WorldWideScience

Sample records for understanding depositional processes

  1. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  2. Understanding the spectrum of diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Robert; Barbour, Robert [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Understanding the origin of diesel fuel injector deposits used to be relatively simple; for the most part they were caused by the decomposition of fuel during the combustion process, were generally organic in nature and typically only affected the nozzle orifices. However, modem fuel injector designs appear to be both more severe in terms of generating conditions conducive to creating new and different types of deposits and more likely to have their operation affected by those deposits. Changes to fuel composition and type have in some cases increased the potential pool of reactive species or provided new potential deposit precursors. As a result, the universe of diesel injector deposits now range from the traditional organic to partially or fully inorganic in nature and from nozzle coking deposits to deposits which can seize the internal components of the injector; so called internal diesel injector deposits. Frequently, combinations of inorganic and organic deposits are found. While power loss is one well known issue associated with nozzle deposits, other field problems resulting from these new deposits include severe issues with drivability, emissions, fuel consumption and even engine failure. Conventional deposit control additive chemistries were developed to be effective against organic nozzle coking deposits. These conventional additives in many cases may prove ineffective against this wide range of deposit types. This paper discusses the range of deposits that have been found to adversely impact modem diesel fuel injectors and compares the performance of conventional and new, advanced deposit control additives against these various challenges to proper fuel injector functioning. (orig.)

  3. Database development for understanding the wet deposition and dispersion processes after the Fukushima nuclear plant accident. Radar data

    International Nuclear Information System (INIS)

    Yatagai, Akiyo; Takara, Kaoru; Ishihara, Masahito; Ishikawa, Hirohiko; Watanabe, Akira; Murata, Ken T.

    2015-01-01

    This manuscript describes datasets of meteorological information being developed for understanding the dispersion and deposition process of radionuclides associated with the Fukushima accident in March 2011. Among several products, this paper reports mainly our original radar data images including the X-band radar data from Fukushima University as well as the three-dimensional reflectivity data from the Japan Meteorological Agency C-band radar network. (author)

  4. Understanding the chemical vapor deposition of diamond: recent progress

    International Nuclear Information System (INIS)

    Butler, J E; Mankelevich, Y A; Cheesman, A; Ma, Jie; Ashfold, M N R

    2009-01-01

    In this paper we review and provide an overview to the understanding of the chemical vapor deposition (CVD) of diamond materials with a particular focus on the commonly used microwave plasma-activated chemical vapor deposition (MPCVD). The major topics covered are experimental measurements in situ to diamond CVD reactors, and MPCVD in particular, coupled with models of the gas phase chemical and plasma kinetics to provide insight into the distribution of critical chemical species throughout the reactor, followed by a discussion of the surface chemical process involved in diamond growth.

  5. Quantitative analysis of precipitation over Fukushima to understand the wet deposition process in March 2011

    Science.gov (United States)

    Yatagai, A.; Onda, Y.; Watanabe, A.

    2012-04-01

    The Great East Japan Earthquake caused a severe accident at the Fukushima-Daiichi nuclear power plant (NPP), leading to the emission of large amounts of radioactive pollutants into the environment. The transport and diffusion of these radioactive pollutants in the atmosphere caused a disaster for residents in and around Fukushima. Studies have sought to understand the transport, diffusion, and deposition process, and to understand the movement of radioactive pollutants through the soil, vegetation, rivers, and groundwater. However, a detailed simulation and understanding of the distribution of radioactive compounds depend on a simulation of precipitation and on the information on the timing of the emission of these radioactive pollutants from the NPP. Past nuclear expansion studies have demonstrated the importance of wet deposition in distributing pollutants. Hence, this study examined the quantitative precipitation pattern in March 2011 using rain-gauge observations and X-band radar data from Fukushima University. We used the AMeDAS rain-gauge network data of 1) the Japan Meteorological Agency (1273 stations in Japan) and 2) the Water Information System (47 stations in Fukushima prefecture) and 3) the rain-gauge data of the Environmental Information Network of NTT Docomo (30 stations in Fukushima) to construct 0.05-degree mesh data using the same method used to create the APHRODITE daily grid precipitation data (Yatagai et al., 2009). Since some AMeDAS data for the coastal region were lost due to the earthquake, the complementary network of 2) and 3) yielded better precipitation estimates. The data clarified that snowfall was observed on the night of Mar 15 into the morning of Mar 16 throughout Fukushima prefecture. This had an important effect on the radioactive contamination pattern in Fukushima prefecture. The precipitation pattern itself does not show one-on-one correspondence with the contamination pattern. While the pollutants transported northeast of the

  6. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, represent...

  7. Use of process indices for simplification of the description of vapor deposition systems

    International Nuclear Information System (INIS)

    Kajikawa, Yuya; Noda, Suguru; Komiyama, Hiroshi

    2004-01-01

    Vapor deposition is a complex process, including gas-phase, surface, and solid-phase phenomena. Because of the complexity of chemical and physical processes occurring in vapor deposition processes, it is difficult to form a comprehensive, fundamental understanding of vapor deposition and to control such systems for obtaining desirable structures and performance. To overcome this difficulty, we present a method for simplifying the complex description of such systems. One simplification method is to separate complex systems into multiple elements, and determine which of these are important elements. We call this method abridgement. The abridgement method retains only the dominant processes in a description of the system, and discards the others. Abridgement can be achieved by using process indices to evaluate the relative importance of the elementary processes. We describe the formulation and use of these process indices through examples of the growth of continuous films, initial deposition processes, and the formation of the preferred orientation of polycrystalline films. In this paper, we propose a method for representing complex vapor deposition processes as a set of simpler processes

  8. Understanding Contaminants Associated with Mineral Deposits

    Science.gov (United States)

    Verplanck, Philip L.

    2008-01-01

    Interdisciplinary studies by the U.S. Geological Survey (USGS) have resulted in substantial progress in understanding the processes that control *the release of metals and acidic water from inactive mines and mineralized areas, *the transport of metals and acidic water to streams, and *the fate and effect of metals and acidity on downstream ecosystems. The potential environmental effects associated with abandoned and inactive mines, resulting from the complex interaction of a variety of chemical and physical processes, is an area of study that is important to the USGS Mineral Resources Program. Understanding the processes contributing to the environmental effects of abandoned and inactive mines is also of interest to a wide range of stakeholders, including both those responsible for managing lands with historically mined areas and those responsible for anticipating environmental consequences of future mining operations. The recently completed (2007) USGS project entitled 'Process Studies of Contaminants Associated with Mineral Deposits' focused on abandoned and inactive mines and mineralized areas in the Rocky Mountains of Montana, Colorado, New Mexico, Utah, and Arizona, where there are thousands of abandoned mines. Results from these studies provide new information that advances our understanding of the physical and biogeochemical processes causing the mobilization, transport, reaction, and fate of potentially toxic elements (including aluminum, arsenic, cadmium, copper, iron, lead, and zinc) in mineralized near-surface systems and their effects on aquatic and riparian habitat. These interdisciplinary studies provide the basis for scientific decisionmaking and remedial action by local, State, and Federal agencies charged with minimizing the effects of potentially toxic elements on the environment. Current (2007) USGS research highlights the need to understand (1) the geologic sources of metals and acidity and the geochemical reactions that release them from their

  9. Modeling of gas flow and deposition profile in HWCVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Pflug, Andreas; Höfer, Markus; Harig, Tino; Armgardt, Markus; Britze, Chris; Siemers, Michael; Melzig, Thomas; Schäfer, Lothar

    2015-11-30

    Hot wire chemical vapor deposition (HWCVD) is a powerful technology for deposition of high quality films on large area, where drawbacks of plasma based technology such as defect generation by ion bombardment and high equipment costs are omitted. While processes for diamond coatings using H{sub 2} and CH{sub 4} as precursor have been investigated in detail since 1990 and have been transferred to industry, research also focuses on silicon based coatings with H{sub 2}, SiH{sub 4} and NH{sub 3} as process gases. HWCVD of silicon based coatings is a promising alternative for state-of-the-art radiofrequency-plasma enhanced chemical vapor deposition reactors. The film formation in HWCVD results from an interaction of several concurrent chemical reactions such as gas phase chemistry, film deposition, abstraction of surplus hydrogen bonds and etching by atomic hydrogen. Since there is no easy relation between process parameters and resulting deposition profiles, substantial experimental effort is required to optimize the process for a given film specification and the desired film uniformity. In order to obtain a deeper understanding of the underlying mechanisms and to enable an efficient way of process optimization, simulation methods come into play. While diamond deposition occurs at pressures in the range of several kPa HWCVD deposition of Si based coatings operates at pressures in the 0.1–30 Pa range. In this pressure regime, particle based simulation methods focused on solving the Boltzmann equation are computationally feasible. In comparison to computational fluid dynamics this yields improved accuracy even near small gaps or orifices, where characteristic geometric dimensions approach the order of the mean free path of gas molecules. At Fraunhofer IST, a parallel implementation of the Direct Simulation Monte Carlo (DSMC) method extended by a reactive wall chemistry model is developed. To demonstrate the feasibility of three-dimensional simulation of HWCVD processes

  10. Microcrystalline silicon deposition: Process stability and process control

    International Nuclear Information System (INIS)

    Donker, M.N. van den; Kilper, T.; Grunsky, D.; Rech, B.; Houben, L.; Kessels, W.M.M.; Sanden, M.C.M. van de

    2007-01-01

    Applying in situ process diagnostics, we identified several process drifts occurring in the parallel plate plasma deposition of microcrystalline silicon (μc-Si:H). These process drifts are powder formation (visible from diminishing dc-bias and changing spatial emission profile on a time scale of 10 0 s), transient SiH 4 depletion (visible from a decreasing SiH emission intensity on a time scale of 10 2 s), plasma heating (visible from an increasing substrate temperature on a time scale of 10 3 s) and a still puzzling long-term drift (visible from a decreasing SiH emission intensity on a time scale of 10 4 s). The effect of these drifts on the crystalline volume fraction in the deposited films is investigated by selected area electron diffraction and depth-profiled Raman spectroscopy. An example shows how the transient depletion and long-term drift can be prevented by suitable process control. Solar cells deposited using this process control show enhanced performance. Options for process control of plasma heating and powder formation are discussed

  11. Uranium ore deposits: geology and processing implications

    International Nuclear Information System (INIS)

    Belyk, C.L.

    2010-01-01

    There are fifteen accepted types of uranium ore deposits and at least forty subtypes readily identified around the world. Each deposit type has a unique set of geological characteristics which may also result in unique processing implications. Primary uranium production in the past decade has predominantly come from only a few of these deposit types including: unconformity, sandstone, calcrete, intrusive, breccia complex and volcanic ones. Processing implications can vary widely between and within the different geological models. Some key characteristics of uranium deposits that may have processing implications include: ore grade, uranium and gangue mineralogy, ore hardness, porosity, uranium mineral morphology and carbon content. Processing difficulties may occur as a result of one or more of these characteristics. In order to meet future uranium demand, it is imperative that innovative processing approaches and new technological advances be developed in order that many of the marginally economic traditional and uneconomic non-traditional uranium ore deposits can be exploited. (author)

  12. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    Science.gov (United States)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  13. Ti film deposition process of a plasma focus: Study by an experimental design

    Directory of Open Access Journals (Sweden)

    M. J. Inestrosa-Izurieta

    2017-10-01

    Full Text Available The plasma generated by plasma focus (PF devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i an electric erosion of the outer material of the anode; ii substrate ablation generating an interlayer; iii electron beam deposition of material from the center of the anode; iv heat load provoking clustering or even melting of the deposition surface.

  14. Process maps for plasma spray. Part II: Deposition and properties

    International Nuclear Information System (INIS)

    XIANGYANG, JIANG; MATEJICEK, JIRI; KULKARNI, ANAND; HERMAN, HERBERT; SAMPATH, SANJAY; GILMORE, DELWYN L.; NEISER A, RICHARD Jr.

    2000-01-01

    This is the second paper of a two part series based on an integrated study carried out at the State University of New York at Stony Brook and Sandia National Laboratories. The goal of the study is the fundamental understanding of the plasma-particle interaction, droplet/substrate interaction, deposit formation dynamics and microstructure development as well as the deposit property. The outcome is science-based relationships, which can be used to link processing to performance. Molybdenum splats and coatings produced at 3 plasma conditions and three substrate temperatures were characterized. It was found that there is a strong mechanical/thermal interaction between droplet and substrate, which builds up the coatings/substrate adhesion. Hardness, thermal conductivity, and modulus increase, while oxygen content and porosity decrease with increasing particle velocity. Increasing deposition temperature resulted in dramatic improvement in coating thermal conductivity and hardness as well as increase in coating oxygen content. Indentation reveals improved fracture resistance for the coatings prepared at higher deposition temperature. Residual stress was significantly affected by deposition temperature, although not significant by particle energy within the investigated parameter range. Coatings prepared at high deposition temperature with high-energy particles suffered considerably less damage in wear tests. Possible mechanisms behind these changes are discussed within the context of relational maps which are under development

  15. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  16. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  17. Thermodynamic analysis of processes proceeding on (111) faces of diamond during chemical vapour deposition

    International Nuclear Information System (INIS)

    Piekarczyk, W.; Prawer, S.

    1992-01-01

    Chemically vapour deposited diamond is commonly synthesized from activated hydrogen-rich, carbon/hydrogen gas mixtures under conditions which should, from a thermodynamic equilibrium point of view, favour the production of graphite. Much remains to be understood about why diamond, and not graphite, forms under these conditions. However, it is well known that the presence of atomic hydrogen, is crucial to the success of diamond deposition. As part of an attempt to better understand the deposition process, a thermodynamic analysis of the process was performed on diamond (111) faces in hydrogen rich environments. It is shown that the key role of atomic hydrogen is to inhibit the reconstruction of the (111) face to an sp 2 -bonded structure, which would provide a template for graphite, rather than diamond formation. The model correctly predicts experimentally determined trends in growth rate and diamond film quality as a function of methane concentration in the stating gas mixture. 17 refs., 4 figs

  18. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  19. Building of nested components by a double-nozzle droplet deposition process

    Science.gov (United States)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  20. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  1. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    A new experimental set-up to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airBorne dust concentration considerably. As a basis for developing methods to eliminate dust related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension....

  2. Development of a new process for deposition of metallic vapours and ions

    International Nuclear Information System (INIS)

    Gabrielli, O. de.

    1989-01-01

    Surface treatment processes by deposition, enabling surface properties to be altered without altering the volume, are making rapid progress in industry. The description of these processes has led us to consider the role and the importance of methods using plasmas. The new plasma source we have developed is the subject of this experimental research: it is the basis of the deposition process (metallic ion and vapour deposition). The specifications and preliminary results enable us to compare this process with others in use. Fast deposition rates and excellent adhesion are the two main characteristics of this process [fr

  3. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    Science.gov (United States)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56˚ 03´ and 56˚ 57´ NL, 82˚ 22´ and 82˚ 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms

  4. Understanding snow-transport processes shaping the mountain snow-cover

    Directory of Open Access Journals (Sweden)

    R. Mott

    2010-12-01

    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  5. 2D modeling of direct laser metal deposition process using a finite particle method

    Science.gov (United States)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  6. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    International Nuclear Information System (INIS)

    Talagrand, C.; Boddaert, X.; Selmeczi, D.G.; Defranoux, C.; Collot, P.

    2015-01-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties

  7. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talagrand, C., E-mail: talagrand@emse.fr [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Boddaert, X. [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Selmeczi, D.G.; Defranoux, C. [Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, 1117 (Hungary); Collot, P. [Ecole Nationale Supérieure d' Arts et Métiers ParisTech, Aix-en-Provence, 2 cours des Arts et Métiers (France)

    2015-09-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties.

  8. Low-pressure c-BN deposition - is a CVD process possible?

    International Nuclear Information System (INIS)

    Haubner, R.; Tang, X.

    2001-01-01

    Since the low-pressure diamond deposition was discovered in 1982 there is a high interest to find a similar process for the c-BN synthesis. A review about the c-BN deposition process as well as its characterization is given. Experiments with a simple chemical vapor deposition(CVD) reactor using tris(dimethylamino)borane as precursor were carried out. In a cold-wall reactor substrates were heated up by high-frequency. Argon was used as protecting and carrying the precursor, it was saturated with tris(dimethylamino)borane (precursor) according to its vapor pressure and transports the pressure to the hot substrate, where deposition occurs. WC-Co hardmetal plates containing 6 wt. % Co, Mo and Si were used as substrates. Various BN layers were deposited and characterized. X-ray diffraction, IR-spectroscopy and SIMS indicate that BN-coatings containing c-BN were deposited. However a final verification of c-BN crystallites by TEM investigations was not possible till now. (nevyjel)

  9. A review: deposition and resuspension processes

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    A review chapter was written on deposition and resuspension processes for the forthcoming Department of Energy publication, Atmospheric Sciences and Power Production, edited by D. Randerson. The chapter includes eleven tables and thirteen figures summarizing data from 241 references. The conclusions of that review chapter are given

  10. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  11. PVD processes of thin films deposition using Hall-current discharge

    International Nuclear Information System (INIS)

    Svadkovskij, I.V.

    2007-01-01

    Results of research and developments in the field of PVD processes of thin films deposition using Hall-current discharge have been summarized. Effects of interaction of ions with surface during deposition have been considered. Also features of application and prospects of devices based on ion beam and magnetron sputtering systems in thin films technologies have been analyzed. The aspects in the field plasma physics, technology and equipment plasma PVD processes of thin films deposition have been systematized, on the base of investigations made by author and other scientists. (authors)

  12. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  13. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  14. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Science.gov (United States)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  15. Influence of substrate geometry on ion-plasma coating deposition process

    International Nuclear Information System (INIS)

    Khoroshikh, V.M.; Leonov, S.A.; Belous, V.A.

    2008-01-01

    Influence of substrate geometry on the feature of Ti vacuum arc plasma streams condensation process in presence of N 2 or Ar in a discharge ambient were investigated. Character of gas pressure and substrate potential influence on deposition rate is conditioned the competitive processes of condensation and sputtering, and also presence of double electric layer on a border plasma-substrate. Influence of potential on deposition rate especially strongly shows up for cylindrical substrates of small size. For such substrates it was found substantial (approximately in 4 times) growth of deposition rate at the increasing of negative potential from 100 to 700 V when nitrogen pressure is ∼0,3...2,5 Pa. Possibility of droplet-free coating deposition the substrate backs and in discharge ambient, being outside area of cathode direct visibility is shown

  16. Understanding error generation in fused deposition modeling

    International Nuclear Information System (INIS)

    Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David

    2015-01-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)

  17. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    Science.gov (United States)

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  18. Salt separation of uranium deposits generated from electrorefining in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  19. Salt separation of uranium deposits generated from electrorefining in pyro process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  20. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  1. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  2. In situ analysis of thin film deposition processes using time-of-flight (TOF) ion beam analysis methods

    International Nuclear Information System (INIS)

    Im, J.; Lin, Y.; Schultz, J.A.; Auciello, O.H.; Chang, R.P.H.

    1995-05-01

    Non-destructive, in situ methods for characterization of thin film growth phenomena is key to understand thin film growth processes and to develop more reliable deposition procedures, especially for complex layered structures involving multi-phase materials. However, surface characterization methods that use either electrons (e.g. AES or XPS) or low energy ions (SIMS) require an UHV environment and utilize instrumentation which obstructs line of sight access to the substrate and are therefore incompatible with line of sight deposition methods and thin film deposition processes which introduce gas, either part of the deposition or in order to produce the desired phase. We have developed a means of differentially pumping both the ion beam source and detectors of a TOF ion beam surface analysis spectrometer that does not interfere with the deposition process and permits compositional and structural analysis of the growing film in the present system, at pressures up to several mTorr. Higher pressures are feasible with modified source-detector geometry. In order to quantify the sensitivity of Ion Scattering Spectroscopy (ISS) and Direct Recoil Spectroscopy (DRS), we have measured the signal intensity for stabilized clean metals in a variety of gas environments as a function of the ambient gas species and pressure, and ion beam species and kinetic energy. Results are interpreted in terms of collision cross sections which are compared with known gas phase scattering data and provide an apriori basis for the evaluation of time-of-flight ion scattering and recoil spectroscopies (ToF-ISARS) for various industrial processing environments which involve both inert and reactive cases. The cross section data for primary ion-gas molecule and recoiled atom-gas molecule interactions are also provided. from which the maximum operating pressure in any experimental configuration can be obtained

  3. Sedimentation rates and depositional processes in Lake Superior from 210Pb geochronology

    International Nuclear Information System (INIS)

    Evans, J.E.; Johnson, T.C.; Alexander, E.C. Jr.; Lively, R.S.; Eisenreich, S.J.

    1981-01-01

    Sedimentation rates range from 0.01 to 0.32 cm/yr in 17 sediment box cores from Lake Superior, as determined by 210 Pb geochronology. Shoreline erosion and resuspension of nearshore sediments causes moderate to high (0.05-0.11 cm/yr) sedimentation rates in the western arm of Lake Superior. Sedimentation rates are very high (> 0.15 cm/yr) in marginal bays adjoining Lake Superior; and moderate to very high (0.07-0.19 cm/yr) in open lake regions adjacent to marginal bays. Resuspension of nearshore and shoal top sediments in southern and southeastern Lake Superior by storms is responsible for depositional anomalies in 210 Pb profiles corresponding to 1905, 1916-1918, and 1940 storms. Sedimentation rates are very low (0.01-0.03 cm/yr) in the central basins due to isolation from sediment sources. These data indicate that sedimentation rates and processes vary significantly in different regions of Lake Superior. The sedimentation rates provided by this study, in conjunction with previously-reported sedimentation rates, yield a better understanding of the Lake Superior depositional environment

  4. A new thin film deposition process by cathodic plasma electrolysis

    International Nuclear Information System (INIS)

    Paulmier, T.; Kiriakos, E.; Bell, J.; Fredericks, P.

    2004-01-01

    Full text: A new technique, called atmospheric pressure plasma deposition (APPD), has been developed since a few years for the deposition of carbon and DLC, Titanium or Silicon films on metal and metal alloys substrates. A high voltage (2kV) is applied in a liquid electrolytic solution between an anode and a cathode, both electrodes being cylindrical: a glow discharge is then produced and confined at the vicinity of the cathode. The physic of the plasma in the electrolytic solution near the cathode is very different form the other techniques of plasma deposition since the pressure is here close to the atmospheric pressure. We describe here the different physico-chemical processes occurring during the process. In this cathodic process, the anodic area is significantly larger than the cathode area. In a first step, the electrolytic solution is heated by Joule effect induced by the high voltage between the electrodes. Due to the high current density, the vaporization of the solution occurs near the cathode: a large amount of bubbles are produced which are stabilized at the electrode by hydrodynamic and electromagnetic forces, forming a vapour sheath. The electric field and voltage drop are then concentrated in this gas envelope, inducing the ionization of the gas and the ignition of a glow discharge at the surface of the material. This plasma induces the formation of ionized and reactive species which diffuse and are accelerated toward the cathode. These excited species are the precursors for the formation of the deposition material. At the same time, the glow discharge interacts with the electrolyte solution inducing also ionization, convection and polymerization processes in the liquid: the solution is therefore a second source of the deposition material. A wide range of films have been deposited with a thickness up to 10 micrometers. These films have been analyzed by SEM and Raman spectroscopy. The electrolytic solution has been characterized by GC-MS and the

  5. Micromorphology of modern tills in southwestern Spitsbergen – insights into depositional and post-depositional processes

    Directory of Open Access Journals (Sweden)

    Skolasińska Katarzyna

    2016-12-01

    Full Text Available Textural properties and microstructures are commonly used properties in the analysis of Pleistocene and older glacial deposits. However, contemporary glacial deposits are seldom studied, particularly in the context of post-depositional changes. This paper presents the results of a micromorphological study of recently deposited tills in the marginal zones of Hansbreen and Torellbreen, glaciers in southwestern Spitsbergen. The main objectives of this study were to compare modern tills deposited in subglacial and supraglacial conditions, as well as tills that were freshly released from ice with those laid down several decades ago. The investigated tills are primarily composed of large clasts of metamorphic rocks and represent coarse-grained, matrix-supported diamictons. The tills reveal several characteristic features for ductile (e.g. turbate structures and brittle (e.g. lineations, microshears deformations, which have been considered to be indicative of subglacial conditions. In supraglacial tills, the same structures are common as in the subglacial deposits, which points to the preservation of the primary features, though the sediment was transferred up to the glacier surface due to basal ice layer deformation and redeposited as slumps, or to formation of similar structures due to short-distance sediment re-deposition by mass flows. This study revealed that it might not be possible to distinguish subglacial and supraglacial tills on the basis of micromorphology if the latter are derived from a subglacial position. The only noted difference was the presence of iron oxide cementation zones and carbonate dissolution features in supraglacial tills. These features were found in tills that were deposited at least a few years ago and are interpreted to be induced by early post-depositional processes involving porewater/sediment interactions.

  6. 49 CFR 594.9 - Fee for reimbursement of bond processing costs and costs for processing offers of cash deposits...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Fee for reimbursement of bond processing costs and costs for processing offers of cash deposits or obligations of the United States in lieu of sureties on... indirect costs the agency incurs for receipt, processing, handling, and disbursement of cash deposits or...

  7. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    2000-01-01

    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process....... The asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...... during the gas injection process in comparison with the standard asphaltenes in order to understand the mechanisms involved in asphaltene deposition....

  8. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  9. What makes process models understandable?

    NARCIS (Netherlands)

    Mendling, J.; Reijers, H.A.; Cardoso, J.; Alonso, G.; Dadam, P.; Rosemann, M.

    2007-01-01

    Despite that formal and informal quality aspects are of significant importance to business process modeling, there is only little empirical work reported on process model quality and its impact factors. In this paper we investigate understandability as a proxy for quality of process models and focus

  10. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, representing various rocks and alteration types. A JEOL JXA-8900R electron microprobe analyzer (EMPA was used for the chemistry analysis. The biotite is texturally divided into magmatic and hydrothermal types. Ti, Fe, and F contents can be used to distinguish the two biotite types chemically. Some oxide and halogen contents of biotite from various rocks and alteration types demonstrate a systematic variation in chemical composition. Biotite halogen chemistry shows a systematic increase in log (XCl/XOH and decrease in log (XF/XOH values from biotite (potassic through chlorite-sericite (intermediate argillic to actinolite (inner propylitic zones. The y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from potassic and intermediate argillic zones are similar or slightly different. In contrast, the y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from inner propylitic zone display different values in comparison to the two alteration zones. Halogen (F,Cl fugacity ratios in biotite show a similar pattern: in the potassic and intermediate argillic zones they show little variation, whereas in the inner propylitic zone they are distinctly different. These features suggest the hydrothermal fluid composition remained fairly constant in the inner part of the deposit during the potassic and intermediate argillic alteration events, but changed significantly towards the outer part affected by inner propylitic

  11. Acid deposition: sources, effects and controls

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (ed.)

    1989-01-01

    The purpose of this collection of 19 papers is to review our understanding of the cause and effect of acid deposition, to present new data that assist in the provision of a fuller understanding of cause, process and implication and thus to assist in defining the research agenda of the future. The materials presented are European in perspective, drawn from the Federal Republic of Germany, Hungary, Norway, Sweden and the United Kingdom. The current position as regards deposition monitoring, ecological effects and control technologies is presented in five sections: acid deposition monitoring, freshwater acidification, soils and forest systems, structural materials and control technologies. Each section is introduced by an overview paper outlining the contemporary understanding and identifying areas requiring future work. Specialist papers presenting new data or re-interpretations of existing information comprise the remainder of each section. Four of the papers have been abstracted separately.

  12. Data on nearshore wave process and surficial beach deposits, central Tamil Nadu coast, India.

    Science.gov (United States)

    Joevivek, V; Chandrasekar, N

    2017-08-01

    The chronicles of nearshore morphology and surficial beach deposits provide valuable information about the nature of the beach condition and the depositional environment. It imparts an understanding about the spatial and temporal relationship of nearshore waves and its influence over the distribution of beach sediments. This article contains data about wave and sediment dynamics of the ten sandy beaches along the central Tamil Nadu coast, India. This present dataset comprises nearshore wave parameters, breaker wave type, beach morphodynamic state, grain size distribution and weight percentage of heavy and light mineral distribution. The dataset will figure out the beach morphology and hydrodynamic condition with respect to the different monsoonal season. This will act as a field reference to realize the coastal dynamics in an open sea condition. The nearshore entities were obtained from the intensive field survey between January 2011 and December 2011, while characteristics of beach sediments are examined by the chemical process in the laboratory environment.

  13. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  14. Plasma deposition of microcrystalline silicon solar cells. Looking beyond the glass

    Energy Technology Data Exchange (ETDEWEB)

    Donker, M.N. van den

    2006-07-01

    Microcrystalline silicon emerged in the past decade as highly interesting material for application in efficient and stable thin film silicon solar cells. It consists of nanometer-sized crystallites embedded in a micrometer-sized columnar structure, which gradually evolves during the SiH{sub 4} based deposition process starting from an amorphous incubation layer. Understanding of and control over this transient and multi-scale growth process is essential in the route towards low-cost microcrystalline silicon solar cells. This thesis presents an experimental study on the technologically relevant high rate (5-10 Aa s{sup -1}) parallel plate plasma deposition process of state-of-the-art microcrystalline silicon solar cells. The objective of the work was to explore and understand the physical limits of the plasma deposition process as well as to develop diagnostics suitable for process control in eventual solar cell production. Among the developed non-invasive process diagnostics were a pyrometer, an optical spectrometer, a mass spectrometer and a voltage probe. Complete thin film silicon solar cells and modules were deposited and characterized. (orig.)

  15. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  16. Sandstone-type uranium deposits. Summary and conclusions

    International Nuclear Information System (INIS)

    Finch, W.I.

    1985-01-01

    The similarity of most of the deposits described in this report is striking even though they occur in sandstone host rocks ranging in age from Carboniferous to Tertiary and on every continent outside the polar regions. Geologic environments of the uranium deposits consist of distinctive sets of tectonic and sedimentary-depositional systems, all of which have some common threads of favorable geologic processes. In this summary paper it is hoped that this report has sharpened an understanding of the deposit's ''home environment'' that will aid future exploration for these resource-important sandstone-type uranium ores

  17. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

    Directory of Open Access Journals (Sweden)

    Ragesh Kumar T P

    2017-11-01

    Full Text Available We present first experiments on electron beam induced deposition of silacyclohexane (SCH and dichlorosilacyclohexane (DCSCH under a focused high-energy electron beam (FEBID. We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.

  18. The Mianhuakeng deposit no. 9 with -50 m to -150 m middle production prospecting practice some understanding

    International Nuclear Information System (INIS)

    Bi Yide; Tan Zhongyin; Kuang Zhengping; Hou Zhiyong; Qiu Huiyuan

    2014-01-01

    The production prospecting is an extension of prospecting, it can identify deposits occurrence conditions in the main deposits mined, geological factors, ore grade distribution characteristics of type and So on, it can provide a reliable geological data for the development plan of the section and the quasi - Design in order to reduce mining costs and improve economic benef. This article through to the Mianhuakeng Deposit No. 9 with -50 m to -150 m middle production prospecting practice some understanding, sum up the metallogenic conditions, ore controlling factors, ore characteristics, to realize the optimization of production prospecting, so as to lower the cost for the better prospecting effect. (authors)

  19. High-energy high-rate pulsed-power processing of materials by powder consolidation and by railgun deposition. Technical report (Final), 10 April 1985-10 February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Weldon, W.F.

    1987-03-31

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other high-energy high-rate processing. The characteristics of the high-energy-high-rate (1MJ/s) powder consolidation using megampere current pulses from a homopolar generator, were defined. Molybdenum Alloy TZM, a nickel-based metallic glass, copper/graphite composites, and P/M aluminum alloy X7091 were investigated. The powder-consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with subsecond high-temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time temperature transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Inherent control of energy input, and time-to-peak processing temperature developed to be held to short times. Deposition experiments were conducted using an exploding-foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid, or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate. Deposits of a wide variety of single- and multi-specie materials were produced on several types of substrates. In a series of ancillary experiments, pulsed-skin-effect heating and self quenching of metallic conductors was discovered to be a new means of surface modification by high-energy high-rate-processing.

  20. Theoretical modelling of carbon deposition processes

    International Nuclear Information System (INIS)

    Marsh, G.R.; Norfolk, D.J.; Skinner, R.F.

    1985-01-01

    Work based on capsule experiments in the BNL Gamma Facility, aimed at elucidating the chemistry involved in the formation of carbonaceous deposit on CAGR fuel pin surfaces is described. Using a data-base derived from capsule experiments together with literature values for the kinetics of the fundamental reactions, a chemical model of the gas-phase processes has been developed. This model successfully reproduces the capsule results, whilst preliminary application to the WAGR coolant circuit indicates the likely concentration profiles of various radical species within the fuel channels. (author)

  1. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  2. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  3. Investigation of effect of process parameters on multilayer builds by direct metal deposition

    International Nuclear Information System (INIS)

    Amine, Tarak; Newkirk, Joseph W.; Liou, Frank

    2014-01-01

    Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the deposition parameters of deposited layers on the microstructure and mechanical properties of the previously deposited layers. It is important to characterize these effects in order to provide information for proper parameter selection in future DLD fabrication. Varying the parameters was shown to produce different effects on the microstructure morphology and property values, presumably resulting from in-situ quench and tempering of the steels. In general, the microstructure was secondary dendrite arm spacing. Typically, both the travel speed and laser power significantly affect the microstructure and hardness. A commercial ABAQUS/CAE software was used to model this process by developing a thermo-mechanical 3D finite element model. This work presents a 3D heat transfer model that considers the continuous addition of mass in front of a moving laser beam using ABAQUS/CAE software. The model assumes the deposit geometry appropriate to each experimental condition and calculates the temperature distribution, cooling rates and re-melted layer depth, which can affect the final microstructure. Model simulations were qualitatively compared with experimental results acquired in situ using a K-type thermocouple. - Highlights: • Direct laser deposition DLD. • Microstructure of stainless steel 316L. • Thermocouples measurement. • 3D finite element modeling

  4. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard [Johns Hopkins University, Department of Chemistry, Baltimore, MD (United States); Wu, Yung-Chien; McElwee-White, Lisa [University of Florida, Department of Chemistry, Gainesville, FL (United States)

    2014-12-15

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF{sub 3}, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures. (orig.)

