WorldWideScience

Sample records for understanding complex plasma

  1. ICPP: Approach for Understanding Complexity of Plasma

    Science.gov (United States)

    Sato, Tetsuya

    2000-10-01

    In this talk I wish to present an IT system that could promote Science of Complexity. In order to deal with a seemingly `complex' phenomenon, which means `beyond analytical manipulation', computer simulation is a viable powerful tool. However, complexity implies a concept beyond the horizon of reductionism. Therefore, rather than simply solving a complex phenomenon for a given boundary condition, one must establish an intelligent way of attacking mutual evolution of a system and its environment. NIFS-TCSC has been developing a prototype system that consists of supercomputers, virtual reality devices and high-speed network system. Let us explain this by picking up a global atmospheric circulation group, global oceanic circulation group and local weather prediction group. Local weather prediction group predicts the local change of the weather such as the creation of cloud and rain in the near future under the global conditions obtained by the global atmospheric and ocean groups. The global groups run simulations by modifying the local heat source/sink evaluated by the local weather prediction and then obtain the global conditions in the next time step. By repeating such a feedback performance one can predict the mutual evolution of the local system and its environment. Mutual information exchanges among multiple groups are carried out instantaneously by the networked common virtual reality space in which 3-D global and local images of the atmospheric and oceanic circulation and the cloud and rain maps are arbitrarily manipulated by any of the groups and commonly viewed. The present networking system has a great advantage that any simulation groups can freely and arbitrarily change their alignment, so that mutual evolution of any stratum system can become tractable by utilizing this network system.

  2. On improved understanding of plasma-chemical processes in complex low-temperature plasmas

    Science.gov (United States)

    Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger

    2018-05-01

    Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  3. Introduction to complex plasmas

    International Nuclear Information System (INIS)

    Bonitz, Michael; Ludwig, Patrick; Horing, Norman

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates. (orig.)

  4. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  5. Chaos in a complex plasma

    International Nuclear Information System (INIS)

    Sheridan, T.E.

    2005-01-01

    Chaotic dynamics is observed experimentally in a complex (dusty) plasma of three particles. A low-frequency sinusoidal modulation of the plasma density excites both the center-of-mass and breathing modes. Low-dimensional chaos is seen for a 1:2 resonance between these modes. A strange attractor with a dimension of 2.48±0.05 is observed. The largest Lyapunov exponent is positive

  6. Complex ray analysis for plasmas

    International Nuclear Information System (INIS)

    Connor, K.A.

    1980-01-01

    An extension of ray tracing techniques is considered for a variety of cases in which the dispersion relation of the plasma medium is complex. The ray trajectories are permitted to begin and/or at least travel through complex space-time; the wave propagation process so characterized becomes significant only where the rays intersect real space-time. It is found that rules and guidelines can be established for limited application of this idea

  7. Complex plasmas scientific challenges and technological opportunities

    CERN Document Server

    Lopez, Jose; Becker, Kurt; Thomsen, Hauke

    2014-01-01

    This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present, and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nanometer- to micrometer-sized particles, negative ions, molecules and radicals, and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using mi...

  8. Study of Complex Plasmas with Magnetic Dipoles

    Science.gov (United States)

    2017-10-10

    Electro-Energetic Physics Annual Program Review , Basic Research Innovation and Collaboration Center, Arlington VA USA, November 29-30, 2016 (6) The...and O. Ishihara, Electromagnetic band structure due to surface plasmon resonances in a complex plasma, Physical Review E, 94, 013202- 1~8 (2016). 7...Novel Features in Complex Plasmas, 2016 Plasma & Electro-Energetic Physics Annual Program Review , Basic Research Innovation and Collaboration Center

  9. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  10. Plasma Dispersion Functions for Complex Frequencies

    International Nuclear Information System (INIS)

    Pavlov, S. S.; Castejon, F.

    2005-01-01

    Plasma dispersion functions for complex wave propagation frequency in the weak relativistic regime for arbitrary longitudinal refractive index are estimated and presented in this work. These functions, that are know as Shkarofsky functions in the case of real frequency, are estimated using a new method that avoids the singularities that appear in previous calculations shown in the preceding literature. These results can be used to obtain the properties of plasma instabilities in the weakly relativistic regime. (Author) 14 refs

  11. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Parental Understanding of Tuberous Sclerosis Complex.

    Science.gov (United States)

    Samia, Pauline; Donald, Kirsten A; Schlegel, Birgit; Wilmshurst, Jo M

    2015-09-01

    Tuberous sclerosis complex is a genetic disorder with multisystem involvement that poses significant challenges to the affected child and family. Caregiver knowledge in the South African population has not previously been reported. A prospective study of the parents of 21 children with tuberous sclerosis complex was undertaken. Median parental age was 38 (interquartile range 34.5-45) years. Parents were randomly allocated to receive written information about the condition, or to receive verbal counseling already established in clinic. A significant difference (P = .001) was observed in the change in the mean knowledge scores for the parent group that received written information (34.2 at baseline, 51.7 at the second visit. This impact was higher in parents with an education level of at least grade 8 (P = .003). Parental understanding of tuberous sclerosis complex can be improved by provision of written information and should be routinely available in a readily understandable format. © The Author(s) 2014.

