access Journals (Sweden)

    Mingyuan Yang

    2014-01-01

    Conclusion: Dynamic stabilization system treating lumbar degenerative disease showed clinical benefits with motion preservation of the operated segments, but does not have the significant advantage on motion preservation at adjacent segments, to avoid the degeneration of adjacent intervertebral disk.

  11. Dynamic properties of epidemic spreading on finite size complex networks

    Science.gov (United States)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  12. Computational neuropharmacology: dynamical approaches in drug discovery.

    Science.gov (United States)

    Aradi, Ildiko; Erdi, Péter

    2006-05-01

    Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.

  13. Real-Time Assessment of Wellness and Disease in Daily Life.

    Science.gov (United States)

    Ausiello, Dennis; Lipnick, Scott

    2015-09-01

    The next frontier in medicine involves better quantifying human traits, known as "phenotypes." Biological markers have been directly associated with disease risks, but poor measurement of behaviors such as diet and exercise limits our understanding of preventive measures. By joining together an uncommonly wide range of disciplines and expertise, the Kavli HUMAN Project will advance measurement of behavioral phenotypes, as well as environmental factors that impact behavior. By following the same individuals over time, KHP will liberate new understanding of dynamic links between behavioral phenotypes, disease, and the broader environment. As KHP advances understanding of the bio-behavioral complex, it will seed new approaches to the diagnosis, prevention, and treatment of human disease.

  14. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  15. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems

    Science.gov (United States)

    Ross K. Meentemeyer; Sarah Haas; Tomáš Václavík

    2013-01-01

    A central challenge to studying emerging infectious diseases (EIDs) is a landscape dilemma: our best empirical understanding of disease dynamics occurs at local scales while pathogen invasions and management occur over broad spatial extents. The burgeoning field of landscape epidemiology integrates concepts and approaches from disease ecology with the macro-scale lens...

  16. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  17. Chronic disease and climate change: understanding co-benefits and their policy implications.

    Science.gov (United States)

    Capon, Anthony G; Rissel, Chris E

    2010-01-01

    Chronic disease and climate change are major public policy challenges facing governments around the world. An improved understanding of the relationship between chronic disease and climate change should enable improved policy formulation to support both human health and the health of the planet. Chronic disease and climate change are both unintended consequences of our way of life, and are attributable in part to the ready availability of inexpensive fossil fuel energy. There are co-benefits for health from actions to address climate change. For example, substituting physical activity and a vegetable-rich diet for motor vehicle transport and a meat-rich diet is both good for health and good for the planet. We should encourage ways of living that use less carbon as these can be healthy ways of living, for both individuals and society. Quantitative modelling of co-benefits should inform policy responses.

  18. Dynamic Analytical Capability to Better Understand and Anticipate Extremist Shifts Within Populations under Authoritarian Regimes.

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The purpose of this work is to create a generalizable data- and theory-supported capability to better understand and anticipate (with quantifiable uncertainty): 1) how the dynamics of allegiance formations between various groups and society are impacted by active conflict and by third-party interventions and 2) how/why extremist allegiances co-evolve over time due to changing geopolitical, sociocultural, and military conditions.

  19. Common factors drive disease and coarse woody debris dynamics in forests impacted by sudden oak death

    Science.gov (United States)

    Richard C. Cobb; Maggie N. Chan; Ross K. Meentemeyer; David M. Rizzo

    2011-01-01

    Disease ecology has made important steps in describing how epidemiological processes control the impact of pathogens on populations and communities but fewer field or theoretical studies address disease effects at the ecosystem level. We demonstrate that the same epidemiological mechanisms drive disease intensity and coarse woody debris (CWD) dynamics...

  20. Assessment of inflammatory activity in Crohn's disease by means of dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Pupillo, V A; Di Cesare, E; Frieri, G; Limbucci, N; Tanga, M; Masciocchi, C

    2007-09-01

    Our aim was to perform a dynamic study of contrast enhancement of the intestinal wall in patients with Crohn's disease to quantitatively assess local inflammatory activity. We studied a population of 50 patients with histologically proven Crohn's disease. Magnetic resonance imaging (MRI) was performed using a 1.5-T magnet with a phased-array coil and acquisition of T2-weighted single-shot fast spin echo (SSFSE) half Fourier sequences before intravenous administration of gadolinium, and T1-weighted fast spoiled gradient (FSPGR) fat-saturated sequences before and after contrast administration. Before the examination, patents received oral polyethylene glycol (PEG) (1,000 ml for adults; 10 ml/Kg of body weight for children). Regions of interest (ROI) were placed on the normal and diseased intestinal wall to assess signal intensity and rate of increase in contrast enhancement over time. Data were compared with the Crohn's Disease Activity Index (CDAI). The diseased bowel wall showed early and intense uptake of contrast that increases over time until a plateau is reached. In patients in the remission phase after treatment, signal intensity was only slightly higher in diseased bowel loops than in healthy loops. There was a significant correlation between the peak of contrast uptake and CDAI. Dynamic MRI is a good technique for quantifying local inflammatory activity of bowel wall in patients with Crohn's disease.

  1. FEATURES OF DYNAMIC CHANGE OF INNER DISEASE-RELATION TYPE IN COHORT OF PATIENTS SUFFERING FROM ADDICTIONS

    Directory of Open Access Journals (Sweden)

    A. Z. Grigoryan

    2014-12-01

    Full Text Available Aim. Pathoplastic modification of addictive disorders with affective spectrum violations, leads to the formation of the psychopathological cluster that have specific structural and dynamic features.Methods and results. In order to assess the dynamics of change of disease-relation type by LOBY questionnaire, 100 patients from «Zaporozhye Regional Narcological Dispensary» suffering from polydrug usage and affective spectrum disorders were examined in the following clinical periods: withdrawal state, further inpatient and outpatient follow-up.Conclusion. The solidity of background psychopathological disorders in perspective of their affiliation to somatogenically-organic register, for the entire study contingent was found. Dynamics of change of disease-relation type illustrates partially reversible character of these disorders.

  2. Understanding health decisions using critical realism: home-dialysis decision-making during chronic kidney disease.

    Science.gov (United States)

    Harwood, Lori; Clark, Alexander M

    2012-03-01

    Understanding health decisions using critical realism: home-dialysis decision-making during chronic kidney disease This paper examines home-dialysis decision making in people with Chronic Kidney Disease (CKD) from the perspective of critical realism. CKD programmes focus on patient education for self-management to delay the progression of kidney disease and the preparation and support for renal replacement therapy e.g.) dialysis and transplantation. Home-dialysis has clear health, societal and economic benefits yet service usage is low despite efforts to realign resources and educate individuals. Current research on the determinants of modality selection is superficial and insufficient to capture the complexities embedded in the process of dialysis modality selection. Predictors of home-dialysis selection and the effect of chronic kidney disease educational programmes provide a limited explanation of this experience. A re-conceptualization of the problem is required in order to fully understand this process. The epistemology and ontology of critical realism guides our knowledge and methodology particularly suited for examination of these complexities. This approach examines the deeper mechanisms and wider determinants associated with modality decision making, specifically who chooses home dialysis and under what circumstances. Until more is known regarding dialysis modality decision making service usage of home dialysis will remain low as interventions will be based on inadequate epistemology. © 2011 Blackwell Publishing Ltd.

  3. Slower Dynamics and Aged Mitochondria in Sporadic Alzheimer's Disease

    Science.gov (United States)

    Gargini, Ricardo; García, Esther; Perry, George

    2017-01-01

    Sporadic Alzheimer's disease corresponds to 95% of cases whose origin is multifactorial and elusive. Mitochondrial dysfunction is a major feature of Alzheimer's pathology, which might be one of the early events that trigger downstream principal events. Here, we show that multiple genes that control mitochondrial homeostasis, including fission and fusion, are downregulated in Alzheimer's patients. Additionally, we demonstrate that some of these dysregulations, such as diminished DLP1 levels and its mitochondrial localization, as well as reduced STOML2 and MFN2 fusion protein levels, take place in fibroblasts from sporadic Alzheimer's disease patients. The analysis of mitochondrial network disruption using CCCP indicates that the patients' fibroblasts exhibit slower dynamics and mitochondrial membrane potential recovery. These defects lead to strong accumulation of aged mitochondria in Alzheimer's fibroblasts. Accordingly, the analysis of autophagy and mitophagy involved genes in the patients demonstrates a downregulation indicating that the recycling mechanism of these aged mitochondria might be impaired. Our data reinforce the idea that mitochondrial dysfunction is one of the key early events of the disease intimately related with aging. PMID:29201274

  4. Understanding the physiology of complex congenital heart disease using cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kappanayil, Mahesh; Kannan, Rajesh; Kumar, Raman Krishna

    2011-01-01

    Complex congenital heart diseases are often associated with complex alterations in hemodynamics. Understanding these key hemodynamic changes is critical to making management decisions including surgery and postoperative management. Existing tools for imaging and hemodynamic assessment like echocardiography, computed tomography and cardiac catheterization have inherent limitations. Cardiac magnetic resonance imaging (MRI) is emerging as a powerful bouquet of tools that allow not only excellent imaging, but also a unique insight into hemodynamics. This article introduces the reader to cardiac MRI and its utility through the clinical example of a child with a complex congenital cyanotic heart disease

  5. Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence

    Science.gov (United States)

    Yu, Pei; Zhang, Wenjing; Wahl, Lindi M.

    2016-08-01

    In this paper, a previously developed 2-dimensional disease model is studied, which can be used for both epidemiologic modeling and in-host disease modeling. The main attention of this paper is focused on various dynamical behaviors of the system, including Hopf and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov-Takens bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov-Takens bifurcation and homoclinic bifurcation provide a new mechanism for generating disease recurrence, that is, cycles of remission and relapse such as the viral blips observed in HIV infection.

  6. Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding.

    Science.gov (United States)

    Rippe, James M; Angelopoulos, Theodore J

    2016-11-04

    Added sugars are a controversial and hotly debated topic. Consumption of added sugars has been implicated in increased risk of a variety of chronic diseases including obesity, cardiovascular disease, diabetes and non-alcoholic fatty liver disease (NAFLD) as well as cognitive decline and even some cancers. Support for these putative associations has been challenged, however, on a variety of fronts. The purpose of the current review is to summarize high impact evidence including systematic reviews, meta-analyses, and randomized controlled trials (RCTs), in an attempt to provide an overview of current evidence related to added sugars and health considerations. This paper is an extension of a symposium held at the Experimental Biology 2015 conference entitled "Sweeteners and Health: Current Understandings, Controversies, Recent Research Findings and Directions for Future Research". We conclude based on high quality evidence from randomized controlled trials (RCT), systematic reviews and meta-analyses of cohort studies that singling out added sugars as unique culprits for metabolically based diseases such as obesity, diabetes and cardiovascular disease appears inconsistent with modern, high quality evidence and is very unlikely to yield health benefits. While it is prudent to consume added sugars in moderation, the reduction of these components of the diet without other reductions of caloric sources seems unlikely to achieve any meaningful benefit.

  7. Swimming Dynamics of the Lyme Disease Spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  8. Using Machine Reading to Understand Alzheimer’s and Related Diseases from the Literature

    Directory of Open Access Journals (Sweden)

    Satoshi Tsutsui

    2017-12-01

    Full Text Available Purpose: This paper aims to better understand a large number of papers in the medical domain of Alzheimer’s disease (AD and related diseases using the machine reading approach. Design/methodology/approach: The study uses the topic modeling method to obtain an overview of the field, and employs open information extraction to further comprehend the field at a specific fact level. Findings: Several topics within the AD research field are identified, such as the Human Immunodeficiency Virus (HIV/Acquired Immune Deficiency Syndrome (AIDS, which can help answer the question of how AIDS/HIV and AD are very different yet related diseases. Research limitations: Some manual data cleaning could improve the study, such as removing incorrect facts found by open information extraction. Practical implications: This study uses the literature to answer specific questions on a scientific domain, which can help domain experts find interesting and meaningful relations among entities in a similar manner, such as to discover relations between AD and AIDS/HIV. Originality/value: Both the overview and specific information from the literature are obtained using two distinct methods in a complementary manner. This combination is novel because previous work has only focused on one of them, and thus provides a better way to understand an important scientific field using data-driven methods.

  9. Modelling the influence of human behaviour on the spread of infectious diseases: a review.

    Science.gov (United States)

    Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A

    2010-09-06

    Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.

  10. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Seven challenges in modeling pathogen dynamics within-host and across scales

    OpenAIRE

    Julia R. Gog; Lorenzo Pellis; James L.N. Wood; Angela R. McLean; Nimalan Arinaminpathy; James O. Lloyd-Smith

    2015-01-01

    © 2014 The Authors. The population dynamics of infectious disease is a mature field in terms of theory and to some extent, application. However for microparasites, the theory and application of models of the dynamics within a single infected host is still an open field. Further, connecting across the scales - from cellular to host level, to population level - has potential to vastly improve our understanding of pathogen dynamics and evolution. Here, we highlight seven challenges in the follow...

  12. Asymmetrically interacting spreading dynamics on complex layered networks.

    Science.gov (United States)

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-05-29

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.

  13. Understanding lack of understanding : Invalidation in rheumatic diseases

    NARCIS (Netherlands)

    Kool, M.B.

    2012-01-01

    The quality of life of patients with chronic rheumatic diseases is negatively influenced by symptoms such as pain, fatigue, and stiffness, and secondary symptoms such as physical limitations and depressive mood. On top of this burden, some patients experience negative responses from others, such as

  14. Deciphering Diversity Indices for a Better Understanding of Microbial Communities.

    Science.gov (United States)

    Kim, Bo-Ra; Shin, Jiwon; Guevarra, Robin; Lee, Jun Hyung; Kim, Doo Wan; Seol, Kuk-Hwan; Lee, Ju-Hoon; Kim, Hyeun Bum; Isaacson, Richard

    2017-12-28

    The past decades have been a golden era during which great tasks were accomplished in the field of microbiology, including food microbiology. In the past, culture-dependent methods have been the primary choice to investigate bacterial diversity. However, using cultureindependent high-throughput sequencing of 16S rRNA genes has greatly facilitated studies exploring the microbial compositions and dynamics associated with health and diseases. These culture-independent DNA-based studies generate large-scale data sets that describe the microbial composition of a certain niche. Consequently, understanding microbial diversity becomes of greater importance when investigating the composition, function, and dynamics of the microbiota associated with health and diseases. Even though there is no general agreement on which diversity index is the best to use, diversity indices have been used to compare the diversity among samples and between treatments with controls. Tools such as the Shannon- Weaver index and Simpson index can be used to describe population diversity in samples. The purpose of this review is to explain the principles of diversity indices, such as Shannon- Weaver and Simpson, to aid general microbiologists in better understanding bacterial communities. In this review, important questions concerning microbial diversity are addressed. Information from this review should facilitate evidence-based strategies to explore microbial communities.

  15. Dynamic 3D-MR-angiography for assessing rheumatoid disease of the hand—A feasibility study

    International Nuclear Information System (INIS)

    Notohamiprodjo, Mike; Glaser, Christian; Horng, Annie; Helck, Andreas; Bauner, Kerstin U.; Reiser, Maximilian F.; Hatz, Hans J.; Weckbach, Sabine

    2012-01-01

    Purpose: To investigate highly temporally resolved MR-angiography (MRA) with time-resolved imaging with stochastic trajectories (TWIST) of the hand as supplementary tool for dynamic assessment of synovitis and vascular pathologies in rheumatoid diseases. Material and methods: A coronal dynamic TWIST–MRA-sequence (0.7 mm × 0.7 mm × 1.4 mm, temporal resolution 2.5 s, time of acquisition 4 min) of the predominantly affected hand of 17 patients with suspected rheumatoid disease was acquired after contrast administration (Multihance, Bracco Imaging SpA) at 3 T (Magnetom VERIO, 8-channel-knee-coil, Siemens Healthcare). As standard of reference, contrast enhanced non fat-saturated coronal and fat-saturated axial T1-w sequences were acquired. These static sequences and the dynamic TWIST–MRA–maximum-intensity-projections (MIP) were separately assessed by two readers in consensus, recording the number of synovial lesions (wrist, intercarpal, metacarpophaleangal/proximal/distal interphalangeal joints), signs of tenosynovitis and vasculitis. Diagnostic confidence was rated (4-point-scale: 4 = excellent; 1 = non-diagnostic). Statistical significance was tested using the Wilcoxon-rank-sum-test. Results: An insignificantly lower number of synovial lesions (n = 72 vs. 89; p = 0.1) and only 3/9 cases with tenosynovitis were identified by the TWIST–MRA. For detected lesions, diagnostic confidence was comparable (MRA: 3.64; static T1-w post contrast: 3.47). In patients with high clinical activity dynamic MRA showed very early synovial enhancement. Only dynamic MRA detected 3 cases of vasculitis (subsequently confirmed with digital-subtraction-angiography). Conclusion: TWIST–MRA facilitates fast detection of synovitis. Although dynamic MRA of the hand is inferior to static contrast enhanced sequences in assessing the number of synovitic and tenosynovitic lesions, its high temporal resolution allows for fast visual grading of disease activity and assessment of vasculitis

  16. Mechanistic understanding of human-wildlife conflict through a novel application of dynamic occupancy models.

    Science.gov (United States)

    Goswami, Varun R; Medhi, Kamal; Nichols, James D; Oli, Madan K

    2015-08-01

    Crop and livestock depredation by wildlife is a primary driver of human-wildlife conflict, a problem that threatens the coexistence of people and wildlife globally. Understanding mechanisms that underlie depredation patterns holds the key to mitigating conflicts across time and space. However, most studies do not consider imperfect detection and reporting of conflicts, which may lead to incorrect inference regarding its spatiotemporal drivers. We applied dynamic occupancy models to elephant crop depredation data from India between 2005 and 2011 to estimate crop depredation occurrence and model its underlying dynamics as a function of spatiotemporal covariates while accounting for imperfect detection of conflicts. The probability of detecting conflicts was consistently year). The probability of crop depredation occurrence ranged from 0.29 (SE 0.09) to 0.96 (SE 0.04). The probability that sites raided by elephants in primary period t would not be raided in primary period t + 1 varied with elevation gradient in different seasons and was influenced negatively by mean rainfall and village density and positively by distance to forests. Negative effects of rainfall variation and distance to forests best explained variation in the probability that sites not raided by elephants in primary period t would be raided in primary period t + 1. With our novel application of occupancy models, we teased apart the spatiotemporal drivers of conflicts from factors that influence how they are observed, thereby allowing more reliable inference on mechanisms underlying observed conflict patterns. We found that factors associated with increased crop accessibility and availability (e.g., distance to forests and rainfall patterns) were key drivers of elephant crop depredation dynamics. Such an understanding is essential for rigorous prediction of future conflicts, a critical requirement for effective conflict management in the context of increasing human-wildlife interactions. © 2015

  17. Wildlife disease prevalence in human-modified landscapes.

    Science.gov (United States)

    Brearley, Grant; Rhodes, Jonathan; Bradley, Adrian; Baxter, Greg; Seabrook, Leonie; Lunney, Daniel; Liu, Yan; McAlpine, Clive

    2013-05-01

    Human-induced landscape change associated with habitat loss and fragmentation places wildlife populations at risk. One issue in these landscapes is a change in the prevalence of disease which may result in increased mortality and reduced fecundity. Our understanding of the influence of habitat loss and fragmentation on the prevalence of wildlife diseases is still in its infancy. What is evident is that changes in disease prevalence as a result of human-induced landscape modification are highly variable. The importance of infectious diseases for the conservation of wildlife will increase as the amount and quality of suitable habitat decreases due to human land-use pressures. We review the experimental and observational literature of the influence of human-induced landscape change on wildlife disease prevalence, and discuss disease transmission types and host responses as mechanisms that are likely to determine the extent of change in disease prevalence. It is likely that transmission dynamics will be the key process in determining a pathogen's impact on a host population, while the host response may ultimately determine the extent of disease prevalence. Finally, we conceptualize mechanisms and identify future research directions to increase our understanding of the relationship between human-modified landscapes and wildlife disease prevalence. This review highlights that there are rarely consistent relationships between wildlife diseases and human-modified landscapes. In addition, variation is evident between transmission types and landscape types, with the greatest positive influence on disease prevalence being in urban landscapes and directly transmitted disease systems. While we have a limited understanding of the potential influence of habitat loss and fragmentation on wildlife disease, there are a number of important areas to address in future research, particularly to account for the variability in increased and decreased disease prevalence. Previous studies

  18. Quantification of motor network dynamics in Parkinson's disease by means of landscape and flux theory.

    Directory of Open Access Journals (Sweden)

    Han Yan

    Full Text Available The basal ganglia neural circuit plays an important role in motor control. Despite the significant efforts, the understanding of the principles and underlying mechanisms of this modulatory circuit and the emergence of abnormal synchronized oscillations in movement disorders is still challenging. Dopamine loss has been proved to be responsible for Parkinson's disease. We quantitatively described the dynamics of the basal ganglia-thalamo-cortical circuit in Parkinson's disease in terms of the emergence of both abnormal firing rates and firing patterns in the circuit. We developed a potential landscape and flux framework for exploring the modulatory circuit. The driving force of the circuit can be decomposed into a gradient of the potential, which is associated with the steady-state probability distributions, and the curl probability flux term. We uncovered the underlying potential landscape as a Mexican hat-shape closed ring valley where abnormal oscillations emerge due to dopamine depletion. We quantified the global stability of the network through the topography of the landscape in terms of the barrier height, which is defined as the potential difference between the maximum potential inside the ring and the minimum potential along the ring. Both a higher barrier and a larger flux originated from detailed balance breaking result in more stable oscillations. Meanwhile, more energy is consumed to support the increasing flux. Global sensitivity analysis on the landscape topography and flux indicates how changes in underlying neural network regulatory wirings and external inputs influence the dynamics of the system. We validated two of the main hypotheses(direct inhibition hypothesis and output activation hypothesis on the therapeutic mechanism of deep brain stimulation (DBS. We found GPe appears to be another effective stimulated target for DBS besides GPi and STN. Our approach provides a general way to quantitatively explore neural networks and may

  19. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants.

    Science.gov (United States)

    Barton, Ian S; Fuqua, Clay; Platt, Thomas G

    2018-01-01

    Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Crustal Seismic Anisotropy: Implications for Understanding Crustal Dynamics

    Science.gov (United States)

    Meltzer, A.; Christensen, N.; Okaya, D.

    2003-12-01

    variation in % anisotropy, changes in orientation of the regional foliation within the massif, and velocity (splitting) variance due to non-axial propagation through a wide range of event-station azimuths. Because the composition of the massif is basically homogeneous, the rock fabric is well developed, and the structure well constrained, this data set is ideal for studying and quantifying the affect of non-axial propagation through regional foliation. This type of analysis has important implications for understanding crustal dynamics. Vp, Vs, and Vp/Vs ratios are typically used to infer both lithology and rheology of subsurface materials and to provide constraints for thermo-mechanical models of deformation. Current tomography codes do not generally account for anisotropic effects and may potentially under or over estimate velocity structure in the crust. At Nanga Parbat, a prominent low-velocity zone is mapped beneath the core of the massif. The magnitude and extent of this zone constrains crustal flow paths focusing crustal strain, exhumation, and potential zones of partial melting in the crust. Accurate determination of velocity structure is clearly important to understand crustal structure and modification during orogenesis.

  1. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Directory of Open Access Journals (Sweden)

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  2. Quantifying the inflammatory activity in Crohn's disease using CE dynamic MRI

    International Nuclear Information System (INIS)

    Pauls, S.; Schmidt, S.A.; Brambs, H.J.; Gabelmann, A.; Kratzer, W.; Mittrach, C.; Adler, G.; Rieber, A.

    2003-01-01

    Purpose: Evaluation of dynamic contrast enhanced MRI in patients with Crohn's disease to assess local inflammatory activity. Material and Methods: Prospective study of 13 patients with histologically proven Crohn's disease. Axial and coronal slices were acquired by a 1.5 T MR (Magnetom Vision, Siemens, Germany): T1 flash 2 D (TR 72.5 ms, TE 4.1 ms), T2 (TR 2730 ms, TE 138 ms), turbo-flash sequences T1 (TR 94.2 ms, TE 4.1 ms) post contrast media fat saturated (Magnevist circledR , 0.2 ml/kg, flow 4 ml/s). In area of maximal thickening of terminal ileal wall, axial dynamic T1 sequences (TR 11 ms, TE 4.2 ms) were acquired every 1.5 s post contrast media application for a total duration of 1 min. Contrast uptake was subjectively measured by semiquantitative score and computed assisted ROI evaluation. MR parameters were correlated with CDAI (Crohn's disease activity index) and SAI (severe activity index). Results: Contrast uptake in the intestinal wall occurred after 18.5 s (range: 3.0-28.0), contrast upslope until plateau phase lasted for 16.1 s (range: 8.0-50.0). Maximum contrast enhancement into the bowel wall was 266% (105-450%) of baseline. After maximum contrast uptake, we observed a plateau phase in all cases for the total duration of measurement. A significant correlation existed for maximum contrast uptake to CDAI (r = 0.591; p = 0.033), for beginning of contrast upslope to the time until plateau phase (r = 0.822; p = 0.001), and for the time until plateau phase to CDAI (r = 0.562; p = 0.046). CDAI was on average 108, median 106; SAI was on average 114, median 115. SAI correlated significantly to CDAI (r = 0.874). Maximum contrast uptake, beginning of contrast upslope, and time until plateau phase were independent to creeping fat, local lymphadenitis, laboratory parameters, temperature, body mass index, heart frequency and systolic blood pressure. Conclusion: Dynamic MRI enables to quantify local inflammatory activity of bowel wall in patients with Crohn

  3. Static and dynamic hyperinflation during severe acute exacerbations of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    van Geffen WH

    2018-04-01

    Full Text Available Wouter H van Geffen,1,2 Huib AM Kerstjens2 1Department of Respiratory Medicine, Medical Centre Leeuwarden, Leeuwarden, the Netherlands; 2Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Background: Static hyperinflation is known to be increased during moderate acute exacerbations of chronic obstructive pulmonary disease (COPD (AECOPD, but few data exist in patients with severe exacerbations of COPD. The role of dynamic hyperinflation during exacerbations is unclear. Methods: In a prospective, observational cohort study, we recruited patients admitted to hospital for AECOPD. The following measurements were performed upon admission and again after resolution (stable state at least 42 days later: inspiratory capacity (IC, body plethysmography, dynamic hyperinflation by metronome-paced IC measurement, health-related quality of life and dyspnea. Results: Forty COPD patients were included of whom 28 attended follow-up. The IC was low at admission (2.05±0.11 L and increased again during resolution by 15.6%±23.1% or 0.28±0.08 L (mean ± standard error of the mean, p<0.01. Testing of metronome-paced changes in IC was feasible, and it decreased by 0.74±0.06 L at admission, similarly to at stable state. Clinical COPD Questionnaire score was 3.7±0.2 at admission and improved by 1.7±0.2 points (p<0.01, and the Borg dyspnea score improved by 2.2±0.5 points from 4.4±0.4 at admission (p<0.01. Conclusion: Static hyperinflation is increased during severe AECOPD requiring hospitalization compared with stable state. We could measure metronome-paced dynamic hyperinflation during severe AECOPD but found no increase. Keywords: COPD, exacerbations of COPD, static hyperinflation, dynamic hyperinflation, severe acute exacerbations of COPD, COPD exacerbation, chronic obstructive pulmonary disease

  4. Resilience as a concept for understanding family caregiving of adults with Chronic Obstructive Pulmonary Disease (COPD): an integrative review.

    Science.gov (United States)

    Rosa, Francesca; Bagnasco, Annamaria; Aleo, Giuseppe; Kendall, Sally; Sasso, Loredana

    2017-04-01

    This paper was a report of the synthesis of evidence on examining the origins and definitions of the concept of resilience, investigating its application in chronic illness management and exploring its utility as a means of understanding family caregiving of adults with Chronic Obstructive Pulmonary Disease. Resilience is a concept that is becoming relevant to understanding how individuals and families live with illness, especially long-term conditions. Caregivers of adults with Chronic Obstructive Pulmonary Disease must be able to respond to exacerbations of the condition and may themselves experience cognitive imbalances. Yet, resilience as a way of understanding family caregiving of adults with COPD is little explored. Literature review - integrative review. CINAHL, PubMed, Google Scholar and EBSCO were searched between 1989-2015. The principles of rapid evidence assessment were followed. We identified 376 relevant papers: 20 papers reported the presence of the concept of resilience in family caregivers of chronic diseases patients but only 12 papers reported the presence of the concept of resilience in caregivers of Chronic Obstructive Pulmonary Disease patients and have been included in the synthesis. The term resilience in Chronic Obstructive Pulmonary Disease caregiving is most often understood using a deficit model of health.