  5. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  6. Solidification in direct metal deposition by LENS processing

    Science.gov (United States)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  7. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  8. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  9. Process and machinery description of equipment for deposition of canisters in medium-long deposition holes

    International Nuclear Information System (INIS)

    Kalbantner, P.

    2001-08-01

    In this report twelve methods are presented to deposit a canister with spent nuclear fuel in a horizontal hole, several canisters per hole (MLH). These methods are part of the KBS-3 system. They have been developed successively, after an analysis of weak points and strong points in previously described methods. In conformance with the guidelines for Project JADE, a choices of system has been considered during the development work. This is whether canister and bentonite buffer should be deposited 'in parts', i.e. at different occasions, but shortly after each other or 'in a package', i.e. together in a single package. The other choice in the guidelines for the JADE project, whether the canister should be placed in a radiation shield or not during transport in the secondary tunnels, was not relevant to MLR. The basic technical problem is depositing heavy objects, the canister and the buffer components, in an horizontal hole which is approximately 200 m deep. Two methods for depositing of the bentonite barrier and the canisters in separate processes have been studied. For depositing of the bentonite barrier and the canister 'in a package', four alternative techniques have been studied: a metallic sleeve around the package, a loading scoop that is rotated, a fork carriage and rails. The repeated transports in a hole, a consequence of depositing several canisters in the same hole, could lead to the rock being crushed. The mutual impact of machines, load and rock wall has therefore been particularly considered. In several methods, the use of a gangway has been proposed (steel plates or layer of ice). A failure mode and effect analysis has been performed for one of the twelve methods. When comparing with a method to deposit one canister per hole using the same technique, the need for equipment and resources is far larger for this MLH method if incidents should occur during depositing. The development work reported here has not yet yielded a definitive method for placing

  10. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2011-07-01

    A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

  11. Indium oxide deposition on glass by aerosol pyrolysis (Pyrosol (R) process)

    International Nuclear Information System (INIS)

    Blandenet, G.; Lagarde, Y.; Spitz, J.

    1975-01-01

    The pyrosol (R) process involves the pyrolysis of an aerosol generated by ultrasonic nebulisation from a solution of organic or inorganic compounds. This technique was used to deposit transparent n-conducting indium oxide films on glass. The electrical and optical properties of these films were studied as a function of the deposition temperature and doping (using tin or fluorine). A deposition temperature of 480 deg C and a Sn/In ratio of about 5% gave the best results. In this case, the transmission in the visible range was 92%, the infrared reflection 84% and the electrical resistivity 1.7x10 -4 ohm.cm [fr

  12. Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Dheeraj Jain

    2011-01-01

    Full Text Available The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO.

  13. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kilper, T.; Donker, M.N. van den; Carius, R.; Rech, B.; Braeuer, G.; Repmann, T.

    2008-01-01

    Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 x 30 cm 2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH * and H β emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH 4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control

  14. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  15. Apparatus and process for deposition of hard carbon films

    Science.gov (United States)

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  16. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  17. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  18. Feature scale modeling for etching and deposition processes in semiconductor manufacturing

    International Nuclear Information System (INIS)

    Pyka, W.

    2000-04-01

    Simulation of etching and deposition processes as well as three-dimensional geometry generation are important issues in state of the art TCAD applications. Three-dimensional effects are gaining importance for semiconductor devices and for their interconnects. Therefore a strictly physically based simulation of their topography is required. Accurate investigation of single etching and deposition processes has become equally important as process integration. Within this context several aspects of three-dimensional topography simulation have been covered by this thesis and new and interesting results have been achieved in various areas. The algorithmic core of the cell-based structuring element surface propagation method has been optimized and has been eliminated from its position as factor which predominantly determines the required CPU time. In parallel with investigated optimization techniques and required by various process models, the implementation of the surface normal calculation and the special handling of voids and unconnected parts of the geometry has been completed in three dimensions. A process-step-based solid modeling tool which incorporates layout data as well as aerial image simulation has been supplied. It can be coupled with the topography simulation and includes simple geometrically based models for CMP and oxidation. In the presented combination, the tool makes use of the design information stored in the layout file, combines it with the manufacturing recipe, and hence is extremely helpful for the automatic generation of three-dimensional structures. Its usefulness has been proven with several interconnect examples. Regarding topography models, resist development not only turned out to be very helpful for predicting exposed and etched resist profiles within a rigorous lithography simulation, but, by means of benchmark examples, also demonstrated the extraordinary stability of the proposed cellular surface movement algorithm. With respect to

  19. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  20. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  1. Improvement of a microwave ECR plasma source for the plasma immersion ion implantation and deposition process

    International Nuclear Information System (INIS)

    Wu Hongchen; Zhang Huafang; Peng Liping; Jiang Yanli; Ma Guojia

    2004-01-01

    The Plasma Immersion Ion Implantation and Deposition (PIII and D) process has many advantages over the pure plasma immersion ion implantation or deposition. It can compensate for or eliminate the disadvantages of the shallow modification layer (for PIII) and increase the bond strength of the coating (of deposition). For this purpose, a new type of microwave plasma source used in the PIII and D process was developed, composed of a vacuum bend wave guide and a special magnetic circuit, so that the coupling window was protected from being deposited with a coating and bombarded by high-energy particles. So the life of the window is increased. To enhance the bonding between the coating and substrate a new biasing voltage is applied to the work piece so that the implantation and deposition (or hybrid process) can be completed in one vacuum cycle

  2. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  3. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  4. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  5. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  6. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    Science.gov (United States)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  7. Understanding Patients? Process to Use Medical Marijuana

    OpenAIRE

    Crowell, Tara L

    2016-01-01

    Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF) and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medici...

  8. Processes of preparation, deposition and analysis of thermionic emissive substances

    International Nuclear Information System (INIS)

    Romao, B.M. Verdelli; Muraro Junior, A.; Tessaroto, L.A.B.; Takahashi, J.

    1992-09-01

    This paper shows the results of the optimization of the process of preparation and deposition of thermionic emissive substances that are used in the oxide-cathodes which are utilized in the gun of the IEAv linear electron accelerator. (author). 5 refs., 5 figs

  9. Deposition behavior of colloid in filtration process through glass beads packed bed

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Nagasaki, Shinya; Tanaka, Satoru; Tanaka, Tadao; Takebe, Shinichi; Ogawa, Hiromichi

    1999-01-01

    We investigated the deposition behavior in colloid transport through porous media by conducting column experiments and batch experiments using polystyrene latex particles and spherical glass beads. The conclusion of this present work are summarized as follows: (1) The comparison between the results of the batch and the column experiments indicated that the deposition was enhanced in the column experiments compared with the batch experiments due to particles trapped by the effect of slow field. (2) Colloid BTCs showed three different stages of deposition which can be characterized by the different rate of the change in the C/C O . Three stages can be explained by the existence of large area of weak deposition sites and small area of strong deposition sites on the collector surfaces. (3) The amount of deposited particles until the beginning of the third stage was larger for lower flow velocity. (4) The results of the column experiments revealed that breakthrough behavior of colloidal particles of the second run after back wash process is affected by remaining particles on collector surfaces. (J.P.N.)

  10. Plasma processing techniques for deposition of carbonic thin protective coatings on structural nuclear materials

    International Nuclear Information System (INIS)

    Andrei, V.; Oncioiu, G.; Coaca, E.; Rusu, O.; Lungu, C.

    2009-01-01

    Full text of publication follows: The production of nano-structured surface films with controlled properties is crucial for the development of materials necessary for the Advanced Systems for Nuclear Energy. Since the surface of materials is the zone through which materials interact with the environment, the surface science and surface engineering techniques plays an essential role in the understanding and control of the processes involved. Complex surface structures were developed on stainless steels used as structural nuclear materials: austenitic stainless steels based on Fe, austenitic steels with high content of Cr, ferrites resistant to corrosion, by various Plasma Processing methods which include: - Plasma Electrolytic (PE) treatments: the steel substrates were modified by nitriding and nitro-carburizing plasma diffusion treatments; - carbonic films deposition in Thermionic Vacuum Arc Plasma. The results of the characterization of surface structures obtained in various experimental conditions for improvement of the properties (corrosion resistance, hardness, wear properties) are reported: the processes and structures were characterized by correlation of the results of the complementary techniques: XPS, 'depth profiling', SEM, XRD, EIS. An overall description of the processes involved in the surface properties improvement, and some consideration about the new materials development for energy technologies are presented

  11. New understanding in genesis of uranium deposit Bashblak in tarim basin

    International Nuclear Information System (INIS)

    Qin Mingkuan; Zhao Ruiquan

    2000-01-01

    Using metallogenic theory of hydrogenic uranium deposit and theory of oil-gas reduction, the author makes a re-recognition of the metallogenic mechanism of the biggest uranium deposit in Tarim basin--uranium deposit Bashblak in order to give some reference guide in the prospecting for in-situ leachable sandstone-type uranium deposits in the biggest intra-continental basin in China--Tarim basin

  12. A machine learning approach to understand business processes

    NARCIS (Netherlands)

    Maruster, L.

    2003-01-01

    Business processes (industries, administration, hospitals, etc.) become nowadays more and more complex and it is difficult to have a complete understanding of them. The goal of the thesis is to show that machine learning techniques can be used successfully for understanding a process on the basis of

  13. Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2009-08-01

    A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) process is determined. The martensite transformation as well as martensite tempering is considered to calculate the final fraction of martensite, ferrite, cementite, ɛ-carbide, and retained austenite. Comparing the surface hardness topography of different patterns reveals that path planning is a critical parameter in laser surface modification. The predicted results are in a close agreement with the experimental results.

  14. Understanding r-process nucleosynthesis with dwarf galaxies

    Science.gov (United States)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  15. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  16. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    Science.gov (United States)

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  17. The study on microb and organic metallogenetic process of the interlayer oxidized zone uranium deposit. A case study of the Shihongtan uranium deposit in Turpan-Hami basin

    International Nuclear Information System (INIS)

    Qiao Haiming; Shang Gaofeng

    2010-01-01

    Microbial and organic process internationally leads the field in the study of metallogenetic process presently. Focusing on Shi Hongtan uranium deposit, a typical interlayer oxidized zone sandstone-type deposit, this paper analyzes the geochemical characteristics of microb and organic matter in the deposit, and explores the interaction of microb and organic matter. It considers that the anaerobic bacterium actively takes part in the formation of the interlayer oxidized zone, as well as the mobilization and migration of uranium. In the redox (oxidation-reduction) transition zone, sulphate-reducing bacteria reduced sulphate to stink damp, lowing Eh and acidifying pH in the groundwater, which leads to reducing and absorbing of uranium, by using light hydrocarbon which is the product of the biochemical process of organism and the soluble organic matter as the source of carbon. The interaction of microb and organic matter controls the metallogenetic process of uranium in the deposit. (authors)

  18. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    Katai, S.

    2001-01-01

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  19. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  20. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  1. Rapid processing method for solution deposited YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Dawley, J.T.; Clem, P.G.; Boyle, T.J.; Ottley, L.M.; Overmyer, D.L.; Siegal, M.P.

    2004-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm 2 current density (J c ) YBCO films, from multiple hours to ∼20 s in atmospheric pressure air. High quality, ∼0.2 μm thick YBCO films with J c (77 K) values ≥2 MA/cm 2 at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO 3 . This process has also enabled J c (77 K)=1.1 MA/cm 2 YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable ∼$10/kA m solution deposited YBCO coated conductor wires

  2. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  3. Processes in Environmental Depositional Systems and Deformation in Sedimentary Basins: Goals for Exoloration in Mexico

    Science.gov (United States)

    Sandoval-Ochoa, J.

    2005-05-01

    Among the recent needs to establish new goals in the mexican energy industry to increase the petroleum reserves, has been necessary to recapitulate on some academic an operative concepts and definitions applied to the Petroliferous Basins Exploration; first of all, in order to understand the Petroleum System in given tectonophysical framework. The tectonophysical environment experienced by the petroliferous basin in the southwestern Gulf of Mexico, merely in the Campeche Sound and adjacent terrestrial regions (Figure 1); has been the result of interaction among the tectonic plates, the Coco's Plate with impingement and subduction beneath the Northamerican Plate and the Yucatán Microplate and even in very deep connection with the oceanic crust of southwesternmost portion of the Gulf of Mexico and the one of the Caribbean sea beneath the gulf of Belize-Honduras. The tectonosedimentary effects in the Campeche Bay starting with the skeleton formed for the Cenozoic Era, kept simultaneous conditions in depositions and deformations because of strain, stress and collapse fields, acted through this Era up to the present day, as observed in the surface Aguayo et al, 1999 and Sandoval, 2000. The involved portions of the crust and its boundaries have also been performing the relative sinking of the mere southwestern centre of the Gulf of Mexico, and the rising of the southeastern lands of Mexico. In the middle contiguity are found the productive Tertiary basins of: Comalcalco, Macuspana, Salina del Itsmo, Campeche-Champoton and other in deep waters; all of them, in an arrangement of basins among distensive faulted blocks in echelon, falling down to the deep centre of the Gulf Sandoval, op cit. With this scenario and that ones of other basins, a recapitulation on concepts and definitions, has been made on the regional natural processes of the environmental depositional systems and on the basins analysis in the tectonophysical framework, in order to reflect on the

  4. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  5. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  6. THE ROLE OF CRYOGENIC PROCESSES IN THE FORMATION OF LOESS DEPOSITS

    Directory of Open Access Journals (Sweden)

    Vyacheslav N. Konishchev

    2015-01-01

    Full Text Available The paper describes a new approach to the analysis of the genetic nature of mineral substances in loess deposits. In permafrost under the influence of multiple alternate freezing and thawing in dispersed deposits, quartz particles accumulate the 0.05-0.01 mm fraction, while feldspars are crushed to a coarse fraction of 0.1-0.05 mm. In dispersed sediments formed in temperate and warm climatic zones, the granulometric spectrum of quartz and feldspar has the opposite pattern. The proposed methodology is based on a differential analysis of the distribution of these minerals by the granulometric spectrum. We have proposed two criteria - the coefficient of cryogenic contrast (CCC and the coefficient of distribution of heavy minerals, which allow determination of the degree of participation of cryogenic processes in the formation of loess sediments and processes of aeolian or water sedimentation.

  7. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    Films of organic materials are commonly deposited by laser assisted methods, such as MAPLE (matrix-assisted pulsed laser evaporation), where a few percent of the film material in the target is protected by a light-absorbing volatile matrix. Another possibility is to irradiate the dry organic...... the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...

  8. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation

  9. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  10. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  11. Dispersion, deposition and resuspension of atmospheric contaminants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The following topics are discussed: dry deposition, oil shale fugitive air emissions, particle resuspension and translocation, theoretical studies and applications, and processing of emissions by clouds and precipitation. The concentration of contaminant species in air is governed by the rate of input from sources, the rate of dilution or dispersion as a result of air turbulence, and the rate of removal to the surface by wet and dry deposition processes. Once on the surface, contaminants also may be resuspended, depending on meteorological and surface conditions. An understanding of these processes is necessary for accurate prediction of exposures of hazardous or harmful contaminants to humans, animals, and crops. In the field, plume dispersion and plume depletion by dry deposition were studied by the use of tracers. Dry deposition was investigated for particles of both respiration and inhalation interest. Complementary dry deposition studies of particles to rock canopies were conducted under controlled conditions in a wind tunnel. Because of increasing concern about hazardous, organic gases in the atmosphere some limited investigations of the dry deposition of nitrobenzene to a lichen mat were conducted in a stirred chamber. Resuspension was also studied using tracers and contaminated surfaces and in the wind tunnel. The objective of the resuspension studies was to develop and verify models for predicting the airborne concentrations of contaminants over areas with surface contamination, develop resuspension rate predictors for downwind transport, and develop predictors for resuspension input to the food chain. These models will be of particular relevance to the evaluation of deposition and resuspension of both radionuclides and chemical contaminants

  12. Progress in the Study of Coastal Storm Deposits

    Science.gov (United States)

    Xiong, Haixian; Huang, Guangqing; Fu, Shuqing; Qian, Peng

    2018-05-01

    Numerous studies have been carried out to identify storm deposits and decipher storm-induced sedimentary processes in coastal and shallow-marine areas. This study aims to provide an in-depth review on the study of coastal storm deposits from the following five aspects. 1) The formation of storm deposits is a function of hydrodynamic and sedimentary processes under the constraints of local geological and ecological factors. Many questions remain to demonstrate the genetic links between storm-related processes and a variety of resulting deposits such as overwash deposits, underwater deposits and hummocky cross-stratification (HCS). Future research into the formation of storm deposits should combine flume experiments, field observations and numerical simulations, and make full use of sediment source tracing methods. 2) Recently there has been rapid growth in the number of studies utilizing sediment provenance analysis to investigate the source of storm deposits. The development of source tracing techniques, such as mineral composition, magnetic susceptibility, microfossil and geochemical property, has allowed for better understanding of the depositional processes and environmental changes associated with coastal storms. 3) The role of extreme storms in the sedimentation of low-lying coastal wetlands with diverse ecosystem services has also drawn a great deal of attention. Many investigations have attempted to quantify widespread land loss, vertical marsh sediment accumulation and wetland elevation change induced by major hurricanes. 4) Paleostorm reconstructions based on storm sedimentary proxies have shown many advantages over the instrumental records and historic documents as they allow for the reconstruction of storm activities on millennial or longer time scales. Storm deposits having been used to establish proxies mainly include beach ridges and shelly cheniers, coral reefs, estuary-deltaic storm sequences and overwash deposits. Particularly over the past few

  13. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia

    2017-01-01

    Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...

  14. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  15. Understanding Quality in Process Modelling: Towards a Holistic Perspective

    Directory of Open Access Journals (Sweden)

    Jan Recker

    2007-09-01

    Full Text Available Quality is one of the main topics in current conceptual modelling research, as is the field of business process modelling. Yet, widely acknowledged academic contributions towards an understanding or measurement of business process model quality are limited at best. In this paper I argue that the development of methodical theories concerning the measurement or establishment of process model quality must be preceded by methodological elaborations on business process modelling. I further argue that existing epistemological foundations of process modelling are insufficient for describing all extrinsic and intrinsic traits of model quality. This in turn has led to a lack of holistic understanding of process modelling. Taking into account the inherent social and purpose-oriented character of process modelling in contemporary organizations I present a socio-pragmatic constructionist methodology of business process modelling and sketch out implications of this perspective towards an understanding of process model quality. I anticipate that, based on this research, theories can be developed that facilitate the evaluation of the ’goodness’ of a business process model.

  16. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  17. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  18. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  19. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  20. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    Science.gov (United States)

    Cárdenas, Walter HZ; Mamani, Javier B; Sibov, Tatiana T; Caous, Cristofer A; Amaro, Edson; Gamarra, Lionel F

    2012-01-01

    Background Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium. Methods Finite difference methods and the Crank–Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging. Results Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results. Conclusion These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes. PMID:22745539

  1. Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland

    Science.gov (United States)

    van der Bilt, Willem G. M.; Rea, Brice; Spagnolo, Matteo; Roerdink, Desiree L.; Jørgensen, Steffen L.; Bakke, Jostein

    2018-05-01

    The Arctic warms faster than any other region of our planet. Besides melting glaciers, thawing permafrost and decreasing sea-ice, this amplified response affects earth surface processes. This geomorphological expression of climate change may alter landscapes and increase the frequency and magnitude of geohazards like floods or mass-movements. Beyond the short span of sparse monitoring time series, geological archives provide a valuable long-term context for future risk assessment. Lake sediment sequences are particularly promising in this respect as continuous recorders of surface process change. Over the past decade, the emergence of new techniques that characterize depositional signatures in more detail has enhanced this potential. Here, we present a well-dated Holocene-length lake sediment sequence from Ammassalik Island on southeast Greenland. This area is particularly sensitive to regional shifts in the Arctic climate system due to its location near the sea-ice limit, the Greenland Ice Sheet and the convergence of polar and Atlantic waters. The expression of Holocene change is fingerprinted using physical (grain size, organic content, density), visual (3-D Computed Tomography) and geochemical (X-Ray Fluorescence, X-Ray Diffraction) evidence. We show that three sharp transitions characterize the Holocene evolution of Ymer Lake. Between 10 and 9.5 cal. ka BP, rapid local glacier loss from the lake catchment culminated in an outburst flood. Following a quiescent Holocene climatic optimum, Neoglacial cooling, lengthening lake ice cover and shifting wind patterns prompted in-lake avalanching of sediments from 4.2 cal. ka BP onwards. Finally, glaciers reformed in the catchment around 1.2 cal. ka BP. The timing of these shifts is consistent with the regional expression of deglaciation, Neoglacial cooling and Little Ice Age-type glacier growth, respectively. The novel multi-proxy approach applied in this study rigorously links depositional sediment signatures to

  2. Hydrothermal processes in the Edmond deposits, slow- to intermediate-spreading Central Indian Ridge

    Science.gov (United States)

    Cao, Hong; Sun, Zhilei; Zhai, Shikui; Cao, Zhimin; Jiang, Xuejun; Huang, Wei; Wang, Libo; Zhang, Xilin; He, Yongjun

    2018-04-01

    The Edmond hydrothermal field, located on the Central Indian Ridge (CIR), has a distinct mineralization history owing to its unique magmatic, tectonic, and alteration processes. Here, we report the detailed mineralogical and geochemical characteristics of hydrothermal metal sulfides recovered from this area. Based on the mineralogical investigations, the Edmond hydrothermal deposits comprise of high-temperature Fe-rich massive sulfides, medium-temperature Zn-rich sulfide chimney and low-temperature Ca-rich sulfate mineral assemblages. According to these compositions, three distinctive mineralization stages have been identified: (1) low-temperature consisting largely of anhydrite and pyrite/marcasite; (2) medium-high temperature distinguished by the mineral assemblage of pyrite, sphalerite and chalcopyrite; and (3) low-temperature stage characterized by the mineral assemblage of colloidal pyrite/marcasite, barite, quartz, anglesite. Several lines of evidence suggest that the sulfides were influenced by pervasive low-temperature diffuse flows in this area. The hydrothermal deposits are relatively enriched in Fe (5.99-18.93 wt%), Zn (2.10-10.00 wt%) and Ca (0.02-19.15 wt%), but display low Cu (0.28-0.81 wt%). The mineralogical varieties and low metal content of sulfides in the Edmond hydrothermal field both indicate that extensive water circulation is prevalent below the Edmond hydrothermal field. With regard to trace elements, the contents of Pb, Ba, Sr, As, Au, Ag, and Cd are significantly higher than those in other sediment-starved mid-ocean ridges, which is indicative of contribution from felsic rock sources. Furthermore, the multiphase hydrothermal activity and the pervasive water circulation underneath are speculated to play important roles in element remobilization and enrichment. Our findings deepen our understanding about the complex mineralization process in slow- to intermediate-spreading ridges globally.

  3. The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2017-01-01

    Full Text Available Yttrium oxide thin films were prepared by reactive magnetron sputtering in different deposition condition with various oxygen flow rates. The annealing influence on the yttrium oxide film microstructure is investigated. The oxygen flow shows a hysteresis behavior on the deposition rate. With a low oxygen flow rate, the so called metallic mode process with a high deposition rate (up to 1.4µm/h was achieved, while with a high oxygen flow rate, the process was considered to be in the poisoned mode with an extremely low deposition rate (around 20nm/h. X-ray diffraction (XRD results show that the yttrium oxide films that were produced in the metallic mode represent a mixture of different crystal structures including the metastable monoclinic phase and the stable cubic phase, while the poisoned mode products show a dominating monoclinic phase. The thin films prepared in metallic mode have relatively dense structures with less porosity. Annealing at 600 °C for 15h, as a structure stabilizing process, caused a phase transformation that changes the metastable monoclinic phase to stable cubic phase for both poisoned mode and metallic mode. The composition of yttrium oxide thin films changed from nonstoichiometric to stoichiometric together with a lattice parameter variation during annealing process. For the metallic mode deposition however, cracks were formed due to the thermal expansion coefficient difference between thin film and the substrate material which was not seen in poisoned mode deposition. The yttrium oxide thin films that deposited in different modes give various application options as a nuclear material.

  4. A critical literature review of focused electron beam induced deposition

    International Nuclear Information System (INIS)

    Dorp, W. F. van; Hagen, C. W.

    2008-01-01

    An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally

  5. Understanding Patients’ Process to Use Medical Marijuana

    Directory of Open Access Journals (Sweden)

    Tara L Crowell

    2016-09-01

    Full Text Available Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medicinal marijuana—diagnosis, what prompted them to seek treatment, level of satisfaction with specific stages in the process, total length of time the process took, and patient’s level of pain. Results reveal numerous patient diagnoses for which medical marijuana is being prescribed; the top 4 most common are intractable skeletal spasticity, chronic and severe pain, multiple sclerosis, and inflammatory bowel disease. Next, results indicate a little over half of the patients were first prompted to seek alternative treatment from their physicians, while the remaining patients indicated that other sources such as written information along with friends, relatives, media, and the Internet persuaded them to seek treatment. These data indicate that a variety of sources play a role in prompting patients to seek alternative treatment and is a critical first step in this process. Additional results posit that once patients began the process of qualifying to receive medical marijuana as treatment, the process seemed more positive even though it takes patients on average almost 6 months to obtain their first treatment after they started the process. Finally, results indicate that patients are reporting a moderately high level of pain prior to treatment. Implication of these results highlights several important elements in the patients’ initial steps toward seeking medical marijuana, along with the quality and quantity of the process patients must engage in prior to

  6. Influence of radioactive contamination to agricultural products due to dry and wet deposition processes during a nuclear emergency

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Han, Moon Hee; Choi, Yong Ho; Lee, Chang Woo

    2002-01-01

    Combined with deposition model onto the ground of radionuclides, the influence of radioactive contamination to agricultural products was analyzed due to wet deposition as well as dry deposition from radioactive air concentration during a nuclear emergency. The previous dynamic food chain model, in which initial input parameter is only radionuclide concentrations on the ground, was improved for the evaluating of radioactive contamination to agricultural products from either radionuclide concentrations in air or radionuclide concentrations on the ground. As the results, in case of deposition onto the ground, wet deposition was more dominant process than dry deposition. While the contamination levels of agricultural products were dependent on the a variety of factors such as radionuclides and rainfall rate. It means that the contamination levels of agricultural products are determined from which is more dominant process between deposition on the ground and interception onto agricultural plants

  7. Ion - beam assisted process in the physical deposition of organic thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Spassova, E; Assa, J; Danev, G [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Georgiev, A, E-mail: dean@clf.bas.b [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    A novel method was developed for physical deposition of thin polyimide layers by applying an argon plasma assisted process. The influence was investigated of the plasma on the combined molecular flux of the two thermally evaporated precursors - oxydianiline and pyromellitic dianhydride. The effects observed on the properties of the deposited films are explained with the increased energy of the precursor molecules resulting from the ion-molecular collisions. As could be expected, molecules with higher energy possess higher mobility and thus determine the modification of the films structure and their electrical properties.

  8. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Thin Films and Capacitors

    Science.gov (United States)

    Iwagoshi, Joel A.

    Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V

  9. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    Administrator

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.

  10. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  11. Analysis of microstructure in electro-spark deposited IN718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanrewaju.ojo@umanitoba.ca

    2016-09-15

    The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free of the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.

  12. Compilation of information on uncertainties involved in deposition modeling

    International Nuclear Information System (INIS)

    Lewellen, W.S.; Varma, A.K.; Sheng, Y.P.

    1985-04-01

    The current generation of dispersion models contains very simple parameterizations of deposition processes. The analysis here looks at the physical mechanisms governing these processes in an attempt to see if more valid parameterizations are available and what level of uncertainty is involved in either these simple parameterizations or any more advanced parameterization. The report is composed of three parts. The first, on dry deposition model sensitivity, provides an estimate of the uncertainty existing in current estimates of the deposition velocity due to uncertainties in independent variables such as meteorological stability, particle size, surface chemical reactivity and canopy structure. The range of uncertainty estimated for an appropriate dry deposition velocity for a plume generated by a nuclear power plant accident is three orders of magnitude. The second part discusses the uncertainties involved in precipitation scavenging rates for effluents resulting from a nuclear reactor accident. The conclusion is that major uncertainties are involved both as a result of the natural variability of the atmospheric precipitation process and due to our incomplete understanding of the underlying process. The third part involves a review of the important problems associated with modeling the interaction between the atmosphere and a forest. It gives an indication of the magnitude of the problem involved in modeling dry deposition in such environments. Separate analytics have been done for each section and are contained in the EDB

  13. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  14. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan; Zohdi, Tarek I.

    2015-01-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface

  15. Description of extreme-wave deposits on the northern coast of Bonaire, Netherlands Antilles

    Science.gov (United States)

    Watt, Steven G.; Jaffe, Bruce E.; Morton, Robert A.; Richmond, Bruce M.; Gelfencaum, Guy

    2010-01-01

    To develop a better understanding of the origins of extreme-wave deposits and to help assess the potential risk of future overwash events, a field mapping survey was conducted in November 2006 on the northern coast of Bonaire, Netherlands Antilles. Deposits were mapped and analyzed to help develop a systematic sedimentological approach to distinguish the type of extreme-wave event (tsunamis or storms) or combination of events that formed and modified the deposits over time. Extreme-wave deposits on the northern coast of Bonaire between Boka Onima and Boka Olivia have formed sand sheets, poly-modal ridge complexes, and boulder fields on a Pleistocene limestone platform 3?8 meters above sea level. The deposits exhibit characteristics that are consistent with both large storm and tsunami processes that often overlap one another. Sand sheets occur as low-relief features underlying and incorporated with boulder field deposits. The seaward edge of ridge complexes are deposited up to 70 m from the shoreline and can extend over 200 m inland. Over 600 clasts were measured in fields and range in size from coarse gravel to fine block, weigh up to 165 metric tons, and are placed over 280 m from the shoreline. Our analyses indicate that the deposits may have been produced by a combination of hurricane and tsunami events spanning 10s to 1000s of years. Comparing the different deposit morphologies between study sites highlights the importance of shoreline orientation to the distribution of extreme-wave deposits onshore. However, further investigation is required to fully understand the processes that have produced and modified these deposits over time.

  16. Unconventional isotope systems applied to enhancing the petrogenesis of uranium deposits

    International Nuclear Information System (INIS)

    Voignot, A.; Chipley, D.; Kyser, K.; Uvarova, Y.

    2014-01-01

    Among the new techniques applied to the petrogenesis and evolution of uranium deposits from their formation to later alteration is isotope tracing. The isotope systems being used include Li, C, N, Fe, Mo, Tl, Pb and U, all of which reflect different, but overlapping, processes. Although Pb isotopes have been used to understand the temporal evolution and migration of radiogenic Pb from the deposits, Li, C, N, Mo, Tl and U isotope systems are new ways to analyze deposits and barren areas and to reveal their precise redox mechanisms. Geochemical technologies for exploration include "2"3"8U/"2"3"5U ratios of uranium minerals, which vary as a function of the type of uranium deposit and the efficiency of the redox processes. Lithium isotope ratios in muscovite and chlorite associated with mineralizing events are distinct from background ratios, with the lowest values reflecting the beginning of hydrothermal alteration systems and the highest values indicative of the terminal flow of hydrothermal fluids. Carbon and N reflect the influence of biospheric processes on the deposits and dispersion of elements that can be used for exploration. Iron, Mo and Tl are common elements in many uranium deposits and are among the most redox active elements. Their isotopes separate among phases having different oxidation potentials. They reflect the efficiency of the redox systems associated with fixing the uranium and the subsequent processes involved in mobilizing elements from the deposits. Isotopes add benefits to refining genetic models for uranium deposits, thereby enhancing our exploration models as well. An additional goal of applying isotope geochemistry to uranium deposits is to be able to use them to reflect a definitive process that occurs in the deposit and not in barren systems, and then to relate these to something that is easier to measure, namely elemental concentrations. (author)

  17. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  18. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  19. Uraniferous surficial deposits

    International Nuclear Information System (INIS)

    Toens, P.D.; Hambleton-Jones, B.B.

    1980-10-01

    As a result of the discovery of uranium in surficial deposits of Tertiary to Recent age, in Australia and Southern Africa, increasing attention is being paid to the location and understanding of the genesis of these deposits. The paper discusses the definitions and terminology currently in use and a classification of these deposits is presented. It is concluded that in order to obtain a measure of clarity, the terms calcrete, gypcrete and dolocrete should not be used to describe the uraniferous valley-fill deposits of Southern Africa and Australia [af

  20. A Dual Process Approach to Understand Tourists’ Destination Choice Processes

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, Albert

    2017-01-01

    Most studies that investigate tourists' choices of destinations apply the concept of mental destination representations, also referred to as destination image. The present study investigates tourists’ destination choice processes by conceptualizing how different components of destination image...... are mentally processed in tourists' minds. Specifically, the seminal dual processing approach is applied to the destination image literature. By doing this, we argue that some components of mental destination representations are processed systematically while others serve as inputs for heuristics...... that individuals apply to inform their decision making. Understanding how individuals make use of their mental destination representations and how they color their decision-making is essential in order to better explain tourist behavior....