  13. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  14. On melting criteria for complex plasma

    International Nuclear Information System (INIS)

    Klumov, Boris A

    2011-01-01

    The present paper considers melting criteria for a plasma crystal discovered in dust plasma in 1994. Separate discussions are devoted to three-dimensional (3D) and two-dimensional (2D) systems. In the 3D case, melting criteria are derived based on the properties of local order in a system of microparticles. The order parameters are constructed from the cumulative distributions of the microparticle probability distributions as functions of various rotational invariants. The melting criteria proposed are constructed using static information on microparticle positions: a few snapshots of the system that allow for the determination of particle coordinates are enough to determine the phase state of the system. It is shown that criteria obtained in this way describe well the melting and premelting of 3D complex plasmas. In 2D systems, a system of microparticles interacting via a screened Coulomb (i.e., Debye-Hueckel or Yukawa) potential is considered as an example, using molecular dynamics simulations. A number of new order parameters characterizing the melting of 2D complex plasmas are proposed. The order parameters and melting criteria proposed for 2D and 3D complex plasmas can be applied to other systems as well. (methodological notes)

  15. Complex Plasma Research Under Extreme Conditions

    International Nuclear Information System (INIS)

    Ishihara, Osamu

    2008-01-01

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  16. Understanding SOL plasma turbulence by interchange motions

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jan; Pitts, R. A.; Nielsen, A.H.; Garcia, O.E.

    2007-01-01

    Roč. 52, č. 16 (2007), s. 192-193 ISSN 0003-0503. [Annual meeting of the division of plasma physics/49th./. Orlando , 12.11.2007-16.11.2007] Grant - others:-(XE) European Training fellowships and Grants (Euratom), EDGETURB Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * scrape-off layer * turbulence * interchange instability Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Event/70125

  17. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  18. Cooperative particle motion in complex (dusty) plasmas

    Science.gov (United States)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  19. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  20. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  1. Agglomeration of microparticles in complex plasmas

    International Nuclear Information System (INIS)

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-01-01

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  2. Complex (dusty) plasmas: Current status, open issues, perspectives

    International Nuclear Information System (INIS)

    Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E.

    2005-01-01

    The field of complex (dusty) plasmas-low-temperature plasmas containing charged microparticles-is reviewed: The major types of experimental complex plasmas are briefly discussed. Various elementary processes, including grain charging in different regimes, interaction between charged particles, and momentum exchange between different species are investigated. The major forces on microparticles and features of the particle dynamics in complex plasmas are highlighted. An overview of the wave properties in different phase states, as well as recent results on the phase transitions between different crystalline and liquid states are presented. Fluid behaviour of complex plasmas and the onset of cooperative phenomena are discussed. Properties of the magnetized complex plasmas and plasmas with nonspherical particles are briefly mentioned. In conclusion, possible applications of complex plasmas, interdisciplinary aspects, and perspectives are discussed

  3. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  4. 3D Diagnostic Of Complex Plasma

    International Nuclear Information System (INIS)

    Hall, Edward; Samsonov, Dmitry

    2011-01-01

    This paper reports the development of a three-dimensional(3D) dust particle position diagnostic for complex plasmas. A beam produce by Light Emitting Diodes(LEDs) is formed into horizontal sheet, for the illumination of the particles. The light sheet has a vertical colour gradient across its width, from two opposing colours. The light scattered from the particles is imaged with the camera from above. The horizontal coordinates are measured from the positions on the image. The third coordinate is determined from the colour which represents a position on the gradient of the light sheet. The use of LEDs as a light source reduces a variation in Mie scattered intensity from the particles due to the particle size distribution. The variation would induce a large vertical positional error.

  5. Understanding plasma catalysis through modelling and simulation—a review

    International Nuclear Information System (INIS)

    Neyts, E C; Bogaerts, A

    2014-01-01

    Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis. (paper)

  6. Complexities of Parental Understanding of Phenylketonuria

    Science.gov (United States)

    Sibinga, Maarten S.; Friedman, C. Jack

    1971-01-01

    Parental understanding of PKU, investigated through a questionnaire, was evaluated as to completeness and with respect to distortion. Education of parents was found to be unrelated to their understanding or tendency to distort. Effectiveness of the pediatrician's communication with parents is discussed. (Author/KW)

  7. Improved understanding of protein complex offers insight into DNA

    Science.gov (United States)

    Summer Science Writing Internship Improved understanding of protein complex offers insight into DNA clearer understanding of the origin recognition complex (ORC) - a protein complex that directs DNA replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication

  8. Understanding Interdependency Through Complex Information Sharing

    Directory of Open Access Journals (Sweden)

    Fernando Rosas

    2016-01-01

    Full Text Available The interactions between three or more random variables are often nontrivial, poorly understood and, yet, are paramount for future advances in fields such as network information theory, neuroscience and genetics. In this work, we analyze these interactions as different modes of information sharing. Towards this end, and in contrast to most of the literature that focuses on analyzing the mutual information, we introduce an axiomatic framework for decomposing the joint entropy that characterizes the various ways in which random variables can share information. Our framework distinguishes between interdependencies where the information is shared redundantly and synergistic interdependencies where the sharing structure exists in the whole, but not between the parts. The key contribution of our approach is to focus on symmetric properties of this sharing, which do not depend on a specific point of view for differentiating roles between its components. We show that our axioms determine unique formulas for all of the terms of the proposed decomposition for systems of three variables in several cases of interest. Moreover, we show how these results can be applied to several network information theory problems, providing a more intuitive understanding of their fundamental limits.