  5. Parameterization and Sensitivity Analysis of a Complex Simulation Model for Mosquito Population Dynamics, Dengue Transmission, and Their Control

    Science.gov (United States)

    Ellis, Alicia M.; Garcia, Andres J.; Focks, Dana A.; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority. PMID:21813844

  6. Evolutionary medicine--the quest for a better understanding of health, disease and prevention.

    Science.gov (United States)

    Brüne, Martin; Hochberg, Ze'ev

    2013-04-29

    Clinical medicine has neglected the fact that the make-up of organs and body functions, as well as the human-specific repertoire of behaviors and defenses against pathogens or other potential dangers are the product of adaptation by natural and sexual selection. Even more, for many clinicians it does not seem straightforward to accept a role of evolution in the understanding of disease, let alone, treatment and prevention.Accordingly, this Editorial seeks to set the stage for an article collection that aims at dealing precisely with the question of why evolutionary aspects of health and disease are not only interesting, but necessary to improve clinical medicine.

  7. Use of carbon isotope analysis to understand semi-arid erosion dynamics and long-term semi-arid land degradation.

    Science.gov (United States)

    Turnbull, Laura; Brazier, Richard E; Wainwright, John; Dixon, Liz; Bol, Roland

    2008-06-01

    Many semi-arid areas worldwide are becoming degraded, in the form of C(4) grasslands being replaced by C(3) shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the delta(13)C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using delta(13)C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and delta(13)C signatures of eroded sediment was found in all plots. This indicates that the delta(13)C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using delta(13)C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments. John Wiley & Sons, Ltd

  8. Quebec Trophoblastic Disease Registry: how to make an easy-to-use dynamic database.

    Science.gov (United States)

    Sauthier, Philippe; Breguet, Magali; Rozenholc, Alexandre; Sauthier, Michaël

    2015-05-01

    To create an easy-to-use dynamic database designed specifically for the Quebec Trophoblastic Disease Registry (RMTQ). It is now well established that much of the success in managing trophoblastic diseases comes from the development of national and regional reference centers. Computerized databases allow the optimal use of data stored in these centers. We have created an electronic data registration system by producing a database using FileMaker Pro 12. It uses 11 external tables associated with a unique identification number for each patient. Each table allows specific data to be recorded, incorporating demographics, diagnosis, automated staging, laboratory values, pathological diagnosis, and imaging parameters. From January 1, 2009, to December 31, 2013, we used our database to register 311 patients with 380 diseases and have seen a 39.2% increase in registrations each year between 2009 and 2012. This database allows the automatic generation of semilogarithmic curves, which take into account β-hCG values as a function of time, complete with graphic markers for applied treatments (chemotherapy, radiotherapy, or surgery). It generates a summary sheet for a synthetic vision in real time. We have created, at a low cost, an easy-to-use database specific to trophoblastic diseases that dynamically integrates staging and monitoring. We propose a 10-step procedure for a successful trophoblastic database. It improves patient care, research, and education on trophoblastic diseases in Quebec and leads to an opportunity for collaboration on a national Canadian registry.

  9. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    Science.gov (United States)

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  10. Dynamics of births and juvenile recruitment in Mara-Serengeti ungulates in relation to climatic and land use changes

    NARCIS (Netherlands)

    Ogutu, Joseph O.; Piepho, Hans-Peter; Dublin, Holly T.; Bhola, Nina; Reid, Robin S.

    Natality and recruitment govern animal population dynamics, but their responses to fluctuating resources, competition, predation, shifting habitat conditions, density feedback and diseases are poorly understood. To understand the influences of climatic and land use changes on population dynamics, we

  11. Structural, Dynamical, and Energetical Consequences of Rett Syndrome Mutation R133C in MeCP2

    Directory of Open Access Journals (Sweden)

    Tugba G. Kucukkal

    2015-01-01

    Full Text Available Rett Syndrome (RTT is a progressive neurodevelopmental disease affecting females. RTT is caused by mutations in the MECP2 gene and various amino acid substitutions have been identified clinically in different domains of the multifunctional MeCP2 protein encoded by this gene. The R133C variant in the methylated-CpG-binding domain (MBD of MeCP2 is the second most common disease-causing mutation in the MBD. Comparative molecular dynamics simulations of R133C mutant and wild-type MBD have been performed to understand the impact of the mutation on structure, dynamics, and interactions of the protein and subsequently understand the disease mechanism. Two salt bridges within the protein and two critical hydrogen bonds between the protein and DNA are lost upon the R133C mutation. The mutation was found to weaken the interaction with DNA and also cause loss of helicity within the 141-144 region. The structural, dynamical, and energetical consequences of R133C mutation were investigated in detail at the atomic resolution. Several important implications of this have been shown regarding protein stability and hydration dynamics as well as its interaction with DNA. The results are in agreement with previous experimental studies and further provide atomic level understanding of the molecular origin of RTT associated with R133C variant.

  12. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network

    Science.gov (United States)

    Eggo, Rosalind M; Lenczner, Michael

    2015-01-01

    Background Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns. Objective The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures. Methods We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network’s ability to produce multiwave epidemics. Results We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups. Conclusions Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic

  13. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    Science.gov (United States)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  14. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease

    NARCIS (Netherlands)

    Kooi, B.W.; Voorn, van G.A.K.; Das, pada Krishna

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  15. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease.

    NARCIS (Netherlands)

    Kooi, B.W.; van Voorn, G.A.K.; Pada Das, K.

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator-prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  16. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007-2011.

    Science.gov (United States)

    Al-Thani, Mohamed H; Sadoun, Eman; Al-Thani, Al-Anoud; Khalifa, Shamseldin A; Sayegh, Suzan; Badawi, Alaa

    2014-12-01

    Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics and recent changes in disease-related mortality rates among Qatari nationals. The present study examines the population structure/dynamics and the related changes in the cause-specific mortality rates and disease prevalence in the Qatari nationals. This is a retrospective, analytic descriptive analysis covering a period of 5years (2007-2011) and utilizes a range of data sources from the State of Qatar including the population structure, disease-related mortality rates, and the prevalence of a range of chronic and infectious diseases. Factors reflecting population dynamics such as crude death (CDR), crude birth (CBR), total fertility (TFR) and infant mortality (IMR) rates were also calculated. The Qatari nationals is an expansive population with an annual growth rate of ∼4% and a stable male:female ratio. The CDR declined by 15% within the study period, whereas the CBR was almost stable. The total disease-specific death rate, however, was decreased among the Qatari nationals by 23% due to the decline in mortality rates attributed to diseases of the blood and immune system (43%), nervous system (44%) and cardiovascular system (41%). There was a high prevalence of a range of chronic diseases, whereas very low frequencies of the infectious diseases within the study population. Public health strategies, approaches and programs developed to reduce disease burden and the related death, should be tailored to target the population of Qatari nationals which exhibits characteristics that vary from

  17. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    Science.gov (United States)

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  18. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  19. Recent advances in understanding autoimmune thyroid disease

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Nielsen, Claus Henrik; Feldt-Rasmussen, Ulla

    2017-01-01

    Autoimmune thyroid disease (AITD) is often observed together with other autoimmune diseases. The coexistence of two or more autoimmune diseases in the same patient is referred to as polyautoimmunity, and AITD is the autoimmune disease most frequently involved. The occurrence of polyautoimmunity h...

  20. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    Science.gov (United States)

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  1. Mathematical modeling of bone marrow--peripheral blood dynamics in the disease state based on current emerging paradigms, part I.

    Science.gov (United States)

    Afenya, Evans K; Ouifki, Rachid; Camara, Baba I; Mundle, Suneel D

    2016-04-01

    Stemming from current emerging paradigms related to the cancer stem cell hypothesis, an existing mathematical model is expanded and used to study cell interaction dynamics in the bone marrow and peripheral blood. The proposed mathematical model is described by a system of nonlinear differential equations with delay, to quantify the dynamics in abnormal hematopoiesis. The steady states of the model are analytically and numerically obtained. Some conditions for the local asymptotic stability of such states are investigated. Model analyses suggest that malignancy may be irreversible once it evolves from a nonmalignant state into a malignant one and no intervention takes place. This leads to the proposition that a great deal of emphasis be placed on cancer prevention. Nevertheless, should malignancy arise, treatment programs for its containment or curtailment may have to include a maximum and extensive level of effort to protect normal cells from eventual destruction. Further model analyses and simulations predict that in the untreated disease state, there is an evolution towards a situation in which malignant cells dominate the entire bone marrow - peripheral blood system. Arguments are then advanced regarding requirements for quantitatively understanding cancer stem cell behavior. Among the suggested requirements are, mathematical frameworks for describing the dynamics of cancer initiation and progression, the response to treatment, the evolution of resistance, and malignancy prevention dynamics within the bone marrow - peripheral blood architecture. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics.

    Science.gov (United States)

    Wells, Konstans; Brook, Barry W; Lacy, Robert C; Mutze, Greg J; Peacock, David E; Sinclair, Ron G; Schwensow, Nina; Cassey, Phillip; O'Hara, Robert B; Fordham, Damien A

    2015-02-06

    Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Toward an improved understanding of the role of transpiration in critical zone dynamics

    Science.gov (United States)

    Mitra, B.; Papuga, S. A.

    2012-12-01

    Evapotranspiration (ET) is an important component of the total water balance across any ecosystem. In subalpine mixed-conifer ecosystems, transpiration (T) often dominates the total water flux and therefore improved understanding of T is critical for accurate assessment of catchment water balance and for understanding of the processes that governs the complex dynamics across critical zone (CZ). The interaction between T and plant vegetation not only modulates soil water balance but also influences water transit time and hydrochemical flux - key factors in our understanding of how the CZ evolves and responds. Unlike an eddy covariance system which provides only an integrated ET flux from an ecosystem, a sap flow system can provide an estimate of the T flux from the ecosystem. By isolating T, the ecohydrological drivers of this major water loss from the CZ can be identified. Still, the species composition of mixed-conifer ecosystems vary and the drivers of T associated with each species are expected to be different. Therefore, accurate quantification of T from a mixed-conifer requires knowledge of the unique transpiration dynamics of each of the tree species. Here, we installed a sap flow system within two mixed-conifer study sites of the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory (JRB - SCM CZO). At both sites, we identified the dominant tree species and installed sap flow sensors on healthy representatives for each of those species. At the JRB CZO site, sap sensors were installed in fir (4) and spruce (4) trees; at the SCM CZO site, sap sensors were installed at white fir (4) and maple (4) and one dead tree. Meteorological data as well as soil temperature (Ts) and soil moisture (θ) at multiple depths were also collected from each of the two sites. Preliminary analysis of two years of sap flux rate at JRB - SCM CZO shows that the environmental drivers of fir, spruce, and maple are different and also vary throughout the year. For JRB fir

  4. Using data-driven agent-based models for forecasting emerging infectious diseases

    Directory of Open Access Journals (Sweden)

    Srinivasan Venkatramanan

    2018-03-01

    Full Text Available Producing timely, well-informed and reliable forecasts for an ongoing epidemic of an emerging infectious disease is a huge challenge. Epidemiologists and policy makers have to deal with poor data quality, limited understanding of the disease dynamics, rapidly changing social environment and the uncertainty on effects of various interventions in place. Under this setting, detailed computational models provide a comprehensive framework for integrating diverse data sources into a well-defined model of disease dynamics and social behavior, potentially leading to better understanding and actions. In this paper, we describe one such agent-based model framework developed for forecasting the 2014–2015 Ebola epidemic in Liberia, and subsequently used during the Ebola forecasting challenge. We describe the various components of the model, the calibration process and summarize the forecast performance across scenarios of the challenge. We conclude by highlighting how such a data-driven approach can be refined and adapted for future epidemics, and share the lessons learned over the course of the challenge. Keywords: Emerging infectious diseases, Agent-based models, Simulation optimization, Bayesian calibration, Ebola

  5. Molecular dynamics as a method to gain understanding in questions concerning montmorillonite

    International Nuclear Information System (INIS)

    Seppaelae, A.; Vaari, J.; Puhakka, E.; Tanhua-Tyrkkoe, M.; Olin, M.; Kasa, S.

    2012-01-01

    Document available in extended abstract form only. Bentonite is one of the main material components to be used in the KBS-3 concept for safe disposal of spent nuclear fuel. The functional material in bentonite giving its beneficial properties is montmorillonite mineral. Montmorillonite consists of two completely different components: one nano-metre thick and approximately 200-400 nano-metres wide mineral layers carrying constant charge and charge compensating cations very near the mineral surfaces. The first component is more of a passive component while the second can absorb water molecules and change the cationic composition. In addition to montmorillonite bentonite usually contains some salts dissolved into water and accessory minerals. Any bulk bentonite is formed from these components via many scales of which structure is not yet fully known to science. Therefore the beneficial macroscopic properties of bentonite are assumed to follow from the nano-level structure and reactions. In safety studies of spent fuel disposal the time span to be considered extends beyond a hundred thousand years making any straightforward experimenting impossible. However, by modelling it is possible to study even very long periods of time. Unfortunately the model data and reactions are at least implicitly based on our short term experiments and may therefore be biased in some way. One possible solution to this may be the application of molecular chemistry or dynamics to construct the basis for our modelling studies. We have applied molecular chemistry on surface properties of kaolinite clay and biotite mineral but molecular dynamics is a new type of modelling for us. We believe that (during the coming ten years) molecular dynamics could make it easier to understand for example the following topics: How do charge compensating (exchanged) and aqueous cations interact? Why does water expand montmorillonite during wetting? Exact mechanism? How does water leave montmorillonite during

  6. Modeling of the blood flow in the lower extremities for dynamic diffuse optical tomography of peripheral artery disease

    Science.gov (United States)

    Marone, A.; Hoi, J. W.; Khalil, M. A.; Kim, H. K.; Shrikhande, G.; Dayal, R.; Hielscher, A. H.

    2015-07-01

    Peripheral Arterial Disease (PAD) is caused by a reduction of the internal diameters of the arteries in the upper or lower extremities mainly due to atherosclerosis. If not treated, its worsening may led to a complete occlusion, causing the death of the cells lacking proper blood supply, followed by gangrene that may require chirurgical amputation. We have recently performed a clinical study in which good sensitivities and specificities were achieved with dynamic diffuse optical tomography. To gain a better understanding of the physiological foundations of many of the observed effects, we started to develop a mathematical model for PAD. The model presented in this work is based on a multi-compartment Windkessel model, where the vasculature in the leg and foot is represented by resistors and capacitors, the blood pressure with a voltage drop, and the blood flow with a current. Unlike existing models, the dynamics induced by a thigh-pressure-cuff inflation and deflation during the measurements are taken into consideration. This is achieved by dynamically varying the resistances of the large veins and arteries. By including the effects of the thigh-pressure cuff, we were able to explain many of the effects observed during our dynamic DOT measurements, including the hemodynamics of oxy- and deoxy-hemoglobin concentration changes. The model was implemented in MATLAB and the simulations were normalized and compared with the blood perfusion obtained from healthy, PAD and diabetic patients. Our preliminary results show that in unhealthy patients the total system resistance is sensibly higher than in healthy patients.

  7. [Evaluation of corneal biomechanics in keratoconus using dynamic ultra-high-speed Scheimpflug measurements].

    Science.gov (United States)

    Brettl, S; Franko Zeitz, P; Fuchsluger, T A

    2018-06-22

    The in vivo analysis of corneal biomechanics in patients with keratoconus is especially of interest with respect to diagnosis, follow-up and monitoring of the disease. For a better understanding it is necessary to describe the potential of dynamic Scheimpflug measurements for the detection and interpretation of biomechanical changes in keratoconus. The current state of analyzing biomechanical changes in keratoconus with the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is described. This technique represents a new approach for understanding corneal biomechanics. Furthermore, it was investigated whether the device can biomechanically quantify a rigidity increasing effect of therapeutic UV-crosslinking and whether early stages of keratoconus can be detected using dynamic Scheimpflug analysis. In patients with keratoconus, the in vivo analysis of corneal biomechanics using dynamic Scheimpflug measurements as a supplementary procedure can be of advantage with respect to disease management. By optimization of screening of subclinical keratoconus stages, this method widens the analytic spectrum regarding diagnosis and follow-up of the disease; however, further studies are required to evaluate whether visual outcome of affected patients can be improved by earlier diagnosis.

  8. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  9. Emerging prion disease drives host selection in a wildlife population

    Science.gov (United States)

    Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.

    2012-01-01

    Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an

  10. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  11. Understanding quantum measurement from the solution of dynamical models

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdyan, Armen E. [Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 Av. Bartholdi, 72000 Le Mans (France); Balian, Roger [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Nieuwenhuizen, Theo M., E-mail: T.M.Nieuwenhuizen@uva.nl [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-04-15

    The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D{sup -hat} (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D{sup -hat} (t{sub f}) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D{sup -hat} (t{sub f}) has the form expected for ideal measurements, it only describes a large set of

  12. The Dynamics of an HIV/AIDS Model with Screened Disease Carriers

    Directory of Open Access Journals (Sweden)

    S. D. Hove-Musekwa

    2009-01-01

    Full Text Available The presence of carriers usually complicates the dynamics and prevention of a disease. They are not recognized as disease cases themselves unless they are screened and they usually spread the infection without them being aware. We argue that this has been one of the major causes of the spread of human immunodeficiency virus (HIV. We propose, in this paper, a model for the heterogeneous transmission of HIV/acquired immunodeficiency syndrome in the presence of disease carriers. The model allows us to assess the role of screening, as an intervention program that can slow the epidemic. A threshold value ψ*, for the screening rate is obtained. It is shown numerically that if 80% or more of the carrier population is screened, the epidemic can be contained. The qualitative analysis is done in terms of the model reproduction number R. The model has two equilibria, the disease free equilibrium and a unique endemic equilibrium. The disease free equilibrium is globally stable of R  1. A detailed discussion of the model reproduction number is given and numerical simulations are done to show the role of some of the important model parameters.

  13. Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Stefania Scarsoglio

    2016-07-01

    Full Text Available Background: Although atrial fibrillation (AF, a common arrhythmia, frequently presents in patients with underlying valvular disease, its hemodynamic contributions are not fully understood. The present work aimed to computationally study how physical conditions imposed by pathologic valvular anatomy act on AF hemodynamics. Methods: We simulated AF with different severity grades of left-sided valvular diseases and compared the cardiovascular effects that they exert during AF, compared to lone AF. The fluid dynamics model used here has been recently validated for lone AF and relies on a lumped parameterization of the four heart chambers, together with the systemic and pulmonary circulation. The AF modelling involves: (i irregular, uncorrelated and faster heart rate; (ii atrial contractility dysfunction. Three different grades of severity (mild, moderate, severe were analyzed for each of the four valvulopathies (AS, aortic stenosis, MS, mitral stenosis, AR, aortic regurgitation, MR, mitral regurgitation, by varying–through the valve opening angle–the valve area. Results: Regurgitation was hemodynamically more relevant than stenosis, as the latter led to inefficient cardiac flow, while the former introduced more drastic fluid dynamics variation. Moreover, mitral valvulopathies were more significant than aortic ones. In case of aortic valve diseases, proper mitral functioning damps out changes at atrial and pulmonary levels. In the case of mitral valvulopathy, the mitral valve lost its regulating capability, thus hemodynamic variations almost equally affected regions upstream and downstream of the valve. In particular, the present study revealed that both mitral and aortic regurgitation strongly affect hemodynamics, followed by mitral stenosis, while aortic stenosis has the least impact among the analyzed valvular diseases. Discussion: The proposed approach can provide new mechanistic insights as to which valvular pathologies merit more aggressive

  14. Gender consistency and flexibility: using dynamics to understand the relationship between gender and adjustment.

    Science.gov (United States)

    DiDonato, Matthew D; Martin, Carol L; Hessler, Eric E; Amazeen, Polemnia G; Hanish, Laura D; Fabes, Richard A

    2012-04-01

    Controversy surrounds questions regarding the influence of being gender consistent (i.e., having and expressing gendered characteristics that are consistent with one's biological sex) versus being gender flexible (i.e., having and expressing gendered characteristics that vary from masculine to feminine as circumstances arise) on children's adjustment outcomes, such as self-esteem, positive emotion, or behavior problems. Whereas evidence supporting the consistency hypothesis is abundant, little support exists for the flexibility hypothesis. To shed new light on the flexibility hypothesis, we explored children's gendered behavior from a dynamical perspective that highlighted variability and flexibility in addition to employing a conventional approach that emphasized stability and consistency. Conventional mean-level analyses supported the consistency hypothesis by revealing that gender atypical behavior was related to greater maladjustment, and dynamical analyses supported the flexibility hypothesis by showing that flexibility of gendered behavior over time was related to positive adjustment. Integrated analyses showed that gender typical behavior was related to the adjustment of children who were behaviorally inflexible, but not for those who were flexible. These results provided a more comprehensive understanding of the relation between gendered behavior and adjustment in young children and illustrated for the first time the feasibility of applying dynamical analyses to the study of gendered behavior.

  15. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki

    2015-01-01

    Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.

  16. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    Science.gov (United States)

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-04-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.

  17. Chancroid transmission dynamics: a mathematical modeling approach.

    Science.gov (United States)

    Bhunu, C P; Mushayabasa, S

    2011-12-01

    Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.

  18. Toward an integrative molecular approach to wildlife disease.

    Science.gov (United States)

    DeCandia, Alexandra L; Dobson, Andrew P; vonHoldt, Bridgett M

    2018-01-29

    Pathogens pose serious threats to human health, agricultural investment, and biodiversity conservation through the emergence of zoonoses, spillover to domestic livestock, and epizootic outbreaks. As such, wildlife managers are often tasked with mitigating the negative effects of disease. Yet, parasites form a major component of biodiversity that often persist. This is due to logistical challenges of implementing management strategies and to insufficient understanding of host-parasite dynamics. We advocate for an inclusive understanding of molecular diversity in driving parasite infection and variable host disease states in wildlife systems. More specifically, we examine the roles of genetic, epigenetic, and commensal microbial variation in disease pathogenesis. These include mechanisms underlying parasite virulence and host resistance and tolerance, and the development, regulation, and parasite subversion of immune pathways, among other processes. Case studies of devil facial tumor disease in Tasmanian devils (Sarcophilus harrisii) and chytridiomycosis in globally distributed amphibians exemplify the broad range of questions that can be addressed by examining different facets of molecular diversity. For particularly complex systems, integrative molecular analyses present a promising frontier that can provide critical insights necessary to elucidate disease dynamics operating across scales. These insights enable more accurate risk assessment, reconstruction of transmission pathways, discernment of optimal intervention strategies, and development of more effective and ecologically sound treatments that minimize damage to the host population and environment. Such measures are crucial when mitigating threats posed by wildlife disease to humans, domestic animals, and species of conservation concern. © 2018 Society for Conservation Biology.

  19. Handwritten dynamics assessment through convolutional neural networks: An application to Parkinson's disease identification.

    Science.gov (United States)

    Pereira, Clayton R; Pereira, Danilo R; Rosa, Gustavo H; Albuquerque, Victor H C; Weber, Silke A T; Hook, Christian; Papa, João P

    2018-04-16

    Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cardiac Hemodynamics in the Pathogenesis of Congenital Heart Disease and Aortic Valve Calcification

    Science.gov (United States)

    Nigam, Vishal

    2011-11-01

    An improved understanding of the roles of hemodynamic forces play in cardiac development and the pathogenesis of cardiac disease will have significant scientific and clinical impact. I will focus on the role of fluid dynamics in congenital heart disease and aortic valve calcification. Congenital heart defects are the most common form of birth defect. Aortic valve calcification/stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. Given the high incidence of these diseases and their associated morbidity and mortality, the potential translational impact of an improved understanding of cardiac hemodynamic forces is very large. Division of Pediatric Cardiology, Rady Children's Hospital, San Diego

  1. Applying non-linear dynamics to atrial appendage flow data to understand and characterize atrial arrhythmia

    International Nuclear Information System (INIS)

    Chandra, S.; Grimm, R.A.; Katz, R.; Thomas, J.D.

    1996-01-01

    The aim of this study was to better understand and characterize left atrial appendage flow in atrial fibrillation. Atrial fibrillation and flutter are the most common cardiac arrhythmias affecting 15% of the older population. The pulsed Doppler velocity profile data was recorded from the left atrial appendage of patients using transesophageal echocardiography. The data was analyzed using Fourier analysis and nonlinear dynamical tools. Fourier analysis showed that appendage mechanical frequency (f f ) for patients in sinus rhythm was always lower (around1 Hz) than that in atrial fibrillation (5-8 Hz). Among patients with atrial fibrillation spectral power below f f was significantly different suggesting variability within this group of patients. Results that suggested the presence of nonlinear dynamics were: a) the existence of two arbitrary peak frequencies f 1 , f 2 , and other peak frequencies as linear combinations thereof (mf 1 ±nf 2 ), and b) the similarity between the spectrum of patient data and that obtained using the Lorenz equation. Nonlinear analysis tools, including Phase plots and differential radial plots, were also generated from the velocity data using a delay of 10. In the phase plots, some patients displayed a torus-like structure, while others had a more random-like pattern. In the differential radial plots, the first set of patients (with torus-like phase plots) showed fewer values crossing an arbitrary threshold of 10 than did the second set (8 vs. 27 in one typical example). The outcome of cardioversion was different for these two set of patients. Fourier analysis helped to: differentiate between sinus rhythm and atrial fibrillation, understand the characteristics of the wide range of atrial fibrillation patients, and provide hints that atrial fibrillation could be a nonlinear process. Nonlinear dynamical tools helped to further characterize and sub-classify atrial fibrillation

  2. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Elvira eCarrio

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  3. Engagement: Looking beyond the mirror to understand action understanding.

    Science.gov (United States)

    Reddy, Vasudevi; Uithol, Sebo

    2016-03-01

    In this paper, we argue that the current focus on mirroring as the route to explaining the development of action understanding is misleading and problematic. It facilitates a fundamentally spectatorial stance, ignoring engagement and dialogue; it focuses on similarity between self and other and neglects difference; and it succumbs to the static terminology of mechanism rather than a dynamic language of process. Contrary to this view, dialogic exchanges are evident from the start of life, revealing infants' ability to engage with and respond appropriately to actions that are outside their own motor repertoire. We suggest that engagement rather than mirroring better accounts for many current findings in action understanding. The neurological evidence to date shows that action perception involves a process of continuous synchronization and change, suggesting that it might be more fruitful for research and theory to look beyond mirroring and instead adopt dynamic processual explanations of action understanding within interaction. © 2015 The British Psychological Society.

  4. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  5. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    International Nuclear Information System (INIS)

    Jiang, Tianying; Zukoski, Charles F.

    2014-01-01

    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within

  6. Dynamic localization and shear-induced hopping of particles: A way to understand the rheology of dense colloidal dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tianying; Zukoski, Charles F., E-mail: czukoski@illinois.edu [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-01

    For decades, attempts have been made to understand the formation of colloidal glasses and gels by linking suspension mechanics to particle properties where details of size, shape, and spatial dependencies of pair potentials present a bewildering array of variables that can be manipulated to achieve observed properties. Despite the range of variables that control suspension properties, one consistent observation is the remarkably similarity of flow properties observed as particle properties are varied. Understanding the underlying origins of the commonality in those behaviors (e.g., shear-thinning with increasing stress, diverging zero shear rate viscosity with increasing volume fraction, development of a dynamic yield stress plateau with increases in volume faction or strength of attraction, development of two characteristic relaxation times probed in linear viscoelasticity, the creation of a rubbery plateau modulus at high strain frequencies, and shear-thickening) remains a challenge. Recently, naïve mode coupling and dynamic localization theories have been developed to capture collective behavior giving rise to formation of colloidal glasses and gels. This approach characterizes suspension mechanics of strongly interacting particles in terms of sluggish long-range particle diffusion modulated by varying particle interactions and volume fraction. These theories capture the scaling of the modulus with the volume fraction and strength of interparticle attraction, the frequency dependence of the moduli at the onset of the gel/glass transition, together with the divergence of the zero shear rate viscosity and cessation of diffusivity for hard sphere systems as close packing is approached. In this study, we explore the generality of the predictions of dynamic localization theory for systems of particles composed of bimodal particle size distributions experiencing weak interactions. We find that the mechanical properties of these suspensions are well captured within

  7. Understanding landscape dynamics over thousand years : combining field and model work : with case study in the Drakensberg foothill, KwaZulu-Natal, South Africa

    NARCIS (Netherlands)

    Temme, A.J.A.M.