  1. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  2. Investigating Dry Deposition of Ozone to Vegetation

    Science.gov (United States)

    Silva, Sam J.; Heald, Colette L.

    2018-01-01

    Atmospheric ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. The majority of atmospheric chemistry models calculate dry deposition using a resistance-in-series parameterization by Wesely (1989), which is dependent on many environmental variables and lookup table values. The uncertainties contained within this parameterization have not been fully explored, ultimately challenging our ability to understand global scale biosphere-atmosphere interactions. In this work, we evaluate the GEOS-Chem model simulation of ozone dry deposition using a globally distributed suite of observations. We find that simulated daytime deposition velocities generally reproduce the magnitude of observations to within a factor of 1.4. When correctly accounting for differences in land class between the observations and model, these biases improve, most substantially over the grasses and shrubs land class. These biases do not impact the global ozone burden substantially; however, they do lead to local absolute changes of up to 4 ppbv and relative changes of 15% in summer surface concentrations. We use MERRA meteorology from 1979 to 2008 to assess that the interannual variability in simulated annual mean ozone dry deposition due to model input meteorology is small (generally less than 5% over vegetated surfaces). Sensitivity experiments indicate that the simulation is most sensitive to the stomatal and ground surface resistances, as well as leaf area index. To improve ozone dry deposition models, more measurements are necessary over rainforests and various crop types, alongside constraints on individual depositional pathways and other in-canopy ozone loss processes.

  3. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Science.gov (United States)

    Westbeld, A.; Klemm, O.; Grießbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.

    2009-09-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m-2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m-2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i) deposition of water to the desert, and (ii) intensification of advection fog through additional formation of radiation fog.

  4. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Energy Technology Data Exchange (ETDEWEB)

    Westbeld, A.; Klemm, O.; Griessbaum, F.; Straeter, E. [Muenster Univ. (Germany). Inst. of Landscape Ecology; Larrain, H. [Pontificia Univ. Catolica de Chile (Chile). Atacama Desert Center ADC; Univ. Bolivariana, Iquique (Chile); Osses, P.; Cereceda, P. [Pontificia Univ. Catolica de Chile, Santiago de Chile (Chile). Inst. of Geography

    2009-07-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m{sup -2} of water were made available through deposition. Whole-year deposition was estimated as 25 L m{sup -2}. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i) deposition of water to the desert, and (ii) intensification of advection fog through additional formation of radiation fog. (orig.)

  5. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Directory of Open Access Journals (Sweden)

    P. Osses

    2009-09-01

    Full Text Available In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m−2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m−2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i deposition of water to the desert, and (ii intensification of advection fog through additional formation of radiation fog.

  6. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    Directory of Open Access Journals (Sweden)

    Cárdenas WH

    2012-06-01

    Full Text Available Walter HZ Cárdenas, Javier B Mamani, Tatiana T Sibov, Cristofer A Caous, Edson Amaro Jr, Lionel F GamarraInstituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, BrazilBackground: Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium.Methods: Finite difference methods and the Crank-Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging.Results: Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results.Conclusion: These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes.Keywords: magnetite, nanoparticles, diffusion, sedimentation, agglomerates, computational modeling, cellular labeling, magnetic resonance imaging

  7. Self-Ordering and Complexity in Epizonal Mineral Deposits

    Science.gov (United States)

    Henley, Richard W.; Berger, Byron R.

    Epizonal base and precious metal deposits makeup a range of familiar deposit styles including porphyry copper-gold, epithermal veins and stockworks, carbonate-replacement deposits, and polymetallic volcanic rock-hosted (VHMS) deposits. They occur along convergent plate margins and are invariably associated directly with active faults and volcanism. They are complex in form, variable in their characteristics at all scales, and highly localized in the earth's crust. More than a century of detailed research has provided an extensive base of observational data characterizing these deposits, from their regional setting to the fluid and isotope chemistry of mineral deposition. This has led to a broad understanding of the large-scale hydrothermal systems within which they form. Low salinity vapor, released by magma crystallization and dispersed into vigorously convecting groundwater systems, is recognized as a principal source of metals and the gases that control redox conditions within systems. The temperature and pressure of the ambient fluid anywhere within these systems is close to its vapor-liquid phase boundary, and mineral deposition is a consequence of short timescale perturbations generated by localized release of crustal stress. However, a review of occurrence data raises questions about ore formation that are not addressed by traditional genetic models. For example, what are the origins of banding in epithermal veins, and what controls the frequency of oscillatory lamination? What controls where the phenomenon of mineralization occurs, and why are some porphyry deposits, for example, so much larger than others? The distinctive, self-organized characteristics of epizonal deposits are shown to be the result of repetitive coupling of fracture dilation consequent on brittle failure, phase separation ("boiling"), and heat transfer between fluid and host rock. Process coupling substantially increases solute concentrations and triggers fast, far

  8. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-17

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  9. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  10. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  11. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    Energy Technology Data Exchange (ETDEWEB)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu

    2017-02-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  12. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    International Nuclear Information System (INIS)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik

    2017-01-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  13. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  14. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  15. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  16. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  17. Mining and processing of uranium deposits in Salamanca, Spain

    International Nuclear Information System (INIS)

    Gomez Jaen, J.P.; Otero, J.; Serrano, J.R.; Membrillera, J.R.; Josa, J.M.

    1977-01-01

    In July, 1974, Empresa Nacional del Uranio, S.A. (ENUSA), took the decision to mine uranium in the province of Salamanca, based on geological and processing studies carried out by the Junta de Energia Nuclear (JEN). The milling plant was designed by JEN and assembled by ENUSA, and operations were begun on 22 May, 1975. The orebody, FE-1, is composed of slate of Cambrain age and the fissures are filled by primary minerals. Secondary minerals are impregnated in the zone affected by the hydrostatic level. The orebody is of the stockwork type in which carbonaceous matter has acted as a reducing agent. The average grade of the ore is 0.09% U 3 O 8 at a cutoff grade of 0.02% U 3 O 8 : the deposit is therefore among the lowest-grade deposits that are currently mined. Annual production is 1 200 000 t of rock, of which 200 000 t is ore-bearing. The milling plant uses a static heap-leaching method, followed by solvent extraction (tertiary amines) and precipitation by ammonia. Joint studies by JEN and ENUSA have led to the introduction of modifications that have increased the production capacity from 75 to 112 t U 3 O 8 per annum with no significant alteration in the initial planned investment. The total recovery after processing is 75% of the U 3 O 8 contained in the ore. Approximately 100 people are employed in the overall operation. ENUSA has decided to expand operations in Salamanca with the construction of a new milling plant (technological aid by JEN), which will be capable of processing 825 000 t of ore per year, with an annual production of 500 t U 3 O 8 . The new plant is expected to begin operations in 1979. (author)

  18. Preparation of iron-deposited graphite surface for application as cathode material during electrochemical vat-dyeing process

    International Nuclear Information System (INIS)

    Anbu Kulandainathan, M.; Kiruthika, K.; Christopher, G.; Babu, K. Firoz; Muthukumaran, A.; Noel, M.

    2008-01-01

    Iron-deposited graphite surfaces were prepared, characterized and employed as cathode materials for electrochemical vat-dyeing process containing very low concentration of sodium dithionite. The electrodeposition, in presence of ammonium thiocyanate and gelatin or animal glue as binding additives, were found to give finer iron deposits for improved electrochemical dyeing application. The electrodeposits were characterized using scanning electron microscopy, electron-dispersive X-ray spectroscopy and X-ray diffraction methods, before and after electrochemical dyeing process. The electrochemical activity of the iron-deposited graphite electrodes always stored in water seems to depend on the surface-bound Fe 3+ /Fe 2+ redox species. Vat dyes like C.I. Vat Violet 1, C.I. Vat Green 1 and C.I. Vat Blue 4 could be efficiently dyed employing these above electrode materials. The colour intensity and washing fastness of the dyed fabrics were found to be equal with conventionally dyed fabrics. The electrodes could also be reused for the dyeing process

  19. Silicon oxide barrier films deposited on PET foils in pulsed plasmas: influence of substrate bias on deposition process and film properties

    International Nuclear Information System (INIS)

    Steves, S; Bibinov, N; Awakowicz, P; Ozkaya, B; Liu, C-N; Ozcan, O; Grundmeier, G

    2013-01-01

    A widely used plastic for packaging, polyethylene terephtalate (PET) offers limited barrier properties against gas permeation. For many applications of PET (from food packaging to micro electronics) improved barrier properties are essential. A silicon oxide barrier coating of PET foils is applied by means of a pulsed microwave driven low-pressure plasma. While the adjustment of the microwave power allows for a control of the ion production during the plasma pulse, a substrate bias controls the energy of ions impinging on the substrate. Detailed analysis of deposited films applying oxygen permeation measurements, x-ray photoelectron spectroscopy and atomic force microscopy are correlated with results from plasma diagnostics describing the deposition process. The influence of a change in process parameters such as gas mixture and substrate bias on the gas temperature, electron density, mean electron energy, ion energy and the atomic oxygen density is studied. An additional substrate bias results in an increase in atomic oxygen density up to a factor of 6, although plasma parameter such as electron density of n e = 3.8 ± 0.8 × 10 17 m −3 and electron temperature of k B T e = 1.7 ± 0.1 eV are unmodified. It is shown that atomic oxygen densities measured during deposition process higher than n O = 1.8 × 10 21 m −3 yield in barrier films with a barrier improvement factor up to 150. Good barrier films are highly cross-linked and show a smooth morphology. (paper)

  20. Polymer deposition morphology by electrospray deposition - Modifications through distance variation

    International Nuclear Information System (INIS)

    Altmann, K.; Schulze, R.-D.; Friedrich, J.

    2014-01-01

    Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. - Highlights: • We deposited polyacrylic acid and polyallylamine by electrospray ionization (ESI). • The morphology in dependence of flight distance (20 mm to 200 mm) was analyzed. • The amount of residual solvent after deposition was determined. • ESI-process slows down for polyacrylic acid after 40 mm flight distance. • ESI-Process is complete for polyallylamine within the first 20 mm

  1. The importance of understanding during the teaching process

    Directory of Open Access Journals (Sweden)

    Dubljanin Saša

    2015-01-01

    Full Text Available Learning in the teaching process often goes on without proper understanding which is one of important problems that modern didactics tries to solve. In order to direct the totality of teaching towards understanding it is necessary to answer the question what understanding is, which is why we analysed different philosophical views on the concept of understanding and stressed their semblance to pedagogic explanations. Different kinds of understanding were analyzed as well as their role and contribution in different teaching situations, especially in the context of problem solving. As an alternative to the teaching based on accumulation of knowledge the characteristics and some principles of teaching focused on understanding are described, and the need for stimulating and developing understanding as an important goal of education. The results of our research unequivocally show that learning with understanding enables students to memorize the teaching material better, as well as to understand the whole teaching subject and efficiently apply the acquired knowledge out of school, and leads to more flexible behaviour and better coping in everyday life.

  2. Biomarkers and taphonomic processes in fresh and fossil biosignatures from Hot Spring silica deposits in El Tatio Chile, as a Mars Analogue

    Science.gov (United States)

    Carrizo, D.; Sánchez-García, L.; Parro, V.; Cady, S. L.; Cabrol, N. A.

    2017-09-01

    Biomarkers characterization and taphonomic process of recent and fossil biosignatures in extreme environments with analogies to Mars is essential to understanding how life could develop and survive in this conditions. Siliceous sinter deposits on Mars where similar to those found in the hydrothermal hot springs and geysers from El Tatio, Chile. Organic preservation have been shown in this study. Many different labile functional groups (i.e., carboxylic acids, alcohols, aldehydes, etc.) were found in both "age" samples. A shift in congener pattern for the different lipids families were found and discuss. This results give insight in taphonomic processes actin in this extreme environment, which could be used as a baseline in Mars exploration.

  3. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  4. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    International Nuclear Information System (INIS)

    Maydannik, Philipp S.; Kääriäinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C.; Söderlund, Mikko; Soininen, Pekka; Johansson, Petri; Kuusipalo, Jurkka; Moro, Lorenza; Zeng, Xianghui

    2014-01-01

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20 nm thickness Al 2 O 3 diffusion barrier layers on 500 mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105 °C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20 nm Al 2 O 3 films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38 °C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument ( −4  g/m 2 day) for films coated at web moving speed of 0.25 m/min. Measurements using the Ca test indicated water vapor transmission rates ∼5 × 10 −6 g/m 2 day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate

  5. Task-specific visual cues for improving process model understanding

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Context Business process models support various stakeholders in managing business processes and designing process-aware information systems. In order to make effective use of these models, they have to be readily understandable. Objective Prior research has emphasized the potential of visual cues to

  6. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  7. Deposition of high Tc superconductor thin films by pulsed excimer laser ablation and their post-synthesis processing

    International Nuclear Information System (INIS)

    Ogale, S.B.

    1992-01-01

    This paper describes the use of pulsed excimer laser ablation technique for deposition of high quality superconductor thin films on different substrate materials such as Y stabilized ZrO 2 , SrTiO 3 , LiNbO 3 , Silicon and Stainless Steels, and dopant incorporation during the film depositions. Processing of deposited films using ion and laser beams for realisation of device features are presented. 28 refs., 16 figs

  8. Effect of Processing Parameters on Performance of Spray-Deposited Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Jack W. Owen

    2011-01-01

    Full Text Available The performance of organic thin-film transistors (OTFTs is often strongly dependent on the fabrication procedure. In this study, we fabricate OTFTs of soluble small-molecule organic semiconductors by spray-deposition and explore the effect of processing parameters on film morphology and device mobility. In particular, we report on the effect of the nature of solvent, the pressure of the carrier gas used in deposition, and the spraying distance. We investigate the surface morphology using scanning force microscopy and show that the molecules pack along the π-stacking direction, which is the preferred charge transport direction. Our results demonstrate that we can tune the field-effect mobility of spray-deposited devices two orders of magnitude, from 10−3 cm2/Vs to 10−1 cm2/Vs, by controlling fabrication parameters.

  9. Rapid processing method for solution deposited YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dawley, J.T.; Clem, P.G.; Boyle, T.J.; Ottley, L.M.; Overmyer, D.L.; Siegal, M.P

    2004-02-01

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm{sup 2} current density (J{sub c}) YBCO films, from multiple hours to {approx}20 s in atmospheric pressure air. High quality, {approx}0.2 {mu}m thick YBCO films with J{sub c} (77 K) values {>=}2 MA/cm{sup 2} at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO{sub 3}. This process has also enabled J{sub c} (77 K)=1.1 MA/cm{sup 2} YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable {approx}$10/kA m solution deposited YBCO coated conductor wires.

  10. Cost-benefit analysis of the ATM automatic deposit service

    Directory of Open Access Journals (Sweden)

    Ivica Županović

    2015-03-01

    Full Text Available Bankers and other financial experts have analyzed the value of automated teller machines (ATM in terms of growing consumer demand, rising costs of technology development, decreasing profitability and market share. This paper presents a step-by-step cost-benefit analysis of the ATM automatic deposit service. The first step is to determine user attitudes towards using ATM automatic deposit service by using the Technology Acceptance Model (TAM. The second step is to determine location priorities for ATMs that provide automatic deposit services using the Analytic Hierarchy Process (AHP model. The results of the previous steps enable a highly efficient application of cost-benefit analysis for evaluating costs and benefits of automatic deposit services. To understand fully the proposed procedure outside of theoretical terms, a real-world application of a case study is conducted.

  11. Low-pressure chemical vapor deposition as a tool for deposition of thin film battery materials

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    Low Pressure Chemical Vapor Deposition was utilized for the deposition of LiCoO2 cathode materials for all-solid-state thin-film micro-batteries. To obtain insight in the deposition process, the most important process parameters were optimized for the deposition of crystalline electrode films on

  12. Effects of vacuum processing erbium dideuteride/ditritide films deposited on chromium underlays on copper substrates

    International Nuclear Information System (INIS)

    Provo, J.L.

    1978-01-01

    Thin films of erbium dideuteride/ditritide were experimentally produced on chromium underlays deposited on copper substrates. The chromium underlay is required to prevent erbium occluder/copper substrate alloying which inhibits hydriding. Data taken has shown that vacuum processing affects the erbium/chromium/copper interaction. With an in situ process in which underlay/occluder films are vacuum deposited onto copper substrates and hydrided with no air exposure between these steps, data indicates a minimum of 1500A of chromium is required for optimum hydriding. If films are vacuum deposited as above and air-exposed before hydriding, a minimum of 3000A of chromium was shown to be required for equivalent hydriding. Data suggests that the activation step (600 0 C for 1 hour) required for hydriding the film of the second type is responsible for the difference observed. Such underlay thickness parameters are important, with regard to heat transfer considerations in thin hydride targets used for neutron generation

  13. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  14. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  15. Evidence for substantial forestry canopy processing of nitrogen deposition using isotopic tracer experiments in low deposition conditions

    Science.gov (United States)

    Ferraretto, Daniele; Heal, Kate

    2017-04-01

    Temperate forest ecosystems are significant sinks for nitrogen deposition (Ndep) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO2. Previous studies have shown evidence of biological nitrification and Ndep processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of Ndep (˜18 kg N ha-1 y-1) and has not yet been demonstrated in low Ndep environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower Ndep environment (˜7 kg N ha-1 year-1) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of Ndep in the forest canopy. Annual canopy Ndep uptake was ˜4.7 kg N ha-1 year-1, representing 60-76% of annual Ndep. To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double 15N-labelled NH4NO3 (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for 15NH4 and 15NO3. Comparing the amount of labelled N recovered under the sample trees with the measured δ15N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.

  16. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes

    Science.gov (United States)

    Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian

    2018-06-01

    Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.

  17. Understanding the reaction kinetics to optimize graphene growth on Cu by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Juergen; Boebel, Lena; Zwaschka, Gregor; Guenther, Sebastian [Technische Universitaet Muenchen, Zentralinstitut fuer Katalyseforschung, Chemie Department, Physikalische Chemie mit Schwerpunkt Katalyse, Garching (Germany)

    2017-11-15

    Understanding and controlling the growth kinetics of graphene is a prerequisite to synthesize this highly wanted material by chemical vapor deposition on Cu, e.g. for the construction of ultra-stable electron transparent membranes. It is reviewed that Cu foils contain a considerable amount of carbon in the bulk which significantly exceeds the expected amount of thermally equilibrated dissolved carbon in Cu and that this carbon must be removed before any high quality graphene may be grown. Starting with such conditioned Cu foils, systematic studies of the graphene growth kinetics in a reactive CH{sub 4}/H{sub 2} atmosphere allow to extract the following meaningful data: prediction of the equilibrium constant of the graphene formation reaction within a precision of a factor of two, the confirmation that the graphene growth proceeds from a C(ad)-phase on Cu which is in thermal equilibrium with the reactive gas phase, its apparent activation barrier and finally the prediction of the achievable growth velocity of the growing graphene flakes during chemical vapor deposition. As a result of the performed study, growth parameters are identified for the synthesis of high quality monolayer graphene with single crystalline domains of 100-1000 μm in diameter within a reasonable growth time. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. New deposition processes for the growth of oxide and nitride thin films

    International Nuclear Information System (INIS)

    Apen, E.A.; Atagi, L.M.; Barbero, R.S.; Espinoza, B.F.; Hubbard, K.M.; Salazar, K.V.; Samuels, J.A.; Smith, D.C.; Hoffman, D.M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this effort is to study the use of homoleptic metal amido compounds as precursors for chemical vapor deposition (CVD). The amides offer potential for the deposition of a variety of important materials at low temperatures. The establishment of these precursor compounds will enhance the ability to exploit the properties of advanced materials in numerous coatings applications. Experiments were performed to study the reactivity of Sn[NMe 2 ] 4 with oxygen. The data demonstrated that gas-phase insertion of oxygen into the Sn-N bond, leading to a reactive intermediate, plays an important role in tin oxide deposition. Several CVD processes for technologically important materials were developed using the amido precursor complexes. These included the plasma enhanced CVD of TiN and Zr 3 N 4 , and the thermal CVD of GaN and AlN. Quality films were obtained in each case, demonstrating the potential of the amido compounds as CVD precursors

  19. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Maydannik, Philipp S., E-mail: philipp.maydannik@lut.fi; Kääriäinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C. [Advanced Surface Technology Research Laboratory, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Söderlund, Mikko; Soininen, Pekka [Beneq Oy, P.O. Box 262, 01511 Vantaa (Finland); Johansson, Petri; Kuusipalo, Jurkka [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 589, 33101 Tampere (Finland); Moro, Lorenza; Zeng, Xianghui [Samsung Cheil Industries, San Jose R and D Center, 2186 Bering Drive, San Jose, California 95131 (United States)

    2014-09-01

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20 nm thickness Al{sub 2}O{sub 3} diffusion barrier layers on 500 mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105 °C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20 nm Al{sub 2}O{sub 3} films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38 °C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument (<5 × 10{sup −4} g/m{sup 2} day) for films coated at web moving speed of 0.25 m/min. Measurements using the Ca test indicated water vapor transmission rates ∼5 × 10{sup −6} g/m{sup 2} day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

  20. Process optimization of atomized melt deposition for the production of dispersion strengthened Al-8.5%Fe-1.2%V-1.7%Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1995-01-01

    Atomized melt deposition is a low cost manufacturing process with the microstructural control achieved through rapid solidification. In this process the liquid metal is disintegrated into fine droplets by gas atomization and the droplets are deposited on a substrate producing near net shape products. In the present investigation Al-8.5%Fe-1.2%V-1.7%Si alloy was produced using atomized melt deposition process to study the evolution of microstructure and assess the cooling rates and the undercooling achieved during the process. The size, morphology and the composition of second phase particles in the alloy are strong functions of the cooling rate and the undercooling and hence microstructural changes with the variation in process parameters were quantified. To define optimum conditions for the atomized melt deposition process, a mathematical model was developed. The model determines the temperature distribution of the liquid droplets during gas atomization and during the deposition stages. The model predicts the velocity distribution, cooling rates and the fraction solid, during the flight for different droplet sizes. The solidification heat transfer phenomena taking place during the atomized melt deposition process was analyzed using a finite difference method based on the enthalpy formulation

  1. Understanding of amount and dynamics of radioactive cesium deposited on trees in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I. [The University of Tokyo, 113-8657, 1-1-1 Yayoi Bunkyo-ku, Tokyo (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, 263-8555, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan); Ohashi, Mizue [University of Hyogo, 670-0092, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo (Japan)

    2014-07-01

    The accident of Fukushima Daiichi nuclear power plant after the earthquake and Tsunami in March 11, 2011 caused large amount of radioactive cesium ({sup 134}Cs, {sup 137}Cs) deposition onto the forest in the surrounding areas. River water from the forest area is used for food production and also for drinking water in these regions. In order to predict how radioactive Cs diffuse and discharge from the forest catchments, it is important to understand the amount and dynamics of radioactive Cs deposited on the trees. In this report, we show our preliminary results of {sup 137}Cs deposition in forest. Study was conducted in the forest at the upstream of Kami-Oguni River catchment, northern part of Fukushima Prefecture. Three plots (2 deciduous stands and 1 Japanese cedar (Cryptomeria japonica) plantation) were set in the forest. Quercus serrata and C. japonica, a representative of deciduous and evergreen tree species in this region, were chosen from each plot. Sample trees were logged in October 2012. Stem samples were collected every 2 m from above the ground to tree top and separated into bark, sapwood and heartwood. Litter traps were set in each plot and collected every month. Leaf litter was classified among species. Also, soil samples were collected in the cylinder of 5 cm in diameter and maximum 30 cm in depth from the forest floor every month. {sup 137}Cs concentration of all samples were measured by germanium semiconductor detector or NaI(Tl) scintillation counter. Deposited {sup 137}Cs was attached strongly on the bark of Q. serrata at high concentration (9-18 kBq/kg) but there were no clear relationship with tree height. In C. japonica, {sup 137}Cs concentration was about half times lower than that of Q. serrata at 0-10 m part of the tree. {sup 137}Cs concentration in wood of C. japonica was higher than Q. serrata. {sup 137}Cs concentration of sapwood was as high as that of heartwood in C. japonica, but in Q. serrata, {sup 137}Cs concentration in sapwood was

  2. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts

    NARCIS (Netherlands)

    Phoenix, G.K.; Hicks, W.K.; Cinderby, S.; Kuylenstierna, J.C.I.; Stock, W.D.; Dentener, F.J.; Giller, K.E.; Austin, A.T.; Lefroy, R.D.B.; Gimeno, B.S.; Ashmore, M.R.; Ineson, P.

    2006-01-01

    Increased atmospheric nitrogen (N) deposition is known to reduce plant diversity in natural and semi-natural ecosystems, yet our understanding of these impacts comes almost entirely from studies in northern Europe and North America. Currently, we lack an understanding of the threat of N deposition

  3. Plasma and process characterization of high power magnetron physical vapor deposition with integrated plasma equipment--feature profile model

    International Nuclear Information System (INIS)

    Zhang Da; Stout, Phillip J.; Ventzek, Peter L.G.

    2003-01-01

    High power magnetron physical vapor deposition (HPM-PVD) has recently emerged for metal deposition into deep submicron features in state of the art integrated circuit fabrication. However, the plasma characteristics and process mechanism are not well known. An integrated plasma equipment-feature profile modeling infrastructure has therefore been developed for HPM-PVD deposition, and it has been applied to simulating copper seed deposition with an Ar background gas for damascene metalization. The equipment scale model is based on the hybrid plasma equipment model [M. Grapperhaus et al., J. Appl. Phys. 83, 35 (1998); J. Lu and M. J. Kushner, ibid., 89, 878 (2001)], which couples a three-dimensional Monte Carlo sputtering module within a two-dimensional fluid model. The plasma kinetics of thermalized, athermal, and ionized metals and the contributions of these species in feature deposition are resolved. A Monte Carlo technique is used to derive the angular distribution of athermal metals. Simulations show that in typical HPM-PVD processing, Ar + is the dominant ionized species driving sputtering. Athermal metal neutrals are the dominant deposition precursors due to the operation at high target power and low pressure. The angular distribution of athermals is off axis and more focused than thermal neutrals. The athermal characteristics favor sufficient and uniform deposition on the sidewall of the feature, which is the critical area in small feature filling. In addition, athermals lead to a thick bottom coverage. An appreciable fraction (∼10%) of the metals incident to the wafer are ionized. The ionized metals also contribute to bottom deposition in the absence of sputtering. We have studied the impact of process and equipment parameters on HPM-PVD. Simulations show that target power impacts both plasma ionization and target sputtering. The Ar + ion density increases nearly linearly with target power, different from the behavior of typical ionized PVD processing. The

  4. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  5. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  6. Plasma-assisted ALD for the conformal deposition of SiO2 : process, material and electronic properties

    NARCIS (Netherlands)

    Dingemans, G.; Helvoirt, van C.A.A.; Pierreux, D.; Keuning, W.; Kessels, W.M.M.

    2012-01-01

    Plasma-assisted atomic layer deposition (ALD) was used to deposit SiO2 films in the temperature range of Tdep = 50–400°C on Si(100). H2Si[N(C2H5)2]2 and an O2 plasma were used as Si precursor and oxidant, respectively. The ALD growth process and material properties were characterized in detail.

  7. Sedimentary facies and Holocene depositional processes of Laura Island, Majuro Atoll

    Science.gov (United States)

    Yasukochi, Toru; Kayanne, Hajime; Yamaguchi, Toru; Yamano, Hiroya

    2014-10-01

    The depositional processes that formed Laura Island, Majuro Atoll, Marshall Islands, were reconstructed based on a facies analysis of island sediments and spine ratios, and radiocarbon ages of foraminifera. Sedimentary facies were analyzed from trenches and drill cores excavated on the island and its adjacent reef flat. Depositional ages were obtained using benthic foraminifera (Calcarina) whose spines had not been abraded. The facies were classified into two types: gravelly and sandy. The initial sediments of these sites consisted of gravelly facies in the lower horizon and sandy facies in the upper horizon. Their ages were approximately 2000 cal BP and coincident with the onset of a 1.1-m decline in regional relative sea level, which enabled deposition of the gravelly facies. Half of the sand fraction of the sediment was composed of larger benthic foraminifera. The spine ratio showed that their supply source on the reef flat was located oceanside of the island. The supply source appears to have been caused by the relative sea-level fall. This indicates that the studied island was formed by a relative reduction in wave energy and enhanced foraminiferal supply, both of which were triggered by the late Holocene relative sea-level fall.

  8. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  9. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    International Nuclear Information System (INIS)

    Lee, Seung Moo; Won, Jaihyung; Yim, Soyoung; Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok; Byun, Dongjin

    2012-01-01

    thermal annealing of the high density, as-deposited a-C:H films. Furthermore, not only the density itself but also the variation of density with thermal annealing need to be elucidated in order to understand the dry etch properties of annealed a-C:H films. - Highlights: ► A-C:H(amorphous carbon) films are grown for using hard mask in dry etch process by plasma-enhanced chemical vapor deposition and annealed. ► Physical, chemical and mechanical properties of grown amorphous carbon films are changed by hydrogen and hydrocarbon contents, be determined by deposition and annealing temperature. ► Dry etch rate of a-C:H films is decreased and the film density increased through thermal annealing with high density, low hydrogen content, as-deposited film.

  10. Developing improved MD codes for understanding processive cellulases

    International Nuclear Information System (INIS)

    Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C

    2008-01-01

    The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose

  11. Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms.

    Science.gov (United States)

    Williams, J B; Clarkson, C; Mant, C; Drinkwater, A; May, E

    2012-12-01

    Fat, oil and grease deposits (FOG) in sewers are a major problem and can cause sewer overflows, resulting in environmental damage and health risks. Often simplistically portrayed as cooling of fats, recent research has suggested that saponification may be involved in FOG formation. However there are still questions about the mechanisms effecting transformations in sewers and the role and source of metal cations involved in saponification. This study characterises FOG deposits from pumping stations, sewers and sewage works from different water hardness zones across the UK. The sites all had previous problems with FOG and most catchments contained catering and food preparation establishments. The FOG deposits were highly variable with moisture content ranging from 15 to 95% and oil content from 0 to 548 mg/g. Generally the pumping stations had lower moisture content and higher fat content, followed by the sewers then the sewage works. The water in contact with the FOG had high levels of oil (mean of about 800 mg/L) and this may indicate poor kitchen FOG management practices. FOG fatty acid profiles showed a transformation from unsaturated to saturated forms compared to typical cooking oils. This seems to relate to ageing in the sewer network or the mechanism of formation, as samples from pumping stations had higher proportions of C18:1 compared to C16. This may be due to microbial transformations by bacteria such as Clostridium sp. in a similar process to adipocere formation. There was an association between water hardness and increased Ca levels in FOG along with harder deposits and higher melting points. A link between FOG properties and water hardness has not been previously reported for field samples. This may also be due to microbial processes, such as biocalcification. By developing the understanding of these mechanisms it may be possible to more effectively control FOG deposits, especially when combined with promotion of behavioural change. Copyright © 2012

  12. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    Science.gov (United States)

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  13. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    International Nuclear Information System (INIS)

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques

  14. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  15. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Tang, Xiao; Wu, Wei

    2014-01-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/Ni......W. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA...

  16. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)

    Energy Technology Data Exchange (ETDEWEB)

    Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma ' Tor Vergata' , Dipartimento di Ingegneria Industriale, UR INSTM ' Roma Tor Vergata' , Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

  17. Bioactive glass–ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol–gel vs melt-processing route)

    International Nuclear Information System (INIS)

    Rau, J.V.; Teghil, R.; Fosca, M.; De Bonis, A.; Cacciotti, I.; Bianco, A.; Albertini, V. Rossi; Caminiti, R.; Ravaglioli, A.

    2012-01-01

    Highlights: ► Bioactive glass–ceramic coatings for bone tissue repair and regeneration. ► Pulsed Lased Deposition allowed congruent transfer of target composition to coating. ► Target was prepared by sol–gel process suitable for compositional tailoring. ► Titanium, widely used for orthopaedics and dental implants, was used as substrate. ► The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass–ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol–gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm 2 and 500 °C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 μm thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 μm thick sol–gel films with the hardness of 17 GPa were obtained.

  18. A flexible angle sensor made from MWNT/CuO/Cu{sub 2}O nanocomposite films deposited by an electrophoretic co-deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Toboonsung, Buppachat, E-mail: buppachattt@yahoo.co.th [Physics and General Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000 (Thailand); Singjai, Pisith, E-mail: singjai@hotmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer MWNT/CuO/Cu{sub 2}Onanocomposite films were coated on a PET sheet. Black-Right-Pointing-Pointer The film resistance and application as angle sensor were investigated. Black-Right-Pointing-Pointer Thesensor showed a linear relation between the film resistance and the bending angle. Black-Right-Pointing-Pointer A minimum loop area and a high stability in sensitivity over a thousand bending cycles were obtained. - Abstract: A flexible angle sensor was prepared using an electrophoretic co-deposition process to form nanocomposite networks of multi-wall carbon nanotube/cupric oxide/cuprous oxide (MWNT/CuO/Cu{sub 2}O) on a polyethylene terephthalate (PET) sheet. The deposition method used copper and stainless steel electrodes, and the effects of varying of electrode separation, MWNT concentration in deionized water, voltage and deposition time were studied. The film resistance of the as-deposited samples decreased with increasing the MWNT concentration up to 0.3 mg/ml. The angle sensor showed a linear relation between the film resistance and the bending angle, a relationship that was illustrated with loop area and sensitivity data. The best angle sensor was successfully made with an electrode separation of 8 mm, a concentration of 0.3 mg/ml, a voltage of 10 V and a deposition time of 3 h, parameters that resulted in a minimum loop area and the most stability in sensitivity over a thousand bending cycles.