  9. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  10. Computer simulation of complexity in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Sato, Tetsuya

    1998-01-01

    By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)

  11. Towards intelligent video understanding applied to plasma facing component monitoring

    International Nuclear Information System (INIS)

    Martin, V.; Travere, J.M.; Moncada, V.; Bremond, F.

    2011-01-01

    In this paper, we promote intelligent plasma facing component video monitoring for both real-time purposes (machine protection issues) and post event analysis purposes (plasma-wall interaction understanding). We propose a vision-based system able to automatically detect and classify into different pre-defined categories thermal phenomena such as localized hot spots or transient thermal events (e.g. electrical arcing) from infrared imaging data of PFCs. This original computer vision system is made intelligent by endowing it with high level reasoning (i.e. integration of a priori knowledge of thermal event spatio-temporal properties to guide the recognition), self-adaptability to varying conditions (e.g. different thermal scenes and plasma scenarios), and learning capabilities (e.g. statistical modelling of event behaviour based on training samples). (authors)

  12. Outlook of multiple time and spatial scale simulation for understanding self-organizing phenomena in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya

    2003-01-01

    The importance of the methodology of computer simulation has been recognized in plasma physics since the early era of computer evolution. In particular, the goal of simulation in this research field has been characterized by attempts to treat phenomena in a self-consistent manner as much as possible. Owing to the astonishing progress in recent supercomputer technology, we are now standing on a doorway to open a new stage in the simulation research in this direction, that is, an execution of multi-layer model simulation to understand complex phenomena in plasmas. (author)

  13. Ecosystemic Complexity Theory of Conflict: Understanding the Fog of Conflict

    Science.gov (United States)

    Brack, Greg; Lassiter, Pamela S.; Hill, Michele B.; Moore, Sarah A.

    2011-01-01

    Counselors often engage in conflict mediation in professional practice. A model for understanding the complex and subtle nature of conflict resolution is presented. The ecosystemic complexity theory of conflict is offered to assist practitioners in navigating the fog of conflict. Theoretical assumptions are discussed with implications for clinical…

  14. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  15. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  16. Simple, complex and hyper-complex understanding - enhanced sensitivity in observation of information

    DEFF Research Database (Denmark)

    Bering Keiding, Tina

    for construction and analysis of empirical information. A quick overview on empirical research drawing on Luhmann reveals a diverse complex of analytical strategies and empirical methods. Despite differences between strategies and methods they have in common that understanding of uttered information is crucial...... in their production of empirically founded knowledge. However research generally seems to pay more attention to production of uttered information than to selection of understanding. The aim of this contribution is to sketch out a suggestion to how selection of understanding can be systematized in order to produce...... enhanced transparency in selection of understanding as well as enhanced sensitivity and definition in dept. The contribution suggest that we distinguish between three types of understanding; simple, complex and hyper-complex understanding. Simple understanding is the simultaneous selection of understanding...

  17. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  18. How to make a complex story understandable. Communication on nitrogen

    International Nuclear Information System (INIS)

    Bleeker, A.; Hensen, A.; Erisman, J.W.

    2011-01-01

    Understanding is the first step towards solving the nitrogen problem. Various applications have been developed to gain insight in the complex interactions between the nitrogen cycle and the social-economic and environmental aspects. Experience has learned that many users have not only gained a clearer picture of the urgency and complexity of the problem; now they also have options for dealing with the nitrogen problem. [nl

  19. Kinetic theory of nonlinear transport phenomena in complex plasmas

    International Nuclear Information System (INIS)

    Mishra, S. K.; Sodha, M. S.

    2013-01-01

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  20. Investigation of Plasmas Having Complex, Dynamic Evolving Morphology

    International Nuclear Information System (INIS)

    Bellan, Paul M.

    2017-01-01

    Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.

  1. Investigation of Plasmas Having Complex, Dynamic Evolving Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Bellan, Paul M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-01-03

    Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.

  2. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Towards intelligent video understanding applied to plasma facing component monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.; Bremond, F. [INRIA, Pulsa team-project, Sophia Antipolis (France); Travere, J.M. [CEA IRFM, Saint Paul-lez-Durance (France); Moncada, V.; Dunand, G. [Sophia Conseil Company, Sophia Antipolis (France)

    2011-07-01

    Infrared thermography has become a routine diagnostic in many magnetic fusion devices to monitor the heat loads on the plasma facing components (PFCs) for both physics studies and machine protection. The good results of the developed systems obtained so far motivate the use of imaging diagnostics for control, especially during long pulse tokamak operation (e.g. lasting several minutes). In this paper, we promote intelligent monitoring for both real-time purposes (machine protection issues) and post event analysis purposes (PWI understanding). We propose a vision-based system able to automatically detect and classify into different pre-defined categories phenomena as localized hot spots, transient thermal events (e.g. electrical arcing), and unidentified flying objects (UFOs) as dusts from infrared imaging data of PFCs. This original vision system is made intelligent by endowing it with high-level reasoning (i.e. integration of a priori knowledge of thermal event spatial and temporal properties to guide the recognition), self-adaptability to varying conditions (e.g. different plasma scenarios), and learning capabilities (e.g. statistical modelling of thermal event behaviour based on training samples). This approach has been already successfully applied to the recognition of one critical thermal event at Tore Supra. We present here latest results of its extension for the recognition of others thermal events (e.g., B{sub 4}C flakes, impact of fast particles, UFOs) and show how extracted information can be used during plasma operation at Tore Supra to improve the real time control system, and for further analysis of PFC aging. This document is composed of an abstract followed by the slides of the presentation. (authors)

  4. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  5. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  6. Numerical experiments on 2D strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E

    2010-01-01

    The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.