    2008-01-01

    The title of this thesis is “Understanding landscape dynamics over thousands of years : combining field and model work, with a case study in the Drakensberg Foothills, KwaZulu-Natal, South Africa”. As the title clearly states, the overall objective is an increased knowledge of landscape dynamics

  8. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

    Science.gov (United States)

    Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

  9. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions

    Science.gov (United States)

    Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281

  10. Understanding ENSO dynamics through the exploration of past climates

    International Nuclear Information System (INIS)

    Phipps, Steven J; Brown, Jaclyn N

    2010-01-01

    The palaeoclimate record shows that significant changes in ENSO characteristics took place during the Holocene. Exploring these changes, using both data and models, provides a means of understanding ENSO dynamics. Previous modelling studies have suggested a mechanism whereby changes in the Earth's orbital geometry explain the strengthening of ENSO over the Holocene. Decreasing summer insolation over the Asian landmass resulted in a weakening of the Asian monsoon system. This led to a weakening of the easterly trade winds in the western Pacific, creating conditions more favourable for El Nino development. To explore this hypothesised forcing mechanism, we use a climate system model to conduct a suite of simulations of the climate of the past 8,000 years. In the early Holocene, we find that the Asian summer monsoon system is intensified, resulting in an amplification of the easterly trade winds in the western Pacific. The stronger trade winds represent a barrier to the eastward propagation of westerly wind bursts, therefore inhibiting the onset of El Nino events. The fundamental behaviour of ENSO remains unchanged, with the major change over the Holocene being the influence of the background state of the Pacific on the susceptibility of the ocean to the initiation of El Nino events.

  11. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  12. Disease effects on lobster fisheries, ecology, and culture: overview of DAO Special 6.

    Science.gov (United States)

    Behringer, Donald C; Butler, Mark J; Stentiford, Grant D

    2012-08-27

    Lobsters are prized by commercial and recreational fishermen worldwide, and their populations are therefore buffeted by fishery practices. But lobsters also remain integral members of their benthic communities where predator-prey relationships, competitive interactions, and host-pathogen dynamics push and pull at their population dynamics. Although lobsters have few reported pathogens and parasites relative to other decapod crustaceans, the rise of diseases with consequences for lobster fisheries and aquaculture has spotlighted the importance of disease for lobster biology, population dynamics and ecology. Researchers, managers, and fishers thus increasingly recognize the need to understand lobster pathogens and parasites so they can be managed proactively and their impacts minimized where possible. At the 2011 International Conference and Workshop on Lobster Biology and Management a special session on lobster diseases was convened and this special issue of Diseases of Aquatic Organisms highlights those proceedings with a suite of articles focused on diseases discussed during that session.

  13. Dynamic MR cardiac perfusion studies in patients with acquired heart diseases

    International Nuclear Information System (INIS)

    Finelli, D.A.; Adler, L.P.; Paschal, C.B.; Haacke, E.M.

    1990-01-01

    The combination of ultrafast scanning techniques with contrast administration has opened new venues for MR imaging relating to the physiology of organ perfusion. Regional cardiac perfusion determinations lend important additional information to the morphologic and functional data provided by conventional cardiac MR imaging. The authors of this paper studied 10 patients with acquired heart diseases, including ischemic heart disease, cardiomyopathy, ventricular hypertrophy, and cardiac tumor, using conventional spin-echo imaging, cine gradient-echo imaging, and dynamic Gd-DTPA--enhanced perfusion imaging with an ultrafast, inversion-recovery, Turbo-fast low-angle shot sequence. This technique enables analysis of the first pass and early biodistribution phases following contrast administration, information that has been correlated with cardiac catheterization, single photo emission CT (SPECT), and administration emission tomographic (PET) data

  14. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.

    2013-01-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  15. [The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study: To better understand chronic kidney disease].

    Science.gov (United States)

    Stengel, Bénédicte; Combe, Christian; Jacquelinet, Christian; Briançon, Serge; Fouque, Denis; Laville, Maurice; Frimat, Luc; Pascal, Christophe; Herpe, Yves-Édouard; Morel, Pascal; Deleuze, Jean-François; Schanstra, Joost P; Pisoni, Ron L; Robinson, Bruce M; Massy, Ziad A

    2016-04-01

    Preserving kidney function and improving the transition from chronic kidney disease to end stage is a research and healthcare challenge. The national Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort was established to identify the determinants, biomarkers and practice patterns associated with chronic kidney disease outcomes. The study will include more than 3000 adult patients with moderate to advanced chronic kidney disease from a representative sample of 40 nephrology clinics with respect to regions and legal status, public or private. Patients are recruited during a routine visit and followed for 5 years, before and after starting renal replacement therapy. Patient-level clinical, biological, and lifestyle data are collected annually, as well as provider-level data on clinical practices, coordinated with the International Chronic Kidney Disease Outcomes and Practice Pattern Study. Blood and urine samples are stored in a biobank. Major studied outcomes include survival, patient-reported outcomes, disease progression and hospitalizations. More than 13,000 eligible patients with chronic kidney disease were identified, 60% with stage 3 and 40% with stage 4. Their median age is 72 years [interquartile range, 62-80 years], 60% are men and 38% have diabetes. By the end of December 2015, 2885 patients were included. The CKD-REIN cohort will serve to improve our understanding of chronic kidney disease and provide evidence to improve patient survival and quality of life as well as health care system performances. Copyright © 2016 Association Société de néphrologie. All rights reserved.

  16. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases.

    Science.gov (United States)

    Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong

    2015-05-09

    Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting

  17. The contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases

    DEFF Research Database (Denmark)

    Thomsen, Simon F

    2015-01-01

    The prevalence of asthma and other atopic diseases has increased markedly during the past decades and the reasons for this are not fully understood. Asthma is still increasing in many parts of the world, notably in developing countries, and this emphasizes the importance of continuing research...... aimed at studying the aetiological factors of the disease and the causes of its increase in prevalence. Twin studies enable investigations into the genetic and environmental causes of individual variation in multifactorial diseases such as asthma. Thorough insight into these causes is important...... as this will ultimately guide the development of preventive strategies and targeted therapies. This review explores the contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases....

  18. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    Directory of Open Access Journals (Sweden)

    Justin V. Remais

    2013-07-01

    Full Text Available Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF 3.2.1 baseline/current (2001–2004 and projected (Representative Concentration Pathway (RCP 4.5 and RCP 8.5; 2057–2059 climate data. Ten dynamic population features (DPFs were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate.

  19. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    Science.gov (United States)

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  20. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  1. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective.

    Science.gov (United States)

    Fischer, Helen; Gonzalez, Cleotilde

    2016-03-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.

  2. Population dynamics of Borrelia burgdorferi in Lyme disease

    Directory of Open Access Journals (Sweden)

    Sebastian Christoph Binder

    2012-03-01

    Full Text Available Many chronic inflammatory diseases are known to be caused by persistent bacterial or viral infections. A well-studied example is the tick-borne infection by the gram-negative Spirochaetes of the genus Borrelia in humans and other mammals, causing severe symptoms of chronic inflammation and subsequent tissue damage (Lyme Disease, particularly in large joints and the central nervous system, but also in the heart and other tissues of untreated patients. Although killed efficiently by human phagocytic cells in vitro, Borrelia exhibits a remarkably high infectivity in mice and men. In experimentally infected mice, the first immune response almost clears the infection. However, approximately one week post infection, the bacterial population recovers and reaches an even larger size before entering the chronic phase. We developed a mathematical model describing the bacterial growth and the immune response against Borrelia burgdorferi in the C3H mouse strain that has been established as an experimental model for Lyme disease. The peculiar dynamics of the infection exclude two possible mechanistic explanations for the regrowth of the almost cleared bacteria. Neither the hypothesis of bacterial dissemination to different tissue nor a limitation of phagocytic capacity were compatible with experiment. The mathematical model predicts that Borrelia recovers from the strong initial immune response by the regrowth of an immune-resistant sub-population of the bacteria. The chronic phase appears as an equilibration of bacterial growth and adaptive immunity. This result has major implications for the development of the chronic phase of Borrelia infections as well as on potential protective clinical interventions.

  3. Steinberg ``AUDIOMAPS'' Music Appreciation-Via-Understanding: Special-Relativity + Expectations ``Quantum-Theory'': a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    Science.gov (United States)

    Fender, Lee; Steinberg, Russell; Siegel, Edward Carl-Ludwig

    2011-03-01

    Steinberg wildly popular "AUDIOMAPS" music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power-spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity "+" (with its enjoyment-expectations) a manifestation of quantum-theory expectation-values, together a music quantum-ACOUSTO/MUSICO-dynamics(QA/MD). Analysis via Derrida deconstruction enabled Siegel-Baez "Category-Semantics" "FUZZYICS"="CATEGORYICS ('TRIZ") Aristotle SoO DEduction , irrespective of Boon-Klimontovich vs. Voss-Clark[PRL(77)] music power-spectrum analysis sampling-time/duration controversy: part versus whole, shows QA/MD reigns supreme as THE music appreciation-via-analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music, (06)] brain/mind-barrier brain/mind-music connection is subtle/compelling/immediate!!!

  4. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  5. Understanding calcium dynamics experiments and theory

    CERN Document Server

    Malchow, Dieter

    2003-01-01

    Intracellular Calcium is an important messenger in living cells. Calcium dynamics display complex temporal and spatial structures created by the concentration patterns which are characteristic for a nonlinear system operating far from thermodynamic equilibrium. Written as a set of tutorial reviews on both experimental facts and theoretical modelling, this volume is intended as an introduction and modern reference in the field for graduate students and researchers in biophysics, biochemistry and applied mathematics.

  6. The effects of radioactive pollution on the dynamics of infectious diseases in wildlife

    International Nuclear Information System (INIS)

    Morley, N.J.

    2012-01-01

    The interactions between infectious diseases and chemical pollution are well known and recognised as important factors in regulating the way wild animals respond to contaminant exposure. However, the impact of ionising radiation and radionuclides has often been overlooked when assessing host–pathogen interactions in polluted habitats, despite often occurring together with chemical contamination. Nevertheless, a comprehensive body of literature exists from laboratory and field studies on host–pathogen relationships under radiation exposure, and with a renewed interest in radioecology developing; an evaluation of infectious disease dynamics under these conditions would be timely. The present study assesses the impact of external ionising radiation and radionuclides on animal hosts and pathogens (viruses, bacteria, protozoans, helminths, arthropods) in laboratory studies and collates the data from field studies, including the large number of investigations undertaken after the Chernobyl accident. It is apparent that radiation exposure has substantial effects on host–pathogen relationships. Although damage to the host immune system is a major factor other variables, such as damage to host tissue barriers and inhibition of pathogen viability are also important in affecting the prevalence and intensity of parasitic diseases. Field studies indicate that the occurrence of host–pathogen associations in radioactively contaminated sites is complex with a variety of biotic and abiotic factors influencing both pathogen and host(s), resulting in changes to the dynamics of infectious diseases. - Highlights: ► Infectious diseases are important regulating factors in the way wildlife respond to contaminants. ► An assessment of the effects of radioactive exposure to host–pathogen relationships in animals is given. ► Radioactive exposure has a profound effect on host–pathogen interactions. ► Both hosts and pathogens may be either negatively or positively affected

  7. Obesity and kidney disease

    Directory of Open Access Journals (Sweden)

    Geraldo Bezerra da Silva Junior

    Full Text Available Abstract Obesity has been pointed out as an important cause of kidney diseases. Due to its close association with diabetes and hypertension, excess weight and obesity are important risk factors for chronic kidney disease (CKD. Obesity influences CKD development, among other factors, because it predisposes to diabetic nephropathy, hypertensive nephrosclerosis and focal and segmental glomerulosclerosis. Excess weight and obesity are associated with hemodynamic, structural and histological renal changes, in addition to metabolic and biochemical alterations that lead to kidney disease. Adipose tissue is dynamic and it is involved in the production of "adipokines", such as leptin, adiponectin, tumor necrosis factor-α, monocyte chemoattractant protein-1, transforming growth factor-β and angiotensin-II. A series of events is triggered by obesity, including insulin resistance, glucose intolerance, dyslipidemia, atherosclerosis and hypertension. There is evidence that obesity itself can lead to kidney disease development. Further studies are required to better understand the association between obesity and kidney disease.

  8. Dynamics in prevalence of Down syndrome in children with congenital heart disease.

    Science.gov (United States)

    Pfitzer, Constanze; Helm, Paul C; Rosenthal, Lisa-Maria; Berger, Felix; Bauer, Ulrike M M; Schmitt, Katharina Rl

    2018-01-01

    We assessed the dynamics in the prevalence of children with congenital heart disease (CHD) and Down syndrome in Germany with regard to phenotype, severity, and gender. Data from patients with CHD and Down syndrome born between 1980 and 2014 were analyzed, who are registered with the German National Register for Congenital Heart Defects. One thousand six hundred eighteen CHD patients with Down syndrome were identified. The prevalence of children born with both Down syndrome and CHD was constant from 2005 to 2009 but increased from 2010 to 2014. Regarding CHD groups, complex and simple lesions have become more equal since 2005. The number of simple lesions with shunt has a peak prevalence in the period of 2010-2014. Atrioventricular septal defect was the most common CHD phenotype, but temporal changes were found within the group of CHD phenotypes over the observation period. Our findings suggest a growing number of CHD and Down syndrome, which may be the result of improved medical management and progress in educational, social, and financial support. This development is noteworthy as it adds new aspects to present discussions in the media and political settings. What is known: • Congenital heart disease is regarded to be the most important clinical phenomenon in children with Down syndrome, due to its significant impact on morbidity and mortality. • New developments in prenatal diagnostic and therapy management of congenital heart disease continue to influence the number of patients diagnosed with congenital heart disease and Down syndrome. What is New: • This study provides essential data giving the first overview of the dynamics in the prevalence of congenital heart disease and Down syndrome over an extended length of time up to 2015 in a large patient cohort, taking recent developments into account. • Our data suggest a growing prevalence of congenital heart disease and Down syndrome, which may be the result of improved medical management for Down syndrome

  9. Landscape epidemiology: An emerging perspective in the mapping and modelling of disease and disease risk factors

    Directory of Open Access Journals (Sweden)

    Nnadi Nnaemeka Emmanuel

    2011-09-01

    Full Text Available Landscape epidemiology describes how the temporal dynamics of host, vector, and pathogen populations interact spatially within a permissive environment to enable transmission. It also aims at understanding the vegetation and geologic conditions that are necessary for the maintenance and transmission of a particular pathogen. The current review describes the evolution of landscape epidemiology. As a science, it also highlights the various methods of mapping and modeling diseases and disease risk factors. The key tool to characterize landscape is satellite remote sensing and these data are used as inputs to drive spatial models of transmission risk.

  10. Exploiting Fast-Variables to Understand Population Dynamics and Evolution

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-11-01

    We describe a continuous-time modelling framework for biological population dynamics that accounts for demographic noise. In the spirit of the methodology used by statistical physicists, transitions between the states of the system are caused by individual events while the dynamics are described in terms of the time-evolution of a probability density function. In general, the application of the diffusion approximation still leaves a description that is quite complex. However, in many biological applications one or more of the processes happen slowly relative to the system's other processes, and the dynamics can be approximated as occurring within a slow low-dimensional subspace. We review these time-scale separation arguments and analyse the more simple stochastic dynamics that result in a number of cases. We stress that it is important to retain the demographic noise derived in this way, and emphasise this point by showing that it can alter the direction of selection compared to the prediction made from an analysis of the corresponding deterministic model.

  11. Basic mechanisms of DBS for Parkinson’s disease: computational and experimental studies on neural dynamics

    NARCIS (Netherlands)

    Çağnan, H.

    2010-01-01

    Deep Brain Stimulation (DBS) has become an accepted therapy of last resort for Parkinson’s disease (PD). The acceptance of DBS for the management of PD motor symptoms is based on its success rate and contrasts sharply with ones understanding of the pathophysiology underlying the disease state and

  12. Understanding the dynamic performance of microchannel plates in pulsed mode

    International Nuclear Information System (INIS)

    Ray Thomas; Ming Wu; Nathan Joseph; Craig Kruschwitz; Gregroy A. Rochau

    2007-01-01

    The dynamic performance of a microchannel plate (MCP) is highly dependent on the high-voltage waveforms that are applied to it. Impedance mismatches in MCP detectors can significantly vary the waveforms on the MCP compared to the input pulses. High-voltage pulse waveforms launched onto surface coatings on the MCPs have historically been difficult and expensive to measure. Over the past few years, we have developed and tested techniques utilizing probes to measure the voltage propagation on the surface of MCPs. Square and Gaussian pulses with widths ranging from 200 ps to 2 ns have been applied. We have investigated the effects of coating thickness, microstrip width, and openended versus terminated strips. These data provide a wealth of knowledge that is enabling a better understanding of images recorded with these devices. This presentation discusses a method for measuring voltage profiles on the surface of the MCP and presents Monte Carlo simulations of the optical gate profiles based on the measured waveforms. Excellent agreement in the optical gate profiles have been achieved between the simulations and the experimental measurements using a short-pulse ultraviolet laser

  13. The Effect of Seasonal Weather Variation on the Dynamics of the Plague Disease

    Directory of Open Access Journals (Sweden)

    Rigobert C. Ngeleja

    2017-01-01

    Full Text Available Plague is a historic disease which is also known to be the most devastating disease that ever occurred in human history, caused by gram-negative bacteria known as Yersinia pestis. The disease is mostly affected by variations of weather conditions as it disturbs the normal behavior of main plague disease transmission agents, namely, human beings, rodents, fleas, and pathogens, in the environment. This in turn changes the way they interact with each other and ultimately leads to a periodic transmission of plague disease. In this paper, we formulate a periodic epidemic model system by incorporating seasonal transmission rate in order to study the effect of seasonal weather variation on the dynamics of plague disease. We compute the basic reproduction number of a proposed model. We then use numerical simulation to illustrate the effect of different weather dependent parameters on the basic reproduction number. We are able to deduce that infection rate, progression rates from primary forms of plague disease to more severe forms of plague disease, and the infectious flea abundance affect, to a large extent, the number of bubonic, septicemic, and pneumonic plague infective agents. We recommend that it is more reasonable to consider these factors that have been shown to have a significant effect on RT for effective control strategies.

  14. A System Dynamics Model for Planning Cardiovascular Disease Interventions

    Science.gov (United States)

    Homer, Jack; Evans, Elizabeth; Zielinski, Ann

    2010-01-01

    Planning programs for the prevention and treatment of cardiovascular disease (CVD) is a challenge to every community that wants to make the best use of its limited resources. Selecting programs that provide the greatest impact is difficult because of the complex set of causal pathways and delays that link risk factors to CVD. We describe a system dynamics simulation model developed for a county health department that incorporates and tracks the effects of those risk factors over time on both first-time and recurrent events. We also describe how the model was used to evaluate the potential impacts of various intervention strategies for reducing the county's CVD burden and present the results of those policy tests. PMID:20167899

  15. Altered Dynamic Postural Control during Step Turning in Persons with Early-Stage Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jooeun Song

    2012-01-01

    Full Text Available Persons with early-stage Parkinson’s disease (EPD do not typically experience marked functional deficits but may have difficulty with turning tasks. Studies evaluating turning have focused on individuals in advanced stages of the disease. The purpose of this study was to compare postural control strategies adopted during turning in persons with EPD to those used by healthy control (HC subjects. Fifteen persons with EPD, diagnosed within 3 years, and 10 HC participated. Participants walked 4 meters and then turned 90°. Dynamic postural control was quantified as the distance between the center of pressure (COP and the extrapolated center of mass (eCOM. Individuals with EPD demonstrated significantly shorter COP-eCOM distances compared to HC. These findings suggest that dynamic postural control during turning is altered even in the early stages of PD.

  16. Microbiome-wide association studies link dynamic microbial consortia to disease

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine; Xu, Zhenjiang Z.; Morton, James; Garg, Neha; Jansson, Janet K.; Dorrestein, Pieter C.; Knight, Rob

    2016-07-06

    Rapid advances in DNA sequencing, metabolomics, proteomics and computation dramatically increase accessibility of microbiome studies and identify links between the microbiome and disease. Microbial time-series and multiple molecular perspectives enable Microbiome-Wide Association Studies (MWAS), analogous to Genome-Wide Association Studies (GWAS). Rapid research advances point towards actionable results, although approved clinical tests based on MWAS are still in the future. Appreciating the complexity of interactions between diet, chemistry, health and the microbiome, and determining the frequency of observations needed to capture and integrate this dynamic interface, is paramount for addressing the need for personalized and precision microbiome-based diagnostics and therapies.

  17. Steinberg ``AUDIOMAPS" Music Appreciation-Via-Understanding: Special-Relativity + Expectations "Quantum-Theory": a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    Science.gov (United States)

    Steinberg, R.; Siegel, E.

    2010-03-01

    ``AUDIOMAPS'' music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power- spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity ``+'' (with its enjoyment- expectations) a manifestation of quantum-theory expectation- values, together a music quantum-ACOUSTO/MUSICO-dynamics (QA/MD). Analysis via Derrida deconstruction enabled Siegel- Baez ``Category-Semantics'' ``FUZZYICS''=``CATEGORYICS (``SON of 'TRIZ") classic Aristotle ``Square-of-Opposition" (SoO) DEduction-logic, irrespective of Boon-Klimontovich versus Voss- Clark[PRL(77)] music power-spectrum analysis sampling- time/duration controversy: part versus whole, shows that ``AUDIOMAPS" QA/MD reigns supreme as THE music appreciation-via- analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music,(2006)] brain/mind-barrier brain/mind-music connection is both subtle and compelling and immediate!!!

  18. Grand challenges in developing a predictive understanding of global fire dynamics

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Wiggins, E. B.; Andela, N.; Morton, D. C.; Veraverbeke, S.; van der Werf, G.

    2017-12-01

    High quality satellite observations of burned area and fire thermal anomalies over the past two decades have transformed our understanding of climate, ecosystem, and human controls on the spatial and temporal distribution of landscape fires. The satellite observations provide evidence for a rapid and widespread loss of fire from grassland and savanna ecosystems worldwide. Continued expansion of industrial agriculture suggests that observed declines in global burned area are likely to continue in future decades, with profound consequences for ecosystem function and the habitat of many endangered species. Satellite time series also highlight the importance of El Niño-Southern Oscillation and other climate modes as drivers of interannual variability. In many regions, lead times between climate indices and fire activity are considerable, enabling the development of early warning prediction systems for fire season severity. With the recent availability of high-resolution observations from Suomi NPP, Landsat 8, and Sentinel 2, the field of global fire ecology is poised to make even more significant breakthroughs over the next decade. With these new observations, it may be possible to reduce uncertainties in the spatial pattern of burned area by several fold. It is difficult to overstate the importance of these new data constraints for improving our understanding of fire impacts on human health and radiative forcing of climate change. A key research challenge in this context is to understand how the loss of global burned area will affect magnitude of the terrestrial carbon sink and trends in atmospheric composition. Advances in prognostic fire modeling will require new approaches linking agriculture with landscape fire dynamics. A critical need in this context is the development of predictive models of road networks and other drivers of land fragmentation, and a closer integration of fragmentation information with algorithms predicting fire spread. Concurrently, a better

  19. An approach to understand incomplete fusion dynamics from recoil range distribution measurements

    International Nuclear Information System (INIS)

    Tali, Suhail A.; Kumar, Harish; Afzal Ansari, M.

    2016-01-01

    Britt and Quinton initially pointed out the incomplete fusion (ICF) signatures in the break-up of projectiles like 12 C, 14 N, and 16 O into α-clusters at ≈10 MeV/nucleon energies. Additional information was provided by Inamura et al. by performing the particle gamma coincidence experiment which significantly contributed in the understanding of ICF study. The interest to understand the ICF reaction dynamics for low Z projectiles (Z≤10) at energies ≈ 4-7MeV/nucleon has recently become an active area of research because of lack of any appropriate theoretical aspect, which may reproduce the experimental ICF data. At projectile energies above the Coulomb barrier, CF and ICF are dominant and competing reaction modes. For the imparted angular momentum ℓ < ℓ crit , the attractive nuclear potential is dominant, which may lead to the complete amalgamation of projectile with the target nucleus. However, for angular momentum ℓ> L crit , the projectile breaks into two parts one of them may fuse with the target nucleus, while the remainder moves as a spectator in forward direction with nearly the same velocity as that of incident projectile. The less excited composite system thus formed carries lower Forward Linear Momentum Transfer (FLMT) due to partial mass transferring from projectiles to the target nucleus compared to the compound nucleus formed via CF process

  20. How to analytically characterize the epidemic threshold within the coupled disease-behavior systems?. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Xia, Cheng-Yi; Ding, Shuai; Sun, Shi-Wen; Wang, Li; Gao, Zhong-Ke; Wang, Juan

    2015-12-01

    As is well known, outbreak of epidemics may drive the human population to take some necessary measures to protect themselves from not being infected by infective ones, these precautions in turn will also keep from the further spreading of infectious diseases among the population. Thus, to fully comprehend the epidemic spreading behavior within real-world systems, the interplay between disease dynamics and human behavioral and social dynamics needs to be considered simultaneously, such that some effective containment-measures can be successfully developed [1-3].

  1. Understand Your Medication

    Science.gov (United States)

    ... Disease Lookup > Asthma > Living with Asthma > Managing Asthma Understand Your Asthma Medication There are a variety of ... healthcare team. They can help make sure you understand the correct way to take the medicines, or ...

  2. Estimating transmission of avian influenza in wild birds from incomplete epizootic data: implications for surveillance and disease spreac

    Science.gov (United States)

    Henaux, Viviane; Jane Parmley,; Catherine Soos,; Samuel, Michael D.

    2013-01-01

    Estimating disease transmission in wildlife populations is critical to understand host–pathogen dynamics, predict disease risks and prioritize surveillance activities. However, obtaining reliable estimates for free-ranging populations is extremely challenging. In particular, disease surveillance programs may routinely miss the onset or end of epizootics and peak prevalence, limiting the ability to evaluate infectious processes.

  3. Dynamic generalized linear models for monitoring endemic diseases

    DEFF Research Database (Denmark)

    Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq

    2016-01-01

    The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...

  4. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI.

    Directory of Open Access Journals (Sweden)

    Katja Mogalle

    Full Text Available Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness.The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle.Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls.Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response.

  5. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    Science.gov (United States)

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected

  6. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  7. Mission Driven Scene Understanding: Dynamic Environments

    Science.gov (United States)

    2016-06-01

    WindowsSdkDir%VisualStudioInteg ration \\Tools\\Bin;%PATH% set INCLUDE=%VCINSTALLDIR%Include;%WindowsSdkDir%VisualStudioInte gration\\Common\\Inc;%INCLUDE...Hung HSW. From visual saliency to video behaviour understanding [doctoral dissertation]. [London (UK)]: Queen Mary, University of London; 2007. 10

  8. The influence of social norms on the dynamics of vaccinating behaviour for paediatric infectious diseases.

    Science.gov (United States)

    Oraby, Tamer; Thampi, Vivek; Bauch, Chris T

    2014-04-07

    Mathematical models that couple disease dynamics and vaccinating behaviour often assume that the incentive to vaccinate disappears if disease prevalence is zero. Hence, they predict that vaccine refusal should be the rule, and elimination should be difficult or impossible. In reality, countries with non-mandatory vaccination policies have usually been able to maintain elimination or very low incidence of paediatric infectious diseases for long periods of time. Here, we show that including injunctive social norms can reconcile such behaviour-incidence models to observations. Adding social norms to a coupled behaviour-incidence model enables the model to better explain pertussis vaccine uptake and disease dynamics in the UK from 1967 to 2010, in both the vaccine-scare years and the years of high vaccine coverage. The model also illustrates how a vaccine scare can perpetuate suboptimal vaccine coverage long after perceived risk has returned to baseline, pre-vaccine-scare levels. However, at other model parameter values, social norms can perpetuate depressed vaccine coverage during a vaccine scare well beyond the time when the population's baseline vaccine risk perception returns to pre-scare levels. Social norms can strongly suppress vaccine uptake despite frequent outbreaks, as observed in some small communities. Significant portions of the parameter space also exhibit bistability, meaning long-term outcomes depend on the initial conditions. Depending on the context, social norms can either support or hinder immunization goals.

  9. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population.

    Science.gov (United States)

    McDonald, Jenni L; Robertson, Andrew; Silk, Matthew J

    2018-01-01

    Long-term individual-based datasets on host-pathogen systems are a rare and valuable resource for understanding the infectious disease dynamics in wildlife. A study of European badgers (Meles meles) naturally infected with bovine tuberculosis (bTB) at Woodchester Park in Gloucestershire (UK) has produced a unique dataset, facilitating investigation of a diverse range of epidemiological and ecological questions with implications for disease management. Since the 1970s, this badger population has been monitored with a systematic mark-recapture regime yielding a dataset of >15,000 captures of >3,000 individuals, providing detailed individual life-history, morphometric, genetic, reproductive and disease data. The annual prevalence of bTB in the Woodchester Park badger population exhibits no straightforward relationship with population density, and both the incidence and prevalence of Mycobacterium bovis show marked variation in space. The study has revealed phenotypic traits that are critical for understanding the social structure of badger populations along with mechanisms vital for understanding disease spread at different spatial resolutions. Woodchester-based studies have provided key insights into how host ecology can influence infection at different spatial and temporal scales. Specifically, it has revealed heterogeneity in epidemiological parameters; intrinsic and extrinsic factors affecting population dynamics; provided insights into senescence and individual life histories; and revealed consistent individual variation in foraging patterns, refuge use and social interactions. An improved understanding of ecological and epidemiological processes is imperative for effective disease management. Woodchester Park research has provided information of direct relevance to bTB management, and a better appreciation of the role of individual heterogeneity in disease transmission can contribute further in this regard. The Woodchester Park study system now offers a rare

  10. Network information analysis reveals risk perception transmission in a behaviour-influenza dynamics system.

    Science.gov (United States)

    Liao, C-M; You, S-H; Cheng, Y-H

    2015-01-01

    Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.