  19. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  20. Acidic deposition and global climate change

    International Nuclear Information System (INIS)

    Nikolaidis, N.P.; Ecsedy, C.; Olem, H.; Nikolaidis, V.S.

    1990-01-01

    A literature is presented which examines the research published on understanding ecosystem acidification and the effects of acidic deposition on freshwaters. Topics of discussion include the following: acidic deposition; regional assessments; atmospheric deposition and transport; aquatic effects; mathematical modeling; liming acidic waters; global climate change; atmospheric changes; climate feedbacks; and aquatic effects

  1. Integrated reservoir characterization of a Posidonia Shale outcrop analogue: From serendipity to understanding

    NARCIS (Netherlands)

    Zijp, M.H.A.A.; Veen, J.H. ten; Verreussel, R.M.C.H.; Ventra, D.

    2014-01-01

    Shale gas reservoir stimulation procedures (e.g. hydraulic fracturing) require upfront prediction and planning that should be supported by a comprehensive reservoir characterization. Therefore, understanding shale depositional processes and associated vertical and lateral sedimentological

  2. Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2014-01-01

    Full Text Available Fibrosis is the aberrant deposition of extracellular matrix (ECM components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD, caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.

  3. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  4. Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide.

    Science.gov (United States)

    Paulot, Fabien; Jacob, Daniel J; Henze, Daven K

    2013-04-02

    Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.

  5. Depositional turbidity currents in diapiric minibasins on the continental slope: Formulation and theory

    OpenAIRE

    Toniolo, Horacio; Lamb, Michael; Parker, Gary

    2006-01-01

    The northern continental slope of the Gulf of Mexico is riddled with numerous subsiding diapiric minibasins bounded by ridges, many but not all of which are connected by channels created by turbidity currents. The region is economically relevant in that many of these diapiric minibasins constitute focal points for the deposition of sand. Some of these sandy deposits in turn serve as excellent reservoirs for hydrocarbons. A better understanding of the "fill and spill" process by which minibasi...

  6. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  7. Interpretation of postdepositional processes related to the formation and destruction of the Jackpile-Paguate uranium deposit, northwest New Mexico

    International Nuclear Information System (INIS)

    Adams, S.S.; Curtis, H.S.; Hafen, P.L.; Salek-Nejad, H.

    1978-01-01

    This paper presents aspects of geological studies conducted on the Jackpile-Paguate uranium deposit in northwestern New Mexico in order to document and interpret certain geological characteristics of the deposit and suggest a sequence of processes which have formed and, in part, destroyed the deposits. The principle contributions of the paper are the field and petrologic observations and the interpretations they permit. 29 refs

  8. Study of liquid deposition during laser printing of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M.; Patrascioiu, A. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Dinca, V. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); National Institute for Lasers, Plasma and Radiation Physics, Atomistilor No. 409, PO Box MG 16, 077125 Bucharest (Romania); Fernandez-Pradas, J.M.; Morenza, J.L. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  9. Study of liquid deposition during laser printing of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Patrascioiu, A.; Dinca, V.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  10. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  11. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  12. Reactive physical vapor deposition of TixAlyN: Integrated plasma-surface modeling characterization

    International Nuclear Information System (INIS)

    Zhang Da; Schaeffer, J.K.

    2004-01-01

    Reactive physical vapor deposition (RPVD) has been widely applied in the microelectronic industry for producing thin films. Fundamental understanding of RPVD mechanisms is needed for successful process development due to the high sensitivity of film properties on process conditions. An integrated plasma equipment-target nitridation modeling infrastructure for RPVD has therefore been developed to provide mechanistic insights and assist optimal process design. The target nitridation model computes target nitride coverage based on self-consistently derived plasma characteristics from the plasma equipment model; target sputter yields needed in the plasma equipment model are also self-consistently derived taking into account the yield-suppressing effect from nitridation. The integrated modeling infrastructure has been applied to investigating RPVD processing with a Ti 0.8 Al 0.2 compound target and an Ar/N 2 gas supply. It has been found that the process produces athermal metal neutrals as the primary deposition precursor. The metal stoichiometry in the deposited film is close to the target composition due to the predominance of athermal species in the flux that reaches the substrate. Correlations between process parameters (N 2 flow, target power), plasma characteristics, surface conditions, and deposition kinetics have been studied with the model. The deposition process is characterized by two regimes when the N 2 flow rate is varied. When N 2 is dilute relative to argon, target nitride coverage increases rapidly with increasing N 2 flow. The sputter yield and deposition rate consequently decrease. For less dilute N 2 mixtures, the sputter yield and deposition rate are stable due to the saturation of target nitridation. With increasing target power, the electron density increases nearly linearly while the variation of N generation is much smaller. Target nitridation and its suppression of the sputter yield saturate at high N 2 flow rendering these parameters

  13. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, Vladimir; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A.

    2012-01-01

    Spatial atomic layer deposition can be used as a high-throughput manufacturing technique in functional thin film deposition for applications such as flexible electronics. This; however, requires low-temperature processing and handling of flexible substrates. The authors investigate the process

  14. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  15. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  16. Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago

    Science.gov (United States)

    Quartau, Rui; Ramalho, Ricardo S.; Madeira, José; Santos, Rúben; Rodrigues, Aurora; Roque, Cristina; Carrara, Gabriela; Brum da Silveira, António

    2018-01-01

    The submarine flanks of volcanic ocean islands are shaped by a variety of physical processes. Whilst volcanic constructional processes are relatively well understood, the gravitational, erosional and depositional processes that lead to the establishment of large submarine tributary systems are still poorly comprehended. Until recently, few studies have offered a comprehensive source-to-sink approach, linking subaerial morphology with near-shore shelf, slope and far-field abyssal features. In particular, few studies have addressed how different aspects of the subaerial part of the system (island height, climate, volcanic activity, wave regime, etc.) may influence submarine flank morphologies. We use multibeam bathymetric and backscatter mosaics of an entire archipelago - Madeira - to investigate the development of their submarine flanks. Crucially, this dataset extends from the nearshore to the deep sea, allowing a solid correlation between submarine morphologies with the physical and geological setting of the islands. In this study we also established a comparison with other island settings, which allowed us to further explore the wider implications of the observations. The submarine flanks of the Madeira Archipelago are deeply dissected by large landslides, most of which also affected the subaerial edifices. Below the shelf break, landslide chutes extend downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels has formed where no significant rocky/ridge outcrops are present. In Madeira Island these were likely generated by turbidity currents that originated as hyperpycnal flows, whilst on Porto Santo and Desertas their origin is attributed to storm-induced offshore sediment transport. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5°-3°, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter

  17. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery

    Science.gov (United States)

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.

    1994-01-01

    Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.

  18. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  19. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  20. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Nakao, Yoshinobu; Oki, Yuso

    2014-01-01

    Highlights: • Power plant with semi-closed gas turbine and O 2 –CO 2 coal gasifier was studied. • We adopt dry gas sulfur removal process to establish the system. • The exhaust gas circulation remarkably prevented carbon deposition. • Efficiency loss for exhaust gas circulation is quite small. • Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygen–CO 2 blown coal gasification provides efficient power generation with CO 2 separation feature by excluding pre-combustion type CO 2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO 2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO 2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  1. Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO2:Sb for flexible electronics

    International Nuclear Information System (INIS)

    Cranton, Wayne M.; Wilson, Sharron L.; Ranson, Robert; Koutsogeorgis, Demosthenes C.; Chi Kuangnan; Hedgley, Richard; Scott, John; Lipiec, Stephen; Spiller, Andrew; Speakman, Stuart

    2007-01-01

    The feasibility of low-temperature fabrication of transparent electrode elements from thin films of antimony-doped tin oxide (SnO 2 :Sb, ATO) has been investigated via inkjet printing, rf magnetron sputtering and post-deposition excimer laser processing. Laser processing of thin films on both glass and plastic substrates was performed using a Lambda Physik 305i excimer laser, with fluences in the range 20-100 mJ cm -2 reducing sheet resistance from as-deposited values by up to 3 orders of magnitude. This is consistent with TEM analysis of the films that shows a densification of the upper 200 nm of laser-processed regions

  2. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    Science.gov (United States)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of , and . The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  3. Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland

    Directory of Open Access Journals (Sweden)

    Tarek S. El-Madany

    2017-09-01

    Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.

  4. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    Science.gov (United States)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  5. TC17 titanium alloy laser melting deposition repair process and properties

    Science.gov (United States)

    Liu, Qi; Wang, Yudai; Zheng, Hang; Tang, Kang; Li, Huaixue; Gong, Shuili

    2016-08-01

    Due to the high manufacturing cost of titanium compressor blisks, aero engine repairing process research has important engineering significance and economic value. TC17 titanium alloy is a rich β stable element dual α+β phase alloy whose nominal composition is Ti-5Al-2Sn-2Zr-4Mo-4Cr. It has high mechanical strength, good fracture toughness, high hardenability and a wide forging-temperature range. Through a surface response experiment with different laser powers, scanning speeds and powder feeding speeds, the coaxial powder feeding laser melting deposition repair process is studied for the surface circular groove defects. In this paper, the tensile properties, relative density, microhardness, elemental composition, internal defects and microstructure of the laser-repaired TC17 forging plate are analyzed. The results show that the laser melting deposition process could realize the form restoration of groove defect; tensile strength and elongation could reach 1100 MPa and 10%, which could reach 91-98% that of original TC17 wrought material; with the optimal parameters (1000 W-25 V-8 mm/s), the microhardness of the additive zone, the heat-affected zone and base material is evenly distributed at 370-390 HV500. The element content difference between the additive zone and base material is less than ±0.15%. Due to the existence of the pores 10 μm in diameter, the relative density could reach 99%, which is mainly inversely proportional to the powder feeding speed. The repaired zone is typically columnar and dendrite crystal, and the 0.5-1.5 mm-deep heat-affected zone in the groove interface is coarse equiaxial crystal.

  6. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  7. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  8. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  9. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  10. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Baek, Jonghoon; Ma, James; Becker, Michael F.; Keto, John W.; Kovar, Desiderio

    2007-01-01

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10 -2 Pa (4.5 x 10 -4 Torr) of 99.9% purity

  11. Exogenous deposits

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Exogenous deposits forming as a result of complex exogenous processes, passed under the influence of outside forces on the Earth surface. To them relate physical and chemical weathering, decomposition and decay of mineral masses, redistribution and transportation of material, forming and deposit of new minerals and ores steady on the earth surface conditions

  12. Boiling of water in flow restricted areas modeled by colloidal silica deposits

    International Nuclear Information System (INIS)

    Peixinho, Jorge; Lefevre, Gregory; Coudert, Francois-Xavier; Hurisse, Olivier

    2012-09-01

    Understanding the effects of particle deposits on evaporation and boiling of water represents an important issue for EDF because it causes a severe reduction in efficiency particularly in steam generators of pressurized water reactor. These deposits are made of oxide metallic particles and the deposition process depends on multiple factors. Here we mimic deposits using a simple system made of hydrophilic silica particles. The present study reports experiments on evaporation or boiling of water confined in the pores of colloidal mono-dispersed silica micro-sphere deposits. The boiling of water confined in the pores of the colloidal crystal is studied using optical microscopy, scanning electron microscopy, nitrogen adsorption, water adsorption through infrared attenuated total reflectance spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. By comparison of the results with silica deposits and alumina membranes with cylindrical pores, our study shows that the morphology of the pores contributes to the evaporation and boiling of water. The measurements suggest that particle resuspension and crust formation take place during drying at elevated temperature and are responsible for cracks formation within the deposit film. (authors)

  13. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  14. D.C. Arcjet Diamond Deposition

    Science.gov (United States)

    Russell, Derrek Andrew

    1995-01-01

    Polycrystalline diamond films synthesized by a D.C. (direct current) arcjet device was reported for the first time in 1988. This device is capable of higher diamond growth rates than any other form of diamond CVD (chemical vapor deposition) process due to its inherent versatility with regard to the enthalpy and fluid properties of the diamond-depositing vapor. Unfortunately, the versatility of this type of device is contrasted by many difficulties such as arc stability and large heat fluxes which make applying it toward diamond deposition a difficult problem. The purpose of this work was to convert the dc arcjet, which is primarily a metallurgical device, into a commercially viable diamond CVD process. The project was divided into two parts: process development and diagnostics. The process development effort concentrated on the certain engineering challenges. Among these was a novel arcjet design that allowed the carbon-source gas to be injected downstream of the tungsten cathode while still facilitating mixture with the main gas feed. Another engineering accomplishment was the incorporation of a water -cooled substrate cooler/spinner that maintained the substrate at the proper temperature, provided the substrate with a large thermal time constant to reduce thermal shock of the diamond film, and enabled the system to achieve a four -inch diameter growth area. The process diagnostics effort concentrated on measurements aimed at developing a fundamental understanding of the properties of the plasma jet such as temperature, plasma density, Mach number, pressure at the substrate, etc. The plasma temperature was determined to be 5195 K by measuring the rotational temperature of C _2 via optical emission spectroscopy. The Mach number of the plasma jet was determined to be ~6.0 as determined by the ratio of the stagnation pressures before and after the shock wave in the plasma jet. The C_2 concentration in the plasma jet was determined to be {~10 }^{12} cm^ {-3} by

  15. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  16. Energy-enhanced atomic layer deposition : offering more processing freedom

    NARCIS (Netherlands)

    Potts, S.E.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition (ALD) is a popular deposition technique comprising two or more sequential, self-limiting surface reactions, which make up an ALD cycle. Energy-enhanced ALD is an evolution of traditional thermal ALD methods, whereby energy is supplied to a gas in situ in order to convert a

  17. The Impact of Hydrodynamics in Erosion - Deposition Process in Can Gio Mangrove Biosphere Reserve, South Viet Nam

    Science.gov (United States)

    Vo-Luong, H. P.

    2014-12-01

    Can Gio Mangrove Biosphere Reserve is always considered as a friendly green belt to protect and bring up the habitants. However, recently some mangrove areas in the Dong Tranh estuary are being eroded seriously. Based on the field measurements in SW and NE monsoons as well as data of topography changes in 10 years, it is proved that hydrodynamics of waves, tidal currents and riverine currents are the main reasons for erosion-deposition processes at the studied site. The erosion-deposition process changes due to monsoon. The analysed results show that high waves and tidal oscillation cause the increase of the erosion rate in NE monsoon. However, high sediment deposition occurs in SW monsoon due to weak waves and more alluvium from upstream. Many young mangrove trees grow up and develop in the SW monsoon. From the research, it is strongly emphasized the role of mangrove forests in soil retention and energy dissipation.

  18. Reactive nitrogen deposition to South East Asian rainforest

    Science.gov (United States)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid

  19. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1989-09-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. The following areas are discussed in detail: - the origins of the corrosion products and of cobalt-59 in the reactor feedwaters, - the consolidation of the cobalt in the fuel pin deposits (activation), - the release and transport of cobalt-60, - the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarised. Corrosion chemistry aspects of the cobalt build-up in the primary circuit have already been studied on a broad basis and are continuing to be researched in a number of centers. The crystal chemistry of chromium-nickel steel corrosion products poses a number of yet unanswered questions. There are major loopholes associated with the understanding of activation processes of cobalt deposited on the fuel pins and in the mass transfer of cobalt-60. For these processes, the most important influence stems from factors associated with colloid chemistry. Accumulation of data from different BWRs contributes little to the understanding of the activity build-up. However, there are examples that the problem of activity build-up can be kept under control. Although many details for a quantitative understanding are still missing, the most important correlations are visible. The activity build-up in the BWR recirculation systems cannot be kept low by a single measure. Rather a whole series of measures is necessary, which influences not only cobalt-60 deposition but also plant and operation costs. (author) 26 figs., 13 tabs., 90 refs

  20. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    Science.gov (United States)

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  1. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  2. The role of magmas in the formation of hydrothermal ore deposits

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  3. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  4. Towards an Understanding of Enabling Process Knowing in Global Software Development: A Case Study

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Babar, Muhammad Ali

    2014-01-01

    Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of informatio...... challenges of lack of process knowing and how an organization can enable process knowing for achieving the desired results that also help in increasing social interactions and positive behavioral changes......Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of information...... over a project lifecycle. Developing and sustaining process knowledge can be more challenging in Global Software Development (GSD). GSD distances can limit the ability of a team to develop a common understanding of processes. Anecdotes of the problems caused by lack of common understanding of processes...

  5. Clay minerals in uraniferous deposit of Imouraren (Tim Mersoi basin, Niger): implications on genesis of deposit and on ore treatment process

    International Nuclear Information System (INIS)

    Billon, Sophie

    2014-01-01

    Nigerian uraniferous deposits are located in carboniferous and Jurassic formations of Tim Mersoi basin. AREVA is shareholder of 3 mine sites in this area: SOMAIR and COMINAK, both in exploitation since 1960's and IMOURAREN, 80 km further South, whose exploitation is planned for 2015. Mineralization of Imouraren deposit is included in the fluvial formation of Tchirezrine 2 (Jurassic), composed of channels and flood plains. Facies of channel in-fillings range from coarse sandstones to siltstones, while overflow facies are composed of analcimolites. Secondary mineralogy was acquired during 2 stages: 1- diagenesis, with formation of clay minerals, analcime, secondary quartz and albites, and 2- stage of fluids circulations, which induced alteration of detrital and diagenetic minerals, formation of new phases and uranium deposition. A mineralogical zoning, at the scale of deposit resulted from this alteration. The heterogeneity of Tchirezrine 2, at the level of both facies and mineralogy, is also evidenced during ore treatment, as ore reacts differently depending on its source, with sometimes problems of U recovery. Ore treatment tests showed that analcimes and chlorites were both penalizing minerals, because of 1- the sequestration of U-bearing minerals into analcimes, 2- their dissolution which trends to move away from U solubilization conditions (pH and Eh) and to form numerous sulfates, and 3- problems of percolation. A detection method of analcime-rich ores, based on infrared spectroscopy, was developed in order to optimize ore blending and so to reduce negative effects during ore treatment process. (author)

  6. Connecting the records: exploiting tephra deposits to help understand abrupt climate change

    Science.gov (United States)

    Davies, S. M.; Abbott, P. M.; Bourne, A. J.; Chapman, M.; Pearce, N. J. G.; Griggs, A. J.; Cook, E.

    2016-12-01

    The causal mechanism of abrupt climate change during the last glacial period remains a key challenge. Although these events are well-documented in a wide range of proxy records, the triggers and drivers remain poorly understood, largely due to the dating uncertainties that prevent the integration of different archives. Unravelling the lead/lag responses (hence cause and effect) between the Earth's climate components is limited by the challenges of synchronising palaeoclimate records on a common timescale. Here we present the potential and the challenges of optimising the use of cryptotephra deposits to precisely correlate the Greenland ice-cores with North Atlantic marine records. A series of new cryptotephra deposits have been identified in Greenland, increasing the scope of identifying coeval isochrons in the marine environment. This new framework, however, brings new challenges in the search for unique and robust geochemical fingerprints for unequivocal tephra correlations. As such, some tephra deposits are proposed to be more valuable than others and underpin key snapshots in time during the last glacial period. The North Atlantic Ash Zone II, for instance, represents the most widespread isochron and constrains the cooling of GI-15. Some tephra deposits in the ice-core record originate from ultra-distal sources beyond the North Atlantic region and we also explore the potential for establishing North Pacific linkages.

  7. [Alcohol-purification technology and its particle sedimentation process in manufactory of Fufang Kushen injection].

    Science.gov (United States)

    Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin

    2011-11-01

    Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.

  8. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Science.gov (United States)

    Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123

  9. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Directory of Open Access Journals (Sweden)

    Annelise Norlyk

    2011-11-01

    Full Text Available The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981, this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  10. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.

    Science.gov (United States)

    Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  11. Catalytic behaviors of ruthenium dioxide films deposited on ferroelectrics substrates, by spin coating process

    International Nuclear Information System (INIS)

    Khachane, M.; Nowakowski, P.; Villain, S.; Gavarri, J.R.; Muller, Ch.; Elaatmani, M.; Outzourhite, A.; Luk'yanchuk, I.; Zegzouti, A.; Daoud, M.

    2007-01-01

    Catalytic ruthenium dioxide films were deposited by spin-coating process on ferroelectric films mainly constituted of SrBi 2 Ta 2 O 9 (SBT) and Ba 2 NaNb 5 O 15 (BNN) phases. After thermal treatment under air, these ferroelectric-catalytic systems were characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images showed that RuO 2 film morphology depended on substrate nature. A study of CH 4 conversion into CO 2 and H 2 O was carried out using these catalytic-ferroelectric multilayers: the conversion was analyzed from Fourier transform infrared (FTIR) spectroscopy, at various temperatures. Improved catalytic properties were observed for RuO 2 films deposited on BNN oxide layer

  12. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  13. A comparison of multi-metal deposition processes utilising gold nanoparticles and an evaluation of their application to 'low yield' surfaces for finger mark development.

    Science.gov (United States)

    Fairley, C; Bleay, S M; Sears, V G; NicDaeid, N

    2012-04-10

    This paper reports a comparison of the effectiveness and practicality of using different multi-metal deposition processes for finger mark development. The work investigates whether modifications can be made to improve the performance of the existing process published by Schnetz. Secondly, we compare the ability of different multi-metal deposition processes to develop finger marks on a range of surfaces with that of other currently used development processes. All published multi-metal deposition processes utilise an initial stage of colloidal gold deposition followed by enhancement of the marks with using a physical developer. All possible combinations of colloidal gold and physical developer stages were tested. The method proposed by Schnetz was shown to be the most effective process, however a modification which reduced the pH of the enhancement solution was revealed to provide the best combination of effectiveness and practicality. In trials comparing the modified formulation with vacuum metal deposition, superglue and powder suspensions on surfaces which typically give low finger mark yields (cling film, plasticised vinyl, leather and masking tape), the modified method produced significantly better results over existing processes for cling film and plasticised vinyl. The modified formulation was found to be ineffective on both masking tape and leather. It is recommended that further tests be carried out on the modified multi-metal deposition formulation to establish whether it could be introduced for operational work on cling film material in particular. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. New system for vacuum deposition of refractory materials using an atmospheric-pressure inductively coupled plasma

    International Nuclear Information System (INIS)

    Merkle, B.D.; Kniseley, R.N.; Schmidt, F.A.

    1987-01-01

    We have successfully developed a technique utilizing an atmospheric-pressure inductively coupled plasma combined with a low-pressure deposition chamber for deposition of thin films. The equipment and method of operation are discussed. Refractory powders (Nb and Y 2 O 3 ) were injected into the plasma and deposited as Nb and substoichiometric yttrium oxide, YO/sub 1.49/, onto Fe and Cu substrates. The substoichiometric yttrium oxide deposit adhered well to the Fe and Cu substrates, while the Nb deposit adhered well to the Fe only. The Nb deposit on the Cu substrate flaked and peeled probably because of stresses induced from the thermal expansion mismatch between the Nb and Cu. Further studies will be undertaken to better understand the processes occurring in this type of plasma-coating system in order to optimize the instrumental parameters for particular coating applications

  15. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  16. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  17. An adaptation of the Citrosolv process to remove different types of deposits in boilers of a thermo-electric power plant

    International Nuclear Information System (INIS)

    Ferreira, V.C.

    1985-01-01

    During the inspection of a power station boiler was find out a high amount of scale/deposits on the tubes surface (> 100 mg/cm 2 ). The scale/deposits constituents determined in chemical analysis, X-ray fluorescence and X-ray diffraction were iron, copper, calcium, magnesium, phosphorus and silicon. A chemical cleaning based on a small change of Citrosolv process, was used to remove those scale/deposits with sucess. (Author) [pt

  18. Understanding the Advising Learning Process Using Learning Taxonomies

    Science.gov (United States)

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  19. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  20. Relationship between cross section measurements and understanding radiation induced damage to biomolecules

    International Nuclear Information System (INIS)

    DuBois, R.D.; Braby, L.A.

    1993-10-01

    Experimental research performed at the Pacific Northwest Laboratory relating to energy deposition by energetic charged particles is described. How cross section data obtained from gaseous- and condensed-phase studies are related to understanding damage to biomolecules is discussed. Studies to date stress the need for information about energy deposition in individual interactions and show that multiple ionization may play a very significant role in biological damage. Current efforts to relate this gas-phase information to condensed-phase processes and biologically relevant targets are outlined

  1. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  2. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    Science.gov (United States)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz

  3. On the Deposition Equilibrium of Carbon Nanotubes or Graphite in the Reforming Processes of Lower Hydrocarbon Fuels

    Directory of Open Access Journals (Sweden)

    Zdzisław Jaworski

    2017-11-01

    Full Text Available The modeling of carbon deposition from C-H-O reformates has usually employed thermodynamic data for graphite, but has rarely employed such data for impure filamentous carbon. Therefore, electrochemical data for the literature on the chemical potential of two types of purified carbon nanotubes (CNTs are included in the study. Parameter values determining the thermodynamic equilibrium of the deposition of either graphite or CNTs are computed for dry and wet reformates from natural gas and liquefied petroleum gas. The calculation results are presented as the atomic oxygen-to-carbon ratio (O/C against temperature (200 to 100 °C for various pressures (1 to 30 bar. Areas of O/C for either carbon deposition or deposition-free are computed, and indicate the critical O/C values below which the deposition can occur. Only three types of deposited carbon were found in the studied equilibrium conditions: Graphite, multi-walled CNTs, and single-walled CNTs in bundles. The temperature regions of the appearance of the thermodynamically stable forms of solid carbon are numerically determined as being independent of pressure and the analyzed reactants. The modeling indicates a significant increase in the critical O/C for the deposition of CNTs against that for graphite. The highest rise in the critical O/C, of up to 290% at 30 bar, was found for the wet reforming process.

  4. 252Cf-source-correlated transmission measurements for uranyl fluoride deposit in a 24-in.-OD process pipe

    International Nuclear Information System (INIS)

    Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Mullens, J.A.

    1998-01-01

    Characterization of a hydrated uranyl fluoride (UO 2 F 2 ·nH 2 O) deposit in a 17-ft-long, 24-in.-OD process pipe at the former Oak Ridge Gaseous Diffusion Plant was successfully performed by using 252 Cf-source-correlated time-of-flight (TOF) transmission measurements. These measurements of neutrons and gamma rays through the pipe from an external 2521 Cf fission source were used to measure the deposit profile and its distribution along the pipe, the hydration (or H/U), and the total uranium mass. The measurements were performed with a source in an ionization chamber on one side of the pipe and detectors on the other. Scanning the pipe vertically and horizontally produced a spatial and time-dependent radiograph of the deposit in which transmitted gamma rays and neutrons were separated in time. The cross-correlation function between the source and the detector was measured with the Nuclear Weapons Identification System. After correcting for pipe effects, the deposit thickness was determined from the transmitted neutrons and H/U from the gamma rays. Results were consistent with a later intrusive observation of the shape and the color of the deposit; i.e., the deposit was annular and was on the top of the pipe at some locations, demonstrating the usefulness of this method for deposit characterization

  5. Behaviour of major, minor and trace elements (including REEs during kaolinization processes at Zonouz deposit, northeast of Marand, East Azarbaidjan province

    Directory of Open Access Journals (Sweden)

    Vahideh Alipour

    2011-11-01

    Full Text Available The Zonouz kaolin deposit is located ~15 km northeast of Marand, East-Azarbaidjan province. Based on physical features in field investigations, such as color, five distinct kaolin types including (1 white, (2 lemon, (3 gray, (4 brown, and (5 yellow are distinguished in the deposit. Field evidence and petrographic studies indicate that the deposit is genetically close to trachy-andesite rocks. According to mineralogical data, the deposit contains quartz, kaolinite, montmorillonite, calcite, pyrophyllite, chlorite, muscovite-illite, dolomite, hematite, and anatase minerals. Geochemical data indicate that function of alteration processes on trachy-andesite rocks during development of Zonouz ore deposit was accompanied by leaching of elements such as Al, Na, K, Rb, Ba, V, Hf, Cu, Zr, Tm, Yb, and Lu, enrichment of elements such as U, Nb, and Ta, and leaching-fixation of elements such as Si, Fe, Ca, Mg, Ti, Mn, P, Cs, Sr, Th, Co, Cr, Ni, Y, Ga, LREE, Tb, Dy, Ho, and Er. Incorporation of obtained results from mineralogical and geochemical studies show that physico-chemical conditions of alteration environment, the relative stability of primary minerals, surface adsorption, preferential sorption by metallic oxides, existing of organic matters, scavenging and concentration processes, and fixation in neomorphic mineralogical phases played important role in distribution of elements in the deposit. Geochemical studies show that development of the deposit is relative to two types of processes, (1 hypogene and (2 supergene. The distribution pattern of REEs indicates that differentiation degree of LREEs from HREEs in supergene kaolins is more than hypogene kaolins. Geochemical studies indicate that minerals such as Mn-oxides, zircon, anatase, hematite, cerianite, and secondary phosphates (monazite, rhabdophane, churchite, and zenotime are the potential hosts for rare earth elements in this deposit.

  6. Mass-Spectrometric Studies of Catalytic Chemical Vapor Deposition Processes of Organic Silicon Compounds Containing Nitrogen

    Science.gov (United States)

    Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu

    2006-02-01

    The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.

  7. Once upon a time : Understanding team processes as relational event networks

    NARCIS (Netherlands)

    Leenders, R.T.A.J.; Contractor, N.; DeChurch, L.

    2016-01-01

    For as long as groups and teams have been the subject of scientific inquiry, researchers have been interested in understanding the relationships that form within them, and the pace at which these relationships develop and change. Despite this interest in understanding the process underlying the

  8. Characterization and Analysis of Ultrathin CIGS Films and Solar Cells Deposited by 3-Stage Process

    Directory of Open Access Journals (Sweden)

    Grace Rajan

    2018-01-01

    Full Text Available In view of the large-scale utilization of Cu(In,GaSe2 (CIGS solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which can be corroborated with ex situ measurements. The fabricated devices were characterized using current voltage and quantum efficiency measurements and modeled using a 1-dimensional solar cell device simulator. An analysis of the diode parameters indicates that the efficiency of the thinnest cells was restricted not only by limited light absorption, as expected, but also by a low fill factor and open-circuit voltage, explained by an increased series resistance, reverse saturation current, and diode quality factor, associated with an increased trap density.

  9. Importance of isotopes for understanding the sedimentation processes

    International Nuclear Information System (INIS)

    Manjunatha, B.R.

    2012-01-01

    Isotopes of either radioactive or stable depending upon radiation emitted or not respectively which have wide applications in understanding not only the history of sedimentation, but also provide information about paleoclimate. Stable isotope mass difference occurs due to changes in physicochemical conditions of the ambient environment, for instance temperature, evaporation, precipitation, redox processes, and changes in the mobility of elements during weathering processes, biological uptake, metabolism, re-mineralization of biogenic material, etc. In contrast, radionuclides emit radiation because of excess of neutrons present in the nucleus when compared to protons of an atom. The decay of radioactive isotopes is unaffected despite changes in physicochemical variations; hence, they are useful for determining ages of different types of materials on earth. The radioisotopes can be classified based on origin and half life into primordial or long-lived, cosmogenic and artificial radionuclides or fission products. In this study, the importance of 137 Cs artificial radionuclides will be highlighted to understand short-term sedimentation processes, particularly in estuaries, deltas/continental shelf of west coast of India. The distribution of 137 Cs in sediments of south-western continental margin of India indicates that coastal marginal environments are filters or sinks for fall-out radionuclides. The sparse of 137 Cs in the open continental shelf environment indicates that most of sediments are either older or sediments being diluted by components generated in the marine environment

  10. Fundamental Mechanisms of Roughening and Smoothing During Thin Film Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Randall [Univ. of Vermont, Burlington, VT (United States)

    2016-03-18

    pulsed nature of the deposition where particles arrive at the growth surface in an interval of a few microseconds. We have observed effects such as transient formation of two dimensional islands on elemental crystalline surfaces. Pulsed deposition may also lead to non-equilibrium phases in some cases, such as the observation anomalously high tetragonality for ferroelectric thin films. All of the results described above feature in-situ synchrotron X-ray scattering as the main experimental method, which has become an indispensable technique for observing the kinetics of structures forming in real-time. We have also investigated in-situ coherent X-ray scattering and have developed methods to characterize temporal correlations that are not possible to observe with low-coherence X-rays. A high profile result of this work is a new technique to monitor defect propagation velocities in thin films. This has practical significance since defects limit the properties of thin films and it is desirable to understand their properties and origin in order to control them for practical applications. More broadly, amorphous thin films and multilayers have applications in optical devices, including mirrors and filters. Epitaxial thin films and multilayers have applications in electronic devices such as ferroelectric multilayers for non-volatile data storage, and thermoelectric nanostructures for energy conversion. Our progress in this project points the way for improved deposition methods and for improved simulation and modeling of thin film deposition processes for nanoscale control of materials with novel applications in these areas.

  11. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  12. Surface engineering of biaxial Gd2Zr2O7 thin films deposited on Ni–5at%W substrates by a chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Liu, Min

    2012-01-01

    crystal structure along the film thickness observed by a transmission electron microscope. On the basis of the enhanced understanding of the crystallization processes, we demonstrate a possibility of engineering the surface morphology and texture in the film deposited on technical substrates using...... a chemical solution deposition route....

  13. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  14. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  15. Simulation of a processes of a moving base coating with uniform films by method of physical deposition

    International Nuclear Information System (INIS)

    Avilov, A.A.; Grigorevskij, A.V.; Dudnik, S.F.; Kiryukhin, N.M.; Klyukovich, V.A.; Sagalovich, V.V.