  7. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  8. Fusion, space and solar plasmas as complex systems

    International Nuclear Information System (INIS)

    Dendy, R O; Chapman, S C; Paczuski, M

    2007-01-01

    Complex systems science seeks to identify simple universal models that capture the key physics of extended macroscopic systems, whose behaviour is governed by multiple nonlinear coupled processes that operate across a wide range of spatiotemporal scales. In such systems, it is often the case that energy release occurs intermittently, in bursty events, and the phenomenology can exhibit scaling, that is a significant degree of self-similarity. Within plasma physics, such systems include Earth's magnetosphere, the solar corona and toroidal magnetic confinement experiments. Guided by broad understanding of the dominant plasma processes-for example, turbulent transport in tokamaks or reconnection in some space and solar contexts-one may construct minimalist complex systems models that yield relevant global behaviour. Examples considered here include the sandpile approach to tokamaks and the magnetosphere and a multiple loops model for the solar coronal magnetic carpet. Such models can address questions that are inaccessible to analytical treatment and are too demanding for contemporary computational resources; thus they potentially yield new insights, but risk being simplistic. Central to the utility of these models is their capacity to replicate distinctive aspects of observed global phenomenology, often strongly nonlinear, or of event statistics, for which no explanation can be obtained from first principles considerations such as the underlying equations. For example, a sandpile model, which embodies critical-gradient-triggered avalanching transport associated with nearest-neighbour mode coupling and simple boundary conditions (and little else), can be used to generate some of the distinctive observed elements of tokamak confinement phenomenology such as ELMing and edge pedestals. The same sandpile model can also generate distributions of energy-release events whose distinctive statistics resemble those observed in the auroral zone. Similarly, a multiple loops model

  9. DEVELOPMENT OF COMPLEX EQUIPMENT FOR PLASMA SPRAY CERAMIC COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2017-01-01

    Full Text Available Develop a set equipment for plasma forming ceramic coatings. The article presents characteristics and parameters of the developed complex equipment for formation of plasma ceramic coatings as well as results of its testing. Methods of research is based on studies of structural elements composite plasma coatings system ZrO2 – Y2O3  obtained  using  developed complex equipment. One of the most effective ways to protect the components from high temperature corrosion and oxidation is formation on the surface of plasma thermal barrier coatings. For thermal barrier coating has very strict requirements: сharacterized by a smooth change of physico-mechanical properties (porosity, microhardness, elastic modulus in the cross section of the metal substrate to the outer ceramic layer; to withstand multiple cycles of thermal cycling from room temperature to the operating temperature; to maintain gastightness under operating conditions and thus ensure a sufficiently high level of adhesive strength. For realization of new technological schemes applying thermal barrier coatings with high operational characteristics was developed, patented and manufactured a range of new equipment. The experiments show that authors developed PBG-1 plasmatron and powder feeder PPBG-04 have at least 2–3 times the service life during the deposition of ceramic materials compared to the standard equipment of the company "Plasma-Technik", by changing the structure of the cathode-anode plasma torch assembly and construction of the delivery unit of the feeder to facilitate the uniform supply of the powder into the plasma jet and the best of his penetration. The result is better plasma coatings with improved operational characteristics: adhesion strength is increased to 1.3–2 times, material utilization in 1.5–1.6 times microhardness 1.2–1.4 times the porosity is reduced by 2–2.5 times.

  10. Understanding L-H transition in tokamak fusion plasmas

    Science.gov (United States)

    Xu, Guosheng; Wu, Xingquan

    2017-03-01

    This paper reviews the current state of understanding of the L-H transition phenomenon in tokamak plasmas with a focus on two central issues: (a) the mechanism for turbulence quick suppression at the L-H transition; (b) the mechanism for subsequent generation of sheared flow. We briefly review recent advances in the understanding of the fast suppression of edge turbulence across the L-H transition. We uncover a comprehensive physical picture of the L-H transition by piecing together a number of recent experimental observations and insights obtained from 1D and 2D simulation models. Different roles played by diamagnetic mean flow, neoclassical-driven mean flow, turbulence-driven mean flow, and turbulence-driven zonal flows are discussed and clarified. It is found that the L-H transition occurs spontaneously mediated by a shift in the radial wavenumber spectrum of edge turbulence, which provides a critical evidence for the theory of turbulence quench by the flow shear. Remaining questions and some key directions for future investigations are proposed. This work was supported by National Magnetic Confinement Fusion Science Program of China under Contracts No. 2015GB101000, No. 2013GB106000, and No. 2013GB107000 and National Natural Science Foundation of China under Contracts No. 11575235 and No. 11422546.

  11. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  12. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    Science.gov (United States)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-03-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.

  13. Exploring the limits of cooperative phenomena using complex plasmas

    International Nuclear Information System (INIS)

    Schwabe, M.; Zhdanov, S.; Ivlev, A. V.; Thomas, H. M.; Morfill, G. E.