  11. Mathematical and statistical modeling for emerging and re-emerging infectious diseases

    CERN Document Server

    Hyman, James

    2016-01-01

    The contributions by epidemic modeling experts describe how mathematical models and statistical forecasting are created to capture the most important aspects of an emerging epidemic.Readers will discover a broad range of approaches to address questions, such as Can we control Ebola via ring vaccination strategies? How quickly should we detect Ebola cases to ensure epidemic control? What is the likelihood that an Ebola epidemic in West Africa leads to secondary outbreaks in other parts of the world? When does it matter to incorporate the role of disease-induced mortality on epidemic models? What is the role of behavior changes on Ebola dynamics? How can we better understand the control of cholera or Ebola using optimal control theory? How should a population be structured in order to mimic the transmission dynamics of diseases such as chlamydia, Ebola, or cholera? How can we objectively determine the end of an epidemic? How can we use metapopulation models to understand the role of movement restrictions and mi...

  12. Five challenges in modelling interacting strain dynamics

    Directory of Open Access Journals (Sweden)

    Paul S. Wikramaratna

    2015-03-01

    Full Text Available Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.

  13. Appreciating the ties that bind technical communication to culture: A dynamic model to help us understand differences in discourse structure

    DEFF Research Database (Denmark)

    Kastberg, Peter; Kampf, Constance

    In order to support an explicit understanding of cultural patterns as both dynamic and structured, we will examine Hofstede?s model for stabilization of cultural patterns, and use this model to explore some cultural consequences for patterns of logic and signs that influence the effectiveness of ...

  14. Slow and fast dynamics model of a Malaria with Sickle-Cell genetic disease with multi-stage infections of the mosquitoes population

    Science.gov (United States)

    Dewi Siawanta, Shanti; Adi-Kusumo, Fajar; Irwan Endrayanto, Aluicius

    2018-03-01

    Malaria, which is caused by Plasmodium, is a common disease in tropical areas. There are three types of Plasmodium i.e. Plasmodium Vivax, Plasmodium Malariae, and Plasmodium Falciparum. The most dangerous cases of the Malaria are mainly caused by the Plasmodium Falciparum. One of the important characteristics for the Plasmodium infection is due to the immunity of erythrocyte that contains HbS (Haemoglobin Sickle-cell) genes. The individuals who has the HbS gene has better immunity against the disease. In this paper, we consider a model that shows the spread of malaria involving the interaction between the mosquitos population, the human who has HbS genes population and the human with normal gene population. We do some analytical and numerical simulation to study the basic reproduction ratio and the slow-fast dynamics of the phase-portrait. The slow dynamics in our model represents the response of the human population with HbS gene to the Malaria disease while the fast dynamics show the response of the human population with the normal gene to the disease. The slow and fast dynamics phenomena are due to the fact that the population of the individuals who have HbS gene is much smaller than the individuals who has normal genes.

  15. How Ebola impacts social dynamics in gorillas: a multistate modelling approach.

    Science.gov (United States)

    Genton, Céline; Pierre, Amandine; Cristescu, Romane; Lévréro, Florence; Gatti, Sylvain; Pierre, Jean-Sébastien; Ménard, Nelly; Le Gouar, Pascaline

    2015-01-01

    Emerging infectious diseases can induce rapid changes in population dynamics and threaten population persistence. In socially structured populations, the transfers of individuals between social units, for example, from breeding groups to non-breeding groups, shape population dynamics. We suggest that diseases may affect these crucial transfers. We aimed to determine how disturbance by an emerging disease affects demographic rates of gorillas, especially transfer rates within populations and immigration rates into populations. We compared social dynamics and key demographic parameters in a gorilla population affected by Ebola using a long-term observation data set including pre-, during and post-outbreak periods. We also studied a population of undetermined epidemiological status in order to assess whether this population was affected by the disease. We developed a multistate model that can handle transition between social units while optimizing the number of states. During the Ebola outbreak, social dynamics displayed increased transfers from a breeding to a non-breeding status for both males and females. Six years after the outbreak, demographic and most of social dynamics parameters had returned to their initial rates, suggesting a certain resilience in the response to disruption. The formation of breeding groups increased just after Ebola, indicating that environmental conditions were still attractive. However, population recovery was likely delayed because compensatory immigration was probably impeded by the potential impact of Ebola in the surrounding areas. The population of undetermined epidemiological status behaved similarly to the other population before Ebola. Our results highlight the need to integrate social dynamics in host-population demographic models to better understand the role of social structure in the sensitivity and the response to disease disturbances. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  16. S5-5: Dynamic Occlusion Deficiency in Patients with Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Nam-Gyoon Kim

    2012-10-01

    Full Text Available At the core of Gibson's ecological psychology is the notion of invariant—specifically, an invariant pattern in the changing energy flux. Among the invariants identified to date are texture gradients, horizon ratio, optic flow, and tau. Gibson considered his discovery of the occluding edge the most radical because observers can perceive the layout of the environment (both unprojected and projected surfaces; and the accretion and deletion of optical texture, or dynamic occlusion, at the occluding edge resulting from observer movement produces an invariant pattern. Here I present the results of an experiment demonstrating diminished sensitivity to dynamic occlusion in Alzheimer's disease (AD that led to their reduced capacity to recover 3D shape from motion. Young controls, age-matched elderly controls, and AD patients participated in the study. Participants watched computer simulations of an object, depicted as either transparent or opaque, rotating about the vertical axis against a background rendered in random dot texture. Young controls were most accurate, followed by elderly controls and AD patients. Both control groups identified opaque objects better than transparent objects, but AD patients identified both objects equally poorly. These results demonstrate the facilitating effect of the dynamic occlusion invariant to recover 3D shape from motion, the capacity of which is severely impaired in AD.

  17. Quality of life and understanding of disease status among cancer patients of different ethnic origin.

    Science.gov (United States)

    Tchen, N; Bedard, P; Yi, Q-L; Klein, M; Cella, D; Eremenco, S; Tannock, I F

    2003-08-18

    Patients managed in European or North American cancer centres have a variety of ethnic backgrounds and primary languages. To gain insight into the impact of ethnic origin, we have investigated understanding of disease status and quality of life (QoL) for 202 patients. Patients completed questionnaires in their first language (52 English, 50 Chinese, 50 Italian, 50 Spanish or Portuguese), including the Functional Assessment of Cancer Therapy - General (FACT-G) QoL instrument, questions about disease status, expectations of cure and the language and/or type of interpretation used at initial consultation. Physicians also evaluated their status of disease and expectation of cure, and performance status was estimated by a trained health professional. The initial consultation was usually provided in English (except for 32% of Chinese-speaking patients); interpretation was provided by a family member for 34% of patients with limited English proficiency (LEP) and by a bilingual member of staff for 21%. Patients underestimated their extent of disease and overestimated their probability of cure (P=0.001 and cultural differences is important for optimal management of patients with cancer.

  18. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics

    OpenAIRE

    Wells, Konstans; Brook, Barry W.; Lacy, Robert C.; Mutze, Greg J.; Peacock, David E.; Sinclair, Ron G.; Schwensow, Nina; Cassey, Phillip; O'Hara, Robert B.; Fordham, Damien A.

    2015-01-01

    Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matche...

  19. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  20. Management of postural sensory conflict and dynamic balance control in late-stage Parkinson's disease.

    Science.gov (United States)

    Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P

    2011-10-13

    Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.

  1. Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps

    Science.gov (United States)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar

    2018-02-01

    In this paper, we study the dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases which make the research more complex. The environment variability in this paper is characterized by white noise and Lévy noise. We establish sufficient conditions for extinction and persistence in the mean of the two epidemic diseases. It is shown that: (i) time delay and Lévy noise have important effects on the persistence and extinction of epidemic diseases; (ii) two diseases can coexist under certain conditions.

  2. Statistics Based Models for the Dynamics of Chernivtsi Children Disease

    Directory of Open Access Journals (Sweden)

    Igor G. Nesteruk

    2017-10-01

    Full Text Available Background. Simple mathematical models of contamination and SIR-model of spreading an infection were used to simulate the time dynamics of the unknown before children disease, which occurred in Chernivtsi (Ukraine. The cause of many cases of alopecia, which began in this city in August 1988 is still not fully clarified. According to the official report of the governmental commission, the last new cases occurred in the middle of November 1988, and the reason of the illness was reported as chemical exogenous intoxication. Later this illness became the name “Chernivtsi chemical disease”. Nevertheless, the significantly increased number of new cases of the local alopecia was registered almost three years and is still not clarified. Objective. The comparison of two different versions of the disease: chemical exogenous intoxication and infection. Identification of the parameters of mathematical models and prediction of the disease development. Methods. Analytical solutions of the contamination models and SIR-model for an epidemic are obtained. The optimal values of parameters with the use of linear regression were found. Results. The optimal values of the models parameters with the use of statistical approach were identified. The calculations showed that the infectious version of the disease is more reliable in comparison with the popular contamination one. The possible date of the epidemic beginning was estimated. Conclusions. The optimal parameters of SIR-model allow calculating the realistic number of victims and other characteristics of possible epidemic. They also show that increased number of cases of local alopecia could be a part of the same epidemic as “Chernivtsi chemical disease”.

  3. Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease

    Science.gov (United States)

    Muths, E.; Scherer, R. D.; Pilliod, D.S.

    2011-01-01

    The need to increase our understanding of factors that regulate animal population dynamics has been catalysed by recent, observed declines in wildlife populations worldwide. Reliable estimates of demographic parameters are critical for addressing basic and applied ecological questions and understanding the response of parameters to perturbations (e.g. disease, habitat loss, climate change). However, to fully assess the impact of perturbation on population dynamics, all parameters contributing to the response of the target population must be estimated. We applied the reverse-time model of Pradel in Program mark to 6years of capture-recapture data from two populations of Anaxyrus boreas (boreal toad) populations, one with disease and one without. We then assessed a priori hypotheses about differences in survival and recruitment relative to local environmental conditions and the presence of disease. We further explored the relative contribution of survival probability and recruitment rate to population growth and investigated how shifts in these parameters can alter population dynamics when a population is perturbed. High recruitment rates (0??41) are probably compensating for low survival probability (range 0??51-0??54) in the population challenged by an emerging pathogen, resulting in a relatively slow rate of decline. In contrast, the population with no evidence of disease had high survival probability (range 0??75-0??78) but lower recruitment rates (0??25). Synthesis and applications.We suggest that the relationship between survival and recruitment may be compensatory, providing evidence that populations challenged with disease are not necessarily doomed to extinction. A better understanding of these interactions may help to explain, and be used to predict, population regulation and persistence for wildlife threatened with disease. Further, reliable estimates of population parameters such as recruitment and survival can guide the formulation and implementation of

  4. A singing choir: Understanding the dynamics of hope, hopelessness, and despair in palliative care patients. A longitudinal qualitative study.

    Science.gov (United States)

    Olsman, Erik; Leget, Carlo; Duggleby, Wendy; Willems, Dick

    2015-12-01

    Hope, despair, and hopelessness are dynamic in nature; however, they have not been explored over time. The objective of the present study was to describe hope, hopelessness, and despair over time, as experienced by palliative care patients. We employed a qualitative longitudinal method based on narrative theories. Semistructured interviews with palliative care patients were prospectively conducted, recorded, and transcribed. Data on hope, hopelessness and despair were thematically analyzed, which led to similarities and differences between these concepts. The concepts were then analyzed over time in each case. During all stages, the researchers took a reflexive stance, wrote memos, and did member checking with participants. A total of 29 palliative care patients (mean age, 65.9 years; standard deviation, 14.7; 14 females) were included, 11 of whom suffered from incurable cancer, 10 from severe chronic obstructive pulmonary disease, and 8 from severe heart failure. They were interviewed a maximum of three times. Participants associated hope with gains in the past or future, such as physical improvement or spending time with significant others. They associated hopelessness with past losses, like loss of health, income, or significant others, and despair with future losses, which included the possibility of losing the future itself. Over time, the nature of their hope, hopelessness, and despair changed when their condition changed. These dynamics could be understood as voices in a singing choir that can sing together, alternate with each other, or sing their own melody. Our findings offer insight into hope, hopelessness, and despair over time, and the metaphor of a choir helps to understand the coexistence of these concepts. The findings also help healthcare professionals to address hope, hopelessness, and despair during encounters with patients, which is particularly important when the patients' physical condition has changed.

  5. Differentiation of testicular diseases via dynamic MRT

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Reinges, T.; Miersch, W.D.; Vogel, J.

    1994-01-01

    The present study aimed at resolving whether dynamic MRT can improve diagnostic relevance in diseases of the testes compared with conventional spin echo images. The testes of 20 healthy volunteers and of 16 patients of the Department of Urology of the University of Bonn were examined by means of MR tomography. Within 12 hours after MR tomography the patients were surgically explored, biopsied and if necessary orchiectomised. Results obtained with the volunteers were uniform and well reproducible, independent of external influences. On comparing the maximal enhancement curves of the examined various testicular tumors with the standard values established by examining the healthy volunteers, the curves obtained with the malignant testicular tumors were always clearly above the chosen confidence range of 3 standard deviations so that malignancy diagnosis was easy. However, the degree of maximal enhancement did not enable us to arrive at a conclusion in respect of the tumor type or the degree of malignancy. The greatest enhancement occurred with the tumor of Sertoli's cell which could thus be clearly differentiated against the other malignant testicular tumors. Due to masking of the gadolinium effect by haemosiderin deposits, haemorrhagica in the tumor tissue should be excluded by means of T 2 -weighted spin echo sequences before following up a suspicion of malignant testicular tomor. Benign intratesticular changes could be safely separated from malignant findings by means of the maximal enhancement curve lying in the normal range or below the curve of the volunteers. As with other organs, dynamic MR tomography yields definitely more and better information than conventional MR tomography also in the diagnosis of testicular tumours. However, these ''pros'' do not offset the ''cons'' of high costs of such examinations. (orig.) [de

  6. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    Science.gov (United States)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  7. Climate change-related migration and infectious disease.

    Science.gov (United States)

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration - will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts - including infectious diseases - for migrant populations and host communities.

  8. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease

    Science.gov (United States)

    Gagnon, Philippe; Guenette, Jordan A; Langer, Daniel; Laviolette, Louis; Mainguy, Vincent; Maltais, François; Ribeiro, Fernanda; Saey, Didier

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung disease characterized by airflow limitation that is not fully reversible. In a significant proportion of patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads to lung hyperinflation during the course of the disease. Development of hyperinflation during the course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages of COPD, and new evidence suggests that it also occurs in many patients with mild disease, independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal muscle limitations, morbidity, and reduced physical activity levels associated with the disease. Various pharmacological and nonpharmacological interventions have been shown to reduce hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of this review is to address the more recent literature regarding the pathogenesis, assessment, and management of both static and dynamic lung hyperinflation in patients with COPD. We also address the influence of biological sex and obesity and new developments in our understanding of hyperinflation in patients with mild COPD and its evolution during progression of the disease. PMID:24600216

  9. Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn's disease assessment with histopathology of surgical specimens

    NARCIS (Netherlands)

    Tielbeek, Jeroen A. W.; Ziech, Manon L. W.; Li, Zhang; Lavini, Cristina; Bipat, Shandra; Bemelman, Willem A.; Roelofs, Joris J. T. H.; Ponsioen, Cyriel Y.; Vos, Frans M.; Stoker, Jaap

    2014-01-01

    To prospectively compare conventional MRI sequences, dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging (DWI) with histopathology of surgical specimens in Crohn's disease. 3-T MR enterography was performed in consecutive Crohn's disease patients scheduled for surgery within 4 weeks.

  10. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    Science.gov (United States)

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  11. Historical epidemiology of the second cholera pandemic: relevance to present day disease dynamics.

    Directory of Open Access Journals (Sweden)

    Christina H Chan

    Full Text Available Despite nearly two centuries of study, the fundamental transmission dynamic properties of cholera remain incompletely characterized. We used historical time-series data on the spread of cholera in twelve European and North American cities during the second cholera pandemic, as reported in Amariah Brigham's 1832 A Treatise on Epidemic Cholera, to parameterize simple mathematical models of cholera transmission. Richards growth models were used to derive estimates of the basic reproductive number (R0 (median: 16.0, range: 1.9 to 550.9 and the proportion of unrecognized cases (mean: 96.3%, SD: 0.04%. Heterogeneity in model-generated R0 estimates was consistent with variability in cholera dynamics described by contemporary investigators and may represent differences in the nature of cholera spread. While subject to limitations associated with measurement and the absence of microbiological diagnosis, historical epidemic data are a potentially rich source for understanding pathogen dynamics in the absence of control measures, particularly when used in conjunction with simple and readily interpretable mathematical models.

  12. Teenagers’ understandings of and attitudes towards vaccines and vaccine-preventable diseases: A qualitative study☆

    Science.gov (United States)

    Hilton, S.; Patterson, C.; Smith, E.; Bedford, H.; Hunt, K.

    2013-01-01

    Background To examine immunisation information needs of teenagers we explored understandings of vaccination and vaccine-preventable diseases, attitudes towards immunisation and experiences of immunisation. Diseases discussed included nine for which vaccines are currently offered in the UK (human papillomavirus, meningitis, tetanus, diphtheria, polio, whooping cough, measles, mumps and rubella), and two not currently included in the routine UK schedule (hepatitis B and chickenpox). Methods Twelve focus groups conducted between November 2010 and March 2011 with 59 teenagers (29 girls and 30 boys) living in various parts of Scotland. Results Teenagers exhibited limited knowledge and experience of the diseases, excluding chickenpox. Measles, mumps and rubella were perceived as severe forms of chickenpox-like illness, and rubella was not associated with foetal damage. Boys commonly believed that human papillomavirus only affects girls, and both genders exhibited confusion about its relationship with cancer. Participants considered two key factors when assessing the threat of diseases: their prevalence in the UK, and their potential to cause fatal or long-term harm. Meningitis was seen as a threat, but primarily to babies. Participants explained their limited knowledge as a result of mass immunisation making once-common diseases rare in the UK, and acknowledged immunisation's role in reducing disease prevalence. Conclusions While it is welcome that fewer teenagers have experienced vaccine-preventable diseases, this presents public health advocates with the challenge of communicating benefits of immunisation when advantages are less visible. The findings are timely in view of the Joint Committee on Vaccination and Immunisation's recommendation that a booster of meningitis C vaccine should be offered to teenagers; that teenagers did not perceive meningitis C as a significant threat should be a key concern of promotional information. While teenagers’ experiences of

  13. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  14. Sixth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD2015)

    DEFF Research Database (Denmark)

    Bar-Yoseph, P. Z.; Brøns, Morten; Gelfgat, A.

    2016-01-01

    dynamics and remain a challenge for experimental, theoretical and computational studies. Examples of prototypical hydrodynamic instabilities are the Rayleigh–Bénard, Taylor–Couette, Bénard–Marangoni, Rayleigh–Taylor, and Kelvin–Helmholtz instabilities. A fundamental understanding of bifurcation patterns...... diseases, such as atherosclerotic and vulnerable plaques, abdominal aortic aneurisms, carotid artery disease, and pulmonary embolisms and implications for vascular interventions such as grafting and stenting. The collection of papers in this issue is a selection of the presentations given at the Sixth...

  15. Microbiome-wide association studies link dynamic microbial consortia to disease

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine; Xu, Zhenjiang Z.; Morton, James; Garg, Neha; Jansson, Janet K.; Dorrestein, Pieter C.; Knight, Rob

    2016-07-06

    Rapid advances in DNA sequencing, metabolomics, proteomics and computational tools are dramatically increasing access to the microbiome and identification of its links with disease. In particular, time-series studies and multiple molecular perspectives are facilitating microbiome-wide association studies, which are analogous to genome-wide association studies. Early findings point to actionable outcomes of microbiome-wide association studies, although their clinical application has yet to be approved. An appreciation of the complexity of interactions among the microbiome and the host's diet, chemistry and health, as well as determining the frequency of observations that are needed to capture and integrate this dynamic interface, is paramount for developing precision diagnostics and therapies that are based on the microbiome.

  16. Microbiota and Pelvic Inflammatory Disease

    Science.gov (United States)

    Sharma, Harsha; Tal, Reshef; Clark, Natalie A.; Segars, James H.

    2014-01-01

    Female genital tract microbiota play a crucial role in maintaining health. Disequilibrium of the microbiota has been associated with increased risk of pelvic infections. In recent years, culture-independent molecular techniques have expanded understanding of the composition of genital microbiota and the dynamic nature of the microbiota. There is evidence that upper genital tract may not be sterile and may harbor microflora in the physiologic state. The isolation of bacterial vaginosis-associated organisms in women with genital infections establishes a link between pelvic infections and abnormal vaginal flora. With the understanding of the composition of the microbiota in healthy and diseased states, the next logical step is to identify the function of the newly identified microbes. This knowledge will further expand our understanding of the causation of pelvic infections, which may lead to more effective prevention and treatment strategies. PMID:24390920

  17. Dynamical patterns of cattle trade movements.

    Directory of Open Access Journals (Sweden)

    Paolo Bajardi

    Full Text Available Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions.

  18. Understanding of coupled terrestrial carbon, nitrogen and water dynamics-an overview.

    Science.gov (United States)

    Chen, Baozhang; Coops, Nicholas C

    2009-01-01

    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO(2) mixing ratio towers and chambers.

  19. Equilibrium Analysis of a Yellow Fever Dynamical Model with Vaccination

    Directory of Open Access Journals (Sweden)

    Silvia Martorano Raimundo

    2015-01-01

    Full Text Available We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies.

  20. A Scientific Understanding of Keystroke Dynamics

    Science.gov (United States)

    2012-01-01

    of Procedia — Social and Behavioral Sciences . Elsevier, 2011. S. Douhou and J. R. Magnus. The reliability of user authentication through keystroke...manifestations of people’s behavior — keystroke timings especially so. As such, looking to other sciences for solutions to the problem of understanding...excitement and enthusiasm over being studied. The discovery spurred changes in the research methods of behavioral science (Shadish et al., 2002

  1. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Harsh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gyulassy, Attila [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ong, Mitchell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Draeger, Erik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-27

    The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field to analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.

  2. Dynamical behavior of an epidemic model for a vector-borne disease with direct transmission

    International Nuclear Information System (INIS)

    Cai Liming; Li Xuezhi; Li Zhaoqiang

    2013-01-01

    An epidemic model of a vector-borne disease with direct transmission is investigated. The reproduction number (R 0 ) of the model is obtained. Rigorous qualitative analysis of the model reveals the presence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium (DFE) coexists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in the standard incidence model. The phenomenon shows that the classical epidemiological requirement of having the reproduction number less than unity is no longer sufficient, although necessary, for effectively controlling the spread of some vector-borne diseases in a community. The backward bifurcation phenomenon can be removed by substituting the standard incidence with a bilinear mass action incidence. By using Lyapunov function theory and LaSalle invariance principle, it is shown that the unique endemic equilibrium for the model with a mass action incidence is globally stable if the reproduction number R mass is greater than one in feasible region. This suggests that the use of standard incidence in modelling some vector-borne diseases with direct transmission results in the presence of backward bifurcation. Numerical simulations analyze the effect of the direct transmission and the disease-induced death rate on dynamics of the disease transmission, and also verify our analyzed results.

  3. Towards an Understanding of Energy Impairment in Huntington’s Disease Brain

    Science.gov (United States)

    Dubinsky, Janet M.

    2017-01-01

    This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages. PMID:29125492

  4. Clinical Validity, Understandability, and Actionability of Online Cardiovascular Disease Risk Calculators: Systematic Review.

    Science.gov (United States)

    Bonner, Carissa; Fajardo, Michael Anthony; Hui, Samuel; Stubbs, Renee; Trevena, Lyndal

    2018-02-01

    Online health information is particularly important for cardiovascular disease (CVD) prevention, where lifestyle changes are recommended until risk becomes high enough to warrant pharmacological intervention. Online information is abundant, but the quality is often poor and many people do not have adequate health literacy to access, understand, and use it effectively. This project aimed to review and evaluate the suitability of online CVD risk calculators for use by low health literate consumers in terms of clinical validity, understandability, and actionability. This systematic review of public websites from August to November 2016 used evaluation of clinical validity based on a high-risk patient profile and assessment of understandability and actionability using Patient Education Material Evaluation Tool for Print Materials. A total of 67 unique webpages and 73 unique CVD risk calculators were identified. The same high-risk patient profile produced widely variable CVD risk estimates, ranging from as little as 3% to as high as a 43% risk of a CVD event over the next 10 years. One-quarter (25%) of risk calculators did not specify what model these estimates were based on. The most common clinical model was Framingham (44%), and most calculators (77%) provided a 10-year CVD risk estimate. The calculators scored moderately on understandability (mean score 64%) and poorly on actionability (mean score 19%). The absolute percentage risk was stated in most (but not all) calculators (79%), and only 18% included graphical formats consistent with recommended risk communication guidelines. There is a plethora of online CVD risk calculators available, but they are not readily understandable and their actionability is poor. Entering the same clinical information produces widely varying results with little explanation. Developers need to address actionability as well as clinical validity and understandability to improve usefulness to consumers with low health literacy.

  5. Hypothesis: the chaos and complexity theory may help our understanding of fibromyalgia and similar maladies.

    Science.gov (United States)

    Martinez-Lavin, Manuel; Infante, Oscar; Lerma, Claudia

    2008-02-01

    Modern clinicians are often frustrated by their inability to understand fibromyalgia and similar maladies since these illnesses cannot be explained by the prevailing linear-reductionist medical paradigm. This article proposes that new concepts derived from the Complexity Theory may help understand the pathogenesis of fibromyalgia, chronic fatigue syndrome, and Gulf War syndrome. This hypothesis is based on the recent recognition of chaos fractals and complex systems in human physiology. These nonlinear dynamics concepts offer a different perspective to the notion of homeostasis and disease. They propose that the essence of disease is dysfunction and not structural damage. Studies using novel nonlinear instruments have shown that fibromyalgia and similar maladies may be caused by the degraded performance of our main complex adaptive system. This dysfunction explains the multifaceted manifestations of these entities. To understand and alleviate the suffering associated with these complex illnesses, a paradigm shift from reductionism to holism based on the Complexity Theory is suggested. This shift perceives health as resilient adaptation and some chronic illnesses as rigid dysfunction.

  6. Imaging lymphoid tissues in nonhuman primates to understand SIV pathogenesis and persistence.

    Science.gov (United States)

    Deleage, Claire; Turkbey, Baris; Estes, Jacob D

    2016-08-01

    CD4+ T cells are the primary HIV-1 target cell, with the vast majority of these cells residing within lymphoid tissue compartments throughout the body. Predictably, HIV-1 infection, replication, localization, reservoir establishment and persistence, as well as associated host immune and inflammatory responses and disease pathology principally take place within the tissues of the immune system. By virture of the fact that the virus-host struggle is played out within lymphoid and additional tissues compartments in HIV-1 infected individuals it is critical to understand HIV-1 infection and disease within these relevant tissue sites; however, there are obvious limitations to studying these dynamic processes in humans. Nonhuman primate (NHP) research has provided a vital bridge between basic and preclinical research and clinical studies, with experimental SIV infection of NHP models offering unique opportunities to understand key processes of HIV-1 infection and disease that are either not practically feasible or ethical in HIV-1 infected humans. In this review we will discuss current approaches to studying the tissue based immunopathogenesis of AIDS virus infection in NHPs, including both analyses of tissues obtained at biopsy or necropsy and complementary non-invasive imaging approaches that may have practical utility in monitoring HIV-1 disease in the clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. CALCULATING ROTATING HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC WAVES TO UNDERSTAND MAGNETIC EFFECTS ON DYNAMICAL TIDES

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  8. Dynamic neurotransmitter interactions measured with PET

    International Nuclear Information System (INIS)

    Schiffer, W.K.; Dewey, S.L.

    2001-01-01

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  9. Dynamic neurotransmitter interactions measured with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  10. Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling

    Directory of Open Access Journals (Sweden)

    Jay S. Coggan

    2015-09-01

    Full Text Available Despite intense research, few treatments are available for most neurological disorders. Demyelinating diseases are no exception. This is perhaps not surprising considering the multifactorial nature of these diseases, which involve complex interactions between immune system cells, glia and neurons. In the case of multiple sclerosis, for example, there is no unanimity among researchers about the cause or even which system or cell type could be ground zero. This situation precludes the development and strategic application of mechanism-based therapies. We will discuss how computational modeling applied to questions at different biological levels can help link together disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism. By making testable predictions and revealing critical gaps in existing knowledge, such models can help direct research and will provide a rigorous framework in which to integrate new data as they are collected. Nowadays, there is no shortage of data; the challenge is to make sense of it all. In that respect, computational modeling is an invaluable tool that could, ultimately, transform how we understand, diagnose, and treat demyelinating diseases.