    1989-01-01

    Computational algorithm is developed for calculating thickness of films deposited by physical methods onto a backing of any shape, moving along a given trajectory. The sugegsted algorithm makes it possible to carry out direct simulation on film deposition process and to optimize sources arrangement for obtaining films with a required degree of uniformity. Condensate distribution on a rotating sphere was calculated and here presented. A satisfactory agreement of calculated values with experimental data on metal films obtained by electron-arc spraying, was established

  16. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  17. Reduced thermal budget processing of Y--Ba--Cu--O high temperature superconducting thin films by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y--Ba--Cu--O (YBCO) on MgO and SrTiO 3 substrates by RIP assisted MOCVD. By using a mixture of N 2 O and O 2 as the oxygen source films deposited initially at 600 degree C for 1 min and then at 740 degree C for 30 min are primarily c-axis oriented and with zero resistance being observed at 84 and 89 K for MgO and SrTiO 3 substrates, respectively. The zero magnetic field current densities at 77 K for MgO and SrTiO 3 substrates are 1.2x10 6 and 1.5x10 6 A/cm 2 , respectively. It is envisaged that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  18. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    Science.gov (United States)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  19. Evaluating nurse understanding and participation in the informed consent process.

    Science.gov (United States)

    Axson, Sydney A; Giordano, Nicholas A; Hermann, Robin M; Ulrich, Connie M

    2017-01-01

    Informed consent is fundamental to the autonomous decision-making of patients, yet much is still unknown about the process in the clinical setting. In an evolving healthcare landscape, nurses must be prepared to address patient understanding and participate in the informed consent process to better fulfill their well-established role as patient advocates. This study examines hospital-based nurses' experiences and understandings of the informed consent process. This qualitative descriptive study utilized a semi-structured interview approach identifying thematic concerns, experiences, and knowledge of informed consent across a selected population of clinically practicing nurses. Participants and research context: In all, 20 baccalaureate prepared registered nurses practicing in various clinical settings (i.e. critical care, oncology, medical/surgical) at a large northeastern academic medical center in the United States completed semi-structured interviews and a demographic survey. The mean age of participants was 36.6 years old, with a mean of 12.2 years of clinical experience. Ethical considerations: Participation in this study involved minimal risk and no invasive measures. This study received Institutional Review Board approval from the University of Pennsylvania. All participants voluntarily consented. The majority of participants (N = 19) believe patient safety is directly linked to patient comprehension of the informed consent process. However, when asked if nurses have a defined role in the informed consent process, nearly half did not agree (N = 9). Through this qualitative approach, three major nursing roles emerged: the nurse as a communicator, the nurse as an advocate, and the clerical role of the nurse. This investigation contributes to the foundation of ethical research that will better prepare nurses for patient engagement, advance current understanding of informed consent, and allow for future development of solutions. Nurses are at the forefront of

  20. Societal rationality; towards an understanding of decision making processes in society

    International Nuclear Information System (INIS)

    Wahlstroem, Bjoern

    2001-01-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  1. Societal rationality; towards an understanding of decision making processes in society

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Bjoern [Technical Research Centre of Finland, Espoo (Finland)

    2001-07-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  2. Using process monitor wafers to understand directed self-assembly defects

    Science.gov (United States)

    Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.

    2013-03-01

    As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.

  3. Electro-deposition painting process improvement of cab truck by Six Sigma concept

    Science.gov (United States)

    Kawitu, Kitiya; Chutima, Parames

    2017-06-01

    The case study company is a manufacturer of trucks and currently facing a high rework cost due to the thickness of the electro-deposited paint (EDP) of the truck cab is lower than standard. In addition, the process capability is very low. The Six Sigma concept consisting of 5 phases (DMAIC) is applied to determine new parameter settings for each significant controllable factor. After the improvement, EDP thickness of the truck cab increases from 17.88μ to 20μ (i.e. standard = 20 ± 3μ). Moreover, the process capability indexes (Cp and Cpk) are increased from 0.9 to 1.43, and from 0.27 to 1.43, respectively. This improvement could save the rework cost about 1.6M THB per year.

  4. Simulated dry deposition of nitric acid near forest edges

    NARCIS (Netherlands)

    DeJong, JJM; Klaassen, W; Jong, J.J.M. de

    1997-01-01

    Dry deposition is simulated to understand and generalize observations of enhanced deposition of air pollution near forest edges. Nitric acid is taken as an example as its deposition velocity is often assumed to be determined by turbulent transport only. The simulations are based on the

  5. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    OpenAIRE

    Annelise Norlyk; Pia Dreyer; Anita Haahr; Bente Martinsen

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup’s thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup’s thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomeno...

  6. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Cem Sarica; Michael Volk

    2004-06-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  7. 19 CFR 210.28 - Depositions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Depositions. 210.28 Section 210.28 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Discovery and Compulsory Process § 210.28 Depositions. (a) When depositions may be...

  8. On the processing-structure-property relationship of ITO layers deposited on crystalline and amorphous Si

    International Nuclear Information System (INIS)

    Diplas, S.; Ulyashin, A.; Maknys, K.; Gunnaes, A.E.; Jorgensen, S.; Wright, D.; Watts, J.F.; Olsen, A.; Finstad, T.G.

    2007-01-01

    Indium-tin-oxide (ITO) antireflection coatings were deposited on crystalline Si (c-Si), amorphous hydrogenated Si (a-Si:H) and glass substrates at room temperature (RT), 160 deg. C and 230 deg. C by magnetron sputtering. The films were characterised using atomic force microscopy, transmission electron microscopy, angle resolved X-ray photoelectron spectroscopy, combined with resistance and transmittance measurements. The conductivity and refractive index as well as the morphology of the ITO films showed a significant dependence on the processing conditions. The films deposited on the two different Si substrates at higher temperatures have rougher surfaces compared to the RT ones due to the development of crystallinity and growth of columnar grains

  9. Wet and dry deposition and resuspension of AFCT/TFCT fuel processing radionuclides. Final report

    International Nuclear Information System (INIS)

    Slinn, W.G.N.; Katen, P.C.; Wolf, M.A.; Loveland, W.D.; Radke, L.F.; Miller, E.L.; Ghannam, L.J.; Reynolds, B.W.; Vickers, D.

    1979-09-01

    After short summary and introductory chapters, Chapter IV contains a critical analysis of available parameterizations for resuspension and for wet and dry removal processes and recommends interim parameterizations for use in radiation dose calculations. Chapter V describes methods and experimental results from field studies of in-cloud vs below-cloud scavenging, precipitation efficiency, and modifications of aerosols by clouds. In Chapter VI are contained descriptions of methods and results from four different approaches to the problem of measuring the dry deposition velocities of submicron aerosol particles depositing on vegetation. Chapter VII describes experimental results from a study of resuspension and weathering of tracer aerosol particles deposited on soil, grass and gravel; typical resuspension rates were found to be of the order of 10 -8 s -1 and it is recommended that the concept of weathering be reassessed. In Chapter VIII, National Weather Service data are used to obtain Lagrangian statistics for use in a regional-scale study of wet and dry removal. Chapter IX develops new concepts in reservoir models for application at regional to global scales. In the final chapter are some comments about the results found in this study and recommendations for future research

  10. Understanding the IT/business partnership - a business process perspective

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    2014-01-01

    From a business process perspective, the business value of information technologies (IT) stems from how they improve or enable business processes. At the same time, in the field of strategic IT/business alignment, the locus of discussion has been how IT/business partnerships enhance the value of IT....... Despite this apparent relationship, the business process perspective has been absent from the IT/business alignment discussion. In this paper, we use the case of an industrial company to develop a model for understanding IT/business partnerships in business process terms. Based on our findings, we define...... these partnerships by allocating responsibilities between central IT and the local business during two stages of a process lifecycle: formation and standardization. The significance of the findings lies in how the model’s configuration leads to different types of IT units’ process centricity. This in turn affects...

  11. Review: Animal model and the current understanding of molecule dynamics of adipogenesis.

    Science.gov (United States)

    Campos, C F; Duarte, M S; Guimarães, S E F; Verardo, L L; Wei, S; Du, M; Jiang, Z; Bergen, W G; Hausman, G J; Fernyhough-Culver, M; Albrecht, E; Dodson, M V

    2016-06-01

    Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.

  12. Selective deposition contact patterning using atomic layer deposition for the fabrication of crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Cho, Young Joon; Shin, Woong-Chul; Chang, Hyo Sik

    2014-01-01

    Selective deposition contact (SDC) patterning was applied to fabricate the rear side passivation of crystalline silicon (Si) solar cells. By this method, using screen printing for contact patterning and atomic layer deposition for the passivation of Si solar cells with Al 2 O 3 , we produced local contacts without photolithography or any laser-based processes. Passivated emitter and rear-contact solar cells passivated with ozone-based Al 2 O 3 showed, for the SDC process, an up-to-0.7% absolute conversion-efficiency improvement. The results of this experiment indicate that the proposed method is feasible for conversion-efficiency improvement of industrial crystalline Si solar cells. - Highlights: • We propose a local contact formation process. • Local contact forms a screen print and an atomic layer deposited-Al 2 O 3 film. • Ozone-based Al 2 O 3 thin film was selectively deposited onto patterned silicon. • Selective deposition contact patterning method can increase cell-efficiency by 0.7%

  13. A model for understanding and learning of the game process of computer games

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Majgaard, Gunver

    This abstract focuses on the computer game design process in the education of engineers at the university level. We present a model for understanding the different layers in the game design process, and an articulation of their intricate interconnectedness. Our motivation is propelled by our daily...... teaching practice of game design. We have observed a need for a design model that quickly can create an easily understandable overview over something as complex as the design processes of computer games. This posed a problem: how do we present a broad overview of the game design process and at the same...... time make sure that the students learn to act and reflect like game designers? We fell our game design model managed to just that end. Our model entails a guideline for the computer game design process in its entirety, and at same time distributes clear and easy understandable insight to a particular...

  14. Interpretation of sedimentological processes of coarse-grained deposits applying a novel combined cluster and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Farics Éva

    2017-10-01

    Full Text Available The main aim of this paper is to determine the depositional environments of an Upper-Eocene coarse-grained clastic succession in the Buda Hills, Hungary. First of all, we measured some commonly used parameters of samples (size, amount, roundness and sphericity in a much more objective overall and faster way than with traditional measurement approaches, using the newly developed Rock Analyst application. For the multivariate data obtained, we applied Combined Cluster and Discriminant Analysis (CCDA in order to determine homogeneous groups of the sampling locations based on the quantitative composition of the conglomerate as well as the shape parameters (roundness and sphericity. The result is the spatial pattern of these groups, which assists with the interpretation of the depositional processes. According to our concept, those sampling sites which belong to the same homogeneous groups were likely formed under similar geological circumstances and by similar geological processes.

  15. Understanding and Predicting the Process of Software Maintenance Releases

    Science.gov (United States)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  16. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    deposition of organic nitrogen and dry deposition of ammonia; combined they contributed 1.37 kg N x ha(-1)yr(-1) or 37% of the total nitrogen deposition budget. To better understand the nitrogen cycle and key interactions between the atmosphere and biosphere we need to include as many sources and types of nitrogen as possible and understand their variability throughout the year. Here we examine the components of the nitrogen deposition budget to better understand the factors that influence the different deposition pathways and their seasonal variations.

  17. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    Science.gov (United States)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  18. Electro-spark deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  19. Geostatistics and multivariate analysis as a tool to characterize volcaniclastic deposits: Application to Nevado de Toluca volcano, Mexico

    Science.gov (United States)

    Bellotti, F.; Capra, L.; Sarocchi, D.; D'Antonio, M.

    2010-03-01

    Grain size analysis of volcaniclastic deposits is mainly used to study flow transport and depositional processes, in most cases by comparing some statistical parameters and how they change with distance from the source. In this work the geospatial and multivariate analyses are presented as a strong adaptable geostatistical tool applied to volcaniclastic deposits in order to provide an effective and relatively simple methodology for texture description, deposit discrimination and interpretation of depositional processes. We choose the case of Nevado de Toluca volcano (Mexico) due to existing knowledge of its geological evolution, stratigraphic succession and spatial distribution of volcaniclastic units. Grain size analyses and frequency distribution curves have been carried out to characterize and compare the 28-ka block-and-ash flow deposit associated to a dome destruction episode, and the El Morral debris avalanche deposit originated from the collapse of the south-eastern sector of the volcano. The geostatistical interpolation of sedimentological data allows to realize bidimensional maps draped over the volcano topography, showing the granulometric distribution, sorting and fine material concentration into the whole deposit with respect to topographic changes. In this way, it is possible to analyze a continuous surface of the grain size distribution of volcaniclastic deposits and better understand flow transport processes. The application of multivariate statistic analysis (discriminant function) indicates that this methodology could be useful in discriminating deposits with different origin or different depositional lithofacies within the same deposit. The proposed methodology could be an interesting approach to sustain more classical analysis of volcaniclastic deposits, especially where a clear field classification appears problematic because of a homogeneous texture of the deposits or their scarce and discontinuous outcrops. Our study is an example of the

  20. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  1. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  2. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  3. Extension of the lifetime of tantalum filaments in the hot-wire (Cat) 3 Chemical Vapor Deposition process

    CSIR Research Space (South Africa)

    Knoesen, D

    2008-01-01

    Full Text Available , the filament is again exposed to pure hydrogen for a minimum of 5 min, the chamber then again evacuated to a vacuum better than 8×10−8 mbar before cutting the power to the filament. This has resulted in a filament life of 11 months, with an accumulated... process only treated by annealing before a deposition run, did not last long, and typically broke after 3 to 5 h of accumulated deposition time. Silicide formation is found along the full length of these tantalum filaments, with severe structural...

  4. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    Science.gov (United States)

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  5. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  6. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  7. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  8. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  9. Acidic deposition: State of science and technology. Report 10. Watershed and lake processes affecting surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Turner, R.S.; Cook, R.B.; Miegroet, H.V.; Johnson, D.W.; Elwood, J.W.

    1990-09-01

    The acid-base chemistry of surface waters is governed by the amount and chemistry of deposition and by the biogeochemical reactions that generate acidity or acid neutralizing capacity (ANC) along the hydrologic pathways that water follows through watersheds to streams and lakes. The amount of precipitation and it chemical loading depend on the area's climate and physiography, on it proximity to natural or industrial gaseous or particulate sources, and on local or regional air movements. Vegetation interacts with the atmosphere to enhance both wet and dry deposition of chemicals to a greater or lesser extent, depending on vegetation type. Vegetation naturally acidifies the environment in humid regions through processes of excess base cation uptake and generation of organic acids associated with many biological processes. Natural acid production and atmospheric deposition of acidic materials drive the acidification process. The lake or stream NAC represents a balance between the acidity-and ANC-generating processes that occur along different flow paths in the watershed and the relative importance of each flow path

  10. Nitrogen deposition to the United States: distribution, sources, and processes

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-05-01

    Full Text Available We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2°×2/3° horizontal resolution over North America and adjacent oceans. US emissions of NOx and NH3 in the model are 6.7 and 2.9 Tg N a−1 respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NHx (≡NH3 gas + ammonium aerosol and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NOy show overall good agreement but excessive wintertime HNO3 production over the US Midwest and Northeast. This suggests a model overestimate N2O5 hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a−1 over the contiguous US, including 4.2 as NOy and 2.3 as NHx. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha−1 a−1 over 35% of the contiguous US.

  11. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  12. A Hierarchical Agency Model of Deposit Insurance

    OpenAIRE

    Jonathan Carroll; Shino Takayama

    2010-01-01

    This paper develops a hierarchical agency model of deposit insurance. The main purpose is to undertake a game theoretic analysis of the consequences of deposit insurance schemes and their effects on monitoring incentives for banks. Using this simple framework, we analyze both risk- independent and risk-dependent premium schemes along with reserve requirement constraints. The results provide policymakers with not only a better understanding of the effects of deposit insurance on welfare and th...

  13. Electrospark deposition for die repair

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2012-01-01

    Full Text Available The electrospark deposition is a process for surfacing of hard metal alloys, e.g. carbides and stellites, on the surfaces of new or old machine elements. In this process, a high current is conducted through an oscillating electrode and a substrate for a very short period of time. In the paper, the process is described and the thickness of deposited layer, chemical composition, dilution rate and the layer roughness are determined.

  14. Geometry of sandy deposits at the distal edge of the Mississippi Fan, Gulf of Mexico

    Science.gov (United States)

    Twichell, D.C.; Schwab, W.C.; Kenyon, Neil H.

    1995-01-01

    Sidescan sonar provides a map of the seafloor that has greatly improved the understanding of depositional processes on modern deep-sea fans (e.g. Mutti and Normark 1991). Here, we present a sidescan-sonar mosaic from the eastern Gulf of Mexico that images the distal reaches of a channel on the Mississippi Fan and the deposits associated with it (Fig. 41.1). This area is one of several deep-sea fan systems that had not previously been imaged by high-resolution sidescan systems. The mosaic highlights the complexity of the spatial relationships of channels and deposits at ends of channels on this large, modern, passive-margin deep-sea fan (Figs 41.2 and 41.3).

  15. Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel

    Science.gov (United States)

    Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping

    2018-03-01

    As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.

  16. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  17. Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets

    International Nuclear Information System (INIS)

    Atwood, Clinton J.; Smugeresky, John E.; Jew, Michael; Gill, David Dennis; Scheffel, Simon

    2006-01-01

    The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping(trademark)(LENS(reg s ign)) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performed with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A

  18. Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf

    Science.gov (United States)

    Twichell, David C.; McClennen, Charles E.; Butman, Bradford

    1981-01-01

    A 13,000 km2 area of the southern New England Continental Shelf which is covered by anomalously fine-grained sediment has been surveyed by means of high-resolution, seismic-reflection and side-scan sonar techniques to map its morphology and structure, and a near-bottom instrument system contributed to understanding present activity of the deposit. Seismic-reflection profiles show that the fine-grained deposit, which is as much as 13 m thick, has accumulated during the last transgression because it rests on a reflector that is geomorphically similar to and continuous with the Holocene transgressive sand sheet still exposed on the shelf to the west. The ridge and swale topography comprising the sand sheet on the shelf off New Jersey and Long Island are relict in origin as these same features are found buried under the fine sediment deposit. Southwestward migrating megaripples observed on the sonographs in the eastern part of the deposit are evidence that sediment is still actively accumulating in this area. In the western part of the deposit, where surface sediment is composed of silt plus clay, evidence of present sediment mobility consists of changes in the near-bottom, suspended-matter concentrations primarily associated with storms. Nantucket Shoals and Georges Bank are thought to be the sources for the fine-textured sediment. Storms and strong tidal currents in these shoal areas may still erode available fine-grained material, which then is transported westward by the mean drift to the southern New England Shelf, where a comparatively tranquil environment permits deposition of the fine material.

  19. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  20. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films

  1. Characterization on the electrophoretic deposition of the 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Hung, I-M. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)]. E-mail: cjshih@kmu.edu.tw

    2007-02-15

    An 8 mol% yttria-stabilized zirconia (8YSZ) films are electrophoretically deposited on the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} substrate using 8YSZ nanocrystallites prepared by a sol-gel process. Effects of liquid suspension on the particle zeta potential and degree of agglomeration at different pH values are investigated. When the pH value deviates from the point of zero charge (PZC), the adsorption of protons on particle surfaces cause higher zeta potential and well-dispersed suspension. The optimal values of the iodine concentration, applied voltage and deposition time for the electrophoretic deposition of 8YSZ films are also found.

  2. Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time

    Science.gov (United States)

    Anderson, Sarah Marie

    Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of

  3. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  4. Understanding the Entrepreneurial Process: a Dynamic Approach

    Directory of Open Access Journals (Sweden)

    Vânia Maria Jorge Nassif

    2010-04-01

    Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.

  5. A radon progeny deposition model

    International Nuclear Information System (INIS)

    Rielage, Keith; Elliott, Steven R.; Hime, Andrew; Guiseppe, Vincent E.; Westerdale, S.

    2010-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  6. A Radon Progeny Deposition Model

    International Nuclear Information System (INIS)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  7. A Long-term Forest Fertilization Experiment to Understand Ecosystem Responses to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Baron, J.; Advani, S. M.; Allen, J.; Boot, C.; Denef, K.; Denning, S.; Hall, E.; Moore, J. C.; Reuth, H.; Ryan, M. G.; Shaw, E.

    2016-12-01

    Long-term field experiments can reveal changes in ecosystem processes that may not be evident in short-term studies. Short-term measurements or experiments may have narrower objectives or unrealistic treatments in order to see a change, whereas long-term studies can reveal complex interactions that take longer to manifest. We report results from a long-term experiment (1996 to present) in subalpine forests to simulate the consequences of sustained atmospheric nitrogen (N) deposition. Loch Vale watershed in Rocky Mountain National Park, the location of the experiment, has received an order of magnitude greater atmospheric N deposition than estimated background since mid-20th Century. Augmenting that, in 1996 we began adding 25 kg NH4NO3 ha-1 yr-1 to three 30m x 30m old-growth Engelmann spruce and subalpine fir plots. Treated stands were matched by nearby controls. N addition caused rapid leaching of nitrate and cations from soils, and increased N mineralization and nitrification rates. These observations in the fertilized plots have been sustained over time. Soluble aluminum concentrations do not differ significantly between fertilized and control plots, but treated soils are now markedly more acidic (pH of 4.7) than original soil and controls (pH of 5.1); further acidification might increase aluminum leaching. Effects on soil carbon were complex, mediated by reductions in total microbial biomass, decreases in arbuscular mychorrizal and saprotropic fungi, and increased potential rates of N enzyme degrading activities. Initial soil C:N of 24 was lower than similar soils in low N deposition stands (C:N of 36). The C:N declined to 22 with treatment. Fertilized plots lost 11% soil C, but the mechanism is unclear. We did not measure changes in C inputs from litter, microbial biomass, or plant uptake, but there was no change in summer CO2 flux, measured in 2003, 2004, and 2014. Leaching of DOC from fertilized plots was elevated throughout the experiment, providing one

  8. Numerical experiment on tsunami deposit distribution process by using tsunami sediment transport model in historical tsunami event of megathrust Nankai trough earthquake

    Science.gov (United States)

    Imai, K.; Sugawara, D.; Takahashi, T.

    2017-12-01

    A large flow caused by tsunami transports sediments from beach and forms tsunami deposits in land and coastal lakes. A tsunami deposit has been found in their undisturbed on coastal lakes especially. Okamura & Matsuoka (2012) found some tsunami deposits in the field survey of coastal lakes facing to the Nankai trough, and tsunami deposits due to the past eight Nankai Trough megathrust earthquakes they identified. The environment in coastal lakes is stably calm and suitable for tsunami deposits preservation compared to other topographical conditions such as plains. Therefore, there is a possibility that the recurrence interval of megathrust earthquakes and tsunamis will be discussed with high resolution. In addition, it has been pointed out that small events that cannot be detected in plains could be separated finely (Sawai, 2012). Various aspects of past tsunami is expected to be elucidated, in consideration of topographical conditions of coastal lakes by using the relationship between the erosion-and-sedimentation process of the lake bottom and the external force of tsunami. In this research, numerical examination based on tsunami sediment transport model (Takahashi et al., 1999) was carried out on the site Ryujin-ike pond of Ohita, Japan where tsunami deposit was identified, and deposit migration analysis was conducted on the tsunami deposit distribution process of historical Nankai Trough earthquakes. Furthermore, examination of tsunami source conditions is possibly investigated by comparison studies of the observed data and the computation of tsunami deposit distribution. It is difficult to clarify details of tsunami source from indistinct information of paleogeographical conditions. However, this result shows that it can be used as a constraint condition of the tsunami source scale by combining tsunami deposit distribution in lakes with computation data.

  9. High-rate anisotropic ablation and deposition of polytetrafluoroethylene using synchrotron radiation process

    International Nuclear Information System (INIS)

    Inayoshi, Muneto; Ikeda, Masanobu; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Hiraya, Atsunari.

    1995-01-01

    Both anisotropic ablation and thin film formation of polytetrafluoroethylene (PTFE) were successfully demonstrated using synchrotron radiation (SR) irradiation of PTFE, that is, the SR ablation process. Anisotropic ablation by the SR irradiation was performed at an extremely high rate of 3500 μm/min at a PTFE target temperature of 200degC. Moreover, a PTFE thin film was formed at a high rate of 2.6 μm/min using SR ablation of PTFE. The chemical structure of the deposited film was similar to that of the PTFE target as determined from Fourier transform infrared absorption spectroscopy (FT-IR) analysis. (author)

  10. Executable business process modeling as a tool for increasing the understanding of business processes in an organization

    OpenAIRE

    Demir, Ersin

    2014-01-01

    Understanding of business processes is becoming an important key factor for successful businesses and today many organizations are facing the lack of knowledge about the business processes that they are working on. Since the interaction between different business processes and different actors are becoming more common it is not only enough for employees to have knowledge about the business processes that they involve directly, but also they need to know about the other business processes in t...

  11. Mass-transport deposits and the advantages of a real three-dimensional perspective (Invited)

    Science.gov (United States)

    Moscardelli, L. G.; Wood, L. J.

    2010-12-01

    Mass-transport deposits (MTDs) form a significant component of the stratigraphic record in ancient and modern deepwater basins worldwide. However, the difficulties encountered when performing direct observations of these submarine units, the limited area covered by geophysical surveys acquired by research institutions, and the often surficial nature of seafloor data collected by federal agencies represent major hurdles in understanding submarine mass-movement dynamics. Three-dimensional seismic reflectivity imaging, drawn mainly from energy exploration in deepwater regions of the world, has allowed researchers to describe the architecture of MTDs at unprecedented spatial and temporal scales. In this talk, we present observations made using thousands of square kilometers of three-dimensional seismic data acquired by the oil and gas industry in offshore Trinidad, Morocco, and the Gulf of Mexico, where MTDs are a common occurrence in the stratigraphic record. Detailed mapping of MTD architecture has allowed us to better understand the role that MTDs have in continental-margin evolution. Morphometric data obtained from the mapping of MTDs is used to model tsunamigenic waves and their potential affect of coastal areas. The effect of low permeability MTDs on reservoir and aquifer fluid behavior has important implications, enhancing the economic importance of understanding the occurrence and distribution of these deposits. The recognition of MTD processes and morphology leads to new understanding of the processes possibly active in shaping other planets. Such analogs speak to a possible deepwater origin for features on Mars previously attributed to subaerial events. As industry-quality 3D seismic data become increasingly available to academic institutions, current studies become important bell weathers for future analysis of MTDs and processes in oceans of this planet and beyond.

  12. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  13. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  14. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    Science.gov (United States)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  15. Characterization of thin film deposits on tungsten filaments in catalytic chemical vapor deposition using 1,1-dimethylsilacyclobutane

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yujun, E-mail: shiy@ucalgary.ca; Tong, Ling; Mulmi, Suresh [Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2016-09-15

    Metal filament plays a key role in the technique of catalytic chemical vapor deposition (Cat-CVD) as it serves as a catalyst in dissociating the source gas to form reactive species. These reactive species initiate the gas-phase reaction chemistry and final thin film and nanostructure formation. At the same time, they also react with the metal itself, leading to the formation of metal alloys and other deposits. The deposits on the tungsten filaments when exposed to 1,1-dimethylsilacyclobutane (DMSCB), a single-source precursor for silicon carbide thin films, in the process of Cat-CVD were studied in this work. It has been demonstrated that a rich variety of deposits, including tungsten carbides (W{sub 2}C and WC), tungsten silicide (W{sub 5}Si{sub 3}), silicon carbide, amorphous carbon, and graphite, form on the W filament surfaces. The structural and morphological changes in the tungsten filaments depend strongly on the DMSCB pressure and filament temperature. At 1000 and 2000 °C, the formation of WC and W{sub 2}C dominates. In addition, a thin amorphous carbon layer has been found at 1500 °C with the 0.12 and 0.24 Torr of DMSCB and a lower temperature of 1200 °C with the 0.48 Torr of DMSCB. An increase in the DMSCB sample pressure gives rise to higher Si and C contents. As a result, the formation of SiC and W{sub 5}Si{sub 3} has been observed with the two high-pressure DMSCB samples (i.e., 0.24 and 0.48 Torr). The rich decomposition chemistry of DMSCB on the W surfaces is responsible for the extensive changes in the structure of the W filament, providing support for the close relationship between the gas-phase decomposition chemistry and the nature of alloy formation on the metal surface. The understanding of the structural changes obtained from this work will help guide the development of efficient methods to solve the filament aging problem in Cat-CVD and also to achieve a controllable deposition process.

  16. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    Science.gov (United States)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity

  18. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    International Nuclear Information System (INIS)

    Yuan, Guangjie; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-01

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH 2 radical as the reducing agent and nickelocene as the precursor. NH 2 radicals were generated by the thermal decomposition of NH 3 with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH 2 radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH 2 radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH 2 radical flux and the reactivity of the NH 2 radicals

  19. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  20. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  1. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  2. Novel geochemical techniques integrated in exploration for uranium deposits at depth

    International Nuclear Information System (INIS)

    Kyser, K.

    2014-01-01

    Mineral deposits are in fact geochemical anomalies, and as such their detection and assessment of their impact on the environment should be facilitated using geochemical techniques. Although geochemistry has been used directly in the discovery of uranium deposits and more indirectly in shaping deposit models, the novel applications of geochemistry and integration with other data can be more effective in formulating exploration and remediation strategies. Recent research on the use of geochemistry in detecting uranium deposits at depth include: (1) more effective integration of geochemical with geophysical data to refine targets, (2) revealing element distributions in and around deposits to adequately assess the total chemical environment associated with the deposit, (3) the use of element tracing using elemental concentrations and isotopic compositions in the near surface environment to detect specific components that have migrated to the surface from uranium deposits at depth, (4) understand the effects of both macro- and micro-environments on element mobility across the geosphere-biosphere interface to enhance exploration using select media for uranium at depth. Geophysical data used in exploration can identify areas of conductors where redox contrasts may host mineralization, structures that act to focus fluids during formation of the deposits and act as conduits for element migration to the surface, and contrasts in geology that are required for the deposits. However, precision of these data is greatly diminished with depth, but geochemical data from drill core or surface media can enhance target identification when integrated with geophysical data. Geochemical orientation surveys over known unconformity-related deposits at depth clearly identify mineralization 900m deep. Drill core near the deposit, clay-size fractions separated from soil horizons and vegetation over and far from the deposit record element migration from the deposit as radiogenic He, Rn and Pb

  3. Nano-Impact (Fatigue Characterization of As-Deposited Amorphous Nitinol Thin Film

    Directory of Open Access Journals (Sweden)

    Rehan Ahmed

    2012-08-01

    Full Text Available This paper presents nano-impact (low cycle fatigue behavior of as-deposited amorphous nitinol (TiNi thin film deposited on Si wafer. The nitinol film was 3.5 µm thick and was deposited by the sputtering process. Nano-impact tests were conducted to comprehend the localized fatigue performance and failure modes of thin film using a calibrated nano-indenter NanoTest™, equipped with standard diamond Berkovich and conical indenter in the load range of 0.5 mN to 100 mN. Each nano-impact test was conducted for a total of 1000 fatigue cycles. Depth sensing approach was adapted to understand the mechanisms of film failure. Based on the depth-time data and surface observations of films using atomic force microscope, it is concluded that the shape of the indenter test probe is critical in inducing the localized indentation stress and film failure. The measurement technique proposed in this paper can be used to optimize the design of nitinol thin films.

  4. Development of data processing system for regional geophysical and geochemical exploration of sandstone-hosted uranium deposits based on ArcGIS Engine

    International Nuclear Information System (INIS)

    Han Shaoyang; Ke Dan; Hou Huiqun; Hu Shuiqing

    2010-01-01

    According to the data processing need of geophysical and geochemical exploration of sandstone-hosted uranium deposits, the function design of the regional geophysical and geochemical data processing system is completed in the paper. The geophysical and geochemical data processing software with powerful functions is also developed based on ArcGIS Engine which remedies the shortage of GIS software for performing the geophysical and geochemical data processing. The development technique route of system software and key techniques are introduced, and the development processes of system software are showed through some development examples. Application practices indicate that the interface of developed system software with friendly interface and utility functions, may quickly perform the data processing of regional geophysical and geochemical exploration and provide the helpful deep information for predicting metallogenic prospective areas of sandstone-hosted uranium deposits. The system software is of a great application foreground. (authors)

  5. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  6. A unique laboratory test rig reduces the need for offshore tests to combat calcium naphthenate deposition in oilfield process equipment.

    Energy Technology Data Exchange (ETDEWEB)

    Mediaas, Heidi; Grande, Knut; Hustad, Britt-Marie; Hoevik, Kim Reidar; Kummernes, Hege; Nergaard, Bjoern; Vindstad, Jens Emil

    2006-03-15

    Producing and refining high-TAN crude oils introduces a number of challenges, among which calcium naphthenate deposition in process facilities is the most serious production issue. Until recently, the only option for studying chemicals and process parameters in order to prevent naphthenate deposition has been field tests. Statoil has now developed a small scale pilot plant where these experiments can be performed in the laboratory at Statoil's Research and Technology Center in Trondheim, Norway. The results from the pilot plant are in full agreement with the extensive naphthenate experience obtained from almost 9 years operation of the Heidrun oilfield. The design and operational procedures for this test facility are based on the recent discovery by Statoil and ConocoPhillips of the ARN acid. The ARN acid is a prerequisite for calcium naphthenate deposition. The new continuous flow pilot plant, the Naphthenate Rig, is used to develop new environmental friendly naphthenate inhibitors and to optimize process operating conditions. Since it operates on real crudes the need for field tests in qualifying new naphthenate inhibitors is reduced. To the best of our knowledge, the rig is the first of its kind in the world. (Author)

  7. Fabrication of an a-IGZO thin film transistor using selective deposition of cobalt by the self-assembly monolayer (SAM) process.