    2011-01-01

    With the advancing miniaturization of technological applications, processes on the mesoscale become increasingly important. This is the scale where the individual movement of particles transforms into cooperative behavior-behavior that cannot be explained by investigating the motion of individual particles alone.Complex plasmas are ideally suited to study the limits of cooperative behavior. The time scales of the dynamics of the microparticles embedded in the plasma are such that their movement can be fully resolved, and an investigation on the atomistic (kinetic) level is possible. In addition, complex plasmas can be considered a model system for ordinary fluids: The internal microparticle dynamics is basically undamped and is characterized by the similarity parameters matching those of other fluids. This similarity does not break down even at small scales: For instance, in [2], microparticle droplets comprised of only a few 1000-10000 particles were examined. In these experiments, the Weber number (the ratio of inertia to surface tension forces) matches that of falling water drops. As another example, the onset of a Rayleigh-Taylor instability in a complex plasma can be described by the ordinary dispersion relation, even at scales of only few particle layers. This allows investigating the 'nanoscale' of fluid flows, and, hence, the limits of cooperative behavior.

  14. Towards a Molecular Understanding of the Fanconi Anemia Core Complex

    Directory of Open Access Journals (Sweden)

    Charlotte Hodson

    2012-01-01

    Full Text Available Fanconi Anemia (FA is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs. The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC, required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.

  15. Towards a Molecular Understanding of the Fanconi Anemia Core Complex

    Science.gov (United States)

    Hodson, Charlotte; Walden, Helen

    2012-01-01

    Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI. PMID:22675617

  16. On the wake structure in streaming complex plasmas

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael; Miloch, Wojciech J

    2012-01-01

    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of this paper is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high-precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and nonlinear effects. The range of applicability of these two approaches is addressed. (paper)

  17. Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas

    Science.gov (United States)

    2014-09-26

    strings. Analytical perturbation study supports the findings of numerical simulations. (Paper #2) Theory In a cryogenic plasma Debye length becomes...the Debye length , while ions are trapped at a certain distance around a dust particle without hitting the surface. Negatively charged dust particles...glass tube of 100cm in length and 15cm in inner diameter. The tube is connected to the bellows at the left end. A stainless steel plate of 2mm in

  18. Observation of metallic sphere–complex plasma interactions in microgravity

    International Nuclear Information System (INIS)

    Schwabe, M; Zhdanov, S; Hagl, T; Huber, P; Rubin-Zuzic, M; Zaehringer, E; Thomas, H M; Lipaev, A M; Molotkov, V I; Naumkin, V N; Fortov, V E; Vinogradov, P V

    2017-01-01

    The PK-3 Plus laboratory on board the International Space Station is used to study the interaction between metallic spheres and a complex plasma. We show that the metallic spheres significantly affect both the local plasma environment and the microparticle dynamics. The spheres charge under the influence of the plasma and repel the microparticles, forming cavities surrounding the spheres. The size of the cavity around a sphere is used to study the force balance acting on microparticles at the cavity edge. We show that the ion drag force and pressure force from other microparticles balances with the electric force acting from the sphere to within 20%. At intermediate distances from the sphere surface, the interaction between the microparticles and the metallic spheres is attractive due to the drag force stemming from the ions which are moving towards the highly charged spheres. The spheres thus strongly affect the plasma fluxes. This modification of the plasma flux can lead to an effective surface tension acting on the microparticles, and to the excitation of dust-density waves near the spheres, as the local electric field crosses a threshold. (paper)

  19. Relationship between the complex susceptibility and the plasma dispersion function

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez D, H.; Cabral P, A

    1991-04-15

    It is shown that when magnetization processes in a spin system and resonant excitation of spin n states occur in the presence of internal and or external random line-broadening mechanisms, the complex magnetic susceptibility of the plasma dispersion function. letter could be useful spin in system is proportional to the relationship found in this spectroscopies such as EPR and NMR, for example, as its fitting to experimental absorption and dispersion profiles produces their Lorentzian and Gaussian contents. (Author)

  20. Relationship between the complex susceptibility and the plasma dispersion function

    International Nuclear Information System (INIS)

    Jimenez D, H.; Cabral P, A.

    1991-04-01

    It is shown that when magnetization processes in a spin system and resonant excitation of spin n states occur in the presence of internal and or external random line-broadening mechanisms, the complex magnetic susceptibility of the plasma dispersion function. letter could be useful spin in system is proportional to the relationship found in this spectroscopies such as EPR and NMR, for example, as its fitting to experimental absorption and dispersion profiles produces their Lorentzian and Gaussian contents. (Author)

  1. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  2. Disaster forensics understanding root cause and complex causality

    CERN Document Server

    2016-01-01

    This book aims to uncover the root causes of natural and man-made disasters by going beyond the typical reports and case studies conducted post-disaster. It opens the black box of disasters by presenting ‘forensic analysis approaches’ to disasters, thereby revealing the complex causality that characterizes them and explaining how and why hazards do, or do not, become disasters. This yields ‘systemic’ strategies for managing disasters. Recently the global threat landscape has seen the emergence of high impact, low probability events. Events like Hurricane Katrina, the Great Japan Earthquake and tsunami, Hurricane Sandy, Super Typhoon Haiyan, global terrorist activities have become the new norm. Extreme events challenge our understanding regarding the interdependencies and complexity of the disaster aetiology and are often referred to as Black Swans. Between 2002 and 2011, there were 4130 disasters recorded that resulted from natural hazards around the world. In these, 1,117,527 people perished and a mi...