  11. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaper, Tasso J., E-mail: tasso@bu.edu; Kramer, Mark A., E-mail: mak@bu.edu [Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215 (United States); Rotstein, Horacio G., E-mail: horacio@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  12. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    International Nuclear Information System (INIS)

    Kaper, Tasso J.; Kramer, Mark A.; Rotstein, Horacio G.

    2013-01-01

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases

  13. Dynamics of socioeconomic risk factors for neglected tropical diseases and malaria in an armed conflict.

    Directory of Open Access Journals (Sweden)

    Thomas Fürst

    Full Text Available BACKGROUND: Armed conflict and war are among the leading causes of disability and premature death, and there is a growing share of civilians killed or injured during armed conflicts. A major part of the civilian suffering stems from indirect effects or collateral impact such as changing risk profiles for infectious diseases. We focused on rural communities in the western part of Côte d'Ivoire, where fighting took place during the Ivorian civil war in 2002/2003, and assessed the dynamics of socioeconomic risk factors for neglected tropical diseases (NTDs and malaria. METHODOLOGY: The same standardized and pre-tested questionnaires were administered to the heads of 182 randomly selected households in 25 villages in the region of Man, western Côte d'Ivoire, shortly before and after the 2002/2003 armed conflict. PRINCIPAL FINDINGS: There was no difference in crowding as measured by the number of individuals per sleeping room, but the inadequate sanitation infrastructure prior to the conflict further worsened, and the availability and use of protective measures against mosquito bites and accessibility to health care infrastructure deteriorated. Although the direct causal chain between these findings and the conflict are incomplete, partially explained by the very nature of working in conflict areas, the timing and procedures of the survey, other sources and anecdotal evidence point toward a relationship between an increased risk of suffering from NTDs and malaria and armed conflict. CONCLUSION: New research is needed to deepen our understanding of the often diffuse and neglected indirect effects of armed conflict and war, which may be worse than the more obvious, direct effects.

  14. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  15. Mitochondrial Dynamics in Cardiovascular Health and Disease

    OpenAIRE

    Ong, Sang-Bing; Hall, Andrew R.; Hausenloy, Derek J.

    2013-01-01

    Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently be...

  16. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  17. The dynamics of transmission and the dynamics of networks.

    Science.gov (United States)

    Farine, Damien

    2017-05-01

    A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors

  18. Understanding Alzheimer's

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  19. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    Science.gov (United States)

    Suzzi, Stefano; Vargas-Caballero, Mariana; Fransen, Nina L.; Al-Malki, Hussain; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose Manuel; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases. PMID:24941947

  20. Creutzfeldt-Jakob disease surveillance in Australia: update to December 2014.

    Science.gov (United States)

    Klug, Genevieve M; Boyd, Alison; Sarros, Shannon; Stehmann, Christiane; Simpson, Marion; McLean, Catriona; Masters, Colin L; Collins, Steven J

    2016-06-30

    Nation-wide surveillance of human transmissible spongiform encephalopathies (also known as prion diseases), the most common being Creutzfeldt-Jakob disease, is performed by the Australian National Creutzfeldt-Jakob Disease Registry, based at the University of Melbourne. Prospective surveillance has been undertaken since 1993 and over this dynamic period in transmissible spongiform encephalopathy research and understanding, the unit has evolved and adapted to changes in surveillance practices and requirements concomitant with the emergence of new disease subtypes, improvements in diagnostic capabilities and the overall heightened awareness of prion diseases in the health care setting. In 2014, routine national surveillance continued and this brief report provides an update of the cumulative surveillance data collected by the Australian National Creutzfeldt-Jakob Disease Registry prospectively from 1993 to December 2014, and retrospectively to 1970.

  1. Creutzfeldt-Jakob disease surveillance in Australia: update to December 2015.

    Science.gov (United States)

    Klug, Genevieve M; Boyd, Alison; Sarros, Shannon; Stehmann, Christiane; Simpson, Marion; McLean, Catriona A; Masters, Colin L; Collins, Steven J

    2016-09-30

    Nation-wide surveillance of human transmissible spongiform encephalopathies (also known as prion diseases), the most common being Creutzfeldt-Jakob disease, is performed by the Australian National Creutzfeldt-Jakob Disease Registry, based at the University of Melbourne. Prospective surveillance has been undertaken since 1993 and over this dynamic period in transmissible spongiform encephalopathy research and understanding, the unit has evolved and adapted to changes in surveillance practices and requirements concomitant with the delineation of new disease subtypes, improvements in diagnostic capabilities and the overall heightened awareness of prion diseases in the health care setting. In 2015, routine national surveillance continued and this brief report provides an update of the cumulative surveillance data collected by the Australian National Creutzfeldt-Jakob Disease Registry prospectively from 1993 to December 2015, and retrospectively to 1970.

  2. Stochastic dynamics of dengue epidemics.

    Science.gov (United States)

    de Souza, David R; Tomé, Tânia; Pinho, Suani T R; Barreto, Florisneide R; de Oliveira, Mário J

    2013-01-01

    We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, such as dengue, and the threshold of the disease. The coexistence space is composed of two structures representing the human and mosquito populations. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice versa, so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible, for any death rate of infected mosquitoes.

  3. [Understanding the risk factors for infectious diseases, their prevention, and control, among residents of Zhejiang Province].

    Science.gov (United States)

    Zhao, Y S; Wu, Q Q; Xu, S Y; Wang, L; Liu, H; Yao, D M; Di, Z Q; Tian, X Y

    2016-09-06

    Objective: To investigate the understanding of infectious diseases, their prevention, and control, and the factors influencing this literacy among urban and rural residents of Zhejiang Province. Methods: In November- December 2014, a multistage stratified cluster sampling questionnaire was administered at study sites in eight districts of Zhejiang province: Hangzhou city Gongshu district, Hangzhou city Chun'an county, Wenzhou city Cangnan county, Dongyang city, Jiaxing city Jiashan county, Zhoushan city Putuo district, Linhai city, Lishui city Jinyun county. The inclusion criteria were: 15-60 years old, living locally for more than six continuous months, and no mental illness. The exclusion criteria were: foreigner residing locally, resident of Hong Kong, Macau, or Taiwan, or unable to communicate through speech or writing. In this study, 4 091 questionnaires were distributed, and 4 020 valid questionnaires were returned(98.26%). Health literacy regarding infectious diseases was measured at five levels: knowledge, skills, behaviors, access to information, and understanding of the prevention of infectious diseases. A total score was calculated for each questionnaire, and a total score of ≥80 was deemed to indicate an understanding of the prevention of infectious diseases. A χ 2 test was used to compare the levels of health literacy in different populations with single-factor analyses, and a multivariate unconditional logistic regression model was used to analyze the factors affecting infectious diseases prevention and treatment literacy levels. Results: Of the 4 020 respondents(aged(43.84 ± 10.28)years), 1 964 were male(48.86%)and 2 056 were female(51.14%). In the total surveyed population, 15.17%( n =610)understood the prevention of infectious diseases, 294 were male(14.97%)and 316 were female(15.37%)(χ 2 =2.48, P =0.115). When the participants in the different age groups were analyzed, 23.11%, 20.29%, 13.27%, and 11.04% of those aged 18- 29( n =116), 30- 39

  4. The gut microbiota and metabolic disease: current understanding and future perspectives.

    Science.gov (United States)

    Arora, T; Bäckhed, F

    2016-10-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity predisposes towards type 2 diabetes and cardiovascular disease. Recently, it has been established that levels of butyrate-producing bacteria are reduced in patients with type 2 diabetes, whereas levels of Lactobacillus sp. are increased. Recent data suggest that the reduced levels of butyrate-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated that an altered microbiota may contribute to the improved metabolic phenotype following this intervention. Thus, greater understanding of alterations of the gut microbiota, in combination with dietary patterns, may provide insights into how the gut microbiota contributes to disease progression and whether it can be exploited as a novel diagnostic, prognostic and therapeutic target. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  5. [Understanding people with Steinert’s disease to better care for them.

    Science.gov (United States)

    Lecordier, Didier; Cartron, Emmanuelle; Jovic, Ljiljana

    2017-12-01

    the lifestyles of people with myotonic dystrophy type 1 (DM1) are poorly understood and yet their consideration is essential for effective long-term care. The nursing care provided in the reference centers integrates the diversity clinic of this disease in interdisciplinary care, but it is more complicated from a relational point of view. The objective of this qualitative study was to understand the ways of living for a person with DM1, his body and the coping strategies developed. this research in social sciences and nursing is based on a problem of care and is based on an ethnosociological problematization. the aim is to make visible the evolution of the body affected by Steinert’s disease, participating in the construction of the body pattern and the social identity of the person, which allows him to maintain himself in a “normal” daily life as long as possible but can reach limits imposing him radical reorientations in his life. These results are discussed in the light of a framework of analysis based on the four levels of reading of the body proposed by Nicolas Vonarx: the “material body” ; the “capable body”, the “body feeling” and the “knowing/judging body” ; “socializing body” will be proposed to discuss the place the body takes for people living with a DM1 when it comes to living within a normative society.

  6. Teenagers' understandings of and attitudes towards vaccines and vaccine-preventable diseases: a qualitative study.

    Science.gov (United States)

    Hilton, S; Patterson, C; Smith, E; Bedford, H; Hunt, K

    2013-05-24

    To examine immunisation information needs of teenagers we explored understandings of vaccination and vaccine-preventable diseases, attitudes towards immunisation and experiences of immunisation. Diseases discussed included nine for which vaccines are currently offered in the UK (human papillomavirus, meningitis, tetanus, diphtheria, polio, whooping cough, measles, mumps and rubella), and two not currently included in the routine UK schedule (hepatitis B and chickenpox). Twelve focus groups conducted between November 2010 and March 2011 with 59 teenagers (29 girls and 30 boys) living in various parts of Scotland. Teenagers exhibited limited knowledge and experience of the diseases, excluding chickenpox. Measles, mumps and rubella were perceived as severe forms of chickenpox-like illness, and rubella was not associated with foetal damage. Boys commonly believed that human papillomavirus only affects girls, and both genders exhibited confusion about its relationship with cancer. Participants considered two key factors when assessing the threat of diseases: their prevalence in the UK, and their potential to cause fatal or long-term harm. Meningitis was seen as a threat, but primarily to babies. Participants explained their limited knowledge as a result of mass immunisation making once-common diseases rare in the UK, and acknowledged immunisation's role in reducing disease prevalence. While it is welcome that fewer teenagers have experienced vaccine-preventable diseases, this presents public health advocates with the challenge of communicating benefits of immunisation when advantages are less visible. The findings are timely in view of the Joint Committee on Vaccination and Immunisation's recommendation that a booster of meningitis C vaccine should be offered to teenagers; that teenagers did not perceive meningitis C as a significant threat should be a key concern of promotional information. While teenagers' experiences of immunisation in school were not always positive

  7. Cannabis changes: Understanding dynamics of use and dependence

    NARCIS (Netherlands)

    Liebregts, N.

    2015-01-01

    Cannabis is the most widely used illicit drug. Part of ever-users become frequent users and continue to use over a longer period. 600 frequent users (18-30 years) were enrolled in a 3-year longitudinal study. Trajectories of frequent cannabis use and cannabis dependence appeared very dynamic.

  8. Disease Interventions Can Interfere with One Another through Disease-Behaviour Interactions.

    Directory of Open Access Journals (Sweden)

    Michael A Andrews

    2015-06-01

    Full Text Available Theoretical models of disease dynamics on networks can aid our understanding of how infectious diseases spread through a population. Models that incorporate decision-making mechanisms can furthermore capture how behaviour-driven aspects of transmission such as vaccination choices and the use of non-pharmaceutical interventions (NPIs interact with disease dynamics. However, these two interventions are usually modelled separately. Here, we construct a simulation model of influenza transmission through a contact network, where individuals can choose whether to become vaccinated and/or practice NPIs. These decisions are based on previous experience with the disease, the current state of infection amongst one's contacts, and the personal and social impacts of the choices they make. We find that the interventions interfere with one another: because of negative feedback between intervention uptake and infection prevalence, it is difficult to simultaneously increase uptake of all interventions by changing utilities or perceived risks. However, on account of vaccine efficacy being higher than NPI efficacy, measures to expand NPI practice have only a small net impact on influenza incidence due to strongly mitigating feedback from vaccinating behaviour, whereas expanding vaccine uptake causes a significant net reduction in influenza incidence, despite the reduction of NPI practice in response. As a result, measures that support expansion of only vaccination (such as reducing vaccine cost, or measures that simultaneously support vaccination and NPIs (such as emphasizing harms of influenza infection, or satisfaction from preventing infection in others through both interventions can significantly reduce influenza incidence, whereas measures that only support expansion of NPI practice (such as making hand sanitizers more available have little net impact on influenza incidence. (However, measures that improve NPI efficacy may fare better. We conclude that the

  9. Understanding the physical dynamics and ecological interactions in tidal stream energy environments

    Science.gov (United States)

    Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.

    2017-04-01

    Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.

  10. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  11. The organizational dynamics enabling patient portal impacts upon organizational performance and patient health: A qualitative study of Kaiser Permanente

    NARCIS (Netherlands)

    E.T. Otte-Trojel (Eva Terese); T.G. Rundall (Thomas); A.A. de Bont (Antoinette); J.J. van de Klundert (Joris); M.E. Reed (Mary E.)

    2015-01-01

    textabstractBackground: Patient portals may lead to enhanced disease management, health plan retention, changes in channel utilization, and lower environmental waste. However, despite growing research on patient portals and their effects, our understanding of the organizational dynamics that explain

  12. Joint recognition-expression impairment of facial emotions in Huntington's disease despite intact understanding of feelings.

    Science.gov (United States)

    Trinkler, Iris; Cleret de Langavant, Laurent; Bachoud-Lévi, Anne-Catherine

    2013-02-01

    Patients with Huntington's disease (HD), a neurodegenerative disorder that causes major motor impairments, also show cognitive and emotional deficits. While their deficit in recognising emotions has been explored in depth, little is known about their ability to express emotions and understand their feelings. If these faculties were impaired, patients might not only mis-read emotion expressions in others but their own emotions might be mis-interpreted by others as well, or thirdly, they might have difficulties understanding and describing their feelings. We compared the performance of recognition and expression of facial emotions in 13 HD patients with mild motor impairments but without significant bucco-facial abnormalities, and 13 controls matched for age and education. Emotion recognition was investigated in a forced-choice recognition test (FCR), and emotion expression by filming participants while they mimed the six basic emotional facial expressions (anger, disgust, fear, surprise, sadness and joy) to the experimenter. The films were then segmented into 60 stimuli per participant and four external raters performed a FCR on this material. Further, we tested understanding of feelings in self (alexithymia) and others (empathy) using questionnaires. Both recognition and expression were impaired across different emotions in HD compared to controls and recognition and expression scores were correlated. By contrast, alexithymia and empathy scores were very similar in HD and controls. This might suggest that emotion deficits in HD might be tied to the expression itself. Because similar emotion recognition-expression deficits are also found in Parkinson's Disease and vascular lesions of the striatum, our results further confirm the importance of the striatum for emotion recognition and expression, while access to the meaning of feelings relies on a different brain network, and is spared in HD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Development of a conceptual framework for understanding financial barriers to care among patients with cardiovascular-related chronic disease: a protocol for a qualitative (grounded theory) study.

    Science.gov (United States)

    Campbell, David J T; Manns, Braden J; Hemmelgarn, Brenda R; Sanmartin, Claudia; King-Shier, Kathryn M

    2016-01-01

    Patients with cardiovascular-related chronic diseases may face financial barriers to accessing health care, even in Canada, where universal health care insurance is in place. No current theory or framework is adequate for understanding the impact of financial barriers to care on these patients or how they experience financial barriers. The overall objective of this study is to develop a framework for understanding the role of financial barriers to care in the lives of patients with cardiovascular-related chronic diseases and the impact of such barriers on their health. We will perform an inductive qualitative grounded theory study to develop a framework to understand the effect of financial barriers to care on patients with cardiovascular-related chronic diseases. We will use semistructured interviews (face-to-face and telephone) with a purposive sample of adult patients from Alberta with at least 1 of hypertension, diabetes, heart disease or stroke. We will analyze interview transcripts in triplicate using grounded theory coding techniques, including open, focused and axial coding, following the principle of constant comparison. Interviews and analysis will be done iteratively to theoretical saturation. Member checking will be used to enhance rigour. A comprehensive framework for understanding financial barriers to accessing health care is instrumental for both researchers and clinicians who care for patients with chronic diseases. Such a framework would enable a better understanding of patient behaviour and nonadherence to recommended medical therapies and lifestyle modifications.

  14. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, F. K. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Medicine (Neurology), University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada); Ferguson, K. A. [Toronto Western Research Institute, University Health Network, Krembil Discovery Tower, Toronto Western Hospital, 60 Leonard Street, 7th floor, 7KD411, Toronto, Ontario M5T 2S8 (Canada); Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King' s College Circle, Toronto, Ontario M5S 1A8 (Canada)

    2013-12-15

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.

  15. Understanding and benchmarking health service achievement of policy goals for chronic disease

    Science.gov (United States)

    2012-01-01

    Background Key challenges in benchmarking health service achievement of policy goals in areas such as chronic disease are: 1) developing indicators and understanding how policy goals might work as indicators of service performance; 2) developing methods for economically collecting and reporting stakeholder perceptions; 3) combining and sharing data about the performance of organizations; 4) interpreting outcome measures; 5) obtaining actionable benchmarking information. This study aimed to explore how a new Boolean-based small-N method from the social sciences—Qualitative Comparative Analysis or QCA—could contribute to meeting these internationally shared challenges. Methods A ‘multi-value QCA’ (MVQCA) analysis was conducted of data from 24 senior staff at 17 randomly selected services for chronic disease, who provided perceptions of 1) whether government health services were improving their achievement of a set of statewide policy goals for chronic disease and 2) the efficacy of state health office actions in influencing this improvement. The analysis produced summaries of configurations of perceived service improvements. Results Most respondents observed improvements in most areas but uniformly good improvements across services were not perceived as happening (regardless of whether respondents identified a state health office contribution to that improvement). The sentinel policy goal of using evidence to develop service practice was not achieved at all in four services and appears to be reliant on other kinds of service improvements happening. Conclusions The QCA method suggested theoretically plausible findings and an approach that with further development could help meet the five benchmarking challenges. In particular, it suggests that achievement of one policy goal may be reliant on achievement of another goal in complex ways that the literature has not yet fully accommodated but which could help prioritize policy goals. The weaknesses of QCA can be

  16. Understanding and Mastering Dynamics in Computing Grids Processing Moldable Tasks with User-Level Overlay

    CERN Document Server

    Moscicki, Jakub Tomasz

    Scientic communities are using a growing number of distributed systems, from lo- cal batch systems, community-specic services and supercomputers to general-purpose, global grid infrastructures. Increasing the research capabilities for science is the raison d'^etre of such infrastructures which provide access to diversied computational, storage and data resources at large scales. Grids are rather chaotic, highly heterogeneous, de- centralized systems where unpredictable workloads, component failures and variability of execution environments are commonplace. Understanding and mastering the hetero- geneity and dynamics of such distributed systems is prohibitive for end users if they are not supported by appropriate methods and tools. The time cost to learn and use the interfaces and idiosyncrasies of dierent distributed environments is another challenge. Obtaining more reliable application execution times and boosting parallel speedup are important to increase the research capabilities of scientic communities. L...

  17. Precision pharmacology for Alzheimer's disease.

    Science.gov (United States)

    Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone

    2018-04-01

    The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective

  18. DEPENDENT UPON ENVIRONMENTAL CONDITIONS FEATURES AND DISTRIBUTION DYNAMICS OF CHILDREN'S HEART DISEASE IN THE REPUBLIC OF DAGESTAN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Based on the analysis of statistical data on child morbidity (from 0 to 17 years old of the Republic of Dagestan the structure, dynamics and distribution features of cardiovascular diseases, chronic rheumatism, hypertension, congenital heart disease in 2009–2011 are examined. High rates of cardiac morbidity among residents of areas with unfavorable ecological environment characterized by a high content of pollutants in the composition of drinking water, soil and pasture vegetation are mentioned.

  19. Hypertensive disease and renal hypertensions: renal structural and functional studies by using dynamic computed tomography

    International Nuclear Information System (INIS)

    Arabidze, G.G.; Pogrebnaya, G.N.; Todua, F.I.; Sokolova, R.I.; Kozdoba, O.A.

    1989-01-01

    Dynamic computed tomography was conducted by the original methods; the findings were analyzed by taking into account time-density curves which made it possible to gain an insight into the status of blood flow and filtration in each individual kidney. Computed tomography and dynamic computed tomography revealed that hypertensive disease was characterized by normal volume and thickness of the renal cortical layer and symmetric time-density curves, whereas a hypertensive type of chronic glomerulonephritis featured lower renal cartical layer thickness, reduced renal volume, symmetrically decrease amplitudes of the first and second peaks of the time-density curve, chronic pyelonephritis showed asymmetric time-density diagrams due to the lower density areas in the afflicted kidney

  20. Seven challenges for modelling indirect transmission: Vector-borne diseases, macroparasites and neglected tropical diseases

    Directory of Open Access Journals (Sweden)

    T. Déirdre Hollingsworth

    2015-03-01

    Full Text Available Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease.

  1. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases.

    Science.gov (United States)

    Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L

    2015-03-01

    Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007–2011

    OpenAIRE

    Mohamed H. Al-Thani; Eman Sadoun; Al-Anoud Al-Thani; Shamseldin A. Khalifa; Suzan Sayegh; Alaa Badawi

    2014-01-01

    Background: Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics...

  3. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cytokine Status, Thyroid Autoantibodies and Their Dynamic Changes During the Treatment of Graves' Disease

    Directory of Open Access Journals (Sweden)

    V V Lazanovich

    2008-09-01

    Full Text Available It has been found during the research that the changes of Th1 and Th2 marker cytokine content in Graves Disease are dynamic and are directly correlated not only with the severity of autoimmune thyrotoxicosis, but also with the method of treatment used and duration of Thiamazole therapy. The beginning of autoimmune thyrotoxicosis shows the largest amounts of both pro-inflammatory (IL-1a, IL-8, IFN-γ and anti-inflammatory (IL-10 cytokines which are significantly reduced during Thiamazole therapy, with the exception of the cases of severe disease course. Thyroid resection does not result in immunologic remission either, which is confirmed by persisting high serum levels of IL-1a, IL-8, IFN-γ, IL-10 and TSH antibodies in the severe GBD group. Among the unfavorable prognostic factors for recurrent disease are high serum levels of TSH antibodies, IL-1a and IFN-γ during pre-surgery period.

  5. Understanding the sensory irregularities of esophageal disease.

    Science.gov (United States)

    Farmer, Adam D; Brock, Christina; Frøkjaer, Jens Brøndum; Gregersen, Hans; Khan, Sheeba; Lelic, Dina; Lottrup, Christian; Drewes, Asbjørn Mohr

    2016-08-01

    Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future.

  6. Comparison of renal dynamic imaging and modified MDRD equation in determining the stage of chronic kidney disease patients

    International Nuclear Information System (INIS)

    Xie Peng; Liu Xiaomei; Huang Jianmin; Zhang Fang; Pan Liping; Wu Weijie; Gao Jianqing

    2013-01-01

    Objective: To compare the accuracy of 99 Tc m -diethylene triamine pentaacetic acid ( 99 Tc m -DTPA) renal dynamic imaging and modified modification of diet in renal disease trail (MDRD) equation in determining the stage of the chronic kidney disease (CKD) patients in clinical practice. Methods: A total of 169 patients were enrolled whose glomerular filtration rate (GFR) were determined simultaneously by 3 methods: dual plasma sample clearance method, renal dynamic imaging and modified MDRD equation. The dual plasma sample clearance method was employed as the reference method. The accuracy of the other methods in determining the stage of CKD patients was compared and the comparison was repeated based on the different stages. Results: The accuracy of renal dynamic imaging and modified MDRD equation was 56.80% and 68.64%, respectively (P=0.019<0.05). And only in the stage of uremia, the difference of the above-mentioned two method reached statistical significance (P=0.012<0.05), while in other stages they showed similar performance (P=0.180, 0.424, 0.629 and 0.754, all P>0.05). Conclusion: Modified MDRD equation showed better performance than renal dynamic imaging or as good as the second one in determining the stage of CKD patients and the former one should be the first choice in clinical practice because of its simplicity and economy. (authors)

  7. Characterisation of foot-and-mouth disease virus strains circulating in Turkey during 1996-2004

    DEFF Research Database (Denmark)

    Parlak, Ü.; Özyörük, F.; Knowles, N.J.

    2007-01-01

    Two genotypes of foot-and-mouth disease virus serotype A were identified as the cause of disease outbreaks in Turkey during 1996-2004, while serotype O strains, identified during the same period, seem to represent an evolutionary continuum, and Asia1 strains were only rarely identified. The data...... genotypes. It is suggested that further studies to reveal the nature of the difference in epidemiological dynamics of type A and type O strains might lead to an understanding of the measures required to control foot-and-mouth disease in islands of persistent circulation....

  8. Review: Animal model and the current understanding of molecule dynamics of adipogenesis.

    Science.gov (United States)

    Campos, C F; Duarte, M S; Guimarães, S E F; Verardo, L L; Wei, S; Du, M; Jiang, Z; Bergen, W G; Hausman, G J; Fernyhough-Culver, M; Albrecht, E; Dodson, M V

    2016-06-01

    Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.

  9. An age-structured model for the coupled dynamics of HIV and HSV-2.

    Science.gov (United States)

    Kapitanov, Georgi; Alvey, Christina; Vogt-Geisse, Katia; Feng, Zhilan

    2015-08-01

    Evidence suggests a strong correlation between the prevalence of HSV-2 (genital herpes) and the perseverance of the HIV epidemic. HSV-2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the co-infection dynamics between the two diseases by incorporating a time-since-infection variable to track the alternating periods of infectiousness of HSV-2. The model considers only heterosexual relationships and distinguishes three population groups: males, general population females, and female sex workers. We calculate the basic reproduction numbers for each disease that provide threshold conditions, which determine whether a disease dies out or becomes endemic in the absence of the other disease. We also derive the invasion reproduction numbers that determine whether or not a disease can invade into a population in which the other disease is endemic. The calculations of the invasion reproduction numbers suggest a new aspect in their interpretation - the class from which the initial disease carrier arises is important for understanding the invasion dynamics and biological interpretation of the expressions of the reproduction numbers. Sensitivity analysis is conducted to examine the role of model parameters in influencing the model outcomes. The results are discussed in the last section.

  10. Modelling within-host spatiotemporal dynamics of invasive bacterial disease.

    Directory of Open Access Journals (Sweden)

    Andrew J Grant

    2008-04-01

    Full Text Available Mechanistic determinants of bacterial growth, death, and spread within mammalian hosts cannot be fully resolved studying a single bacterial population. They are also currently poorly understood. Here, we report on the application of sophisticated experimental approaches to map spatiotemporal population dynamics of bacteria during an infection. We analyzed heterogeneous traits of simultaneous infections with tagged Salmonella enterica populations (wild-type isogenic tagged strains [WITS] in wild-type and gene-targeted mice. WITS are phenotypically identical but can be distinguished and enumerated by quantitative PCR, making it possible, using probabilistic models, to estimate bacterial death rate based on the disappearance of strains through time. This multidisciplinary approach allowed us to establish the timing, relative occurrence, and immune control of key infection parameters in a true host-pathogen combination. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs, a process controlled by host antimicrobial mechanisms. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs via bacteraemia and further stochastic selection. This approach provides us with an unprecedented outlook on the pathogenesis of S. enterica infections, illustrating the complex spatial and stochastic effects that drive an infectious disease. The application of the novel method that we present in appropriate and diverse host-pathogen combinations, together with modelling of the data that result, will facilitate a comprehensive view of the spatial and stochastic nature of within-host dynamics.

  11. Understanding original antigenic sin in influenza with a dynamical system.

    Science.gov (United States)

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  12. A painless and constraint-free method to estimate viscoelastic passive dynamics of limbs' joints to support diagnosis of neuromuscular diseases.

    Science.gov (United States)

    Venture, Gentiane; Nakamura, Yoshihiko; Yamane, Katsu; Hirashima, Masaya

    2007-01-01

    Though seldom identified, the human joints dynamics is important in the fields of medical robotics and medical research. We present a general solution to estimate in-vivo and simultaneously the passive dynamics of the human limbs' joints. It is based on the use of the multi-body description of the human body and its kinematics and dynamics computations. The linear passive joint dynamics of the shoulders and the elbows: stiffness, viscosity and friction, is estimated simultaneously using the linear least squares method. Acquisition of movements is achieved with an optical motion capture studio on one examinee during the clinical diagnosis of neuromuscular diseases. Experimental results are given and discussed.