    Science.gov (United States)

    Cho, Young-Je; Kim, HyunHo; Park, Kyoung-Yun; Lee, Jaegab; Bobade, Santosh M; Wu, Fu-Chung; Choi, Duck-Kyun

    2011-01-01

    Interest in transparent oxide thin film transistors utilizing ZnO material has been on the rise for many years. Recently, however, IGZO has begun to draw more attention due to its higher stability and superior electric field mobility when compared to ZnO. In this work, we address an improved method for patterning an a-IGZO film using the SAM process, which employs a cost-efficient micro-contact printing method instead of the conventional lithography process. After a-IGZO film deposition on the surface of a SiO2-layered Si wafer, the wafer was illuminated with UV light; sources and drains were then patterned using n-octadecyltrichlorosilane (OTS) molecules by a printing method. Due to the low surface energy of OTS, cobalt was selectively deposited on the OTS-free a-IGZO surface. The selective deposition of cobalt electrodes was successful, as confirmed by an optical microscope. The a-IZGO TFT fabricated using the SAM process exhibited good transistor performance: electric field mobility (micro(FE)), threshold voltage (V(th)), subthreshold slope (SS) and on/off ratio were 2.1 cm2/Vs, 2.4 V, 0.35 V/dec and 2.9 x 10(6), respectively.

  8. Method for deposition of a conductor in integrated circuits

    Science.gov (United States)

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  9. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  10. Study of Cu2O\\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition

    Science.gov (United States)

    Makhlouf, Houssin; Weber, Matthieu; Messaoudi, Olfa; Tingry, Sophie; Moret, Matthieu; Briot, Olivier; Chtoutou, Radhouane; Bechelany, Mikhael

    2017-12-01

    Cu2O/ZnO nanowires (NWs) heterojunctions were successfully prepared by combining Atomic layer Deposition (ALD) and Electrochemical Deposition (ECD) processes. The crystallinity, morphology and photoconductivity properties of the Cu2O/ZnO nanostructures have been investigated. The properties of the Cu2O absorber layer and the nanostructured heterojunction were studied in order to understand the mechanisms lying behind the low photoconductivity measured. It has been found that the interface state defects and the high resistivity of Cu2O film were limiting the photovoltaic properties of the prepared devices. The understanding presented in this work is expected to enable the optimization of solar cell devices based on Cu2O/ZnO nanomaterials and improve their overall performance.

  11. Gaining insights into interrill soil erosion processes using rare earth element tracers

    Science.gov (United States)

    Increasing interest in developing process-based erosion models requires better understanding of the relationships among soil detachment, transportation, and deposition. The objectives are to 1) identify the limiting process between soil detachment and sediment transport for interrill erosion, 2) und...

  12. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  13. Uranium deposits in the metamorphic basement of the Rouergue massif. Genesis and extension of related albitization processes

    International Nuclear Information System (INIS)

    Schmitt, J.M.

    1982-02-01

    Albitization processes in the Rouergue metamorphic basement, probably Permian aged is evidenced. Late development of uranium orebodies occured within albitized zones. The detection of the latter serves as a highly valuable indirect guide for prospecting this type of deposits in a metamorphic basement [fr

  14. Age, genesis and exploration for mineral deposits: the possibilities offered by lead isotopes

    International Nuclear Information System (INIS)

    Marcoux, E.; Calvez, J.Y.

    1985-01-01

    After a brief theoretical survey of the subject, the paper discusses the assistance that lead isotopes can bring to solving problems of metallogenesis and mineral exploration. Lead isotopes act as a true geologic clock when radioactive decay of lead takes place in a closed U-Th-Pb system, or when these conditions have been recreated by homogenization of a large crustal segment. The lead clock is thus reliable for deposits whose process of formation was part of a hydrothermal event that affected a significant part of the crust, most importantly in island-arc volcanosedimentary deposits, much less so for deposits formed by spatially restricted hydrothermal activity such as the emplacement of veins. Very interesting possibilities are also to be found in the capacity of lead isotopes to act as geochemical tracers. In conjunction with paragenetic and gitologic studies, determination of the isotopic composition of lead allows the sources of metals to be identified and permits an approach to the understanding of inheritance phenomena in a mineral deposit or province. This information also assists in unravelling the successive metallogenic processes in a region, thus contributing to refinement of the concept of a metallogenic province. Lastly lead isotopes provide an additional factor in assessing the economic potential of a deposit undergoing exploration. The method is based on a comparison of the isotopic signature of the deposit with that of economic mineralization occuring elsewhere in the circa. Examples of stratiform deposits and the gold-bearing veins of Limousin are described. The application of this method to gossans can provide additional information to standard geochemistry and thus assist in grading of targets [fr

  15. Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared...... on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, deposit composition, sintering duration, and steel type...... on the adhesion strength....

  16. Deposition and interception of radionuclides. Current knowledge and future requirements

    International Nuclear Information System (INIS)

    1998-12-01

    Following an accidental or routine release of radionuclides into the environment, a good knowledge of deposition processes is necessary in order to accurately predict the radiation dose to members of the public. In order to understand the environmental impact of released radionuclides and their transfer through the environment, including the food chain to man, there have been numerous studies on deposition of radionuclides to a range of surfaces such as bare soil, crops, forests, water bodies and urban surfaces. The RADREM committee provides a forum for liaison on UK research and monitoring in the areas of radioactive substances and radioactive waste management. RADREM has set up four sub-committees to cover issues related to radioactivity in the atmospheric, terrestrial and aquatic environments as well as those related radioactive waste management. One of the sub-committee tasks is to organise seminars and workshops on specific topics of interest. The first of these was the workshop on 'Deposition and Interception of Radionuclides: Current knowledge and future requirements' organised last year by the Ministry of Agriculture, Fisheries and Food (MAFF), acting as secretariat for the Terrestrial Environment Sub-Committee (TESC) of RADREM. The intent of this workshop was to provide an opportunity to exchange information on deposition-related aspects between representatives from various interested parties including government, regulatory bodies, industry and research organisations. Through presentations and discussions, this workshop addressed current developments in the areas of deposition and interception of radionuclides by various surfaces and served to identify areas which need further research. Papers were presented on various aspects of deposition and interception of radionuclides including deposition into grass, fruits and other crops as well as deposition into urban areas and forests

  17. Precambrian uranium deposits as a possible source of uranium for the European Variscan deposits

    International Nuclear Information System (INIS)

    Mineeva, I.G.; Klochkov, A.S.

    2002-01-01

    The Precambrian uranium deposits have been studied on the territory of Baltic and Ukrainian shields. The primary Early Proterozoic complex Au-U deposits originated in granite-greenstone belts as a result of their evolution during continental earth crust formation by prolonged rift genesis. The greenstone belts are clues for revealing ancient protoriftogenic structures. The general regularities of uranium deposition on Precambrian shields are also traceable in Variscan uranium deposits from the Bohemian massif. The Variscan period of uranium ore formation is connected with a polychronous rejuvenation of ancient riftogenous systems and relatively younger processes of oil and gas formation leading to the repeated mobilization of U from destroyed Proterozoic and Riphean uranium deposits. (author)

  18. Interpretation of sedimentological processes of coarse-grained deposits applying a novel combined cluster and discriminant analysis

    Science.gov (United States)

    Farics, Éva; Farics, Dávid; Kovács, József; Haas, János

    2017-10-01

    The main aim of this paper is to determine the depositional environments of an Upper-Eocene coarse-grained clastic succession in the Buda Hills, Hungary. First of all, we measured some commonly used parameters of samples (size, amount, roundness and sphericity) in a much more objective overall and faster way than with traditional measurement approaches, using the newly developed Rock Analyst application. For the multivariate data obtained, we applied Combined Cluster and Discriminant Analysis (CCDA) in order to determine homogeneous groups of the sampling locations based on the quantitative composition of the conglomerate as well as the shape parameters (roundness and sphericity). The result is the spatial pattern of these groups, which assists with the interpretation of the depositional processes. According to our concept, those sampling sites which belong to the same homogeneous groups were likely formed under similar geological circumstances and by similar geological processes. In the Buda Hills, we were able to distinguish various sedimentological environments within the area based on the results: fan, intermittent stream or marine.

  19. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  20. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  1. Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Pantleon, Karen; Somers, Marcel A.J.

    2003-01-01

    This paper reports on the manufacturing, surface morphology, internal structure and mechanical properties of Ni-foils used as membranes in reference-microphones. Two types of foils, referred to as S-type and 0-type foils, were electrochemically deposited from a Watts-type electrolyte, with (S...

  2. Modification of anomalous deposition of Zn-Ni alloy by using tin additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zeyang; O`Keefe, T.J. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering

    1997-11-25

    One of the common examples of anomalous deposition in electrolytic processing is the Zn-Ni alloy coating system. These alloys, in the range 10-15% Ni, are also of commercial interest in electrogalvanizing for protecting steel from corrosion while retaining good formability, weldability and paintability. The primary objective of this research was to obtain a better fundamental understanding of anomalous deposition and to identify ways to modify its influence. Specifically, the effects of tin additions on the composition, structure and surface morphology of Zn-Ni alloy deposits from electrolyte containing 80 g l{sup -1} Zn and 10 g l{sup -1} Ni were studied. Previous work had shown that low concentrations (parts per million) of cations such as antimony and arsenic were very effective in countering the anomalous deposition and increasing the relative nickel content of the deposits. Unfortunately, the morphology and current efficiency were adversely affected by use of these additives. It was found that the addition of tin also appreciably increased the nickel content of the alloy deposit, as well as giving smooth, dense deposits with a current efficiency of about 90%. The surface morphology of the deposits was correlated with the amount of tin added. The limited electrochemical impedance spectroscopy tests conducted showed that the low concentrations of tin did lower the charge transfer resistance of the reaction. Overall, the results were promising but considerably more research is needed to elucidate the basic factors that influence zinc alloy electrocrystallization mechanisms. (orig.) 27 refs.

  3. Understanding process behaviours in a large insurance company in Australia : a case study

    NARCIS (Netherlands)

    Suriadi, S.; Wynn, M.T.; Ouyang, C.; Hofstede, ter A.H.M.; van Dijk, N.J.; Salinesi, C.; Norrie, M.C.; Pastor, O.

    2013-01-01

    Having a reliable understanding about the behaviours, problems, and performance of existing processes is important in enabling a targeted process improvement initiative. Recently, there has been an increase in the application of innovative process mining techniques to facilitate evidence-based

  4. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada

    Science.gov (United States)

    Crow, Ryan S.; Block, Debra L.; Felger, Tracey J.; House, P. Kyle; Pearthree, Philip A.; Gootee, Brian F.; Youberg, Ann M.; Howard, Keith A.; Beard, L. Sue

    2018-02-05

    Understanding the evolution of the Colorado River system has direct implications for (1) the processes and timing of continental-scale river system integration, (2) the formation of iconic landscapes like those in and around Grand Canyon, and (3) the availability of groundwater resources. Spatial patterns in the position and type of Colorado River deposits, only discernible through geologic mapping, can be used to test models related to Colorado River evolution. This is particularly true downstream from Grand Canyon where ancestral Colorado River deposits are well-exposed. We are principally interested in (1) regional patterns in the minimum and maximum elevation of each depositional unit, which are affected by depositional mechanism and postdepositional deformation; and (2) the volume of each unit, which reflects regional changes in erosion, transport efficiency, and accommodation space. The volume of Colorado River deposits below Grand Canyon has implications for groundwater resources, as the primary regional aquifer there is composed of those deposits. To this end, we are presently mapping Colorado River deposits and compiling and updating older mapping. This preliminary data release shows the current status of our mapping and compilation efforts. We plan to update it at regular intervals in conjunction with ongoing mapping.

  5. Ripple scalings in geothermal facilities, a key to understand the scaling process

    Science.gov (United States)

    Köhl, Bernhard; Grundy, James; Baumann, Thomas

    2017-04-01

    Scalings are a widespread problem among geothermal plants which exploit the Malm Aquifer in the Bavarian Molasse Zone. They effect the technical and economic efficiency of geothermal plants. The majority of the scalings observed at geothermal facilities exploring the Malm aquifer in the Bavarian Molasse Basin are carbonates. They are formed due to a disruption of the lime-carbonic-acid equilibrium during production caused by degassing of CO2. These scalings are found in the production pipes, at the pumps and at filters and can nicely be described using existing hydrogeochemical models. This study proposes a second mechanism for the formation of scalings in ground-level facilities. We investigated scalings which accumulated at the inlet to the heat exchanger. Interestingly, the scalings were recovered after the ground level facilities had been cleaned. The scalings showed distinct ripple structures, which is likely a result of solid particle deposition. From the ripple features the the flow conditions during their formation were calculated based on empirical equations (Soulsby, 2012). The calculations suggest that the deposits were formed during maintenance works. Thin section images of the sediments indicate a two-step process: deposition of sediment grains, followed by stabilization with a calcite layer. The latter likely occured during maintenance. To prevent this type of scalings blocking the heat exchangers, the maintenance procedure has to be revised. References: Soulsby, R. L.; Whitehouse, R. J. S.; Marten, K. V.: Prediction of time-evolving sand ripples in shelf seas. Continental Shelf Research 2012, 38, 47-62

  6. Understanding the Process by Which New Employees Enter Work Groups

    Science.gov (United States)

    Summers, Donald B.

    1977-01-01

    The Group Integration Process, described in this article, serves as a broad and guiding set of steps (invitation, induction, orientation, training, relationship, and integration) that helps the supervisor better understand what is to be done in managing a new employee's entrance into a work group. (TA)

  7. Photocatalytic evaluation of self-assembled porous network structure of ferric oxide film fabricated by dry deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yunchan; Kim, Hyungsub; Lee, Geon-Yong; Pawar, Rajendra C.; Lee, Jai-Sung; Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr

    2016-09-15

    Ferric oxide powder in the alpha phase (α-Fe{sub 2}O{sub 3}) was deposited on an aluminum oxide (Al{sub 2}O{sub 3}) substrate by a nanoparticle deposition system using the dry deposition method. X-ray diffraction (XRD) images confirmed that the phase of the deposited α-Fe{sub 2}O{sub 3} did not change. The deposited α-Fe{sub 2}O{sub 3} was characterized in terms of its microstructure using scanning electron microscopy (SEM). A porous network microstructure formed when small agglomerates of Fe{sub 2}O{sub 3} (SAF) were deposited. The deposition and formation mechanism of the microstructure were investigated using SEM and three-dimensional (3D) profile analysis. First, a dense coating layer formed when the film was thinner than the particle size. After that, as the film thickness increased to over 5 μm, the porous network structure formed by excavating the surface of the coating layer as it was bombarded by particles. Rhodamine B (RhB) was degraded after 6 h of exposure to the Fe{sub 2}O{sub 3} coating layer with SAF, which has good photocatalytic activity and a high porous network structure. The kinetic rate constants of the SAF and large agglomerates of Fe{sub 2}O{sub 3} (LAF) were calculated to be 0.197(h{sup −1}) and 0.128(h{sup −1}), respectively, based on the absorbance results. Using linear sweep voltammetry, we confirmed that the photoelectric effect occurred in the coating layer by measuring the resulting current under illuminated and dark conditions. - Graphical abstract: Self-assembled porous photocatalytic film fabricated by dry deposition method for water purification. - Highlights: • Different sizes of Fe{sub 2}O{sub 3} agglomerates were used to form porous network structure. • Fe{sub 2}O{sub 3} agglomerate particles were deposited using solvent-free process. • Self-assembled porous network microstructure formed better with small agglomerates of Fe{sub 2}O{sub 3}. • Fabricated porous network structure showed its potential to be used

  8. Understanding the formation process of exceptionally long fullerene-based nanowires

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Geng, Junfeng; Solov'yov, Andrey V.

    2009-01-01

    solution of C$_60$. We have performed a thorough theoretical analysis, aiming at gaining an in-depth understanding of the exceptionally large aspect ratio of C$_60$-based nanowires. By accounting for different interactions in the system we have calculated the structures of the unit cell and determined...... the role of the fullerene and of the solvent molecules in the crystallization process of the nanowires. We have calculated the adhesion energy of C$_60$ molecules to the nanowire surface, and on the basis of this explained the growth anisotropy of the crystal. To get a more profound understanding...

  9. Process understanding on high shear granulated lactose agglomerates during and after drying

    NARCIS (Netherlands)

    Nieuwmeyer, F.J.S.

    2009-01-01

    In 2001 the FDA launched the Process Analytical Technology initiative as a response to the growing public and industrial awareness that there is a lack of process understanding required to have an optimal control of pharmaceutical manufacturing. The current research project was initiated based upon

  10. Review of progress in pulsed laser deposition and using Nd:YAG laser in processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Chen, C.W.; Mukherjee, K.

    1993-01-01

    The current progress in pulsed laser ablation of high-temperature superconductors is reviewed with emphasis on the effect of pulse-width and wavelength, nature of the plasma plume, post-annealing and methods to improve quality of films grown at low temperature. An ion beam assisted millisecond pulsed laser vapor deposition process has been developed to fabricate YBa 2 Cu 3 O x high T. superconductor thin films. Solution to target overheating problem, effects of oxygen ion beam, properties of deposited films, and effect of silver buffer layer on YSZ substrate are presented. A new laser calcining process has been used to produce near single phase high T c superconductors of Bi-Pb-Sr-Ca-Cu-0 system. The total processing time was reduced to about 100 hours which is about half of that for conventional sintering. For this compound both resistance and magnetic susceptibility data showed an onset of superconducting transition at about 110K. A sharp susceptibility drop was observed above 106K. The zero resistance temperature was about 98K. High T c phase was formed via a different kinetic path in laser calcined sample compare with the conventionally processed sample

  11. Methods of mineral potential assessment of uranium deposits: A mineral systems approach

    International Nuclear Information System (INIS)

    Jaireth, S.

    2014-01-01

    Mineral potential represents the likelihood (probability) that an economic mineral deposit could have formed in an area. Mineral potential assessment and prospectivity analysis use a probabilistic concepts to mineral deposits, where the probability of an event (formation of a mineral deposit) is conditional on two factors : i) geological processes occurring in the area, and ii) the presence of geological features indicative of those process. For instance, one of the geological processes critical for the formation of sandstone-hosted uranium deposits in an area is transport of uranium in groundwaters. Geological features indicative of this process in an area comprise, i) presence of leachable source rocks of uranium; ii) presence of highly permeable sandstone; and iii) suitable hydrogeological gradient driving flow groundwaters. Mineral deposits can also be conceptualised as mineral systems with more emphasis on mineralising processes. This concept has some clear parallels with the petroleum systems approach which has proven to be a useful in oil and gas exploration. Mineral systems are defined as ‘all geological factors that control the generation and preservation of mineral deposits’. Seven important geological factors are outlined to define the characteristics of a hydrothermal mineral system. These factors include: i) source of the mineralising fluids and transporting legends; ii) source of metals and other ore components; iii) migration pathways which may include inflow as well as outflow zones; iv) thermal gradients; v) source of energy to mobilised fluids; vi) mechanical and structural focusing mechanism at the trap site; and vii) chemical and/or physical cause for precipitation of ore minerals at the trap site. This approach, commonly known as the ‘source’, ‘transport’ and ‘trap’ paradigm has been redefined to introduce five questions as a basis to understand spatial and temporal evolution of a mineral system at all scales (regional to

  12. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    Science.gov (United States)

    Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  13. Palaeo-dust records: A window to understanding past environments

    Science.gov (United States)

    Marx, Samuel K.; Kamber, Balz S.; McGowan, Hamish A.; Petherick, Lynda M.; McTainsh, Grant H.; Stromsoe, Nicola; Hooper, James N.; May, Jan-Hendrik

    2018-06-01

    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with

  14. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  15. Zirconium cladding - the long way towards a mechanistic understanding of processing and performance

    International Nuclear Information System (INIS)

    Preuss, Michael

    2011-01-01

    Zirconium alloys are the material of choice to encapsulate nuclear fuel in light and heavy water-cooled reactors due to their low neutron absorption, excellent corrosion resistance and sufficient mechanical properties. Despite these advantageous physical and mechanical properties a more physically based understanding of microstructure and texture evolution during processing is highly desirable in order to improve our understanding of formability during thermomechanical processing and performance variability of cladding material. In addition, the purely empirical understanding of aqueous zirconium corrosion, hydrogen pick up, hydride precipitation as well as irradiation growth and creep limits the accuracy of life predictions and therefore the level of burnup that is obtained from current fuel assemblies. The presentation aims at giving examples of new research strategies that will enable the development of a new physical understanding of processing and performance aspects in zirconium cladding material, which is required to develop new predictive models. Particular emphasis will be placed on using novel research tools and large-scale research facilities such as neutron spallation and synchrotron radiation sources to undertake very detailed and often in-situ studies of deformation mechanisms and microstructure evolution as well as determining stress states in grain families, oxides and hydrides. The results will be presented in the view of how they might help us to improve our understanding and enable the development of better predictive models

  16. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus

    International Nuclear Information System (INIS)

    Wilson, L.; Lancaster Univ.; Head, J.W. III

    1983-01-01

    The silicate planets and satellites display a wide range of physical, chemical and atmospheric characteristics which may influence the nature of volcanism, a major geological process common to the evolution of the surfaces of these bodies. Consideration of the process of magma ascent and eruption from first principles allows predictions to be made concerning volcanic eruption styles and expected landforms and deposits on each planetary body. Examination of actual landforms and deposits in light of these predictions leads to a better understanding of the nature of volcanic eruption processes and outlines outstanding problems. (author)

  17. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  18. Depth-resolved detection and process dependence of traps at ultrathin plasma-oxidized and deposited SiO2/Si interfaces

    International Nuclear Information System (INIS)

    Brillson, L. J.; Young, A. P.; White, B. D.; Schaefer, J.; Niimi, H.; Lee, Y. M.; Lucovsky, G.

    2000-01-01

    Low-energy electron-excited nanoluminescence spectroscopy reveals depth-resolved optical emission associated with traps near the interface between ultrathin SiO 2 deposited by plasma-enhanced chemical vapor deposition on plasma-oxidized crystalline Si. These near-interface states exhibit a strong dependence on local chemical bonding changes introduced by thermal/gas processing, layer-specific nitridation, or depth-dependent radiation exposure. The depth-dependent results provide a means to test chemical and structural bond models used to develop advanced dielectric-semiconductor junctions. (c) 2000 American Vacuum Society

  19. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure

    OpenAIRE

    Michael Arthur Cuiffo; Jeffrey Snyder; Alicia M. Elliott; Nicholas Romero; Sandhiya Kannan; Gary P. Halada

    2017-01-01

    Polylactic acid (PLA) is an organic polymer commonly used in fused deposition (FDM) printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR) spectroscopy and pho...

  20. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  1. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  2. On the geological background of the mineralization of carbonate-siliceous-pelitic stratabound uranium deposits in south China and variety of their metallogenesis

    International Nuclear Information System (INIS)

    Zhang Zuhuan.

    1986-01-01

    The carbonate-siliceouspelitic uranium deposits which widely distributed in South China are more typical stratabound deposits. According to the horizon of ore bearing formation it may be divided into two major types, i.e. Sinian-Cambrian series and upper Palaeozoic group. The formation of uranium source bed was closely related with the crustal evolution of that area. The process of transformation of uranium source bed into uranium deposits being more complexity and variety. Therefore, this kind of deposits was commomly subdivided into three types----sedimentary diagenetic type, leaching precipitation type and hydrothermal reworked type. Among which the former two types are rarely appeared, and the sedimentary diagenetic type is so far not very reliable. The hydrothermal reworked type being the most important one; but they also showing different characteristics in metallogenesis, especially on the relation with granite body situated nearby. Thus, different understandings around their genesis were existed. This paper discusses the geological and geochemical characteristics of several deposits with different processes of mineralization and suggest a scheme for further classification of these of uranium deposits

  3. Substrate Effect on Plasma Clean Efficiency in Plasma Enhanced Chemical Vapor Deposition System

    Directory of Open Access Journals (Sweden)

    Shiu-Ko JangJian

    2007-01-01

    Full Text Available The plasma clean in a plasma-enhanced chemical vapor deposition (PECVD system plays an important role to ensure the same chamber condition after numerous film depositions. The periodic and applicable plasma clean in deposition chamber also increases wafer yield due to less defect produced during the deposition process. In this study, the plasma clean rate (PCR of silicon oxide is investigated after the silicon nitride deposited on Cu and silicon oxide substrates by remote plasma system (RPS, respectively. The experimental results show that the PCR drastically decreases with Cu substrate compared to that with silicon oxide substrate after numerous silicon nitride depositions. To understand the substrate effect on PCR, the surface element analysis and bonding configuration are executed by X-ray photoelectron spectroscopy (XPS. The high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS is used to analyze microelement of metal ions on the surface of shower head in the PECVD chamber. According to Cu substrate, the results show that micro Cu ion and the CuOx bonding can be detected on the surface of shower head. The Cu ion contamination might grab the fluorine radicals produced by NF3 ddissociation in the RPS and that induces the drastic decrease on PCR.

  4. How Pre-Service Teachers' Understand and Perform Science Process Skills

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  5. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  6. Method for depositing high-quality microcrystalline semiconductor materials

    Science.gov (United States)

    Guha, Subhendu [Bloomfield Hills, MI; Yang, Chi C [Troy, MI; Yan, Baojie [Rochester Hills, MI

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  7. Structural evolution of Ge-rich Si1−xGex films deposited by jet-ICPCVD

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-11-01

    Full Text Available Amorphous Ge-rich Si1−xGex films with local Ge-clustering were deposited by dual-source jet-type inductively coupled plasma chemical-vapor deposition (jet-ICPCVD. The structural evolution of the deposited films annealed at various temperatures (Ta is investigated. Experimental results indicate that the crystallization occurs to form Ge and Si clusters as Ta = 500 °C. With raising Ta up to 900 °C, Ge clusters percolate together and Si diffuses and redistributes to form a Ge/SiGe core/shell structure, and some Ge atoms partially diffuse to the surface as a result of segregation. The present work will be helpful in understanding the structural evolution process of a hybrid SiGe films and beneficial for further optimizing the microstructure and properties.

  8. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process

    Science.gov (United States)

    Vanleeuw, D.; Lewis, D.; Moens, A.; Sibbens, G.; Wiss, T.

    2018-05-01

    Measurement of neutron cross section data is a core activity of the JRC-Directorate G for Nuclear Safety and Security in Geel. After a period of reduced activity and in line with a renewed interest for nuclear data required for GenIV reactors and waste minimization, the demand for high quality actinide targets increased. Physical vapour deposition by thermal evaporation is a key technique to prepare homogeneous thin actinide layers, but due to ageing effects the earlier in-house developed equipment can no longer provide the required quality. Because of a current lack of experience and human resources cooperation with private companies is required for the development of new deposition equipment directly integrated in a glove box. In this paper we describe the design, implementation and validation of the first commercial actinide evaporator in a glove box as well as the optimization of the deposition process. Highly enriched 238U3O8 was converted to 238UF4 powder and several deposition runs were performed on different substrates. The deposition parameters were varied and defined in order to guarantee physical and chemical stable homogeneous UF4 layers, even on polished substrates which was not longer feasible with the older equipment. The stability problem is discussed in view of the thin layer growth by physical vapour deposition and the influence of the deposition parameters on the layer quality. The deposits were characterized for the total mass by means of substitution weighing and for the areal density of 238U by means of alpha particle counting and thermal ionization mass spectrometry (TIMS). The quality of the layer was visually evaluated and by means of stereo microscopy and auto radiography.

  9. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component

    International Nuclear Information System (INIS)

    Cornell, Sarah E.

    2011-01-01

    The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles. - Highlights: → Organic-nitrogen deposition is globally ubiquitous. → Geographic patterns can now be seen in the near-global dataset. → Organic N can be formed through interactions of biogenic and anthropogenic compounds. → Neglecting organic N in deposition assessments increases critical loads uncertainty - Routinely including the organic component of atmospheric deposition (known to be around 25-35% worldwide) would make the understanding and prediction of nitrogen biogeochemistry more robust. This paper makes a preliminary global synthesis based on literature reports.

  10. How laser damage resistance of HfO2/SiO2 optical coatings is affected by embedded contamination caused by pausing the deposition process

    Science.gov (United States)

    Field, Ella; Bellum, John; Kletecka, Damon

    2015-07-01

    Reducing contamination is essential for producing optical coatings with high resistance to laser damage. One aspect of this principle is to make every effort to limit long interruptions during the coating's deposition. Otherwise, contamination may accumulate during the pause and become embedded in the coating after the deposition is restarted, leading to a lower laser-induced damage threshold (LIDT). However, pausing a deposition is sometimes unavoidable, despite our best efforts. For example, a sudden hardware or software glitch may require hours or even overnight to solve. In order to broaden our understanding of the role of embedded contamination on LIDT, and determine whether a coating deposited under such non-ideal circumstances could still be acceptable, this study explores how halting a deposition overnight impacts the LIDT, and whether ion cleaning can be used to mitigate any negative effects on the LIDT. The coatings investigated are a beam splitter design for high reflection at 1054 nm and high transmission at 527 nm, at 22.5° angle of incidence in S-polarization. LIDT tests were conducted in the nanosecond regime.

  11. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic

  12. X-ray photoelectron spectroscopy study on Fe and Co catalysts during the first stages of ethanol chemical vapor deposition for single-walled carbon nanotube growth

    NARCIS (Netherlands)

    Oida, S.; McFeely, F.R.; Bol, A.A.

    2011-01-01

    Optimized chemical vapor deposition processes for single-walled carbon nanotube (SWCNT) can lead to the growth of dense, vertically aligned, mm-long forests of SWCNTs. Precise control of the growth process is however still difficult, mainly because of poor understanding of the interplay between

  13. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  14. Parametric Investigation of the Isothermal Kinetics of Growth of Graphene on a Nickel Catalyst in the Process of Chemical Vapor Deposition of Hydrocarbons

    Science.gov (United States)

    Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.

    2016-11-01

    A kinetic model of isothermal synthesis of multilayer graphene on the surface of a nickel foil in the process of chemical vapor deposition, on it, of hydrocarbons supplied in the pulsed regime is considered. The dependences of the number of graphene layers formed and the time of their growth on the temperature of the process, the concentration of acetylene, and the thickness of the nickel foil were calculated. The regime parameters of the process of chemical vapor deposition, at which single-layer graphene and bi-layer graphene are formed, were determined. The dynamics of growth of graphene domains at chemical-vapor-deposition parameters changing in wide ranges was investigated. It is shown that the time dependences of the rates of growth of single-layer graphene and bi-layer graphene are nonlinear in character and that they are determined by the kinetics of nucleation and growth of graphene and the diffusion flow of carbon atoms in the nickel foil.

  15. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard...... field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy...

  16. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  17. Investigation of Processing, Microstructures and Efficiencies of Polycrystalline CdTe Photovoltaic Films and Devices

    Science.gov (United States)

    Munshi, Amit Harenkumar

    CdTe based photovoltaics have been commercialized at multiple GWs/year level. The performance of CdTe thin film photovoltaic devices is sensitive to process conditions. Variations in deposition temperatures as well as other treatment parameters have a significant impact on film microstructure and device performance. In this work, extensive investigations are carried out using advanced microstructural characterization techniques in an attempt to relate microstructural changes due to varying deposition parameters and their effects on device performance for cadmium telluride based photovoltaic cells deposited using close space sublimation (CSS). The goal of this investigation is to apply advanced material characterization techniques to aid process development for higher efficiency CdTe based photovoltaic devices. Several techniques have been used to observe the morphological changes to the microstructure along with materials and crystallographic changes as a function of deposition temperature and treatment times. Traditional device structures as well as advanced structures with electron reflector and films deposited on Mg1-xZnxO instead of conventional CdS window layer are investigated. These techniques include Scanning Electron Microscopy (SEM) with Electron Back Scattered Diffraction (EBSD) and Energy dispersive X-ray spectroscopy (EDS) to study grain structure and High Resolution Transmission Electron Microscopy (TEM) with electron diffraction and EDS. These investigations have provided insights into the mechanisms that lead to change in film structure and device performance with change in deposition conditions. Energy dispersive X-ray spectroscopy (EDS) is used for chemical mapping of the films as well as to understand interlayer material diffusion between subsequent layers. Electrical performance of these devices has been studied using current density vs voltage plots. Devices with efficiency over 18% have been fabricated on low cost commercial glass substrates

  18. Phanerozoic environments of black shale deposition and the Wilson Cycle

    Directory of Open Access Journals (Sweden)

    J. Trabucho-Alexandre

    2012-02-01

    Full Text Available The spatial and temporal distribution of black shales is related to the development of environments in which they accumulate and to a propitious combination of environmental variables. In recent years, much has been done to improve our understanding of the mechanisms behind the temporal distribution of black shales in the Phanerozoic and of the environmental variables that result in their deposition. However, the interpretation of ancient black shale depositional environments is dominated by an oversimplistic set of three depositional models that do not capture their complexity and dynamics. These three models, the restricted circulation, the (open ocean oxygen minimum and the continental shelf models, are an oversimplification of the variety of black shale depositional environments that arise and coexist throughout the course of a basin's Wilson Cycle, i.e. the dynamic sequence of events and stages that characterise the evolution of an ocean basin, from the opening continental rift to the closing orogeny. We examine the spatial distribution of black shales in the context of the Wilson Cycle using examples from the Phanerozoic. It is shown that the geographical distribution of environments of black shale deposition and the position of black shales in the basin infill sequence strongly depend on basin evolution, which controls the development of sedimentary environments where black shales may be deposited. The nature of the black shales that are deposited, i.e. lithology and type of organic matter, also depends on basin evolution and palaeogeography. We propose that in studies of black shales more attention should be given to the sedimentary processes that have led to their formation and to the interpretation of their sedimentary environments.