  3. Complexity and simplification in understanding recruitment in benthic populations

    KAUST Repository

    Pineda, Jesús

    2008-11-13

    Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom-dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model-oriented. Simplified approaches identify "macroecological" patterns or attempt to identify and model the essential, "first-order" elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, and larval production. Moreover, these processes are non-linear, some interact, and they may operate on disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom-dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post-settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and "broad-brush first-order approaches" may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it

  4. Understanding Parkinson Disease: A Complex and Multifaceted Illness.

    Science.gov (United States)

    Gopalakrishna, Apoorva; Alexander, Sheila A

    2015-12-01

    Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.

  5. Evolution in students' understanding of thermal physics with increasing complexity

    Science.gov (United States)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  6. Land, power and conflict in Afghanistan: seeking to understand complexity

    Directory of Open Access Journals (Sweden)

    Adam Pain

    2013-06-01

    Full Text Available This paper explores the diverse links between land and power under conditions of conflict in Afghanistan, taking into account the complexities of Afghan society. These complexities are structured around interconnecting informal institutions and personalised relationships, culturally specific, diverse and shifting patterns of social relations, and spatially specific patterns of land ownership inequalities. The paper draws on a decade of empirical fieldwork in Afghanistan and recent work on livelihood trajectories and the opium economy. An understanding of the evolution of land ownership and access issues needs to be associated with an appreciation of diverse and potentially contradictory long-term drivers of change in the rural economy. The first of these long-term drivers of change relates to the effects of conflict, not only on land but also of water access under conditions of an increasingly scarce water supply. The second driver relates both to the roles played by village elites and to the structural contrasts between villages located in the mountains and in the plains, with the latter displaying major inequalities in land ownership. The third driver relates to the declining economic role of land in rural livelihoods, given long-term agrarian change and falling farm sizes. An understanding of history is fundamental to explaining these phenomena. How such conflicts play out, and which social groups or individuals they involve, also depend to a large degree on spatial positioning.

  7. Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention

    Science.gov (United States)

    Davidovits, Seth

    Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a

  8. Crystallization process of a three-dimensional complex plasma

    Science.gov (United States)

    Steinmüller, Benjamin; Dietz, Christopher; Kretschmer, Michael; Thoma, Markus H.

    2018-05-01

    Characteristic timescales and length scales for phase transitions of real materials are in ranges where a direct visualization is unfeasible. Therefore, model systems can be useful. Here, the crystallization process of a three-dimensional complex plasma under gravity conditions is considered where the system ranges up to a large extent into the bulk plasma. Time-resolved measurements exhibit the process down to a single-particle level. Primary clusters, consisting of particles in the solid state, grow vertically and, secondarily, horizontally. The box-counting method shows a fractal dimension of df≈2.72 for the clusters. This value gives a hint that the formation process is a combination of local epitaxial and diffusion-limited growth. The particle density and the interparticle distance to the nearest neighbor remain constant within the clusters during crystallization. All results are in good agreement with former observations of a single-particle layer.

  9. Evolution in students’ understanding of thermal physics with increasing complexity

    Directory of Open Access Journals (Sweden)

    Elon Langbeheim

    2013-11-01

    Full Text Available We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  10. Complexity in plasma. A grand view of self-organization

    International Nuclear Information System (INIS)

    Sato, Tetsuya.

    1994-11-01

    The central theme of the Complexity is the inquest of the creation of ordered structure in nature. Extensive computer simulations on plasmas have revealed that self-organization is governed by the three key processes, i.e. energy pumping, entropy expulsion and nonlinearity. A system exhibits characteristically different self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. (author)

  11. Neuroanthropological Understanding of Complex Cognition – Numerosity and Arithmetics

    Directory of Open Access Journals (Sweden)

    Zarja Mursic

    2013-10-01

    Full Text Available Humankind has a long evolutionary history. When we are trying to understand human complex cognition, it is as well important to look back to entire evolution. I will present the thesis that our biological predispositions and culture, together with natural and social environment, are tightly connected. During ontogenetically development we are shaped by various factors, and they enabled humans to develop some aspects of complex cognition, such as mathematics.In the beginning of the article I present the importance of natural and cultural evolution in other animals. In the following part, I briefly examine the field of mathematics – numerosity and arithmetic. Presentation of comparative animal studies, mainly made on primates, provides some interesting examples in animals’ abilities to separate between different quantities. From abilities for numerosity in animals I continue to neuroscientific studies of humans and our ability to solve simple arithmetic tasks. I also mention cross-cultural studies of arithmetic skills. In the final part of the text I present the field neuroanthropology as a possible new pillar of cognitive science. Finally, it is important to connect human evolution and development with animal cognition studies, but as well with cross-cultural studies in shaping of human ability for numerosity and arithmetic.

  12. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    Science.gov (United States)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of

  13. Generation of two-dimensional binary mixtures in complex plasmas

    Science.gov (United States)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  14. Using the tools of the trade to understand plasma interactions at Jupiter and Saturn

    Science.gov (United States)

    Kivelson, Margaret G.

    2017-10-01

    For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ

  15. Recent developments in understanding the physics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bezzerides, B.; DuBois, D.F.; Forslund, D.W.; Kindel, J.M.; Lee, K.; Lindman, E.L.