  13. Switching among graphic patterns is governed by oscillatory coordination dynamics: Implications for understanding handwriting.

    Directory of Open Access Journals (Sweden)

    Pier-Giorgio eZanone

    2013-09-01

    Full Text Available Revisiting an original idea by Hollerbach (1981, previous work has established that the production of graphic shapes, assumed to be the blueprint for handwriting, is governed by the dynamics of orthogonal non-linear coupled oscillators. Such dynamics determines few stable coordination patterns, giving rise to a limited set of preferred graphic shapes, namely, four lines and four ellipsoids independent of orientation. The present study investigates the rules of switching among such graphic coordination patterns. Seven participants were required to voluntarily switch within twelve pairs of shapes presented on a graphic tablet. In line with previous theoretical and experimental work on bimanual coordination, results corroborated our hypothesis that the relative stability of the produced coordination patterns determines the time needed for switching: the transition to a more stable pattern was shorter, and inversely. Moreover, switching between patterns with the same orientation but different eccentricities was faster than with a change in orientation. Nonetheless, the switching time covaried strictly with the change in relative phase effected by the transition between two shapes, whether this implied a change in eccentricity or in orientation. These findings suggest a new operational definition of what the (motor units or strokes of handwriting are and shed a novel light on how co-articulation and recruitment of degrees of freedom may occur in graphic skills. They also yield some leads for understanding the acquisition and the neural underpinnings of handwriting.

  14. Women, weight, poverty and menopause: understanding health practices in a context of chronic disease prevention.

    Science.gov (United States)

    Audet, Mélisa; Dumas, Alex; Binette, Rachelle; Dionne, Isabelle J

    2017-11-01

    Socioeconomic inequalities in health persist despite major investments in illness prevention campaigns and universal healthcare systems. In this context, the increased risks of chronic diseases of specific sub-groups of vulnerable populations should be further investigated. The objective of this qualitative study is to examine the interaction between socioeconomic status (SES) and body weight in order to understand underprivileged women's increased vulnerability to chronic diseases after menopause. By drawing specifically on Pierre Bourdieu's sociocultural theory of practice, 20 semi-structured interviews were conducted from May to December of 2013 to investigate the health practices of clinically overweight, postmenopausal women living an underprivileged life in Canada. Findings emphasise that poor life conditions undermine personal investment in preventive health and weight loss, showing the importance for policy makers to bring stronger consideration on upstream determinants of health. © 2017 Foundation for the Sociology of Health & Illness.

  15. Artistic understanding as embodied simulation.

    Science.gov (United States)

    Gibbs, Raymond W

    2013-04-01

    Bullot & Reber (B&R) correctly include historical perspectives into the scientific study of art appreciation. But artistic understanding always emerges from embodied simulation processes that incorporate the ongoing dynamics of brains, bodies, and world interactions. There may not be separate modes of artistic understanding, but a continuum of processes that provide imaginative simulations of the artworks we see or hear.

  16. Prediction of population with Alzheimer's disease in the European Union using a system dynamics model.

    Science.gov (United States)

    Tomaskova, Hana; Kuhnova, Jitka; Cimler, Richard; Dolezal, Ondrej; Kuca, Kamil

    2016-01-01

    Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.

  17. Spatiotemporal dynamics in understanding hand—object interactions

    Science.gov (United States)

    Avanzini, Pietro; Fabbri-Destro, Maddalena; Campi, Cristina; Pascarella, Annalisa; Barchiesi, Guido; Cattaneo, Luigi; Rizzolatti, Giacomo

    2013-01-01

    It is generally accepted that visual perception results from the activation of a feed-forward hierarchy of areas, leading to increasingly complex representations. Here we present evidence for a fundamental role of backward projections to the occipito-temporal region for understanding conceptual object properties. The evidence is based on two studies. In the first study, using high-density EEG, we showed that during the observation of how objects are used there is an early activation of occipital and temporal areas, subsequently reaching the pole of the temporal lobe, and a late reactivation of the visual areas. In the second study, using transcranial magnetic stimulation over the occipital lobe, we showed a clear impairment in the accuracy of recognition of how objects are used during both early activation and, most importantly, late occipital reactivation. These findings represent strong neurophysiological evidence that a top-down mechanism is fundamental for understanding conceptual object properties, and suggest that a similar mechanism might be also present for other higher-order cognitive functions. PMID:24043805

  18. Visualizing and Understanding Socio-Environmental Dynamics in Baltimore

    Science.gov (United States)

    Zaitchik, B. F.; Omeara, K.; Guikema, S.; Scott, A.; Bessho, A.; Logan, T. M.

    2015-12-01

    The City of Baltimore, like any city, is the sum of its component neighborhoods, institutions, businesses, cultures, and, ultimately, its people. It is also an organism in its own right, with distinct geography, history, infrastructure, and environments that shape its residents even as it is shaped by them. Sometimes these interactions are obvious but often they are not; while basic economic patterns are widely documented, the distribution of socio-spatial and environmental connections often hides below the surface, as does the potential that those connections hold. Here we present results of a collaborative initiative on the geography, design, and policy of socio-environmental dynamics of Baltimore. Geospatial data derived from satellite imagery, demographic databases, social media feeds, infrastructure plans, and in situ environmental networks, among other sources, are applied to generate an interactive portrait of Baltimore City's social, health, and well-being dynamics. The layering of data serves as a platform for visualizing the interconnectedness of the City and as a database for modeling risk interactions, vulnerabilities, and strengths within and between communities. This presentation will provide an overview of project findings and highlight linkages to education and policy.

  19. Alternating event processes during lifetimes: population dynamics and statistical inference.

    Science.gov (United States)

    Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng

    2018-01-01

    In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.

  20. Disease-induced resource constraints can trigger explosive epidemics

    Science.gov (United States)

    Böttcher, L.; Woolley-Meza, O.; Araújo, N. A. M.; Herrmann, H. J.; Helbing, D.

    2015-11-01

    Advances in mathematical epidemiology have led to a better understanding of the risks posed by epidemic spreading and informed strategies to contain disease spread. However, a challenge that has been overlooked is that, as a disease becomes more prevalent, it can limit the availability of the capital needed to effectively treat those who have fallen ill. Here we use a simple mathematical model to gain insight into the dynamics of an epidemic when the recovery of sick individuals depends on the availability of healing resources that are generated by the healthy population. We find that epidemics spiral out of control into “explosive” spread if the cost of recovery is above a critical cost. This can occur even when the disease would die out without the resource constraint. The onset of explosive epidemics is very sudden, exhibiting a discontinuous transition under very general assumptions. We find analytical expressions for the critical cost and the size of the explosive jump in infection levels in terms of the parameters that characterize the spreading process. Our model and results apply beyond epidemics to contagion dynamics that self-induce constraints on recovery, thereby amplifying the spreading process.

  1. Dynamic Neuro-Cognitive Imagery Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Amit Abraham

    2018-01-01

    Full Text Available People with Parkinson’s disease (PD experience kinesthetic deficits, which affect motor and nonmotor functions, including mental imagery. Imagery training is a recommended, yet underresearched, approach in PD rehabilitation. Dynamic Neuro-Cognitive Imagery (DNI™ is a codified method for imagery training. Twenty subjects with idiopathic PD (Hoehn and Yahr stages I–III were randomly allocated into DNI training (experimental; n=10 or in-home learning and exercise program (control; n=10. Both groups completed at least 16 hours of training within two weeks. DNI training focused on anatomical embodiment and kinesthetic awareness. Imagery abilities, disease severity, and motor and nonmotor functions were assessed pre- and postintervention. The DNI participants improved (p<.05 in mental imagery abilities, disease severity, and motor and spatial cognitive functions. Participants also reported improvements in balance, walking, mood, and coordination, and they were more physically active. Both groups strongly agreed they enjoyed their program and were more mentally active. DNI training is a promising rehabilitation method for improving imagery ability, disease severity, and motor and nonmotor functions in people with PD. This training might serve as a complementary PD therapeutic approach. Future studies should explore the effect of DNI on motor learning and control strategies.

  2. Femoral head vascularisation in Legg-Calve-Perthes disease: comparison of dynamic gadolinium-enhanced subtraction MRI with bone scintigraphy

    International Nuclear Information System (INIS)

    Lamer, Sylvie; Dorgeret, Sophie; Brillet, Pierre-Yves; Hassan, Max; Sebag, Guy H.; Khairouni, Abdeslam; Mazda, Keyvan; Bacheville, Eric; Pennecot, Georges F.; Bloch, Juliette

    2002-01-01

    Heading AbstractBackground. It has been reported that MRI using a dynamic gadolinium-enhanced subtraction technique can allow the early identification of ischaemia and the pattern of revascularisation in Legg-Calve-Perthes (LCP) disease with increased spatial and contrast resolution. Therefore, dynamic gadolinium-enhanced subtraction (DGS) MRI may be a possible non-ionising substitute for bone scintigraphy.Objective. The purpose of this prospective study was to compare DGS MRI and bone scintigraphy in the assessment of femoral head perfusion in LCP disease.Materials and methods. Twenty-six DGS MR images and bone scintigraphies of 25 hips in 23 children were obtained at different stages of LCP disease; three stage I, 12 stage II, six stage III and five stage IV (Waldenstroem classification). The extent of necrosis, epiphyseal revascularisation pathways (lateral pillar, medial pillar, and/or transphyseal perfusion) and metaphyseal changes were analysed.Results. Total agreement between both techniques was noted in the depiction of epiphyseal necrosis (kappa=1), and metaphyseal abnormalities (kappa=0.9). DGS MRI demonstrated better revascularisation in the lateral (kappa=0.62) and medial pillars (kappa=0.52). The presence of basal transphyseal reperfusion was more conspicuous with MRI.Conclusions. DGS MRI allows early detection of epiphyseal ischaemia and accurate analysis of the different revascularisation patterns. These changes are directly related to the prognosis of LCP disease and can aid therapeutic decision making. (orig.)

  3. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.

    Science.gov (United States)

    Jie, Biao; Liu, Mingxia; Shen, Dinggang

    2018-07-01

    Functional connectivity networks (FCNs) using resting-state functional magnetic resonance imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as Alzheimer's disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from conventional studies focusing on static descriptions on functional connectivity (FC) between brain regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC between specific brain regions), ignoring the important spatial properties of the network (e.g., spatial variability of FC associated with a specific brain region). Also, emerging evidence on FCNs has suggested that, besides temporal variability, there is significant spatial variability of activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can intuitively promote the performance of connectivity-network-based learning methods. In this paper, we first define a new measure to characterize the spatial variability of DCNs, and then propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time series at successive non-overlapping time windows. Then, we characterize the spatial variability of a specific brain region by computing the correlation of functional sequences (i.e., the changing profile of FC between a pair of brain regions within all time windows) associated with this region. Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, and integrate them for classification by using manifold regularized multi

  4. Johne's disease in the eyes of Irish cattle farmers: A qualitative narrative research approach to understanding implications for disease management.

    Science.gov (United States)

    McAloon, Conor G; Macken-Walsh, Áine; Moran, Lisa; Whyte, Paul; More, Simon J; O'Grady, Luke; Doherty, Michael L

    2017-06-01

    Bovine Johne's Disease (JD) is a disease characterised by chronic granulomatous enteritis which manifests clinically as a protein-losing enteropathy causing diarrhoea, hypoproteinaemia, emaciation and, eventually death. Some research exists to suggest that the aetiologic pathogen Mycobacterium avium subspecies paratuberculosis may pose a zoonotic risk. Nationally coordinated control programmes have been introduced in many of the major milk producing countries across the world. However, JD is challenging to control in infected herds owing to limitations of diagnostic tests and the long incubation period of the disease. Internationally, research increasingly recognises that improved understanding of farmers' subjective views and behaviours may inform and enhance disease management strategies and support the identification and implementation of best practice at farm level. The aim of this study was to use qualitative research methods to explore the values and knowledges of farmers relative to the control of JD at farm level. The Biographical Narrative Interpretive Method (BNIM) was used to generate data from both infected and presumed uninfected farms in Ireland. Qualitative analysis revealed that cultural and social capital informed farmers' decisions on whether to introduce control and preventive measures. Cultural capital refers to the pride and esteem farmers associate with particular objects and actions whereas social capital is the value that farmers associate with social relationships with others. On-farm controls were often evaluated by farmers as impractical and were frequently at odds with farmers' knowledge of calf management. Knowledge from farmers of infected herds did not disseminate among peer farmers. Owners of herds believed to be uninfected expressed a view that controls and preventive measures were not worthy of adoption until there was clear evidence of JD in the herd. These findings highlight important barriers and potential aids to prevention and

  5. Diagnostic value of electrocardiography, dynamic isotope studies and angiography in coronary heart disease

    International Nuclear Information System (INIS)

    Haas, J.

    1986-01-01

    The goal of this work is on the basis of the case histories of 36 patients with heart anamneses (27 with electrocardiographically and/or enzymatically detected heart infarcts, 9 with various cardial diseases) to test the diagnostic value of stress electrocardiograms, dynamic isotope examinations of the heart and coronary angiographies in the cases of myocardial infarcts, heart wall aneurysms, coronary heart disease and in the determination of the global discharge fraction, specifically broad scanning (heart front, side and back walls) as well as fine scanning (individual coronary vessel branches). In the case of myocardial infarct the stress EKG and the heart scintigraphy agree with one another to a large degree, whereby scintigraphy (with 99mTc-DPTA) in addition detects infarcted myocardial regions. In the diagnosis of heart wall aneurysms scintigraphy and ventriculography had the same results in 91.6% of the cases. Coronary heart disease results agreed for all three methods in 91.7% of the cases and with scintigraphy and angiography in 94.4%. The degree of agreement between scintigraphy and coronary angiography is confirmed in the literature. One-, two- and 3-vessel diseases can be determined with these two methods in 90 to 75% agreement. The result lies thereby above the values of 201Tl-myocardial scintigraphy given in the literature. Also the global discharge fraction shows scintigraphic as well as angiographic agreement of almost 90%. (TRV) [de

  6. Refractory disease in autoimmune diseases

    NARCIS (Netherlands)

    Vasconcelos, Carlos; Kallenberg, Cees; Shoenfeld, Yehuda

    Refractory disease (RD) definition has different meanings but it is dynamic, according to knowledge and the availability of new drugs. It should be differentiated from severe disease and damage definitions and it must take into account duration of adequate therapy and compliance of the patient. It

  7. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  8. Dynamics and Biocontrol: The Indirect Effects of a Predator Population on a Host-Vector Disease Model

    Directory of Open Access Journals (Sweden)

    Fengyan Zhou

    2014-01-01

    Full Text Available A model of the interactions among a host population, an insect-vector population, which transmits virus from hosts to hosts, and a vector predator population is proposed based on virus-host, host-vector, and prey (vector-enemy theories. The model is investigated to explore the indirect effect of natural enemies on host-virus dynamics by reducing the vector densities, which shows the basic reproduction numbers R01 (without predators and R02 (with predators that provide threshold conditions on determining the uniform persistence and extinction of the disease in a host population. When the model is absent from predator, the disease is persistent if R01>1; in such a case, by introducing predators of a vector, then the insect-transmitted disease will be controlled if R02<1. From the point of biological control, these results show that an additional predator population of the vector may suppress the spread of vector-borne diseases. In addition, there exist limit cycles with persistence of the disease or without disease in presence of predators. Finally, numerical simulations are conducted to support analytical results.

  9. Behaviour as a Lever of Ecological Transition? Understanding and Acting on Individual Behaviour and Collective Dynamics

    International Nuclear Information System (INIS)

    Martin, Solange; Gaspard, Albane

    2017-01-01

    Beyond broad policy declarations, the implementation of ecological transition - which consists mainly in curbing consumption of energy and raw materials in our societies - requires substantial behavioural change at the collective, but also, quite obviously, the individual level. Yet, though there is general consensus around the principle of embarking on the path to transition, things get more complicated when it comes to changing our practices and habits. Can we act on individual behaviour and collective dynamics in respect of this particular aim of ecological transition, and, if so, how are we to go about it? Solange Martin and Albane Gaspard have examined this question for the French Environment and Energy Management Agency (ADEME) and offer us the fruit of their labours here. They show, for example, how the social and human sciences help to understand behaviour both at the individual level and in its collective dimensions, and they outline different possible lines of action to modify it. But, given the entanglement between various levels, it is essential, if we are to act effectively on behaviour, to combine approaches, tools and actors, and to analyse and understand social practices thoroughly before implementing political projects or measures

  10. Nonlinear and Stochastic Dynamics in the Heart

    Science.gov (United States)

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872

  11. Nonlinear and stochastic dynamics in the heart

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Zhilin, E-mail: zqu@mednet.ucla.edu [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Hu, Gang [Department of Physics, Beijing Normal University, Beijing 100875 (China); Garfinkel, Alan [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 (United States); Weiss, James N. [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States)

    2014-10-10

    In a normal human life span, the heart beats about 2–3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.

  12. Nonlinear and stochastic dynamics in the heart

    International Nuclear Information System (INIS)

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2–3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems

  13. Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases.

    Science.gov (United States)

    Sever, Sanja; Schiffer, Mario

    2018-06-01

    Proteinuria encompasses diverse causes including both genetic diseases and acquired forms such as diabetic and hypertensive nephropathy. The basis of proteinuria is a disturbance in size selectivity of the glomerular filtration barrier, which largely depends on the podocyte: a terminally differentiated epithelial cell type covering the outer surface of the glomerulus. Compromised podocyte structure is one of the earliest signs of glomerular injury. The phenotype of diverse animal models and podocyte cell culture firmly established the essential role of the actin cytoskeleton in maintaining functional podocyte structure. Podocyte foot processes, actin-based membrane extensions, contain 2 molecularly distinct "hubs" that control actin dynamics: a slit diaphragm and focal adhesions. Although loss of foot processes encompasses disassembly of slit diaphragm multiprotein complexes, as long as cells are attached to the glomerular basement membrane, focal adhesions will be the sites in which stress due to filtration flow is counteracted by forces generated by the actin network in foot processes. Numerous studies within last 20 years have identified actin binding and regulatory proteins as well as integrins as essential components of signaling and actin dynamics at focal adhesions in podocytes, suggesting that some of them may become novel, druggable targets for proteinuric kidney diseases. Here we review evidence supporting the idea that current treatments for chronic kidney diseases beneficially and directly target the podocyte actin cytoskeleton associated with focal adhesions and suggest that therapeutic reagents that target the focal adhesion-regulated actin cytoskeleton in foot processes have potential to modernize treatments for chronic kidney diseases. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Information Dynamics of a Nonlinear Stochastic Nanopore System

    Directory of Open Access Journals (Sweden)

    Claire Gilpin

    2018-03-01

    Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.

  15. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process.

    Science.gov (United States)

    De Strooper, Bart

    2010-04-01

    Alzheimer disease is characterized by the accumulation of abnormally folded protein fragments, i.e., amyloid beta peptide (Abeta) and tau that precipitate in amyloid plaques and neuronal tangles, respectively. In this review we discuss the complicated proteolytic pathways that are responsible for the generation and clearance of these fragments, and how disturbances in these pathways interact and provide a background for a novel understanding of Alzheimer disease as a multifactorial disorder. Recent insights evolve from the static view that the morphologically defined plaques and tangles are disease driving towards a more dynamic, biochemical view in which the intermediary soluble Abeta oligomers and soluble tau fragments are considered as the main mediators of neurotoxicity. The relevance of proteolytic pathways, centered on the generation and clearance of toxic Abeta, on the cleavage and nucleation of tau, and on the general proteostasis of the neurons, then becomes obvious. Blocking or stimulating these pathways provide, or have the potential to provide, interesting drug targets, which raises the hope that we will be able to provide a cure for this dreadful disorder.

  16. Understanding the Pathological Basis of Neurological Diseases Through Diagnostic Platforms Based on Innovations in Biomedical Engineering: New Concepts and Theranostics Perspectives

    Directory of Open Access Journals (Sweden)

    Laura Ganau

    2018-02-01

    Full Text Available The pace of advancement of genomics and proteomics together with the recent understanding of the molecular basis behind rare diseases could lead in the near future to significant advances in the diagnosing and treating of many pathological conditions. Innovative diagnostic platforms based on biomedical engineering (microdialysis and proteomics, biochip analysis, non-invasive impedance spectroscopy, etc. are introduced at a rapid speed in clinical practice: this article primarily aims to highlight how such platforms will advance our understanding of the pathological basis of neurological diseases. An overview of the clinical challenges and regulatory hurdles facing the introduction of such platforms in clinical practice, as well as their potential impact on patient management, will complement the discussion on foreseeable theranostic perspectives. Indeed, the techniques outlined in this article are revolutionizing how we (1 identify biomarkers that better define the diagnostic criteria of any given disease, (2 develop research models, and (3 exploit the externalities coming from innovative pharmacological protocols (i.e., those based on monoclonal antibodies, nanodrugs, etc. meant to tackle the molecular cascade so far identified.

  17. Dynamic characteristic of gastro-oesophageal reflux in ambulatory patients with gastro-oesophageal reflux disease and normal control subjects

    NARCIS (Netherlands)

    Weusten, B. L.; Akkermans, L. M.; vanBerge-Henegouwen, G. P.; Smout, A. J.

    1995-01-01

    BACKGROUND: The aim of the study was to investigate the dynamic characteristics of pathologic gastro-oesophageal reflux. METHODS: Five-channel ambulatory 24-h oesophageal pH monitoring was performed in 19 gastro-oesophageal reflux disease patients (age, 21-74 years) and in 19 healthy volunteers

  18. A nonalcoholic fatty liver disease cirrhosis model in gerbil : the dynamic relationship between hepatic lipid metabolism and cirrhosis

    NARCIS (Netherlands)

    Li, Wei; Guan, Zheng; Brisset, Jean C.; Shi, Qiaojuan; Lou, Qi; Ma, Yue; Suriguga, Su; Ying, Huazhong; Sa, Xiaoying; Chen, Zhenwen; Quax, Wim J.; Chu, Xiaofeng

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) usually takes decades to develop into cirrhosis, which limits the longitudinal study of NAFLD. This work aims at developing a NAFLD-caused cirrhosis model in gerbil and examining the dynamic relationship between hepatic lipid metabolism and cirrhosis. We fed

  19. Quantification of diaphragm mechanics in Pompe disease using dynamic 3D MRI

    DEFF Research Database (Denmark)

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi

    2016-01-01

    BACKGROUND: Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respira......BACKGROUND: Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification...... methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle....... RESULTS: Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function...

  20. Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia

    Science.gov (United States)

    Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas

    2016-04-01

    Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.

  1. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    Science.gov (United States)

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  2. Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics

    Directory of Open Access Journals (Sweden)

    Alicia Tenza

    2017-06-01

    Full Text Available Collapse of social-ecological systems (SESs is a common process in human history. Depletion of natural resources, scarcity of human capital, or both, is/are common pathways toward collapse. We use the system dynamics approach to better understand specific problems of small-scale, long-lived SESs. We present a qualitative (or conceptual model using the conceptualization process of the system dynamics approach to study the dynamics of an oasis in Mexico that has witnessed a dramatic transition to decline in recent decades. We used indepth interviews, participant observation, expert opinions, and official statistical data sets to define the boundaries, and structure in a causal loop diagram of our studied system. We described historical trends and showed the reference mode for the main system variables (observed data, and analyzed the expected system behavior according to the system structure. We identified the main drivers that changed the system structure, as well as structural changes, and the effects of these changes on the dynamics, resilience, and vulnerability of this SES. We found that the tendency of this SES toward collapse was triggered by exogenous factors (growth of modern agriculture in nearby valleys, and socio-political relocation, and was maintained by an endogenous structure. These structural changes weakened the resilience of this SES. One of these changes resulted in a long-term maladaptation of the SES, which increased its vulnerability to frequent system disturbances (hurricanes and droughts. The conceptual model developed provides an in-depth qualitative description of the system, with an important amount of qualitative and quantitative information, to establish the structural hypothesis of the observed behavior. Using this qualitative model, the next research steps are to develop a quantitative model to test the qualitative theories, and to explore future scenarios of system resilience for decision-making processes to

  3. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Dai R

    2014-03-01

    Full Text Available Rujuan Dai, S Ansar Ahmed Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA Abstract: Autoimmune diseases encompass a diverse group of diseases which emanate from a dysregulated immune system that launches a damaging attack on its own tissues. Autoimmune attacks on self tissues can occur in any organ or body system. A notable feature of autoimmune disease is that a majority of these disorders occur predominantly in females. The precise basis of sex bias in autoimmune diseases is complex and potentially involves sex chromosomes, sex hormones, and sex-specific gene regulation in response to internal and external stimuli. Epigenetic regulation of genes, especially by microRNAs (miRNAs, is now attracting significant attention. miRNAs are small, non-protein-coding RNAs that are predicted to regulate a majority of human genes, including those involved in immune regulation. Therefore, it is not surprising that dysregulated miRNAs are evident in many diseases, including autoimmune diseases. Because there are marked sex differences in the incidence of autoimmune diseases, this review focuses on the role of sex factors on miRNA expression in the context of autoimmune diseases, an aspect not addressed thus far. Here, we initially review miRNA biogenesis and miRNA regulation of immunity and autoimmunity. We then summarize the recent findings of sexual dimorphism of miRNA expression in diverse tissues, which imply a critical role of miRNA in sex differentiation and in sex-specific regulation of tissue development and/or function. We also discuss the important contribution of the X chromosome and sex hormones to the sexual dimorphism of miRNA expression. Understanding sexually dimorphic miRNA expression in sex-biased autoimmune diseases not only offers us new insight into the mechanism of sex bias of the disease but will also aid us in developing new sex

  4. Dynamic Expansion and Contraction of cagA Copy Number in Helicobacter pylori Impact Development of Gastric Disease

    Directory of Open Access Journals (Sweden)

    Sungil Jang

    2017-02-01

    Full Text Available Infection with Helicobacter pylori is a major risk factor for development of gastric disease, including gastric cancer. Patients infected with H. pylori strains that express CagA are at even greater risk of gastric carcinoma. Given the importance of CagA, this report describes a new molecular mechanism by which the cagA copy number dynamically expands and contracts in H. pylori. Analysis of strain PMSS1 revealed a heterogeneous population in terms of numbers of cagA copies; strains carried from zero to four copies of cagA that were arranged as direct repeats within the chromosome. Each of the multiple copies of cagA was expressed and encoded functional CagA; strains with more cagA repeats exhibited higher levels of CagA expression and increased levels of delivery and phosphorylation of CagA within host cells. This concomitantly resulted in more virulent phenotypes as measured by cell elongation and interleukin-8 (IL-8 induction. Sequence analysis of the repeat region revealed three cagA homologous areas (CHAs within the cagA repeats. Of these, CHA-ud flanked each of the cagA copies and is likely important for the dynamic variation of cagA copy numbers. Analysis of a large panel of clinical isolates showed that 7.5% of H. pylori strains isolated in the United States harbored multiple cagA repeats, while none of the tested Korean isolates carried more than one copy of cagA. Finally, H. pylori strains carrying multiple cagA copies were differentially associated with gastric disease. Thus, the dynamic expansion and contraction of cagA copy numbers may serve as a novel mechanism by which H. pylori modulates gastric disease development.