  19. A Process-Philosophical Understanding of Organizational Learning as "Wayfinding": Process, Practices and Sensitivity to Environmental Affordances

    Science.gov (United States)

    Chia, Robert

    2017-01-01

    Purpose: This paper aims to articulate a practice-based, non-cognitivist approach to organizational learning. Design/methodology/approach: This paper explores the potential contribution of a process-based "practice turn" in social theory for understanding organizational learning. Findings: In complex, turbulent environments, robust…

  20. Understanding of how older adults with low vision obtain, process, and understand health information and services.

    Science.gov (United States)

    Kim, Hyung Nam

    2017-10-16

    Twenty-five years after the Americans with Disabilities Act, there has still been a lack of advancement of accessibility in healthcare for people with visual impairments, particularly older adults with low vision. This study aims to advance understanding of how older adults with low vision obtain, process, and use health information and services, and to seek opportunities of information technology to support them. A convenience sample of 10 older adults with low vision participated in semi-structured phone interviews, which were audio-recorded and transcribed verbatim for analysis. Participants shared various concerns in accessing, understanding, and using health information, care services, and multimedia technologies. Two main themes and nine subthemes emerged from the analysis. Due to the concerns, older adults with low vision tended to fail to obtain the full range of all health information and services to meet their specific needs. Those with low vision still rely on residual vision such that multimedia-based information which can be useful, but it should still be designed to ensure its accessibility, usability, and understandability.

  1. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  2. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET (United Kingdom); Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin [Miba Coating Group: Teer Coatings Ltd, West-Stone-House, West-Stone, Berry-Hill-Industrial-Estate, WR9 9AS, Droitwich (United Kingdom)

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  3. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  4. Depositional environment of the San Miguel lignite deposit in Atascosa and McMullen Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gowan, S.W.

    1985-01-01

    An analysis of the environment of deposition of the San Miguel lignite deposit was carried out in order to understand newly discovered characteristics of the deposit. The environment of deposition of the overburden and underburden was evaluated through an interpretation of three continuous cores. Four coal cores and a highwall section were carefully described to determine the depositional environmental of the coal seams and partings. These studies were supplemented by the construction of seam and parting isopachs, and the analysis of the distribution of sulfur isotopes, sulfur, forms, and total sulfur within the coal. The sedimentary package is composed of a basal prograding barrier that beach, dune, and back-barrier sands. This unit correlates with a downdip sand that was also interpreted as a prograding barrier by other authors. The barrier is overlain by a series of slit and clay deposits of lagoonal, tidal flat, and tidal channel origin. These deposits are capped by restricted lagoon sediments composed of green, calcareous clays that occasionally contain shell layers. The restricted lagoon deposits formed when the barrier closed the lagoon off from the sea. Peat forming freshwater swamps eventually became established behind the barrier and on top of the restricted lagoon sediments. The parting isopachs reveal a reticulate morphology similar to the mangrove swamps located lateral to the modern Niger River Delta. The partings represent vegetated tidal flat deposits that formed during periodic invasions by the sea that killed the swamp and inundated the peat with sulfate rich water. The lignite interval is capped by open lagoon and tidal flat sediments.

  5. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  6. Simulation of erosion and deposition processes of many-component surface layers in fusion devices; Simulation von Erosion- und Depositionsprozessen mehrkomponentiger Oberflaechenschichten in Fusionsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Droste, S.

    2007-02-15

    The present choice of first wall materials in ITER will unavoidably lead to the formation of mixed carbon, tungsten and beryllium layers. Predictive modelling of erosion processes, impurity transport and deposition processes is important. For this the 3D Monte-Carlo code ERO can be used. In this thesis ERO has been coupled to the existing Monte-Carlo code SDTrimSP to describe material mixing processes in wall components correctly. SDTrimSP describes the surface by calculating the transport of ions in solids. It keeps track of the depth dependent material concentration caused by the implantation of projectiles in the solid. The calculation of movements of the recoil atoms within the solid gives reflection coefficients and sputtering yields. Since SDTrimSP does not consider chemical processes a new method has been developed to implement chemical erosion of carbon by the impact of hydrogen projectiles. The new code ERO-SDTrimSP was compared to TEXTOR experiments which were carried out to study the formation of mixed surface layers. In these experiments methane CH4 was injected through drillings in graphite and tungsten spherical limiters into the plasma. A pronounced substrate dependence was observed. The deposition efficiency, i.e. the ratio of the locally deposited to the injected amount of carbon, was 4% for graphite and 0.3% for tungsten. The deposition-dominated area on the graphite limiter covers a five times larger area than on the tungsten limiter. Modelling of this experiment with ERO-SDTrimSP also showed a clear substrate dependence with 2% deposition efficiency for graphite and less than 0.5% for tungsten. An important result of the comparison between experiment and simulation was that the effective sticking of hydrocarbon radicals hitting the surface must be negligible. Furthermore, it was shown that local re-deposited carbon layers are 10 times more effectively eroded than ordinary graphite. Simulation of the impurity transport in the plasma was checked

  7. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  8. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  9. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  10. Nature of the pulsed laser process for the deposition of high T/sub c/ superconducting thin films

    International Nuclear Information System (INIS)

    Venkatesan, T.; Wu, X.D.; Inam, A.

    1988-01-01

    The pulsed laser thin-film deposition process can enable preparation of thin films of complex composition with good control over the film stoichiometry. The film compositions are similar to that of the target pellet and as a consequence this technique appears to be an ideal method for preparing high T/sub c/ thin films on a variety of substrates.The factors which contribute to this beneficial phenomenon have been explored by a laser ionization mass spectrometry (LIMS) and a post ablation ionization (PAI) neutral velocity analysis technique in order to determine the mass and velocities of the laser ejected material. In addition, x-ray absorption measurements on films deposited onto substrates at room temperature were performed in order to identify the presence of short-range crystalline order in the films. Both of these studies rule out the ejection of stoichiometric clusters of material from the pellet during the laser ablation/deposition process. Instead, binary and ternary suboxides are emitted from the target pellet. These suboxides most likely have unit sticking coefficient to the substrate which could contribute to the preservation of the film stoichiometry. The velocity distribution of several neutral species (e.g., BaO) indicates that particles have energies of several eV. Thus the effective temperatures of the emitted species are ∼15 x 10 3 K, and these energetic particles may facilitate growth of the crystalline films at low substrate temperatures

  11. Deposition of magnetite particles onto alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H. [Univ. of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    1998-07-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m{sup 2} . A concentration of suspended magnetite of 5.0E-03kg/m{sup 3} was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1{mu}m) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was

  12. Deposition of magnetite particles onto alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Basset, M.; Arbeau, N.; McInerney, J.; Lister, D.H.

    1998-01-01

    Fouling is a particularly serious problem in the power generating industry. Deposits modify the thermalhydraulic characteristics of heat transfer surfaces by changing the resistance to heat transfer and the resistance to fluid flow, and, if thick enough, can harbour aggressive chemicals. Deposits are also implicated in the increase of radiation fields around working areas in the primary heat transfer systems of nuclear power plants. In order to understand the preliminary steps of the formation of corrosion product deposits on the outsides of steam generator tubes, a laboratory program has investigated the deposition of magnetite particles from suspension in water onto Alloy-800 surfaces under various conditions of flow, chemistry and boiling heat transfer. A recirculating loop made of stainless steel operating at less than 400kPa pressure, with a nominal coolant temperature of 90 degrees C, was equipped with a vertical glass column which housed a 2.5E-01m-long Alloy-800 boiler tube capable of generating a heat flux of 240kW/m 2 . A concentration of suspended magnetite of 5.0E-03kg/m 3 was maintained in the recirculating coolant, which was maintained at a pH of 7.5. The magnetite was synthesized with a sol-gel process, which was developed to produce reproducibly monodispersed, colloidal (<1μm) and nearly spherical particles. A radiotracing method was used to characterize the deposit evolution with time and to quantify the removal of magnetite particles. The results from a series of deposition experiments are presented here. The deposition process is described in terms of a two-step mechanism: the transport step, involving the transport from the bulk of the liquid to the vicinity of the surface, followed by the attachment step, involving the attachment of the particle onto the surface. Under non-boiling heat transfer conditions, diffusion seems to be the dominant factor ruling deposition with a small contribution from thermophoresis; removal was considered

  13. Direct fabrication of integrated 3D Au nanobox arrays by sidewall deposition with controllable heights and thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Nam-Goo; Lee, Bong Kuk; Kanki, Teruo; Lee, Hea Yeon; Kawai, Tomoji; Tanaka, Hidekazu, E-mail: h-tanaka@sanken.osaka-u.ac.j [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2009-09-30

    This paper provides a unique strategy for controlling integrated hollow nanostructure arrays such as boxes or pillars at the nanometer scale. The key merit of this technique is that it can overcome resolution limits by sidewall deposition and deposit various materials using a sputtering method. The sputtering method can be replaced by other dry deposition techniques such as pulsed laser deposition (PLD) for complex functional materials. Furthermore, it can produce low-cost large-area fabrication and high reproducibility using the NIL (nanoimprint lithograph) process. The fabrication method consists of a sequence of bilayer spin-coating, UV-NIL, RIE (reactive ion etching), sputtering, ion milling and piranha cleaning processes. By changing the deposition time and molds, various thicknesses and shapes can be fabricated, respectively. Furthermore, the fabricated Au box nanostructure has a bending zone of the top layer and a {approx}17 nm undercut of the bottom layer as observed by SEM (scanning electron microscope). The sidewall thickness was changed from 12 to 61 nm by controlling the deposition time, and was investigated to understand the relationship with blanket thicknesses and geometric effects. The calculated sidewall thickness matched well with experimental results. Using smaller hole-patterned molds, integrated nanobox arrays, with inner squares measuring {approx}160 nm, and nanopillar arrays, with inside pores measuring {approx}65 nm, were fabricated under the same conditions.

  14. Effects of deposition conditions on the properties of pyrolytic carbon deposited in a fluidized bed

    International Nuclear Information System (INIS)

    Lowden, Richard Andrew; Hunn, John D.; Nunn, Stephen D.; Kercher, Andrew K.; Price, Jeffery R.; Jellison, Gerald Earle Jr.

    2005-01-01

    The high-density, isotropic pyrolytic carbon layer beneath the silicon carbide (IPyC) plays a key role in the irradiation performance of coated particle fuel. The IPyC layer protects the kernel from reactions with chlorine during deposition of the SiC layer, provides structural support for the SiC layer, and protects the SiC from fission products and carbon monoxide. The process conditions used by the Germans to deposit the IPyC coating produced a highly isotropic, but somewhat permeable IPyC coating. The permeability of the IPyC coating was acceptable for use with the dense German UO 2 kernels, but may not be suitable when coating UCO kernels. The UCO kernels are typically more porous and thus have a larger surface area than UO 2 kernels. The lower density and the higher surface area of UCO kernels could make them more susceptible to attack by HCl gas during the silicon carbide (SiC) coating process, which could result in heavy metal dispersion into the buffer and IPyC coatings and a higher level of as-manufactured SiC defects. The relationship between IPyC deposition conditions, permeability, and anisotropy must be understood and the appropriate combination of anisotropy and permeability for particle fuel containing UCO kernels selected. A reference set of processing conditions have been determined from review of historical information and results of earlier coating experiments employing 350 and 500 (micro)m UO 2 kernels. It was decided that a limited study would be conducted, in which only coating gas fraction (CGF) and temperature would be varied. Coatings would be deposited at different rates and with a range of microstructures. Thickness, density, porosity and anisotropy would be measured and permeability evaluated using a chlorine leach test. The results would be used to select the best IPyC coating conditions for use with the available natural enrichment uranium carbide/uranium oxide (NUCO) kernels. The response plots from the investigation of the

  15. ON THE UNDERSTANDING OF AEOLIAN SEQUENCE STRATIGRAPHY: AN EXAMPLE FROM MIOCENE-PLIOCENE DEPOSITS IN PATAGONIA, ARGENTINA

    Directory of Open Access Journals (Sweden)

    CARLOS ZAVALA

    2001-07-01

    Full Text Available Upper Tertiary aeolian strata (Río Negro Formation outcrop in extensive sea cliffs at the Northeast of Patagonia. These outcrops show deposits corresponding to a complete suite of aeolian and aeolian related sub-environments, and also provide excellent exposures to analyse the sedimentology and internal architecture from a sequence stratigraphic point of view. Field studies, supplemented withline-drawings of oblique photographs, allowed the recognition of seven aeolian depositional sequences within the succession, each one bounded by regional super surfaces (or deflation surfaces. Internally these aeolian sequences display a cyclic recurrence in facies, that yields a tentative genetic model for their evolution. As documented from field examples, each basic aeolian depositional sequence was deposited during a single aggradational period, and is bounded by unconformities related to degradational periods. Degradational periods are regional deflationary events, that resulted in deep-scoured to flat surfaces, characterised by erosion / non deposition in which the only recognised accumulation is isolated and large angular blocks of fine-grained aggregates, interpreted as residual remnants of deposits of the previous sequence. Aggradational periods are characterised by a near- continuous accumulations responsible for the sequence building. Differences in the aeolian sediment budget to the area and the rising rate of water table control the related facies types, and allow to discriminateearly and late aggradational sub-periods. Early aggradational sub-periods form under conditions of relatively fast rising water tables associated with moderate aeolian sediment budget, thus resulting in the development of extended wet interduneslaterally associated with aeolian dunes and dry interdunes. During late aggradational sub-periods, the depositional surface outdistanced the water table, and aeolian dunes and dry interdunes tend to predominate. This sub

  16. Microbial weathering processes after release of heavy metals and arsenic from fluvial tailing deposits; Mikrobielle Verwitterungsprozesse bei der Freisetzung von Schwermetallen und Arsen aus fluvialen Tailingablagerungen

    Energy Technology Data Exchange (ETDEWEB)

    Willscher, S. [Technische Univ. Dresden (Germany). Fak. fuer Forst, Geo und Hydrowissenschaften, Inst. fuer Abfallwirtschaft und Altlasten

    2006-07-01

    Microbial processes play an important role in global metal cycles. The microbial weathering of mineral surfaces, including deposited anthropogenic mineral remainders, is a natural occurring process, taking place on uncovered dump surfaces as well as in deeper zones of dumps. Such weathering processes also occur in metal contaminated soils and sediments. In this work, a sulfidic fluvial tailing sediment was investigated for its acidity and salinity generating potential and the subsequent mobilisation of heavy metals, generated by biogeochemical processes. The long-term risks of such a deposit were evaluated. Unstabilised deposits of such materials can generate a considerable contamination of the surrounding ground and surface water. It could be shown in the experiments that in acid generating dumps and tailing materials besides the well known acidophilic autotrophs also acidotolerant heterotrophic microorganisms play a role in the mobilisation of metals. (orig.)

  17. Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements

    Science.gov (United States)

    Katata, Genki

    2014-07-01

    Recent progress in modeling fogwater (and low cloud water) deposition over terrestrial ecosystems during fogwater droplet interception by vegetative surfaces is reviewed. Several types of models and parameterizations for fogwater deposition are discussed with comparing assumptions, input parameter requirements, and modeled processes. The relationships among deposition velocity of fogwater (Vd) in model results, wind speed, and plant species structures associated with literature values are gathered for model validation. Quantitative comparisons between model results and observations in forest environments revealed differences as large as 2 orders of magnitude, which are likely caused by uncertainties in measurement techniques over heterogeneous landscapes. Results from the literature review show that Vd values ranged from 2.1 to 8.0 cm s-1 for short vegetation, whereas Vd = 7.7-92 cm s-1 and 0-20 cm s-1 for forests measured by throughfall-based methods and the eddy covariance method, respectively. This review also discusses the current understanding of the impacts of fogwater deposition on atmosphere-land interactions and over complex terrain based on results from numerical studies. Lastly, future research priorities in innovative modeling and observational approaches for model validation are outlined.

  18. Fabrication of a miniature diamond grinding tool using a hybrid process of micro-EDM and co-deposition

    International Nuclear Information System (INIS)

    Chen, Shun-Tong; Lai, Yun-Cheng; Liu, Ching-Chang

    2008-01-01

    A novel miniature diamond grinding tool usable for the precise micro-grinding of miniature parts is presented. A hybrid process that combines 'micro-EDM' with 'precision co-deposition' is proposed. The metal substrate is micro-EDMed to a 50 µm diameter and micro diamonds with 0–2 µm grains are 'electroformed' on the substrate surface, producing a miniature multilayered grinding tool. Nickel and diamond act as binders and cutters, respectively. A partition plate with an array of drilled holes is designed to ensure good convection in the electroforming solution. The dispersion of diamond grains and displacement of nickel ions are noticeably improved. A miniature funnel mould enables the diamond grains to converge towards the cathode to increase their deposition probability on the substrate, thereby improving their distribution on the substrate surface. A micro ZrO 2 ceramic ferrule is finely ground by the developed grinding tool and then yields a surface roughness of R a = 0.085 µm. The proposed approach is applied during the final machining process

  19. To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?

    Science.gov (United States)

    Cadieux, Sarah B.; Kah, Linda C.

    2015-03-01

    a first-order understanding of sedimentary deposition and accumulation-despite a lack of textural information that inhibits interpretation of depositional mechanism-can provide insight into potentially changeable depositional conditions of early Mars.

  20. The effect of modularity representation and presentation medium on the understandability of business process models in BPMN

    NARCIS (Netherlands)

    Turetken, Oktay; Rompen, Tessa; Vanderfeesten, Irene; Dikici, Ahmet; van Moll, Jan; La Rosa, M.; Loos, P.; Pastor, O.

    2016-01-01

    Many factors influence the creation of understandable business process models for an appropriate audience. Understandability of process models becomes critical particularly when a process is complex and its model is large in structure. Using modularization to represent such models hierarchically

  1. Acid-deposition research program. Volume 2. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.; Parr, J.F.

    1987-02-01

    The interactions of soil physical, chemical, and biological processes are ultimately expressed in a soil's fertility and its capacity for plant production. Consequently, much of the research conducted to date regarding the impact of acid-forming pollutants on soil properties has been geared towards possible effects on plant productivity. This trend continues in this paper where the effects of acidic deposition on microbial communities are reviewed in relation to potential impact on plant growth. The objectives of the review are to discuss: (1) The effects of acid-forming emissions (primarily S-containing pollutants) on microbial community structure with emphasis on qualitative and quantitative aspects; (2) The effects of acidic deposition on microbially mediated processes (i.e., community functions); (3) Acidification effects of pollutants on symbiotic and disease-causing microorganisms. The symbionts discussed include ectomycorrhizal fungi, vesicular-arbuscular mycorrhizal fungi, and N/sub 2/-fixing bacteria, particularly Rhizobium, while the disease-causing microorganisms will include those responsible for foliage, stem, and root diseases.

  2. Considerations on thermic and mechanic processes that appear when 3D printing using ABS fused deposition modelling technology

    Science.gov (United States)

    Amza, Catalin Gheorghe; Niţoi, Dan Florin

    2018-02-01

    3D printers are of recent history, but with an extremely rapid evolution both in technology and hardware involved. At present excellent performances are reached in applications such as 3D printing of various Acrylonitrile butadiene styrene (ABS) plastic parts for house building using Fused Deposition Modelling technology. Nevertheless, the thermic and mechanic processes that appear when manufacturing such plastic components are quite complex. This aspect is very important, especially when one wants to optimize the manufacturing of parts with certain geometrical complexity. The Finite Element Analysis/Modelling (FEA/FEM) is among the few methods that can study the thermic transfer processes and shape modifications that can appear due to non-seamar behavior that takes place when the ABS plastic material is cooling down. The current papers present such an analysis when simulating the deposition of several strings of materials. A thermic analysis is made followed by a study of deformations that appear when the structure cools down.

  3. Toward theoretical understanding of the fertility preservation decision-making process: examining information processing among young women with cancer.

    Science.gov (United States)

    Hershberger, Patricia E; Finnegan, Lorna; Altfeld, Susan; Lake, Sara; Hirshfeld-Cytron, Jennifer

    2013-01-01

    Young women with cancer now face the complex decision about whether to undergo fertility preservation. Yet little is known about how these women process information involved in making this decision. The purpose of this article is to expand theoretical understanding of the decision-making process by examining aspects of information processing among young women diagnosed with cancer. Using a grounded theory approach, 27 women with cancer participated in individual, semistructured interviews. Data were coded and analyzed using constant-comparison techniques that were guided by 5 dimensions within the Contemplate phase of the decision-making process framework. In the first dimension, young women acquired information primarily from clinicians and Internet sources. Experiential information, often obtained from peers, occurred in the second dimension. Preferences and values were constructed in the third dimension as women acquired factual, moral, and ethical information. Women desired tailored, personalized information that was specific to their situation in the fourth dimension; however, women struggled with communicating these needs to clinicians. In the fifth dimension, women offered detailed descriptions of clinician behaviors that enhance or impede decisional debriefing. Better understanding of theoretical underpinnings surrounding women's information processes can facilitate decision support and improve clinical care.

  4. Effect of post-deposition implantation and annealing on the properties of PECVD deposited silicon nitride films

    International Nuclear Information System (INIS)

    Shams, Q.A.

    1988-01-01

    Recently it has been shown that memory-quality silicon nitride can be deposited using plasma enhanced chemical vapor deposition (PECVD). Nitrogen implantation and post-deposition annealing resulted in improved memory properties of MNOS devices. The primary objective of the work described here is the continuation of the above work. Silicon nitride films were deposited using argon as the carrier gas and evaluated in terms of memory performance as the charge-trapping layer in the metal-nitride-oxide-silicon (MNOS) capacitor structure. The bonding structure of PECVD silicon nitride was modified by annealing in different ambients at temperatures higher than the deposition temperature. Post-deposition ion implantation was used to introduce argon into the films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the MNOS devices. Results show that the memory performance of PECVD silicon nitride is sensitive to the deposition parameters and post-deposition processing

  5. Physicochemical interactions at metal-water interfaces and their significance to deposition problems at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, G; VENKATESWARLU, K S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA). CHEMISTRY DIV.

    1977-01-01

    An attempt has been made to understand deposit formation in the general framework of interface processes involving : (1) surface potentials of the oxide particles which when released from the constructional materials are the main contaminants in the high temperature coolant water, (2) pH and (3) factors such as conductivity, temperature and velocity of coolant which influence surface potential. Measures suggested to avoid deposition formation are : (1) for new reactors, proper adjustment of the pH of various water systems and change of material of construction so as to minimise the force of attraction between the system surfaces and deposit forming species and (2) for existing reactors, replacement of certain parts like valve seals, orifice plate, strainers etc. by better compatible materials and even metallising certain surfaces so as to repel the circulating crud.

  6. Temperature dependence of the residual stresses and mechanical properties in TiN/CrN nano-layered coatings processed by cathodic arc deposition

    International Nuclear Information System (INIS)

    Lomello, F.; Arab Pour Yazdi; Sanchette, F.; Schuster, F.; Tabarant, M.; Billard, A.

    2014-01-01

    Nano-layered TiN-CrN coatings were synthesized by cathodic arc deposition (CAD) on M2 tool steel substrates. The aim of this study was to establish a double-correlation between the influence of the bilayer period and the deposition temperature on the resulting mechanical-tribological properties. The superlattice hardening enhancement was observed in samples deposited at different temperatures - i.e. without additional heating, 300 C and 400 C. Nonetheless, the residual compressive stresses are believed to be the responsible for reducing the hardness enhancement when the deposition temperature was increased. For instance, sample deposited without additional heating presented a hardness of 48.5 ± 1.3 GPa, while by increasing the processing temperature up to 400 C it was reduced down to 31.2 ± 4.1 GPa due to the stress relaxation. Indeed, the sample deposited at low temperature which possesses the thinnest bilayer period (13 nm) exhibited better mechanical properties. On the contrary, the role of the interfaces introduced when the period is decreased seems to rule the wear resistance. (authors)

  7. Understanding Cu release into environment from Kure massive sulfide ore deposits, Kastamonu, NW Turkey

    Science.gov (United States)

    Demirel, Cansu; Sonmez, Seref; Balci, Nurgul

    2014-05-01

    Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and

  8. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  9. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  10. Surface deposition from radioactive plumes

    International Nuclear Information System (INIS)

    Garland, J.A.

    1980-01-01

    Accidents involving nuclear plants may release radioactive particles and gases to the atmosphere. Dry deposition of particles has been investigated mainly in the laboratory and a general understanding of the transfer mechanisms has been established. However there is apparently a substantial discrepancy between the few field observations of dry deposition of particles and laboratory measurements, particularly for 0.1 - 1 μm particles for which laboratory work shows very small deposition rates. In addition there are few estimates of deposition rates for forest and some other kinds of terrain. The most important gas in the context of a nuclear accident is I-131 and the behaviour of this gas at grass surfaces has received much attention. However smaller quantities of other gases and vapours may be released and the surface absorption of these species may require further investigation. In addition there is little knowledge of the behaviour of gases over many types of surface. The rate of deposition of particles and gases is influenced by many parameters including wind speed and the temperature stratification of the lower atmosphere. Conditions which give poor atmospheric dispersion usually give lower deposition velocities. Transfer to man depends on the availability of deposited materials on crops and grass. A wide range of isotopes including iodine and several metallic fission products are lost with a half life for residence on grass ranging from a few days to a few tens days, depending on climatic conditions

  11. Radionuclide deposition control

    International Nuclear Information System (INIS)

    1980-01-01

    A method is described for controlling the deposition, on to the surfaces of reactor components, of the radionuclides manganese-54, cobalt-58 and cobalt-60 from a liquid stream containing the radionuclides. The method consists of disposing a getter material (nickel) in the liquid stream, and a non-getter material (tantalum, tungsten or molybdenum) as a coating on the surfaces where deposition is not desired. The process is described with special reference to its use in the coolant circuit in sodium cooled fast breeder reactors. (U.K.)

  12. Towards a genetic classification of uranium deposits

    International Nuclear Information System (INIS)

    Cuney, M.

    2009-01-01

    As the IAEA's uranium deposit classification is based on the deposit nature and morphology, some deposits which have been formed by very different genetic processes and located in very different geological environments, are grouped according to this classification. In order to build up a reliable genetic classification based on the mechanism at the origin of the formation of the deposit, the author presents the five main categories according to which uranium deposits can be classified: magmatic, hydrothermal, evapotranspiration, syn-sedimentary, and infiltration of meteoric water

  13. From Process Understanding to Process Control

    NARCIS (Netherlands)

    Streefland, M.

    2010-01-01

    A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged. Recent changes in the

  14. Roles of Chronic Low-Grade Inflammation in the Development of Ectopic Fat Deposition

    Directory of Open Access Journals (Sweden)

    Lulu Liu

    2014-01-01

    Full Text Available Pattern of fat distribution is a major determinant for metabolic homeostasis. As a depot of energy, the storage of triglycerides in adipose tissue contributes to the normal fat distribution. Decreased capacity of fat storage in adipose tissue may result in ectopic fat deposition in nonadipose tissues such as liver, pancreas, and kidney. As a critical biomarker of metabolic complications, chronic low-grade inflammation may have the ability to affect the process of lipid accumulation and further lead to the disorder of fat distribution. In this review, we have collected the evidence linking inflammation with ectopic fat deposition to get a better understanding of the underlying mechanism, which may provide us with novel therapeutic strategies for metabolic disorders.

  15. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  16. Petrology, mineralogy and geochemistry of surficial uranium deposits

    International Nuclear Information System (INIS)

    Pagel, M.

    1984-01-01

    A comprehensive understanding of the petrology, mineralogy, and geochemistry of surficial uranium ore deposits is important for developing prospecting and evaluation strategies. Carnotite is the main uranium mineral and is found in those deposits that have the greatest potential uranium resources. The following uranium-bearing minerals have been reported to occur in surficial deposits: carnotite, tyuyamunite, soddyite, weeksite, haiweeite, uranophane, betauranophane, metaankoleite, torbernite, autunite, phosphuranylite, schroeckingerite, Pb-V-U hydroxide (unnamed mineral), uraninite and organourano complexes. The interrelationships between some of the minerals of the host rocks (especially the clays) are not well understood. (author)

  17. Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition

    Science.gov (United States)

    Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David

    2017-03-01

    Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.

  18. An analysis for understanding the process of textual deconstruction as a motivator for learning

    Directory of Open Access Journals (Sweden)

    Ana Delia Barrera Jiménez

    2010-03-01

    Full Text Available The present article aims to analyze the potential of the process of textual understanding and construction, for the development of motivation towards learning in teacher trainees for Preuniversities. In this direction it advocates in the first place, to understand the dynamic relationship established between the process of textual attribution and production and the motivational one, which provides the indispensable condition for promoting the work with the text from all the subjects in the curriculum.

  19. Identification of Non-Faradaic Processes by Measurement of the Electrochemical Peltier Heat during the Silver Underpotential Deposition on Au(111).

    Science.gov (United States)

    Frittmann, Stefan; Halka, Vadym; Schuster, Rolf

    2016-04-04

    We measured the heat which is reversibly exchanged during the course of an electrochemical surface reaction, i.e., the deposition/dissolution of the first two monolayers of Ag on a Au(111) surface in (bi)sulfate and perchlorate containing electrolytes. The reversibly exchanged heat corresponds to the Peltier heat of the reaction and is linearly related to its entropy change, including also non-Faradaic side processes. Hence, the measurement of the Peltier heat provides thermodynamic information on the electrochemical processes which is complementary to the current-potential relations usually obtained by conventional electrochemical methods. From the variation of the molar Peltier heat during the various stages of the deposition reaction we inferred that co-adsorption processes of anions and Ag do not play a prominent role, while we find strong indications for a charge neutral substitution reaction of adsorbed anions by hydroxide, which would not show up in cyclic voltammetry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yeob [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of); Goodenough, Mark [Strategic Marketing, Tata Steel, Warwickshire (United Kingdom)

    2011-12-15

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications.

  1. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    International Nuclear Information System (INIS)

    Kim, Tae Yeob; Goodenough, Mark

    2011-01-01

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications

  2. Experience in oil field processing of gas and condensate at the Shatlyk deposits

    Energy Technology Data Exchange (ETDEWEB)

    Dalmatov, V.V.; Chernikov, Ye.I.; Govorun, V.P.; Turevskiy, Ye.N.

    1983-01-01

    The operation of installations for preparing gas are analyzed, along with the operation of individual technological devices at the Shatlyk deposit, the basic things which hinder the support of the designed low temperature conditions are shown and recommendations for standardizing the operation of the technological installations are given. Experience in the operation of the gas preparation installations at the Shatlyk deposit is recommended for use in deposits being introduced into development.

  3. Inkjet printing of aqueous rivulets: Formation, deposition, and applications

    Science.gov (United States)

    Bromberg, Vadim

    The past two decades have seen an explosion of research and development into nanotechnology, ranging from synthesis of novel materials that exhibit unique behavior to the assembly of fully functional devices that hold the potential to benefit all sectors of industry and society as a whole. One significant challenge for this emerging technology is the scaling of newly developed processes to the industrial level where manufacturing should be cheap, fast and with high throughput. One approach to this problem has been to develop processes of material deposition and device fabrication via solution-based additive manufacturing techniques such as printing. Specifically, it is envisioned that (in)organic functional nanomaterial that can be processed into solution form can be deposited in a precise manner (i.e., printed) onto sheets of flexible plastic/glass in a process similar to the printing of newspaper (formally, the process is dubbed Roll-to-Roll). This work is focused on experimentally studying and developing one type of solution-based material deposition technique---drop-on-demand ink-jet printing. This technique allows highly-repeatable deposition of small (pico-liter) droplets of functional ink in precise locations on a given target substrate. Although the technology has been in existence and in continuous use for many decades in the paper graphics industry, its application to nanotechnology-based fabrication processes on non-porous substrates presents many challenges stemming from the coupling of the wetting, material transport, evaporation and solid deposition phenomena that occur when printing patterns more complex than single droplets. The focus of this research has been to investigate these phenomena for the case of printed rivulets of water-based inks. A custom ink-jet apparatus has been assembled to allow direct optical observation of the flow and deposition that occur during printing. Experimental results show the importance of substrate surface energy and

  4. Six sigma: process of understanding the control and capability of ranitidine hydrochloride tablet.

    Science.gov (United States)

    Chabukswar, Ar; Jagdale, Sc; Kuchekar, Bs; Joshi, Vd; Deshmukh, Gr; Kothawade, Hs; Kuckekar, Ab; Lokhande, Pd

    2011-01-01

    The process of understanding the control and capability (PUCC) is an iterative closed loop process for continuous improvement. It covers the DMAIC toolkit in its three phases. PUCC is an iterative approach that rotates between the three pillars of the process of understanding, process control, and process capability, with each iteration resulting in a more capable and robust process. It is rightly said that being at the top is a marathon and not a sprint. The objective of the six sigma study of Ranitidine hydrochloride tablets is to achieve perfection in tablet manufacturing by reviewing the present robust manufacturing process, to find out ways to improve and modify the process, which will yield tablets that are defect-free and will give more customer satisfaction. The application of six sigma led to an improved process capability, due to the improved sigma level of the process from 1.5 to 4, a higher yield, due to reduced variation and reduction of thick tablets, reduction in packing line stoppages, reduction in re-work by 50%, a more standardized process, with smooth flow and change in coating suspension reconstitution level (8%w/w), a huge cost reduction of approximately Rs.90 to 95 lakhs per annum, an improved overall efficiency by 30% approximately, and improved overall quality of the product.