    1976-01-01

    The absorption of intense laser light by a plasma is known to produce a high energy component of electrons. Even though the hot electron pressure may be larger than the cold background pressure, the background temperature can control the self-consistent profile modification. Since temperatures in high intensity experiments seem to be similar for CO 2 and Nd glass lasers, the profile modification may be so severe for CO 2 and Nd glass lasers, the profile modification may be so severe for CO 2 that orders of magnitude change in density can occur over microns, leading to a softened electron spectrum. However, the resulting equilibrium of laser pressure balancing plasma pressure is unstable even when flow is properly taken into account. We also briefly discuss recent results for self-generated magnetic fields including important kinetic effects

  16. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  17. Complexity in plasma: From self-organization to geodynamo

    International Nuclear Information System (INIS)

    Sato, T.

    1996-01-01

    A central theme of open-quote open-quote Complexity close-quote close-quote is the question of the creation of ordered structure in nature (self-organization). The assertion is made that self-organization is governed by three key processes, i.e., energy pumping, entropy expulsion and nonlinearity. Extensive efforts have been done to confirm this assertion through computer simulations of plasmas. A system exhibits markedly different features in self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. As a practical application of our grand view of self-organization a preferential generation of a dipole magnetic field is successfully demonstrated. copyright 1996 American Institute of Physics

  18. Particle tracking from image sequences of complex plasma crystals

    International Nuclear Information System (INIS)

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-01-01

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data

  19. Multilayered and complex nanoparticle architectures through plasma synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Wakeland, Stephen [UNM MECH.ENG.; Cui, Yuehua [UNM MECH.ENG.; Knapp, Angela [TOYOTA USA; Richard, Monique [TOYOTA USA; Luhrs, Claudia [UNM MECH.ENG.

    2009-01-01

    Using the Aerosol Through Plasma (ATP) method in conjunction with simple chemical techniques a variety of complex and novel nanoparticle architectures were created. A TP was used to make metal-core/carbon shell nanoparticles (ca. 50 nm diameter) of SnlCarbon and AI/Carbon. These have, respectively, potential for application as battery anode (for hybrid and electric vehicles) and high energy fuel In one example of post processing, the Sn-core/carbon-shell material is treated in acidic solution and yields a true nano-sized hollow carbon shell. These shells have potential application as catalyst supports, gas storage, a neutral buoyancy material for applications as varied as proppants, and slow release capsules for pharmaceutical or agricultural applications. A different set of post-A-T-P processes were used to make three layer nanoparticles with a metal core, graphite inner shell and ceramic outer shell. This method extends the range of achievable nanoparticles architectures, hence enabling new applications.

  20. Magnetic dipolar interaction in two-dimensional complex plasmas

    International Nuclear Information System (INIS)

    Feldmann, J D; Kalman, G J; Rosenberg, M

    2006-01-01

    Various interactions can play a role between the mesoscopic dust grains of a complex plasma. We study a system composed of dust grains that have both an electric charge and a permanent magnetic dipole moment. It is assumed that the grains occupy lattice sites, as dictated by their Coulomb interaction. In addition, they possess a spin degree of freedom (orientation of magnetic dipole moment) that is not constrained by the Coulomb interaction, thus allowing for the possibility of equilibrium orientational ordering and 'wobbling' about the equilibrium orientations. As a result, collective modes develop. We identify in-plane and out-of-plane wobbling modes and discuss their dispersion characteristics both in the ferromagnetic and in the anti-ferromagnetic ground state

  1. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  2. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    International Nuclear Information System (INIS)

    Kartaschew, Konstantin; Mischo, Meike; Bründermann, Erik; Havenith, Martina; Baldus, Sabrina; Awakowicz, Peter

    2016-01-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions. (paper)

  3. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  4. Understanding of impurity behavior in SST-1 plasmas using visible spectroscopy

    International Nuclear Information System (INIS)

    Manchanda, Ranjana; Ramaiya, Nilam; Chowdhuri, Malay Bikas; Banerjee, Santanu; Ghosh, Joydeep

    2015-01-01

    Studies of impurity behavior in SST-1 plasma have been carried out using visible spectroscopic systems installed on the tokomak. This has been carried out using a low resolution and broadband survey spectrometer covering a 350-900 nm wavelength range, 0.5 m visible spectrometer having 600 and 1200 grooves/mm grating coupled with CCD camera and interference filter and photomultiplier (PMT) tube based systems. Temporal evolution of the hydrogen (H α , H β ) and impurities emissions like, C II, C III, O I, O II, O III, O V and a visible Continuum at 536.0 nm have been monitored using the PMT based system to understand impurity charge state evolution during plasma discharges. All systems are absolutely calibrated for impurity influx and plasma parameter estimations. Observed spectral lines in the visible range have been identified to recognize the presence of various impurities in the SST-1 plasmas. Comparison of impurities emission has been made for different plasma currents and toroidal magnetic fields. An analysis has been carried out to understand the impurities activities in plasmas of SST-1 tokomak in presence and absence of installed plasma facing components (PFC). Significantly higher carbon emissions have been observed indicating higher carbon content in the plasma with graphite PFCs installed. (author)

  5. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  6. Enacting understanding of inclusion in complex contexts: classroom ...

    African Journals Online (AJOL)

    Hennie

    2015-08-14

    Aug 14, 2015 ... Dan Tlale. Department of Inclusive Education, College of Education, University of South Africa, Pretoria, South Africa ..... challenges and teachers' understanding of inclusive ..... agency.org/sites/default/files/Profile-of-Inclusive-.