  5. Deep, multi-stage transcriptome of the schistosomiasis vector Biomphalaria glabrata provides platform for understanding molluscan disease-related pathways

    Directory of Open Access Journals (Sweden)

    Nathan J Kenny

    2016-10-01

    Full Text Available Abstract Background The gastropod mollusc Biomphalaria glabrata is well known as a vector for the tropical disease schistosomiasis, which affects nearly 200 million people worldwide. Despite intensive study, our understanding of the genetic basis of B. glabrata development, growth and disease resistance is constrained by limited genetic resources, constraints for which next-generation sequencing methods provide a ready solution. Methods Illumina sequencing and de novo assembly using the Trinity program was used to generate a high-quality transcriptomic dataset spanning the entirety of in ovo development in schistosomiasis-free B. glabrata. This was subjected to automated (KEGG, BLAST2GO and manual annotation efforts, allowing insight into the gene complements of this species in a number of contexts. Results Excellent dataset recovery was observed, with 133,084 contigs produced of mean size 2219.48 bp. 80,952 (60.8 % returned a BLASTx hit with an E value of less than 10-3, and 74,492 (55.97 % were either mapped or assigned a GO identity using the BLAST2GO program. The CEGMA set of core eukaryotic genes was found to be 99.6 % present, indicating exceptional transcriptome completeness. We were able to identify a wealth of disease-pathway related genes within our dataset, including the Wnt, apoptosis and Notch pathways. This provides an invaluable reference point for further work into molluscan development and evolution, for studying the impact of schistosomiasis in this species, and perhaps providing targets for the treatment of this widespread disease. Conclusions Here we present a deep transcriptome of an embryonic sample of schistosomiasis-free B. glabrata, presenting a comprehensive dataset for comparison to disease-affected specimens and from which conclusions can be drawn about the genetics of this widespread medical model. Furthermore, the dataset provided by this sequencing provides a useful reference point for comparison to other mollusc

  6. Metabolomics approach for discovering disease biomarkers and understanding metabolic pathway

    Directory of Open Access Journals (Sweden)

    Jeeyoun Jung

    2011-12-01

    Full Text Available Metabolomics, the multi-targeted analysis of endogenous metabolites from biological samples, can be efficiently applied to screen disease biomarkers and investigate pathophysiological processes. Metabolites change rapidly in response to physiological perturbations, making them the closest link to disease phenotypes. This study explored the role of metabolomics in gaining mechanistic insight into disease processes and in searching for novel biomarkers of human diseases

  7. The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice

    Directory of Open Access Journals (Sweden)

    David Harrison

    2011-06-01

    Full Text Available Inbred mice provide a unique tool to study aging populations because of the genetic homogeneity within an inbred strain, their short life span, and the tools for analysis which are available. A large-scale longitudinal and cross-sectional aging study was conducted on 30 inbred strains to determine, using histopathology, the type and diversity of diseases mice develop as they age. These data provide tools that when linked with modern in silico genetic mapping tools, can begin to unravel the complex genetics of many of the common chronic diseases associated with aging in humans and other mammals. In addition, novel disease models were discovered in some strains, such as rhabdomyosarcoma in old A/J mice, to diseases affecting many but not all strains including pseudoxanthoma elasticum, pulmonary adenoma, alopecia areata, and many others. This extensive data set is now available online and provides a useful tool to help better understand strain-specific background diseases that can complicate interpretation of genetically engineered mice and other manipulatable mouse studies that utilize these strains.

  8. Dynamic computed tomography for the evaluation of cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Tomoaki; Nishiguchi, Takashi; Hyotani, Genhachi; Miyamoto, Kazuki; Hayashi, Seiji; Komai, Norihiko [Wakayama Medical Coll. (Japan); Nakamura, Yoshinari; Moriwaki, Hiroshi

    1991-10-01

    Dynamic computed tomography (DCT) was evaluated as a diagnostic indicator for chronic supratentorial ischemia in 50 cases with or without minor neurological deficits. Peak height (PH, the maximum value of the gamma fitted curve), peak time (PT, the time to PH from the start of DCT), transit time (TT, the time between the first and second inflection points of the gamma fitted curve), and their functional maps were analyzed. Cerebral angiography was then performed in all cases to identify stenotic or occlusive vascular lesions in major cerebral arteries. DCT clearly detected 12 of 13 occlusions of the internal carotid artery (ICA) or middle cerebral artery (MCA), although one ICA occlusion was masked by the contralateral MCA occlusion. However, DCT detected only severe ICA or MCA stenosis (more than 90%). Probably, stenotic lesions of less than 90% did not cause detectable hemodynamic compromise. DCT using PH, PT, and TT functional maps is a useful diagnostic method for hemodynamic changes in ischemic cerebrovascular disease, althogh bilateral lesions and less stenotic lesions (<90%) are difficult to detect. (author).

  9. The Human Gut Phage Community and Its Implications for Health and Disease.

    Science.gov (United States)

    Manrique, Pilar; Dills, Michael; Young, Mark J

    2017-06-08

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.

  10. epidemix—An interactive multi-model application for teaching and visualizing infectious disease transmission

    Directory of Open Access Journals (Sweden)

    Ulrich Muellner

    2018-06-01

    Full Text Available Mathematical models of disease transmission are used to improve our understanding of patterns of infection and to identify factors influencing them. During recent public and animal health crises, such as pandemic influenza, Ebola, Zika, foot-and-mouth disease, models have made important contributions in addressing policy questions, especially through the assessment of the trajectory and scale of outbreaks, and the evaluation of control interventions. However, their mathematical formulation means that they may appear as a “black box” to those without the appropriate mathematical background. This may lead to a negative perception of their utility for guiding policy, and generate expectations, which are not in line with what these models can deliver. It is therefore important for policymakers, as well as public health and animal health professionals and researchers who collaborate with modelers and use results generated by these models for policy development or research purpose, to understand the key concepts and assumptions underlying these models.The software application epidemix (http://shinyapps.rvc.ac.uk presented here aims to make mathematical models of disease transmission accessible to a wider audience of users. By developing a visual interface for a suite of eight models, users can develop an understanding of the impact of various modelling assumptions – especially mixing patterns – on the trajectory of an epidemic and the impact of control interventions, without having to directly deal with the complexity of mathematical equations and programming languages. Models are compartmental or individual-based, deterministic or stochastic, and assume homogeneous or heterogeneous-mixing patterns (with the probability of transmission depending on the underlying structure of contact networks, or the spatial distribution of hosts. This application is intended to be used by scientists teaching mathematical modelling short courses to non

  11. Understanding Cancer Prognosis

    Medline Plus

    Full Text Available ... disease will go for you is called prognosis. It can be hard to understand what prognosis means ... prognosis include: The type of cancer and where it is in your body The stage of the ...

  12. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  13. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    International Nuclear Information System (INIS)

    Asafi, M S; Tekpinar, M; Yildirim, A

    2016-01-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated. (paper)

  14. Understanding Land Use and Land Cover Dynamics from 1976 to 2014 in Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Baolei Zhang

    2017-03-01

    Full Text Available Long-term intensive land use/cover changes (LUCCs of the Yellow River Delta (YRD have been happening since the 1960s. The land use patterns of the LUCCs are crucial for bio-diversity conservation and/or sustainable development. This study quantified patterns of the LUCCs, explored the systematic transitions, and identified wetland change trajectory for the period 1976–2014 in the YRD. Landsat imageries of 1976, 1984, 1995, 2006, and 2014 were used to derive nine land use classes. Post classification change detection analysis based on enhanced transition matrix was applied to identify land use dynamics and trajectory of wetland change. The five cartographic outputs for changes in land use underlined major decreases in natural wetland areas and increases in artificial wetland and non-wetland, especially aquafarms, salt pans and construction lands. The systematic transitions in the YRD were wetland degradation, wetland artificialization, and urbanization. Wetland change trajectory results demonstrated that the main wetland changes were wetland degradation and wetland artificialization. Coastline change is the subordinate reason for natural wetland degradation in comparison with human activities. The results of this study allowed for an improvement in the understanding of the LUCC processes and enabled researchers and planners to focus on the most important signals of systematic landscape transitions while also allowing for a better understanding of the proximate causes of changes.

  15. Understanding balance differences in individuals with multiple sclerosis with mild disability: An investigation of differences in sensory feedback on postural and dynamic balance control

    Science.gov (United States)

    Denomme, Luke T.

    Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the

  16. An Integrative Systems Biology Approach to Understanding Pulmonary Diseases

    NARCIS (Netherlands)

    Auffray, Charles; Adcock, Ian M.; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J.

    2010-01-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain

  17. Heart Disease in Women: Understand Symptoms and Risk Factors

    Science.gov (United States)

    ... unless you have no other options. Although several traditional risk factors for coronary artery disease — such as high cholesterol, high blood pressure and obesity — affect women and men, other factors may play a bigger role in the development of heart disease in women. ...

  18. Mitochondrial fragmentation in neuronal degeneration: Toward an understanding of HD striatal susceptibility

    International Nuclear Information System (INIS)

    Cherubini, Marta; Ginés, Silvia

    2017-01-01

    Huntington's disease (HD) is an autosomal-dominant progressive neurodegenerative disorder that primarily affects medium spiny neurons within the striatum. HD is caused by inheritance of an expanded CAG repeat in the HTT gene, resulting in a mutant huntingtin (mHtt) protein containing extra glutamine residues. Despite the advances in understanding the molecular mechanisms involved in HD the preferential vulnerability of the striatum remains an intriguing question. This review discusses current knowledge that links altered mitochondrial dynamics with striatal susceptibility in HD. We also highlight how the modulation of mitochondrial function may constitute an attractive therapeutic approach to reduce mHtt-induced toxicity and therefore prevent the selective striatal neurodegeneration. - Highlights: • Mitochondrial dynamics is unbalanced towards fission in HD. • Excessive mitochondrial fragmentation plays a critical role in the selective vulnerability of the striatum in HD. • Therapeutic approaches aimed to inhibit mitochondrial fission could contribute to prevent striatal neurodegeneration in HD.

  19. Current understanding of the human microbiome

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Jack A.; Blaser, Martin J.; Caporaso, J. Gregory; Jansson, Janet K.; Lynch, Susan V.; Knight, Rob

    2018-04-10

    Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.

  20. Understanding the Dynamic System of Terrorist-Government Interaction

    Science.gov (United States)

    2003-03-01

    Figure 62. Model 5D Equation Level Screen Shot 3 167 Bibliography Bajaracharya, Arun, Stephen Olu Ogunlana, and Nguyen Luong Bach...Understanding the New Security Environment Readings and Interpretations. Guilford, Connecticut: Mc- Graw -Hill/Dushkin 2002 Laqueur, Walter. “Postmodern

  1. In vivo microvascular imaging of cutaneous actinic keratosis, Bowen's disease and squamous cell carcinoma using dynamic optical coherence tomography

    DEFF Research Database (Denmark)

    Themstrup, L; Pellacani, G; Welzel, J

    2017-01-01

    BACKGROUND: A clear distinction between actinic keratosis (AK), Bowen's disease (BD) and squamous cell carcinoma (SCC) cannot reliably be made by clinical and dermoscopic evaluation alone. Dynamic optical coherence tomography (D-OCT) is a novel angiographic variant of OCT that allows for non...

  2. Social Immunity: Emergence and Evolution of Colony-Level Disease Protection.

    Science.gov (United States)

    Cremer, Sylvia; Pull, Christopher D; Fürst, Matthias A

    2018-01-07

    Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.

  3. Discovering governing equations from data by sparse identification of nonlinear dynamics

    Science.gov (United States)

    Brunton, Steven

    The ability to discover physical laws and governing equations from data is one of humankind's greatest intellectual achievements. A quantitative understanding of dynamic constraints and balances in nature has facilitated rapid development of knowledge and enabled advanced technology, including aircraft, combustion engines, satellites, and electrical power. There are many more critical data-driven problems, such as understanding cognition from neural recordings, inferring patterns in climate, determining stability of financial markets, predicting and suppressing the spread of disease, and controlling turbulence for greener transportation and energy. With abundant data and elusive laws, data-driven discovery of dynamics will continue to play an increasingly important role in these efforts. This work develops a general framework to discover the governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity-promoting techniques and machine learning. The resulting models are parsimonious, balancing model complexity with descriptive ability while avoiding overfitting. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions. This perspective, combining dynamical systems with machine learning and sparse sensing, is explored with the overarching goal of real-time closed-loop feedback control of complex systems. This is joint work with Joshua L. Proctor and J. Nathan Kutz. Video Abstract: https://www.youtube.com/watch?v=gSCa78TIldg

  4. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    Science.gov (United States)

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  5. Understanding the dynamic effects of returning patients toward emergency department density

    Science.gov (United States)

    Ahmad, Norazura; Zulkepli, Jafri; Ramli, Razamin; Ghani, Noraida Abdul; Teo, Aik Howe

    2017-11-01

    This paper presents the development of a dynamic hypothesis for the effect of returning patients to the emergency department (ED). A logical tree from the Theory of Constraint known as Current Reality Tree was used to identify the key variables. Then, a hypothetical framework portraying the interrelated variables and its influencing relationships was developed using causal loop diagrams (CLD). The conceptual framework was designed as the basis for the development of a system dynamics model.

  6. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    Science.gov (United States)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  7. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  8. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems.

    Science.gov (United States)

    Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A

    2017-01-19

    Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  9. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    Science.gov (United States)

    Cagalinec, Michal; Liiv, Mailis; Hodurova, Zuzana; Hickey, Miriam Ann; Vaarmann, Annika; Mandel, Merle; Zeb, Akbar; Choubey, Vinay; Kuum, Malle; Safiulina, Dzhamilja; Vasar, Eero; Veksler, Vladimir; Kaasik, Allen

    2016-07-01

    Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases.

  10. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    Directory of Open Access Journals (Sweden)

    Michal Cagalinec

    2016-07-01

    Full Text Available Deficiency of the protein Wolfram syndrome 1 (WFS1 is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy, delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases.

  11. Using Dynamic Tools to Develop an Understanding of the Fundamental Ideas of Calculus

    Science.gov (United States)

    Verzosa, Debbie; Guzon, Angela Fatima; De Las Peñas, Ma. Louise Antonette N.

    2014-01-01

    Although dynamic geometry software has been extensively used for teaching calculus concepts, few studies have documented how these dynamic tools may be used for teaching the rigorous foundations of the calculus. In this paper, we describe lesson sequences utilizing dynamic tools for teaching the epsilon-delta definition of the limit and the…

  12. CONTROL PARAMETERS FOR UNDERSTANDING AND PREVENTING PROCESS IMBALANCES IN BIOGAS PLANTS. EMPHAS IS ON VFA DYNAMICS

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik

    environmental changes differ widely between the different groups. As a consequence of this, an unrestrained reactor operation can lead to disturbances in the balance between the different microbial groups, which might lead to reactor failure. Therefore, reliable parameters and tools for efficient process...... control and understanding are necessary. The work of present study was directed towards this challenge. Initially, the response of the anaerobic digestion process to various types of process imbalances was investigated with special focus on volatile fatty acid dynamics (VFA), methane production and pH...... of process imbalances in biogas plants. At Danish full-scale biogas plants the biogas production is normally the only continuously measured parameter. In order to examine the usability of propionate as control parameter a reactor experiment was constructed in which the reactor operation either was carried...

  13. Understanding poverty-related diseases in Cameroon from a salutogenic perspective

    NARCIS (Netherlands)

    Makoge, Valerie

    2017-01-01

    Poverty-related diseases (PRDs) assume poverty as a determinant in catching disease and an obstacle for cure and recovery. In Cameroon, over 48 % of the population lives below the poverty line. This dissertation starts from the premise that the relation between poverty and disease is mediated by

  14. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    description of these processes and their interactions would provide important input in the search for a better treatment of the disease. The thesis describes several aspects of mathematical modeling of beta-cells relevant for the understanding of glucose stimulated insulin secretion. It consists...... and the synchronized behavior of many coupled beta-cells as well as to the synchrony of islets. Rather than developing new biophysical models, the thesis investigates existing models, their integration and simplifications, and analyzed the corresponding dynamics, in order to use these models for investigating...

  15. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  16. Short-Term Therapeutic Efficacy of the Isobar TTL Dynamic Internal Fixation System for the Treatment of Lumbar Degenerative Disc Diseases.

    Science.gov (United States)

    Qian, Jiale; Bao, Zhaohua; Li, Xuefeng; Zou, Jun; Yang, Huilin

    2016-07-01

    At present, posterior interbody fusion surgery with pedicle internal fixation is the gold standard for the treatment of lumbar degenerative disc diseases. However, an increasing number of studies have shown that because fused lumbar vertebrae lose their physiological activity, the compensatory range of motion (ROM) of the adjacent levels increases. To address this issue, dynamic internal fixation systems have been developed. Our goal was to investigate the short-term therapeutic efficacy of the Isobar TTL dynamic internal fixation system for the treatment of lumbar degenerative disc diseases and its effect on the ROM of the surgical segments. Retrospective Evaluation. Tertiary hospital setting in China. Twenty-four lumbar degenerative disc disease patients who underwent posterior lumbar decompression and single-segment Isobar TTL dynamic internal fixation at our hospital between January 2013 and July 2014 were retrospectively analyzed. The preoperative and one month, 3 month, and 12 month postoperative visual analog scale (VAS) pain scores, Japanese Orthopedic Association (JOA) scores, and Oswestry Disability Index (ODI) scores were observed and recorded to assess the clinical therapeutic effect; the lumbar ROM was measured preoperatively and at the last follow-up to evaluate the preservation of functional movement in the dynamically stabilized segment. All patients underwent the operation successfully without complications during hospitalization and were followed for 12 to 27 months, with an average of 18 months. The patients' preoperative and one month, 3 month, and 12 month postoperative VAS scores were 6.42 ± 0.72, 1.71 ± 0.86, 1.38 ± 0.65, and 1.37 ± 0.58, respectively, and their JOA scores were 9.54 ± 1.89, 21.21 ± 1.98, 22.50 ± 1.47, and 23.46 ± 1.32, respectively. The preoperative ODI score was 42.04 ± 2.63; the one month, 3 month, and 12 month postoperative ODI scores were 22.79 ± 1.61, 18.63 ± 1.61, and 15.08 ± 1.21, respectively. These

  17. Towards a Hybrid Agent-based Model for Mosquito Borne Disease.

    Science.gov (United States)

    Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D

    2014-07-01

    Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.

  18. Dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Dynamics of glucose concentration in human organism is an important diagnostic characteristic for it's parameters correlate significantly with the severity of metabolic, vessel and perfusion disorders. 36 patients with stable angina pectoris of II and III functional classes were involved in this study. All of them were men in age range of 45-59 years old. 7 patients hospitalized with acute myocardial infarction (aged from 49 to 59 years old) form the group of compare. Control group (n = 5) was of practically healthy men in comparable age. To all patients intravenous glucose solution (40%) in standard loading dose was injected. Capillary and vein blood samples were withdrawn before, and 5, 60, 120, 180 and 240 minutes after glucose load. At these time points blood pressure and glucose concentration were measured. In prepared blood smears shape, deformability and sizes of erythrocytes, quantity and degree of shear stress resistant erythrocyte aggregates were studied. Received data were approximated by polynomial of high degree to receive concentration function of studied parameters, which first derivative elucidate velocity characteristics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease and practically healthy persons. Received data show principle differences in dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease as a possible mechanism of coronary blood flow destabilization.

  19. Microsoft Dynamics CRM 2011 cookbook

    CERN Document Server

    Bhattacharya, Dipankar

    2013-01-01

    This is a Cookbook with recipes aimed at all levels with lots of practical walkthroughs for virtualization techniques.This book is great for Dynamics CRM 2011 professionals who have a beginner level understanding of the system and are looking to get a good grounding in how to deploy, maintain, configure, and customize a Dynamics CRM 2011 application efficiently. It's assumed that the reader has a basic level understanding of IT infrastructure topologies along with functional knowledge of Dynamics CRM 2011 Sales, Marketing, and Services modules.

  20. Understanding the Offender/Environment Dynamic for Computer Crimes

    DEFF Research Database (Denmark)

    Willison, Robert Andrew

    2005-01-01

    practices by possiblyhighlighting new areas for safeguard implementation. To help facilitate a greaterunderstanding of the offender/environment dynamic, this paper assesses the feasibilityof applying criminological theory to the IS security context. More specifically, threetheories are advanced, which focus...... on the offender's behaviour in a criminal setting. Drawing on an account of the Barings Bank collapse, events highlighted in the casestudy are used to assess whether concepts central to the theories are supported by thedata. It is noted that while one of the theories is to be found wanting in terms ofconceptual...

  1. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  2. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    International Nuclear Information System (INIS)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-01-01

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies

  3. [Approximation to the dynamics of meningococcal meningitis through dynamic systems and time series].

    Science.gov (United States)

    Canals, M

    1996-02-01

    Meningococcal meningitis is subjected to epidemiological surveillance due to its severity and the occasional presentation of epidemic outbreaks. This work analyses previous disease models, generate new ones and analyses monthly cases using ARIMA time series models. The results show that disease dynamics for closed populations is epidemic and the epidemic size is related to the proportion of carriers and the transmissiveness of the agent. In open populations, disease dynamics depends on the admission rate of susceptible and the relative admission of infected individuals. Our model considers a logistic populational growth and carrier admission proportional to populational size, generating an endemic dynamics. Considering a non-instantaneous system response, a greater realism is obtained establishing that the endemic situation may present a dynamics highly sensitive to initial conditions, depending on the transmissiveness and proportion of susceptible individuals in the population. Time series model showed an adequate predictive capacity in terms no longer than 10 months. The lack of long term predictability was attributed to local changes in the proportion of carriers or on transmissiveness that lead to chaotic dynamics over a seasonal pattern. Predictions for 1995 and 1996 were obtained.

  4. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  5. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    Science.gov (United States)

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.

  6. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases

    Science.gov (United States)

    Gabriel, Sherine E; Michaud, Kaleb

    2009-01-01

    Epidemiology is the study of the distribution and determinants of disease in human populations. Over the past decade there has been considerable progress in our understanding of the fundamental descriptive epidemiology (levels of disease frequency: incidence and prevalence, comorbidity, mortality, trends over time, geographic distributions, and clinical characteristics) of the rheumatic diseases. This progress is reviewed for the following major rheumatic diseases: rheumatoid arthritis (RA), juvenile rheumatoid arthritis, psoriatic arthritis, osteoarthritis, systemic lupus erythematosus, giant cell arteritis, polymyalgia rheumatica, gout, Sjögren's syndrome, and ankylosing spondylitis. These findings demonstrate the dynamic nature of the incidence and prevalence of these conditions – a reflection of the impact of genetic and environmental factors. The past decade has also brought new insights regarding the comorbidity associated with rheumatic diseases. Strong evidence now shows that persons with RA are at a high risk for developing several comorbid disorders, that these conditions may have atypical features and thus may be difficult to diagnose, and that persons with RA experience poorer outcomes after comorbidity compared with the general population. Taken together, these findings underscore the complexity of the rheumatic diseases and highlight the key role of epidemiological research in understanding these intriguing conditions. PMID:19519924

  7. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.

    Directory of Open Access Journals (Sweden)

    Pamella Akoth Ogada

    Full Text Available Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant, as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.

  8. Tear dynamics in healthy and dry eyes.

    Science.gov (United States)

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  9. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  10. Universality of clone dynamics during tissue development

    Science.gov (United States)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  11. Determining disease intervention strategies using spatially resolved simulations.

    Directory of Open Access Journals (Sweden)

    Mark Read

    Full Text Available Predicting efficacy and optimal drug delivery strategies for small molecule and biological therapeutics is challenging due to the complex interactions between diverse cell types in different tissues that determine disease outcome. Here we present a new methodology to simulate inflammatory disease manifestation and test potential intervention strategies in silico using agent-based computational models. Simulations created using this methodology have explicit spatial and temporal representations, and capture the heterogeneous and stochastic cellular behaviours that lead to emergence of pathology or disease resolution. To demonstrate this methodology we have simulated the prototypic murine T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. In the simulation immune cell dynamics, neuronal damage and tissue specific pathology emerge, closely resembling behaviour found in the murine model. Using the calibrated simulation we have analysed how changes in the timing and efficacy of T cell receptor signalling inhibition leads to either disease exacerbation or resolution. The technology described is a powerful new method to understand cellular behaviours in complex inflammatory disease, permits rational design of drug interventional strategies and has provided new insights into the role of TCR signalling in autoimmune disease progression.

  12. Short term outcome of posterior dynamic stabilization system in degenerative lumbar diseases.

    Science.gov (United States)

    Yang, Mingyuan; Li, Chao; Chen, Ziqiang; Bai, Yushu; Li, Ming

    2014-11-01

    Decompression and fusion is considered as the 'gold standard' for the treatment of degenerative lumbar diseases, however, many disadvantages have been reported in several studies, recently like donor site pain, pseudoarthrosis, nonunion, screw loosening, instrumentation failure, infection, adjacent segment disease (ASDis) and degeneration. Dynamic neutralization system (Dynesys) avoids many of these disadvantages. This system is made up of pedicle screws, polyethylene terephthalate cords, and polycarbonate urethane spacers to stabilize the functional spinal unit and preserve the adjacent motion after surgeries. This was a retrospective cohort study to compare the effect of Dynesys for treating degenerative lumbar diseases with posterior lumbar interbody fusion (PLIF) based on short term followup. Seventy five consecutive patients of lumbar degenerative disease operated between October 2010 and November 2012 were studied with a minimum followup of 2 years. Patients were divided into two groups according to the different surgeries. 30 patients underwent decompression and implantation of Dynesys in two levels (n = 29) or three levels (n = 1) and 45 patients underwent PLIF in two levels (n = 39) or three levels (n = 6). Clinical and radiographic outcomes between two groups were reviewed. Thirty patients (male:17, female:13) with a mean age of 55.96 ± 7.68 years were included in Dynesys group and the PLIF group included 45 patients (male:21, female:24) with a mean age of 54.69 ± 3.26 years. The average followup in Dynesys group and PLIF group was 2.22 ± 0.43 year (range 2-3.5 year) and 2.17 ± 0.76 year (range 2-3 year), respectively. Dynesys group showed a shorter operation time (141.06 ± 11.36 min vs. 176.98 ± 6.72 min, P degenerative disease showed clinical benefits with motion preservation of the operated segments, but does not have the significant advantage on motion preservation at adjacent segments, to avoid the degeneration of adjacent intervertebral disk.

  13. [Future status of ischaemic heart disease in the state of San Luis Potosí: A predictive dynamic model].

    Science.gov (United States)

    Gaytán-Hernández, Darío; Díaz-Oviedo, Aracely; Gallegos-García, Verónica; Terán-Figueroa, Yolanda

    To develop a predictive dynamic model to generate and analyse the future status of the incidence rate of ischaemic heart disease in a population of 25 years and over in Mexico, according to the variation in time of some risk factors. Retrospective ecological study performed during the period 2013-2015, in San Luis Potosí City, Mexico. Secondary databases that corresponded to the years 2000, 2005, and 2010, were used along with official indicators of the 58 municipalities of the state of San Luis Potosí. Eight indicators were analysed at municipality level, using principal components analysis, structural equation modelling, dynamic modelling, and simulation software methods. Three components were extracted, which together explained 80.43% of the total variance of the official indicators used. The second component had a weight of 16.36 units that favoured an increase of the disease analysed. This component was integrated only by the indicator AGE 60-64 and the expected stage of it increasing. The structural model confirmed that the indicators explain 42% of the variation of this disease. The possible stages for the years 2015, 2020, and 2025 are 195.7, 240.7, and 298.0, respectively for every 100,000 inhabitants aged 25 and over. An exponential increase in the incidence rate of ischaemic heart disease is expected, with the age of 60-64 years being identified as the highest risk factor. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Understanding China's Transformations

    DEFF Research Database (Denmark)

    Li, Xing

    The objective of this paper is to offer a framework of understanding the dialectical nexus between China's internal evolutions and the external influences with a focus on the century-long "challenge-response" dynamism. That is to explore how external factors helped shaping China's internal...... transformations, i.e. how generations of Chinese have been struggling in responding to the external challenges and attempting to sinicize external political ideas in order to change China from within. Likewise, it is equally important to understand how China's inner transformation contributed to reshaping...... the world. Each time, be it China's dominance or decline, the capitalist world system has to adjust and readjust itself to the opportunities and constraints brought about by the "China factors"....

  15. Understanding the poultry trade network in Kenya: Implications for regional disease prevention and control.

    Science.gov (United States)

    McCarron, Margaret; Munyua, Peninah; Cheng, Po-Yung; Manga, Thomas; Wanjohi, Cathryn; Moen, Ann; Mounts, Anthony; Katz, Mark A

    2015-07-01

    Infectious diseases in poultry can spread quickly and lead to huge economic losses. In the past decade, on multiple continents, the accelerated spread of highly pathogenic avian Influenza A (H5N1) virus, often through informal trade networks, has led to the death and culling of hundreds of millions of poultry. Endemic poultry diseases like Newcastle disease and fowl typhoid can also be devastating in many parts of the world. Understanding trade networks in unregulated systems can inform policy decisions concerning disease prevention and containment. From June to December 2008 we conducted a cross-sectional survey of backyard farmers, market traders, and middlemen in 5/8 provinces in Kenya. We administered a standardized questionnaire to each type of actor using convenience, random, snowball, and systematic sampling. Questionnaires addressed frequency, volume, and geography of trade, as well as biosecurity practices. We created a network diagram identifying the most important locations for trade. Of 380 respondents, 51% were backyard farmers, 24% were middlemen and 25% were market traders. Half (50%) of backyard farmers said they raised poultry both for household consumption and for sale. Compared to market traders, middlemen bought their poultry from a greater number of villages (median 4.2 villages for middlemen vs. 1.9 for market traders). Traders were most likely to purchase poultry from backyard farmers. Of the backyard farmers who sold poultry, 51% [CI 40-63] reported selling poultry to market traders, and 54% [CI 44-63] sold to middlemen. Middlemen moved the largest volume of poultry on a weekly basis (median purchases: 187 birds/week [IQR 206]; median sales: 188 birds/week [IQR 412.5]). The highest numbers of birds were traded in Nairobi - Kenya's capital city. Nairobi was the most prominent trading node in the network (61 degrees of centrality). Many smaller sub-networks existed as a result of clustered local trade. Market traders were also integral to the

  16. Understanding the dynamics of sustainable change: A 20-year case study of integrated health and social care.

    Science.gov (United States)

    Klinga, Charlotte; Hasson, Henna; Andreen Sachs, Magna; Hansson, Johan

    2018-06-04

    Change initiatives face many challenges, and only a few lead to long-term sustainability. One area in which the challenge of achieving long-term sustainability is particularly noticeable is integrated health and social care. Service integration is crucial for a wide range of patients including people with complex mental health and social care needs. However, previous research has focused on the initiation, resistance and implementation of change, while longitudinal studies remain sparse. The objective of this study was therefore to gain insight into the dynamics of sustainable changes in integrated health and social care through an analysis of local actions that were triggered by a national policy. A retrospective and qualitative case-study research design was used, and data from the model organisation's steering-committee minutes covering 1995-2015 were gathered and analysed. The analysis generated a narrative case description, which was mirrored to the key elements of the Dynamic Sustainability Framework (DSF). The development of inter-sectoral cooperation was characterized by a participatory approach in which a shared structure was created to support cooperation and on-going quality improvement and learning based on the needs of the service user. A key management principle was cooperation, not only on all organisational levels, but also with service users, stakeholder associations and other partner organisations. It was shown that all these parts were interrelated and collectively contributed to the creation of a structure and a culture which supported the development of a dynamic sustainable health and social care. This study provides valuable insights into the dynamics of organizational sustainability and understanding of key managerial actions taken to establish, develop and support integration of health and social care for people with complex mental health needs. The service user involvement and regular reviews of service users' needs were essential in order

  17. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  18. DNA dynamics is likely to be a factor in the genomic nucleotide repeats expansions related to diseases.