  5. Synthesis of carbon-13 labelled carbonaceous deposits and their evaluation for potential use as surrogates to better understand the behaviour of the carbon-14-containing deposit present in irradiated PGA graphite

    Energy Technology Data Exchange (ETDEWEB)

    Payne, L., E-mail: liam.payne@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, BS8 1TL (United Kingdom); Walker, S.; Bond, G. [Centre for Materials Science, University of Central Lancashire, PR1 2HE (United Kingdom); Eccles, H. [John Tyndall Institute for Nuclear Research, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, PR1 2HE (United Kingdom); Heard, P.J.; Scott, T.B. [Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, BS8 1TL (United Kingdom); Williams, S.J. [Radioactive Waste Management, B587, Curie Avenue, Harwell Oxford, Didcot, OX11 0RH (United Kingdom)

    2016-03-15

    The present work has used microwave plasma chemical vapour deposition to generate suitable isotopically labelled carbonaceous deposits on the surface of Pile Grade A graphite for use as surrogates for studying the behaviour of the deposits observed on irradiated graphite extracted from UK Magnox reactors. These deposits have been shown elsewhere to contain an enhanced concentration of {sup 14}C compared to the bulk graphite. A combination of Raman spectroscopy, ion beam milling with scanning electron microscopy and secondary ion mass spectrometry were used to determine topography and internal morphology in the formed deposits. Direct comparison was made against deposits found on irradiated graphite samples trepanned from a Magnox reactor core and showed a good similarity in appearance. This work suggests that the microwave plasma chemical vapour deposition technique is of value in producing simulant carbon deposits, being of sufficiently representative morphology for use in non-radioactive surrogate studies of post-disposal behaviour of {sup 14}C-containing deposits on some irradiated Magnox reactor graphite.

  6. Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

    Science.gov (United States)

    Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.

    2017-11-01

    In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.

  7. Spatial variation in the flux of atmospheric deposition and its ecological effects in arid Asia

    Science.gov (United States)

    Jiao, Linlin; Wang, Xunming; Li, Danfeng

    2018-06-01

    Atmospheric deposition is one of the key land surface processes, and plays important roles in regional ecosystems and global climate change. Previous studies have focused on the magnitude of and the temporal and spatial variations in the flux of atmospheric deposition, and the composition of atmospheric deposition on a local scale. However, there have been no comprehensive studies of atmospheric deposition on a regional scale and its ecological effects in arid Asia. The temporal and spatial patterns, composition of atmospheric deposition, and its potential effects on regional ecosystems in arid Asia are investigated in this study. The results show that the annual deposition flux is high on the Turan Plain, Aral Sea Desert, and Tarim Basin. The seasonal deposition flux also varies remarkably among different regions. The Tarim Basin shows higher deposition flux in both spring and summer, southern Mongolian Plateau has a higher deposition flux in spring, and the deposition flux of Iran Plateau is higher in summer. Multiple sources of elements in deposited particles are identified. Calcium, iron, aluminum, and magnesium are mainly derived from remote regions, while zinc, copper and lead have predominantly anthropogenic sources. Atmospheric deposition can provide abundant nutrients to vegetation and consequently play a role in the succession of regional ecosystems by affecting the structure, function, diversity, and primary production of the vegetation, especially the exotic or short-lived opportunistic species in arid Asia. Nevertheless, there is not much evidence of the ecological effects of atmospheric deposition on the regional and local scale. The present results may help in further understanding the mechanism of atmospheric deposition as well as providing a motivation for the protection of the ecological environment in arid Asia.

  8. Response of geomorphic and geological processes to insufficient ...

    Indian Academy of Sciences (India)

    Depositional models have been constructed for each segment: a constant shelf break model with insufficient sediment supply in the east, and a migration shelf break model with plenty sediment supply in the west. This case study contributes to the understanding of the upper slope sedimentary process and stratigraphic style ...

  9. Athabasca basin unconformity-type uranium deposits. A special class of sandstone-type deposits

    International Nuclear Information System (INIS)

    Hoeve, J.

    1980-01-01

    Two major episodes of uranium metallogenesis are recognized in Northern Saskatchewan. The first is of late-Hudsonian age and gave rise to metamorphic-hydrothermal pitchblende deposits of simple mineralogy at Beaverlodge (primary mineralization: 1780+-20 m.y.). The second and more important episode of approximately Grenvillian age rendered unconformity-type deposits in the Athabasca Basin (primary mineralization: 1000-1300 m.y.). The late-Hudsonian deposits at Beaverlodge were overprinted by this second event and new deposits of complex mineralogy were formed in that area. The metallogenetic importance of a third and much later episode which gave rise to mineralization within the Athabasca Formation is uncertain at the moment. With regards to metallogenesis of the unconformity-type deposits, presently available evidence favours a diagenetic-hydrothermal rather than a near-surface supergene or a magmatic/metamorphic hydrothermal model. The diagenetic-hydrothermal model relates uranium mineralization to 'red bed-type' diagenetic processes in the Athabasca Formation involving post-depositional oxidation and leaching, which continued for several hundred million years after deposition. Ore deposits were formed by interaction, under conditions of deep burial at elevated temperatures and pressures, of a uraniferous oxidizing Athabasca aquifer with reducing, graphite-bearing, metamorphic rocks of the basin floor. The large-scale convection required for such interaction may have been induced by mafic magmatic activity coeval with the episode of mineralization. The diagenetic-hydrothermal model displays close similarities with metallogenetic models developed for certain sandstone-type deposits. (author)

  10. Low-temperature atomic layer deposition of TiO2 thin layers for the processing of memristive devices

    International Nuclear Information System (INIS)

    Porro, Samuele; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO 2 thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO 2 thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO 2 thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications

  11. [Anthropology, ethnography, and narrative: intersecting paths in understanding the processes of health and sickness].

    Science.gov (United States)

    Costa, Gabriela M C; Gualda, Dulce M R

    2010-12-01

    The article discusses anthropology, ethnographic method, and narrative as possible ways of coming to know subjects' experiences and the feelings they attribute to them. From an anthropological perspective, the sociocultural universe is taken as a point of reference in understanding the meaning of the processes of health and sickness, using a dense ethnographic description from an interpretivist analytical approach. In this context, narratives afford possible paths to understanding how subjective human experiences are shared and how behavior is organized, with a special focus on meaning, the process by which stories are produced, relations between narrator and other subjects, processes of knowledge, and the manifold ways in which experience can be captured.

  12. The treatment process of understanding scientific texts: A necessity in the current Cuban university

    Directory of Open Access Journals (Sweden)

    Yanet María Guerra Santana

    2016-06-01

    Full Text Available This work has as main purpose to emphasize the need for treatment of the process of understanding scientific texts in the university today, for the development of science and technology has placed at the forefront in every race the problem of processing scientific information. The ability to produce scientific texts has been somewhat spontaneity in the curriculum of professional training in Cuban university, which has resulted in some professionals do not yet have linguistic, discursive and strategic " tools " best to communicate the style of science, hence the study of the process of understanding of scientific texts in undergraduate currently constitute a need in our universities.

  13. A Science-Based Understanding of Cermet Processing

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, III, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roach, Robert Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald Francis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Ornum, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stuecker, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shollenberger, Kimberly A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper

  14. Precipitation and Deposition of Aluminum-Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Wang, Li-Qiong; Dabbs, Daniel M.; Aksay, Ilhan A.

    2002-01-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS now is collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary objectives of this study are (1) to understand the major factors controlling precipitation, heterogeneous nucleation, and growth phenomena of relatively insoluble aluminosilicates; (2) to determine the role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results of this work will provide crucial information for (1) avoiding problematical sludge processing steps and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  15. Development of Cotton Fabrics with Durable UV Protective and Self-cleaning Property by Deposition of Low TiO2 Levels through Sol-gel Process.

    Science.gov (United States)

    Mishra, Anu; Butola, Bhupendra Singh

    2018-01-19

    In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.

  16. Global deposition of airborne dioxin.

    Science.gov (United States)

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow

  18. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane : The role of dissociative ionization and dissociative electron attachment in the deposition process

    NARCIS (Netherlands)

    Ragesh Kumar, T. P.; Hari, S.; Damodaran, Krishna K.; Ingólfsson, Oddur; Hagen, C.W.

    2017-01-01

    We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we

  19. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  20. Structurally controlled deposition of silicon onto nanowires

    Science.gov (United States)

    Wang, Weijie; Liu, Zuqin; Han, Song; Bornstein, Jonathan; Stefan, Constantin Ionel

    2018-03-20

    Provided herein are nanostructures for lithium ion battery electrodes and methods of fabrication. In some embodiments, a nanostructure template coated with a silicon coating is provided. The silicon coating may include a non-conformal, more porous layer and a conformal, denser layer on the non-conformal, more porous layer. In some embodiments, two different deposition processes, e.g., a PECVD layer to deposit the non-conformal layer and a thermal CVD process to deposit the conformal layer, are used. Anodes including the nanostructures have longer cycle lifetimes than anodes made using either a PECVD or thermal CVD method alone.

  1. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  2. DOE Final Report: A Unified Understanding of Residual Stress in Thin Films: Kinetic Models, Experiments and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chason, Eric [Brown Univ., Providence, RI (United States)

    2018-02-01

    Thin films are critical for a wide range of advanced technologies. However, the deposited films often have high levels of residual stress that can limit their performance or lead to failure. The stress is known to depend on many variables, including the processing conditions, type of material, deposition technique and the film’s microstructure. The goal of this DOE program was to develop a fundamental understanding of how the different processes that control thin film growth under different conditions can be related to the development of stress. In the program, systematic experiments were performed or analyzed that related the stress to the processing conditions that were used. Measurements of stress were obtained for films that were grown at different rates, different solutions (for electrodeposition), different particle energies (for sputter deposition) and different microstructures. Based on this data, models were developed to explain the observed dependence on the different parameters. The models were based on considering the balance among different stress-inducing mechanism occurring as the film grows (for both non-energetic and energetic deposition). Comparison of the model predictions with the experiments enabled the kinetic parameters to be determined for different materials. The resulting model equations provide a comprehensive picture of how stress changes with the processing conditions that can be used to optimize the growth of thin films.

  3. Toward theoretical understanding of the fertility preservation decision-making process: Examining information processing among young women with cancer

    Science.gov (United States)

    Hershberger, Patricia E.; Finnegan, Lorna; Altfeld, Susan; Lake, Sara; Hirshfeld-Cytron, Jennifer

    2014-01-01

    Background Young women with cancer now face the complex decision about whether to undergo fertility preservation. Yet little is known about how these women process information involved in making this decision. Objective The purpose of this paper is to expand theoretical understanding of the decision-making process by examining aspects of information processing among young women diagnosed with cancer. Methods Using a grounded theory approach, 27 women with cancer participated in individual, semi-structured interviews. Data were coded and analyzed using constant-comparison techniques that were guided by five dimensions within the Contemplate phase of the decision-making process framework. Results In the first dimension, young women acquired information primarily from clinicians and Internet sources. Experiential information, often obtained from peers, occurred in the second dimension. Preferences and values were constructed in the third dimension as women acquired factual, moral, and ethical information. Women desired tailored, personalized information that was specific to their situation in the fourth dimension; however, women struggled with communicating these needs to clinicians. In the fifth dimension, women offered detailed descriptions of clinician behaviors that enhance or impede decisional debriefing. Conclusion Better understanding of theoretical underpinnings surrounding women’s information processes can facilitate decision support and improve clinical care. PMID:24552086

  4. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?

    Science.gov (United States)

    Butterbach-Bahl, Klaus; Baggs, Elizabeth M.; Dannenmann, Michael; Kiese, Ralf; Zechmeister-Boltenstern, Sophie

    2013-01-01

    Although it is well established that soils are the dominating source for atmospheric nitrous oxide (N2O), we are still struggling to fully understand the complexity of the underlying microbial production and consumption processes and the links to biotic (e.g. inter- and intraspecies competition, food webs, plant–microbe interaction) and abiotic (e.g. soil climate, physics and chemistry) factors. Recent work shows that a better understanding of the composition and diversity of the microbial community across a variety of soils in different climates and under different land use, as well as plant–microbe interactions in the rhizosphere, may provide a key to better understand the variability of N2O fluxes at the soil–atmosphere interface. Moreover, recent insights into the regulation of the reduction of N2O to dinitrogen (N2) have increased our understanding of N2O exchange. This improved process understanding, building on the increased use of isotope tracing techniques and metagenomics, needs to go along with improvements in measurement techniques for N2O (and N2) emission in order to obtain robust field and laboratory datasets for different ecosystem types. Advances in both fields are currently used to improve process descriptions in biogeochemical models, which may eventually be used not only to test our current process understanding from the microsite to the field level, but also used as tools for up-scaling emissions to landscapes and regions and to explore feedbacks of soil N2O emissions to changes in environmental conditions, land management and land use. PMID:23713120

  5. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  6. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    Science.gov (United States)

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2011-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of…

  7. Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes

    Science.gov (United States)

    Brechwald, Whitney A.; Prinstein, Mitchell J.

    2013-01-01

    This article reviews empirical and theoretical contributions to a multidisciplinary understanding of peer influence processes in adolescence over the past decade. Five themes of peer influence research from this decade were identified, including a broadening of the range of behaviors for which peer influence occurs, distinguishing the sources of influence, probing the conditions under which influence is amplified/attenuated (moderators), testing theoretically based models of peer influence processes (mechanisms), and preliminary exploration of behavioral neuroscience perspectives on peer influence. This review highlights advances in each of these areas, underscores gaps in current knowledge of peer influence processes, and outlines important challenges for future research. PMID:23730122

  8. Geological Classification of Uranium Deposits and Description of Selected Examples

    International Nuclear Information System (INIS)

    2018-04-01

    With the increased level of investigation into uranium deposits in recent years, a wealth of new information has become available, which has made it possible to investigate some of the least understood aspects of uranium metallogeny. This publication defines a new classification scheme, which is simple and descriptive, but flexible enough to encompass the recent advances in our understanding of uranium geology and deposit genesis. It contains improved definition of the deposit types, supported by type examples of those deposits for which good data are available, but not well described in previous literature. Along with the descriptive information, new data on uranium resources available for each deposit type are also provided.

  9. High performance emitter for thermionic diode obtained by chemical vapor deposition

    International Nuclear Information System (INIS)

    Faron, R.; Bargues, M.; Durand, J.P.; Gillardeau, J.

    1973-01-01

    Vapor deposition process conditions presently known for tungsten and molybdenum (specifically the range of high temperatures and low pressures) permit the achievement of high performance thermionic emitters when used with an appropriate technology. One example of this uses the following series of successive vapor deposits, the five last vapor deposits constituting the fabrication of the emitting layer: Mo deposit for the formation of the nuclear fuel mechanical support; Mo deposit, which constitutes the sheath of the nuclear fuel; epitaxed Mo--W alloy deposit; epitaxed tungsten deposit; fine-grained tungsten deposit; and tungsten deposit with surface orientation according to plane (110)W. In accordance with vapor deposition techniques previously developed, such a sequence of deposits can easily be achieved with the same equipment, even without having to take out the part during the course of the process. (U.S.)

  10. Understanding the Perception of Very Small Software Companies towards the Adoption of Process Standards

    Science.gov (United States)

    Basri, Shuib; O'Connor, Rory V.

    This paper is concerned with understanding the issues that affect the adoption of software process standards by Very Small Entities (VSEs), their needs from process standards and their willingness to engage with the new ISO/IEC 29110 standard in particular. In order to achieve this goal, a series of industry data collection studies were undertaken with a collection of VSEs. A twin track approach of a qualitative data collection (interviews and focus groups) and quantitative data collection (questionnaire) were undertaken. Data analysis was being completed separately and the final results were merged, using the coding mechanisms of grounded theory. This paper serves as a roadmap for both researchers wishing to understand the issues of process standards adoption by very small companies and also for the software process standards community.

  11. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  12. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO2 nano particle

    International Nuclear Information System (INIS)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh; Aghakhani, Masood

    2015-01-01

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO 2 nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  13. Stress-induced leakage current characteristics of PMOS fabricated by a new multi-deposition multi-annealing technique with full gate last process

    International Nuclear Information System (INIS)

    Wang Yanrong; Yang Hong; Xu Hao; Luo Weichun; Qi Luwei; Zhang Shuxiang; Wang Wenwu; Zhu Huilong; Zhao Chao; Chen Dapeng; Ye Tianchun; Yan Jiang

    2017-01-01

    In the process of high- k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO 2 /HfO 2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes. (paper)

  14. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  15. Geomorphology and Depositional Subenvironments of Gulf Islands National Seashore, Mississippi

    Science.gov (United States)

    Morton, Robert A.; Rogers, Bryan E.

    2010-01-01

    The U.S. Geological Survey (USGS) is studying coastal hazards and coastal change to improve our understanding of coastal ecosystems and to develop better capabilities of predicting future coastal change. One approach to understanding the dynamics of coastal systems is to monitor changes in barrier-island subenvironments through time. This involves examining morphological and topographic change at temporal scales ranging from millennia to years and spatial scales ranging from tens of kilometers to meters. Of particular interest are the processes that produce those changes and the determination of whether or not those processes are likely to persist into the future. In these analyses of hazards and change, both natural and anthropogenic influences are considered. Quantifying past magnitudes and rates of coastal change and knowing the principal factors that govern those changes are critical to predicting what changes are likely to occur under different scenarios, such as short-term impacts of extreme storms or long-term impacts of sea-level rise. Gulf Islands National Seashore was selected for detailed mapping of barrier-island morphology and topography because the islands offer a diversity of depositional subenvironments and the islands' areas and positions have changed substantially in historical time. The geomorphologic and subenvironmental maps emphasize the processes that formed the surficial features and also serve as a basis for documenting which subenvironments are relatively stable, such as the beach ridge complex, and those which are highly dynamic, such as the beach and active overwash zones. The primary mapping procedures used supervised functions within a Geographic Information System (GIS) that classified depositional subenvironments and features (map units) and delineated boundaries of the features (shapefiles). The GIS classified units on the basis of tonal patterns of a feature in contrast to adjacent features observed on georeferenced aerial

  16. Elementary Education Preservice Teachers' Understanding of Biotechnology and Its Related Processes

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-01-01

    This study examined preservice teachers' understanding of biotechnology and its related processes. A sample comprised 88 elementary education preservice teachers at a large university in the Midwest of the USA. A total of 60 and 28 of the participants were enrolled in introductory and advanced science methods courses, respectively. Most…

  17. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  18. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  19. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  20. Data deposition and annotation at the worldwide protein data bank.

    Science.gov (United States)

    Dutta, Shuchismita; Burkhardt, Kyle; Young, Jasmine; Swaminathan, Ganesh J; Matsuura, Takanori; Henrick, Kim; Nakamura, Haruki; Berman, Helen M

    2009-05-01

    The Protein Data Bank (PDB) is the repository for three-dimensional structures of biological macromolecules, determined by experimental methods. The data in the archive is free and easily available via the Internet from any of the worldwide centers managing this global archive. These data are used by scientists, researchers, bioinformatics specialists, educators, students, and general audiences to understand biological phenomenon at a molecular level. Analysis of this structural data also inspires and facilitates new discoveries in science. This chapter describes the tools and methods currently used for deposition, processing, and release of data in the PDB. References to future enhancements are also included.

  1. BaF2 POST-DEPOSITION REACTION PROCESS FOR THICK YBCO FILMS

    International Nuclear Information System (INIS)

    SUENAGA, M.; SOLOVYOV, V.F.; WU, L.; WIESMANN, H.J.; ZHU, Y.

    2001-01-01

    The basic processes of the so-called BaF 2 process for the formation of YBa 2 Cu 3 O 7 , YBCO, films as well as its advantages over the in situ formation processes are discussed in the previous chapter. The process and the properties of YBCO films by this process were also nicely described in earlier articles by R. Feenstra, (et al.) Here, we will discuss two pertinent subjects related to fabrication of technologically viable YBCO conductors using this process. These are (1) the growth of thick (>> 1 microm) c-axis-oriented YBCO films and (2) their growth rates. Before the detail discussions of these subjects are given, we first briefly discuss what geometrical structure a YBCO-coated conductor should be. Then, we will provide examples of simple arguments for how thick the YBCO films and how fast their growth rates need to be. Then, the discussions in the following two sections are devoted to: (1) the present understanding of the nucleation and the growth process for YBCO, and why it is so difficult to grow thick c-axis-oriented films (> 3 microm), and (2) our present understanding of the YBCO growth-limiting mechanism and methods to increase the growth rates. The values of critical-current densities J c in these films are of primary importance for the applications,. and the above two subjects are intimately related to the control of J c of the films. In general, the lower the temperatures of the YBCO formation are the higher the values of J c of the films. Thus, the present discussion is limited to those films which are reacted at ∼735 C. This is the lowest temperature at which c-axis-oriented YBCO films (1-3 microm thick) are comfortably grown. It is also well known that the non-c-axis oriented YBCO platelets are extremely detrimental to the values of J c such that their effects on J c dwarf essentially all of other microstructural effects which control J c . Hence, the discussion given below is mainly focused on how to avoid the growth of these crystallites

  2. 16 CFR 1025.35 - Depositions upon oral examination.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Depositions upon oral examination. 1025.35... ADJUDICATIVE PROCEEDINGS Discovery, Compulsory Process § 1025.35 Depositions upon oral examination. (a) When... where the examination is held. No deposition shall be taken before a person who is a relative, employee...

  3. Pulsed laser deposition of nanostructured Co-B-O thin films as efficient catalyst for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, H., E-mail: jadhav.hs2013@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patel, N.; Fernandes, R.; Gupta, S.; Kothari, D.C. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098 (India); Miotello, A. [Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Sinha, S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-30

    Highlights: • Pulsed laser deposition was used to deposit Co-B-O film nanocatalyst. • Co-B-O NPs are well separated, stable and immobilized on film surface. • Catalytic H{sub 2} production was studied by hydrolysis of Sodium Borohydride. • Four times higher H{sub 2} production rate was recorded for Co-B-O film than Co-B-O powder. • High particle density, polycrystalline nature and good stability against agglomeration of Co NPs. - Abstract: Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of ∼4400 ml min{sup −1} g{sup −1} of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3–5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.

  4. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  5. Description of chronostratigraphic units preserved as channel deposits and geomorphic processes following a basin-scale disturbance by a wildfire in Colorado

    Science.gov (United States)

    Moody, John A.; Martin, Deborah A.

    2017-10-11

    The consequence of a 1996 wildfire disturbance and a subsequent high-intensity summer convective rain storm (about 110 millimeters per hour) was the deposition of a sediment superslug in the Spring Creek basin (26.8 square kilometers) of the Front Range Mountains in Colorado. Spring Creek is a tributary to the South Platte River upstream from Strontia Springs Reservoir, which supplies domestic water for the cities of Denver and Aurora. Changes in a superslug were monitored over the course of 18 years (1996–2014) by repeat surveys at 18 channel cross sections spaced at nearly equal intervals along a 1,500-meter study reach and by a time series of photographs of each cross section. Surveys were not repeated at regular time intervals but after major changes caused by different geomorphic processes. The focus of this long-term study was to understand the evolution and internal alluvial architecture of chronostratigraphic units (defined as the volume of sediment deposited between two successive surveys), and the preservation or storage of these units in the superslug. The data are presented as a series of 18 narratives (one for each cross section) that summarize the changes, illustrate these changes with photographs, and provide a preservation plot showing the amount of each chronostratigraphic unit still remaining in June 2014.The most significant hydrologic change after the wildfire was an exponential decrease in peak discharge of flash floods caused by summer convective rain storms. In response to these hydrologic changes, all 18 locations went through an aggradation phase, an incision phase, and finally a stabilization phase. However, the architecture of the chronostratigraphic units differs from cross section to cross section, and units are characterized by either a laminar, fragmented, or hybrid alluvial architecture. In response to the decrease in peak-flood discharge and the increase in hillslope and riparian vegetation, Spring Creek abandoned many of the

  6. Regional aerosol deposition in human upper airways

    International Nuclear Information System (INIS)

    Swift, D.L.

    1989-01-01

    During the report period significant progress on the quantitative understanding of regional upper airway deposition of airborne particle has been realized. Replicate models of the human upper airways obtained from post-mortem casting of the nasal, oral, pharyngeal, laryngeal and upper tracheal regions and in vivo magnetic resonance imaging (MRI) of the same regions of adults and children have been employed to determine the overall and local deposition characteristics of aerosols in the ultrafine (1--100 μm diameter) and fine (0.8--12 μm diameter) region. Studies have been carried out for both nasal and oral breathing during inspiratory and expiratory flow at constant flow rates representative of rest and states of exercise. The results of these investigations indicate that particles in the size range of ''unattached'' radon progeny (1--3 nm) are deposited in both the nasal and oral passages with high efficiency (60--80%) for both inspiration and expiration, with the nasal deposition being somewhat greater (5--10%) than oral deposition. The effect of flow rate on upper airway deposition for both pathways is not great; data analysis indicates that the deposition for all flow rates from 4--50 liters/minute can be grouped by plotting deposition vs Q- 1/8 , where Q is flow rate, a far weaker dependency than observed for inertial deposition. Diffusional transport is the primary mechanism of deposition, and size dependence can be accounted for by plotting, deposition percent vs D n where D is particle diffusion coefficient and n ranges from 0.5--0.66. 2 refs

  7. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  8. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  9. A new approach for modeling dry deposition velocity of particles

    Science.gov (United States)

    Giardina, M.; Buffa, P.

    2018-05-01

    The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.

  10. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  11. Intact deposition of cationic vesicles on anionic cellulose fibers: Role of vesicle size, polydispersity, and substrate roughness studied via streaming potential measurements.

    Science.gov (United States)

    Kumar, Abhijeet; Gilson, Laurent; Henrich, Franziska; Dahl, Verena; Kleinen, Jochen; Gambaryan-Roisman, Tatiana; Venzmer, Joachim

    2016-07-01

    Understanding the mechanism of intact vesicle deposition on solid surfaces is important for effective utilization of vesicles as active ingredient carriers in applications such as drug delivery and fabric softening. In this study, the deposition of large (davg=12μm) and small (davg=0.27μm) cationic vesicles of ditallowethylester dimethylammonium chloride (DEEDMAC) on smooth and rough anionic cellulose fibers is investigated. The deposition process is studied quantitatively using streaming potential measurements and spectrophotometric determination of DEEDMAC concentrations. Natural and regenerated cellulose fibers, namely cotton and viscose, having rough and smooth surfaces, respectively, are used as adsorbents. Equilibrium deposition data and profiles of substrate streaming potential variation with deposition are used to gain insights into the fate of vesicles upon deposition and the deposition mechanism. Intact deposition of DEEDMAC vesicles is ascertained based on streaming potential variation with deposition in the form of characteristic saturating profiles which symbolize particle-like deposition. The same is also confirmed by confocal fluorescence microscopy. Substrate roughness is found to considerably influence the deposition mechanism which, in a novel application of electrokinetic methods, is elucidated via streaming potential measurements. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Understanding decimal proportions: discrete representations, parallel access, and privileged processing of zero.

    Science.gov (United States)

    Varma, Sashank; Karl, Stacy R

    2013-05-01

    Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results demonstrate that proportions are represented as discrete structures and processed in parallel. There was a semantic interference effect: When understanding a proportion expression (e.g., "0.29"), both the correct proportion referent (e.g., 0.29) and the incorrect natural number referent (e.g., 29) corresponding to the visually similar natural number expression (e.g., "29") are accessed in parallel, and when these referents lead to conflicting judgments, performance slows. There was also a syntactic interference effect, generalizing the unit-decade compatibility effect for natural numbers: When comparing two proportions, their tenths and hundredths components are processed in parallel, and when the different components lead to conflicting judgments, performance slows. The results also reveal that zero decimals--proportions ending in zero--serve multiple cognitive functions, including eliminating semantic interference and speeding processing. The current research also extends the distance, semantic congruence, and SNARC effects from natural numbers to decimal proportions. These findings inform how people understand the place-value symbol system, and the mental implementation of mathematical symbol systems more generally. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  14. Carotenoid deposition in plant and animal foods and its impact on bioavailability.

    Science.gov (United States)

    Schweiggert, R M; Carle, R

    2017-06-13

    Over the past decades, an enormous body of literature dealing with the natural deposition of carotenoids in plant- and animal-based foods has accumulated. Prominent examples are the large solid-crystalline aggregates in carrots and tomatoes or the lipid-dissolved forms in dairy products and egg yolk. Latest research has identified lipid-dissolved forms in a rare number of plant foods, such as tangerine tomatoes and peach palm fruit (Bactris gasipaes Kunth). In addition, liquid-crystalline forms were assumed in so-called tubular chromoplasts of numerous fruits, e.g., in papaya, mango, and bell pepper. The bioavailability of carotenoids from fresh and processed foods strongly depends on their genuine deposition form, since their effective absorption to the human organism requires their liberation from the food matrix and subsequent solubilization into mixed micelles in the small intestine. Consequently, a broad overview about the natural array of carotenoid deposition forms should be helpful to better understand and modulate their bioavailability from foods. Furthermore, naturally highly bioavailable forms may provide biomimetic models for the improved formulation of carotenoids in food supplements. Therefore, this review paper presents scientific evidence from human intervention studies associating carotenoid deposition forms with their bioavailability, thus suggesting novel technological and dietary strategies for their enhanced absorption.

  15. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  16. Atmospheric deposition 2000. NOVA 2003; Atmosfaerisk deposition 2000. NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Hovmand, M.F.; Kemp, K.; Skjoeth, C.A.

    2001-11-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2000. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorus and sulphur compounds related to eutrophication and acidification. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. Measurements: In 2000 the monitoring program consisted of eight stations where wet deposition of ammonium, nitrate, phosphate (semi quantitatively) and sulphate were measured using bulk precipitation samplers. Six of the stations had in addition measurements of atmospheric content of A, nitrogen, phosphorus, and sulphur compounds in gas and particulate phase carried out by use of filter pack samplers. Filters were analysed at the National Environmental Research Institute. Furthermore nitrogen dioxide were measured using nitrogen dioxide filter samplers and monitors. Model calculations: The measurements in the monitoring program were supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surface, marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data as input. The advantage of combining measurements with model calculations is that the strengths of both methods is obtained. Conclusions concerning: 1) actual concentration levels at the monitoring stations, 2) deposition at the monitoring stations, 3) seasonal variations and 4) long term trends in concentrations and depositions are mainly based on the direct measurements. These are furthermore used to validate the results of the model calculations. Calculations and conclusions concerning: 1) depositions to land surface and to the individual marine water, 2) contributions from different emission

  17. The role of post-ore processes in the alteration of infiltrational uranium deposits

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Bobrova, L.L.; Nesterova, M.V.

    1992-01-01

    Ore-bearing rocks and ores of uranium deposits that are associated with gray alluvial deposits and formed through oxidation of sedimentary beds at the end of the Jurassic, have undergone intensive alterations. The impact of hot carbonic acid solutions on infiltrational uranium deposits, along with calcite and hematite, resulted in partial dissolution of and redeposition of uranium. Uranium concentrates with newly formed Fe-bisulfides and hydroxides in the reducing stage of epigenetic alterations within a hydrochemical sulfide-gley medium, leading to changes in ore morphology. 20 refs., 7 figs., 3 tabs

  18. GeSbTe deposition for the PRAM application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghyun [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Choi, Sangjoon [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Lee, Changsoo [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Kang, Yoonho [Nano Fabrication Center, SAIT, Suwon, P.O. Box 111 (Korea, Republic of); Kim, Daeil [School of Materials Science and Engineering. University of Ulsan, San 29, Mugeo-Dong, Nam-Gu, Ulsan 680-749 (Korea, Republic of)]. E-mail: dkim84@mail.ulsan.ac.kr

    2007-02-15

    GeSbTe (GST) chalcogenide thin films for the phase-change random access memory (PRAM) were deposited by an atomic layer deposition (ALD) process. New precursors for GST thin films made with an ALD process were synthesized. Among the synthesized precursors, Ge(N(CH{sub 3}){sub 2}){sub 4}, Sb(N(CH{sub 3}){sub 2}){sub 4}, and Te(i-Pr){sub 2} (i-Pr = iso-propyl) were selected. Using the above precursors, GST thin films were deposited using an H{sub 2} plasma-assisted ALD process. Film resistivity abruptly changed after an N{sub 2} annealing process above a temperature of 350 deg. C. Cross-sectional scanning electron microscope (SEM) photographs of the GST films on the patterned substrate with aspect ratio of 7 shows that the step coverage is about 90%.

  19. Analysis of the Influence of the Use of Cutting Fluid in Hybrid Processes of Machining and Laser Metal Deposition (LMD

    Directory of Open Access Journals (Sweden)

    Magdalena Cortina

    2018-02-01

    Full Text Available Hybrid manufacturing processes that combine additive and machining operations are gaining relevance in modern industry thanks to the capability of building complex parts with minimal material and, many times, with process time reduction. Besides, as the additive and subtractive operations are carried out in the same machine, without moving the part, dead times are reduced and higher accuracies are achieved. However, it is not clear whether the direct material deposition after the machining operation is possible or intermediate cleaning stages are required because of the possible presence of residual cutting fluids. Therefore, different Laser Metal Deposition (LMD tests are performed on a part impregnated with cutting fluid, both directly and after the removal of the coolant by techniques such as laser vaporizing and air blasting. The present work studies the influence of the cutting fluid in the LMD process and the quality of the resulting part. Resulting porosity is evaluated and it is concluded that if the part surface is not properly clean after the machining operation, deficient clad quality can be obtained in the subsequent laser additive operation.

  20. Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yuya Kajikawa

    2006-11-01

    Full Text Available Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, the literature survey process has become a highly time-consuming and tangled process, especially for novices of the discipline. Therefore, tools supporting the literature-survey process may help the individual scientist to explore new useful domains. Natural language processing (NLP is expected as one of the promising techniques to retrieve, abstract, and extract knowledge. In this contribution, NLP is firstly applied to the literature of chemical vapor deposition (CVD, which is a sub-discipline of materials science and is a complex and interdisciplinary field of research involving chemists, physicists, engineers, and materials scientists. Causal knowledge extraction from the literature is demonstrated using NLP.