    Directory of Open Access Journals (Sweden)

    Boian S Alexandrov

    Full Text Available Trinucleotide repeats sequences (TRS represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD and Markov Chain Monte Carlo (MCMC simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS-related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications.

  19. Exploring fish microbial communities to mitigate emerging diseases in aquaculture.

    Science.gov (United States)

    de Bruijn, Irene; Liu, Yiying; Wiegertjes, Geert F; Raaijmakers, Jos M

    2018-01-01

    Aquaculture is the fastest growing animal food sector worldwide and expected to further increase to feed the growing human population. However, existing and (re-)emerging diseases are hampering fish and shellfish cultivation and yield. For many diseases, vaccination protocols are not in place and the excessive use of antibiotics and other chemicals is of substantial concern. A more sustainable disease control strategy to protect fish and shellfish from (re-)emerging diseases could be achieved by introduction or augmentation of beneficial microbes. To establish and maintain a 'healthy' fish microbiome, a fundamental understanding of the diversity and temporal-spatial dynamics of fish-associated microbial communities and their impact on growth and health of their aquatic hosts is required. This review describes insights in the diversity and functions of the fish bacterial communities elucidated with next-generation sequencing and discusses the potential of the microbes to mitigate (re-)emerging diseases in aquaculture. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  1. Stem cell transplantation as a dynamical system: are clinical outcomes deterministic?

    Science.gov (United States)

    Toor, Amir A; Kobulnicky, Jared D; Salman, Salman; Roberts, Catherine H; Jameson-Lee, Max; Meier, Jeremy; Scalora, Allison; Sheth, Nihar; Koparde, Vishal; Serrano, Myrna; Buck, Gregory A; Clark, William B; McCarty, John M; Chung, Harold M; Manjili, Masoud H; Sabo, Roy T; Neale, Michael C

    2014-01-01

    Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However, the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning, and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper, parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.

  2. What can we learn from the microbial ecological interactions associated with polymicrobial diseases?

    Science.gov (United States)

    Antiabong, J F; Boardman, W; Ball, A S

    2014-03-15

    Periodontal diseases in humans and animals are model polymicrobial diseases which are associated with a shift in the microbial community structure and function; there is therefore a need to investigate these diseases from a microbial ecological perspective. This review highlights three important areas of microbial ecological investigation of polymicrobial diseases and the lessons that could be learnt: (1) identification of disease-associated microbes and the implications for choice of anti-infective treatment; (2) the implications associated with vaccine design and development and (3) application of the dynamics of microbial interaction in the discovery of novel anti-infective agents. This review emphasises the need to invigorate microbial ecological approaches to the study of periodontal diseases and other polymicrobial diseases for greater understanding of the ecological interactions between and within the biotic and abiotic factors of the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  4. Foot-and-mouth disease virus serotype SAT1 in cattle, Nigeria.

    Science.gov (United States)

    Ehizibolo, D O; Haegeman, A; De Vleeschauwer, A R; Umoh, J U; Kazeem, H M; Okolocha, E C; Van Borm, S; De Clercq, K

    2017-06-01

    The knowledge of foot-and-mouth disease virus (FMDV) dynamics and epidemiology in Nigeria and the West Africa subregion is important to support local and regional control plans and international risk assessment. Foot-and-mouth disease virus serotype South African territories (SAT)1 was isolated, identified and characterized from an FMD outbreak in cattle in Nigeria in 2015, 35 years after the last report of FMDV SAT1 in West Africa. The VP1 coding sequence of the Nigerian 2015 SAT1 isolates diverges from reported SAT1 topotypes resulting in a separate topotype. The reporting of a novel FMDV SAT1 strain in the virus pool 5 (West and Central Africa) highlights the dynamic and complex nature of FMDV in this region of Africa. Sustained surveillance is needed to understand the origin, the extent and distribution of this novel SAT1 topotype in the region as well as to detect and monitor the occurrence of (re-)emerging FMDV strains. © 2017 Blackwell Verlag GmbH.

  5. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  6. Repetitive elements dynamics in cell identity programming, maintenance and disease

    KAUST Repository

    Bodega, Beatrice

    2014-12-01

    The days of \\'junk DNA\\' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than \\'parasites\\', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation.

  7. A Comparison of 12 Weeks of Pilates and Aquatic Training on the Dynamic Balance of Women with Mulitple Sclerosis

    OpenAIRE

    Marandi, Sayyed Mohammad; Nejad, Vahid Shayegan; Shanazari, Zohreh; Zolaktaf, Vahid

    2013-01-01

    Background: Multiple Sclerosis (MS) is a disabling chronic disease of the nervous system in which the myelin system of the central nervous system is deteriorated. The objective of this study is to understand the effect of Pilates exercises and aquatic training for a 12 week period on the dynamic balance of MS patients. Methods: The research method is semi-experimental. As a result, among the female patients visiting the MS clinic of Kashani hospital in Esfahan, 57 patients with disease in...

  8. The importance of accurately modelling human interactions. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Rosati, Dora P.; Molina, Chai; Earn, David J. D.

    2015-12-01

    Human behaviour and disease dynamics can greatly influence each other. In particular, people often engage in self-protective behaviours that affect epidemic patterns (e.g., vaccination, use of barrier precautions, isolation, etc.). Self-protective measures usually have a mitigating effect on an epidemic [16], but can in principle have negative impacts at the population level [12,15,18]. The structure of underlying social and biological contact networks can significantly influence the specific ways in which population-level effects are manifested. Using a different contact network in a disease dynamics model-keeping all else equal-can yield very different epidemic patterns. For example, it has been shown that when individuals imitate their neighbours' vaccination decisions with some probability, this can lead to herd immunity in some networks [9], yet for other networks it can preserve clusters of susceptible individuals that can drive further outbreaks of infectious disease [12].

  9. Observing Clonal Dynamics across Spatiotemporal Axes: A Prelude to Quantitative Fitness Models for Cancer.

    Science.gov (United States)

    McPherson, Andrew W; Chan, Fong Chun; Shah, Sohrab P

    2018-02-01

    The ability to accurately model evolutionary dynamics in cancer would allow for prediction of progression and response to therapy. As a prelude to quantitative understanding of evolutionary dynamics, researchers must gather observations of in vivo tumor evolution. High-throughput genome sequencing now provides the means to profile the mutational content of evolving tumor clones from patient biopsies. Together with the development of models of tumor evolution, reconstructing evolutionary histories of individual tumors generates hypotheses about the dynamics of evolution that produced the observed clones. In this review, we provide a brief overview of the concepts involved in predicting evolutionary histories, and provide a workflow based on bulk and targeted-genome sequencing. We then describe the application of this workflow to time series data obtained for transformed and progressed follicular lymphomas (FL), and contrast the observed evolutionary dynamics between these two subtypes. We next describe results from a spatial sampling study of high-grade serous (HGS) ovarian cancer, propose mechanisms of disease spread based on the observed clonal mixtures, and provide examples of diversification through subclonal acquisition of driver mutations and convergent evolution. Finally, we state implications of the techniques discussed in this review as a necessary but insufficient step on the path to predictive modelling of disease dynamics. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Oyang Yen-Jen

    2010-10-01

    Full Text Available Abstract Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy.

  11. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer's disease: an investigation by docking, molecular dynamics, and DFT studies.

    Science.gov (United States)

    Azam, Faizul; Alabdullah, Nada Hussin; Ehmedat, Hadeel Mohammed; Abulifa, Abdullah Ramadan; Taban, Ismail; Upadhyayula, Sreedevi

    2018-06-01

    Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.

  12. Bifurcation and spatial pattern formation in spreading of disease with incubation period in a phytoplankton dynamics

    Directory of Open Access Journals (Sweden)

    Randhir Singh Baghel

    2012-02-01

    Full Text Available In this article, we propose a three dimensional mathematical model of phytoplankton dynamics with the help of reaction-diffusion equations that studies the bifurcation and pattern formation mechanism. We provide an analytical explanation for understanding phytoplankton dynamics with three population classes: susceptible, incubated, and infected. This model has a Holling type II response function for the population transformation from susceptible to incubated class in an aquatic ecosystem. Our main goal is to provide a qualitative analysis of Hopf bifurcation mechanisms, taking death rate of infected phytoplankton as bifurcation parameter, and to study further spatial patterns formation due to spatial diffusion. Here analytical findings are supported by the results of numerical experiments. It is observed that the coexistence of all classes of population depends on the rate of diffusion. Also we obtained the time evaluation pattern formation of the spatial system.

  13. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  14. Using Earth Observations to Understand and Predict Infectious Diseases

    Science.gov (United States)

    Soebiyanto, Radina P.; Kiang, Richard

    2015-01-01

    This presentation discusses the processes from data collection and processing to analysis involved in unraveling patterns between disease outbreaks and the surrounding environment and meteorological conditions. We used these patterns to estimate when and where disease outbreaks will occur. As a case study, we will present our work on assessing the relationship between meteorological conditions and influenza in Central America. Our work represents the discovery, prescriptive and predictive aspects of data analytics.

  15. Temporal Sampling of White Band Disease Infected Corals Reveals Complex and Dynamic Bacterial Communities

    Science.gov (United States)

    Gignoux-Wolfsohn, S.; Vollmer, S. V.; Aronson, F. M.

    2016-02-01

    White band disease (WBD) is a coral disease that is currently decimating populations of the endangered staghorn coral, Acropora cervicornis and elkhorn coral, A. palmata across the Caribbean. Since it was first reported in 1979, WBD has killed 95% of these critical reef-building Caribbean corals. WBD is infectious; it can be transmitted through the water column or by a corallivorous snail. While previous research shows that WBD is likely caused by bacteria, identification of a specific pathogen or pathogens has remained elusive. Much of the difficulty of understanding the etiology of the disease comes from a lack of information about how existing bacterial communities respond to disease and separating initial from secondary colonizers. In order to address this lack of information, we performed a fully-crossed tank infection experiment. We exposed healthy corals from two different sites to disease and healthy (control) homogenates from both sites, replicating genotype across tanks. We sampled every coral at three time points: before inoculation with the homogenate, after inoculation, and when the coral showed signs of disease. We then performed 16S rRNA gene sequencing on the Illumina HiSeq 2000. We saw significant differences between time points and disease state. Interestingly, at the first time point (time one) we observed differences between genotypes: every fragment from some genotypes was dominated by Endozoicomonas, while other genotypes were not dominated by one family. At time two we saw an increase in abundance of Alteromonadaceae and Flavobacteriaceae in all corals, and a larger increase in disease-exposed corals. At time three, we saw another increase in Flavobacteriaceae abundance in diseased corals, as well as an introduction of Francisella to diseased corals. While Flavobacteriaceae and Francisella were proposed as potential pathogens, their increase at time three suggests they may be secondary colonizers or opportunists. In genotypes that were

  16. Epidemicity thresholds for water-borne and water-related diseases.

    Science.gov (United States)

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Motor Neuron Diseases

    Science.gov (United States)

    ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ...

  18. Social-Biological Interactions in Oral Disease: A 'Cells to Society' View.

    Directory of Open Access Journals (Sweden)

    Noha Gomaa

    Full Text Available Oral diseases constitute a major worldwide public health problem, with their burden concentrating in socially disadvantaged and less affluent groups of the population, resulting in significant oral health inequalities. Biomedical and behavioural approaches have proven relatively ineffective in reducing these inequalities, and have potentially increased the health gap between social groups. Some suggest this stems from a lack of understanding of how the social and psychosocial contexts in which behavioural and biological changes occur influence oral disease. To unravel the pathways through which social factors affect oral health outcomes, a better understanding is thus needed of how the social 'gets under the skin,' or becomes embodied, to alter the biological. In this paper, we present the current knowledge on the interplay between social and biological factors in oral disease. We first provide an overview of the process of embodiment in chronic disease and then evaluate the evidence on embodiment in oral disease by reviewing published studies in this area. Results show that, in periodontal disease, income, education and perceived stress are correlated with elevated levels of stress hormones, disrupted immune biomarkers and increased allostatic load. Similarly, socioeconomic position and increased financial stress are related to increased stress hormones and cariogenic bacterial counts in dental caries. Based on these results, we propose a dynamic model depicting social-biological interactions that illustrates potential interdependencies between social and biological factors that lead to poor oral health. This work and the proposed model may aid in developing a better understanding of the causes of oral health inequalities and implicate the importance of addressing the social determinants of oral health in innovating public health interventions.

  19. Database management systems understanding and applying database technology

    CERN Document Server

    Gorman, Michael M

    1991-01-01

    Database Management Systems: Understanding and Applying Database Technology focuses on the processes, methodologies, techniques, and approaches involved in database management systems (DBMSs).The book first takes a look at ANSI database standards and DBMS applications and components. Discussion focus on application components and DBMS components, implementing the dynamic relationship application, problems and benefits of dynamic relationship DBMSs, nature of a dynamic relationship application, ANSI/NDL, and DBMS standards. The manuscript then ponders on logical database, interrogation, and phy

  20. Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach

    Science.gov (United States)

    Ecohydrological connectivity is a system-level property that results from the linkages in the networks of water transport through ecosystems, by which feedback effects and other emergent system behaviors may be generated. We created a systems dynamic model that represents primary ecohydrological net...

  1. The Role of Neuromuscular Changes in Aging and Knee Osteoarthritis on Dynamic Postural Control

    Science.gov (United States)

    Takacs, Judit; Carpenter, Mark G.; Garland, S. Jayne; Hunt, Michael A.

    2013-01-01

    Knee osteoarthritis (OA) is a chronic joint condition, with 30% of those over the age of 75 exhibiting severe radiographic disease. Nearly 50% of those with knee OA have experienced a fall in the past year. Falls are a considerable public health concern, with a high risk of serious injury and a significant socioeconomic impact. The ability to defend against a fall relies on adequate dynamic postural control, and alterations in dynamic postural control are seen with normal aging. Neuromuscular changes associated with aging may be responsible for some of these alterations in dynamic postural control. Even greater neuromuscular deficits, which may impact dynamic postural control and the ability to defend against a fall, are seen in people with knee OA. There is little evidence to date on how knee OA affects the ability to respond to and defend against falls and the neuromuscular changes that contribute to balance deficits. As a result, this review will: summarize the key characteristics of postural responses to an external perturbation, highlight the changes in dynamic postural control seen with normal aging, review the neuromuscular changes associated with aging that have known and possible effects on dynamic postural control, and summarize the neuromuscular changes and balance problems in knee OA. Future research to better understand the role of neuromuscular changes in knee OA and their effect on dynamic postural control will be suggested. Such an understanding is critical to the successful creation and implementation of fall prevention and treatment programs, in order to reduce the excessive risk of falling in knee OA. PMID:23696951

  2. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    Science.gov (United States)

    Kamath, Pauline L.; Foster, Jeffrey T.; Drees, Kevin P.; Luikart, Gordon; Quance, Christine; Anderson, Neil J.; Clarke, P. Ryan; Cole, Eric K.; Drew, Mark L.; Edwards, William H.; Rhyan, Jack C.; Treanor, John J.; Wallen, Rick L.; White, Patrick J.; Robbe-Austerman, Suelee; Cross, Paul C.

    2016-01-01

    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (B3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.

  3. Spaces of Dynamical Systems

    CERN Document Server

    Pilyugin, Sergei Yu

    2012-01-01

    Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.

  4. Recent advances in the fundamental understanding of railway vehicle dynamics

    DEFF Research Database (Denmark)

    True, Hans

    2006-01-01

    The topic of this article is the calculation of the critical speed for railway vehicles. It is emphasised that it is misleading to formulate the mathematical problem as a stability problem. It must correctly be formulated as a problem of existence of coexisting solutions to the full non-linear dy......The topic of this article is the calculation of the critical speed for railway vehicles. It is emphasised that it is misleading to formulate the mathematical problem as a stability problem. It must correctly be formulated as a problem of existence of coexisting solutions to the full non......-linear dynamical problem. The lowest speed at which there exist more critical speed in road tests. A couple of examples show applications of the method to various dynamical models of railway vehicles. Freight wagons are treated in the end of the article because the dry friction damping with stick-slip and end...

  5. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  6. Theory of feedback controlled brain stimulations for Parkinson's disease

    Science.gov (United States)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  7. Some Aspects of Nonlinear Dynamics and CFD

    Science.gov (United States)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  8. Acid Lipase Disease

    Science.gov (United States)

    ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ...

  9. Advances in understanding gray matter pathology in multiple sclerosis: Are we ready to redefine disease pathogenesis?

    Directory of Open Access Journals (Sweden)

    Zivadinov Robert

    2012-03-01

    Full Text Available Abstract The purpose of this special issue in BMC Neurology is to summarize advances in our understanding of the pathological, immunological, imaging and clinical concepts of gray matter (GM pathology in patients with multiple sclerosis (MS. Review articles by Lucchinetti and Popescu, Walker and colleagues, Hulst and colleagues and Horakova and colleagues summarize important recent advances in understanding GM damage and its implications to MS pathogenesis. They also raise a number of important new questions and outline comprehensive approaches to addressing those questions in years to come. In the last decade, the use of immunohistochemistry staining methods and more advanced imaging techniques to detect GM lesions, like double inversion recovery, contributed to a surge of studies related to cortical and subcortical GM pathology in MS. It is becoming more apparent from recent biopsy studies that subpial cortical lesions in early MS are highly inflammatory. The mechanisms responsible for triggering meningeal inflammation in MS patients are not yet elucidated, and they should be further investigated in relation to their role in initiating and perpetuating the disease process. Determining the role of antigens, environmental and genetic factors in the pathogenesis of GM involvement in MS is critical. The early involvement of cortical and subcortical GM damage in MS is very intriguing and needs to be further studied. As established in numerous cross-sectional and longitudinal studies, GM damage is a better predictor of physical disability and cognitive impairment than WM damage. Monitoring the evolution of GM damage is becoming an important marker in predicting future disease course and response to therapy in MS patients.

  10. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    Science.gov (United States)

    Lasker, Joseph M.

    joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.

  11. Cholera dynamics with Bacteriophage infection: A mathematical study

    International Nuclear Information System (INIS)

    Misra, A.K.; Gupta, Alok; Venturino, Ezio

    2016-01-01

    Highlights: • A mathematical model for the biological control of cholera has been proposed. • The feasibility and stability of all the equilibria have been investigated. • The ODE model is found to exhibit Hopf-bifurcation. • Conditions of global asymptotic stability have been obtained. • The impact of important parameters on cholera spread has been shown. - Abstract: Mathematical modeling of waterborne diseases, such as cholera, including a biological control using Bacteriophage viruses in the aquatic reservoirs is of great relevance in epidemiology. In this paper, our aim is twofold: at first, to understand the cholera dynamics in the region around a water body; secondly, to understand how the spread of Bacteriophage infection in the cholera bacterium V. cholerae controls the disease in the human population. For this purpose, we modify the model proposed by Codeço, for the spread of cholera infection in human population and the one proposed by Beretta and Kuang, for the spread of Bacteriophage infection in the bacteria population [1, 2]. We first discuss the feasibility and local asymptotic stability of all the possible equilibria of the proposed model. Further, in the numerical investigation, we have found that the parameter ϕ, called the phage adsorption rate, plays an important role. There is a critical value, ϕ c , at which the model possess Hopf-bifurcation. For lower values than ϕ c , the equilibrium E * is unstable and periodic solutions are observed, while above ϕ c , the equilibrium E * is locally asymptotically stable, and further shown to be also globally asymptotically stable. We investigate the effect of the various parameters on the dynamics of the infected humans by means of numerical simulations.

  12. Assessing the Dynamic Behavior of Online Q&A Knowledge Markets: A System Dynamics Approach

    Science.gov (United States)

    Jafari, Mostafa; Hesamamiri, Roozbeh; Sadjadi, Jafar; Bourouni, Atieh

    2012-01-01

    Purpose: The objective of this paper is to propose a holistic dynamic model for understanding the behavior of a complex and internet-based kind of knowledge market by considering both social and economic interactions. Design/methodology/approach: A system dynamics (SD) model is formulated in this study to investigate the dynamic characteristics of…

  13. Understanding Celiac Disease From Genetics to the Future Diagnostic Strategies

    Directory of Open Access Journals (Sweden)

    Carolina Salazar

    2017-07-01

    Full Text Available Celiac disease (CD is an autoimmune disorder characterized by the permanent inflammation of the small bowel, triggered by the ingestion of gluten. It is associated with a number of symptoms, the most common being gastrointestinal. The prevalence of this illness worldwide is 1%. One of the main problems of CD is its difficulty to be diagnosed due to the various presentations of the disease. Besides, in many cases, CD is asymptomatic. Celiac disease is a multifactorial disease, HLA-DQ2 and HLA-DQ8 haplotypes are predisposition factors. Nowadays, molecular markers are being studied as diagnostic tools. In this review, we explore CD from its basic concept, manifestations, types, current and future methods of diagnosis, and associated disorders. Before addressing the therapeutic approaches, we also provide a brief overview of CD genetics and treatment.

  14. Does Your Heart Forecast help practitioner understanding and confidence with cardiovascular disease risk communication?

    Science.gov (United States)

    Wells, Sue; Kerr, Andrew; Broadbent, Elizabeth; MacKenzie, Craig; Cole, Karl; McLachlan, Andy

    2011-03-01

    Explaining what cardiovascular disease (CVD) risk means and engaging in shared decision-making regarding risk factor modification is challenging. An electronic CVD risk visualisation tool containing multiple risk communication strategies (Your Heart Forecast) was designed in 2009. To assess whether this tool facilitated explaining CVD risk to primary care patients. Health professionals who accessed a Primary Health Organisation website or who attended educational peer groups over a three-month period were invited to complete questionnaires before and after viewing a four-minute video about the tool. Respondents were asked to make an informed guess of the CVD risk of a 35-year-old patient (actual CVD risk 5%) and rate the following sentence as being true or false: 'If there were 100 people like Mr Andrews, five would go on to have a cardiac event in the next five years.' They also were asked to rank their understanding of CVD risk and confidence in explaining the concept to patients. Fifty health professionals (37 GPs, 12 practice nurses, one other) completed before and after questionnaires. Respondents' CVD risk estimates pre-video ranged from confidence in explaining risk reduced in range and shifted towards greater efficacy. Whether this tool facilitates discussions of CVD risk with patients and improves patient understanding and lifestyle behaviour needs to be evaluated in a randomised trial.

  15. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.

    Science.gov (United States)

    High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant

    2018-06-01

    Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The

  16. Understanding The Relationships Between Noncommunicable Diseases, Unhealthy Lifestyles, And Country Wealth.

    Science.gov (United States)

    Bollyky, Thomas J; Templin, Tara; Andridge, Caroline; Dieleman, Joseph L

    2015-09-01

    The amount of international aid given to address noncommunicable diseases is minimal. Most of it is directed to wealthier countries and focuses on the prevention of unhealthy lifestyles. Explanations for the current direction of noncommunicable disease aid include that these are diseases of affluence that benefit from substantial research and development into their treatment in high-income countries and are better addressed through domestic tax and policy measures to reduce risk-factor prevalence than through aid programs. This study assessed these justifications. First, we examined the relationships among premature adult mortality, defined as the probability that a person who has lived to the age of fifteen will die before the age of sixty from noncommunicable diseases; the major risk factors for these diseases; and country wealth. Second, we compared noncommunicable and communicable diseases prevalent in poor and wealthy countries alike, and their respective links to economic development. Last, we examined the respective roles that wealth and risk prevention have played in countries that achieved substantial reductions in premature mortality from noncommunicable diseases. Our results support greater investment in cost-effective noncommunicable disease preventive care and treatment in poorer countries and a higher priority for reducing key risk factors, particularly tobacco use. Project HOPE—The People-to-People Health Foundation, Inc.

  17. "Touching Triton": Building Student Understanding of Complex Disease Risk.

    Science.gov (United States)

    Loftin, Madelene; East, Kelly; Hott, Adam; Lamb, Neil

    2016-01-01

    Life science classrooms often emphasize the exception to the rule when it comes to teaching genetics, focusing heavily on rare single-gene and Mendelian traits. By contrast, the vast majority of human traits and diseases are caused by more complicated interactions between genetic and environmental factors. Research indicates that students have a deterministic view of genetics, generalize Mendelian inheritance patterns to all traits, and have unrealistic expectations of genetic technologies. The challenge lies in how to help students analyze complex disease risk with a lack of curriculum materials. Providing open access to both content resources and an engaging storyline can be achieved using a "serious game" model. "Touching Triton" was developed as a serious game in which students are asked to analyze data from a medical record, family history, and genomic report in order to develop an overall lifetime risk estimate of six common, complex diseases. Evaluation of student performance shows significant learning gains in key content areas along with a high level of engagement.

  18. Understanding the biology of bone sarcoma from early initiating events through late events in metastasis and disease progression.

    Directory of Open Access Journals (Sweden)

    Limin eZhu

    2013-09-01

    Full Text Available The two most common primary bone malignancies, osteosarcoma and Ewing sarcoma, are both aggressive, highly metastatic cancers that most often strike teens, though both can be found in younger children and adults. Despite distinct origins and pathogenesis, both diseases share several mechanisms of progression and metastasis, including neovascularization, invasion, anoikis resistance, chemoresistance and evasion of the immune response. Some of these processes are well-studies in more common carcinoma models, and the observation from adult diseases may be readily applied to pediatric bone sarcomas. Neovascularization, which includes angiogenesis and vasculogenesis, is a clear example of a process that is likely to be similar between carcinomas and sarcomas, since the responding cells are the same in each case. Chemoresistance mechanisms also may be similar between other cancers and the bone sarcomas. Since osteosarcoma and Ewing sarcoma are mesenchymal in origin, the process of epithelial-to-mesenchymal transformation is largely absent in bone sarcomas, necessitating different approaches to study progression and metastasis in these diseases. One process that is less well-studied in bone sarcomas is dormancy, which allows micrometastatic disease to remain viable but not growing in distant sites – typically the lungs – for months or years before renewing growth to become overt metastatic disease. By understanding the basic biology of these processes, novel therapeutic strategies may be developed that could improve survival in children with osteosarcoma or Ewing sarcoma.

  19. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices.

    Science.gov (United States)

    Jackson, Fatimah L C; Niculescu, Mihai D; Jackson, Robert T

    2013-10-01

    Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.

  20. The preliminary results of the diagnosis of pituitary diseases using 13N-NH3 PET dynamic imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Chen Hongmei; Yang Huazhang; Tang Anwu; Qiao Suixian

    2002-01-01

    Objective: To preliminarily evaluate the value of 13 N-NH 3 PET dynamic imaging for the diagnosis of pituitary diseases. Methods: The 13 N-NH 3 PET dynamic imaging was performed on 2 patients with pituitary microadenoma and one patient with hypopituitarism, the diagnoses were confirmed by MRI, levels of relative endocrine hormones in blood and clinical presentations. Results: In 2 patients with pituitary microadenoma, the pituitaries were seen in 20 and 30 s after the internal carotid was seen in the dynamic PET images, the upper margins of pituitaries were convex, the heights were 1.75 cm and 1.62 cm, the standard uptake values (SUVs) of pituitaries were 3.96 and 3.28, and the radioactivity ratio of pituitary to thalamus were 1.58 and 1.27. In the patient with hypopituitarism, the pituitary was seen at 3 min after the image of the internal carotid, the image of pituitary was smaller than the normal ones (0.82 cm x 0.83 cm x 1.03 cm), the SUV of pituitary was 1.48, and the radioactivity ratio of pituitary to thalamus was 0.64. Conclusion: The 13 N-NH 3 PET dynamic imaging is useful in diagnosing pituitary microadenoma and hypopituitarism