  7. Complexity and simplification in understanding recruitment in benthic populations

    KAUST Repository

    Pineda, Jesú s; Reyns, Nathalie B.; Starczak, Victoria R.

    2008-01-01

    reduces the number of processes and makes the problem manageable. We discuss how simplifications and "broad-brush first-order approaches" may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often

  8. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  9. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  10. Understanding dyadic promoter-stakeholder relations in complex projects

    Directory of Open Access Journals (Sweden)

    Janita Vos

    2016-01-01

    Full Text Available In this study, we propose a Bilateral Double Motive framework of stakeholder cooperation in complex projects. The framework analyses and explains dyadic promoter-stakeholder relationships at a micro level by acknowledging both transactional and relational motives. We demonstrate the framework’s usefulness by illustrating its explanatory power in two instances of cooperation and two of non-cooperation within two health information technology projects. The study contributes to project management theory through its combined focus on transactional and relational motives. Further, the study contributes to practice by providing a tool for planning and evaluating cooperation in health Information Technology projects and similar complex multi-stakeholder environments.

  11. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Madsen, Mette; Moestrup, Søren K

    2002-01-01

    as the endocytic receptor binding hemoglobin (Hb) in complex with the plasma protein haptoglobin (Hp). This specific receptor-ligand interaction leading to removal from plasma of the Hp-Hb complex-but not free Hp or Hb-now explains the depletion of circulating Hp in individuals with increased intravascular...

  12. Understanding Educational Change through the Lens of Complexity Science

    Science.gov (United States)

    Girtz, Suzann

    2009-01-01

    The purpose of this study was to investigate four attractor states in schools through the perceptions of formal leaders that engaged in and reflected upon school reform regarding the Millennial generation. The term attractor was used as a metaphor for a habitual pattern, gleaned from complexity science which informs of new ways in which to…

  13. Understanding vaginal microbiome complexity from an ecological perspective

    Science.gov (United States)

    Hickey, Roxana J.; Zhou, Xia; Pierson, Jacob D.; Ravel, Jacques; Forney, Larry J.

    2012-01-01

    The various microbiota normally associated with the human body have an important influence on human development, physiology, immunity, and nutrition. This is certainly true for the vagina wherein communities of mutualistic bacteria constitute the first line of defense for the host by excluding invasive, nonindigenous organisms that may cause disease. In recent years much has been learned about the bacterial species composition of these communities and how they differ between individuals of different ages and ethnicities. A deeper understanding of their origins and the interrelationships of constituent species is needed to understand how and why they change over time or in response to changes in the host environment. Moreover, there are few unifying theories to explain the ecological dynamics of vaginal ecosystems as they respond to disturbances caused by menses and human activities such as intercourse, douching, and other habits and practices. This fundamental knowledge is needed to diagnose and assess risk to disease. Here we summarize what is known about the species composition, structure, and function of bacterial communities in the human vagina and the applicability of ecological models of community structure and function to understanding the dynamics of this and other ecosystems that comprise the human microbiome. PMID:22683415

  14. "Touching Triton": Building Student Understanding of Complex Disease Risk.

    Science.gov (United States)

    Loftin, Madelene; East, Kelly; Hott, Adam; Lamb, Neil

    2016-01-01

    Life science classrooms often emphasize the exception to the rule when it comes to teaching genetics, focusing heavily on rare single-gene and Mendelian traits. By contrast, the vast majority of human traits and diseases are caused by more complicated interactions between genetic and environmental factors. Research indicates that students have a deterministic view of genetics, generalize Mendelian inheritance patterns to all traits, and have unrealistic expectations of genetic technologies. The challenge lies in how to help students analyze complex disease risk with a lack of curriculum materials. Providing open access to both content resources and an engaging storyline can be achieved using a "serious game" model. "Touching Triton" was developed as a serious game in which students are asked to analyze data from a medical record, family history, and genomic report in order to develop an overall lifetime risk estimate of six common, complex diseases. Evaluation of student performance shows significant learning gains in key content areas along with a high level of engagement.

  15. Fusion in computer vision understanding complex visual content

    CERN Document Server

    Ionescu, Bogdan; Piatrik, Tomas

    2014-01-01

    This book presents a thorough overview of fusion in computer vision, from an interdisciplinary and multi-application viewpoint, describing successful approaches, evaluated in the context of international benchmarks that model realistic use cases. Features: examines late fusion approaches for concept recognition in images and videos; describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods; investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, fo

  16. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    predict the dynamics of initiation and propagation of blood clotting and tested these predictions with human blood plasma by using microfluidics. We discovered that both initiation and propagation of clotting are regulated by a threshold response to the concentration of activators of clotting, and that clotting is sensitive to the spatial localization of stimuli. To understand the dynamics of patterning of the Drosophila embryo, we used microfluidics to perturb the environment around a developing embryo and observe the effects of this perturbation on the expression of Hunchback, a protein whose localization is essential to proper development. We found that the mechanism that is responsible for Hunchback positioning is asymmetric, time-dependent, and more complex than previously proposed by studies of individual reactions. Overall, these approaches provide strategies for simplifying, modeling, and probing complex networks without sacrificing the functionality of the network. Such network-level strategies may be most useful for understanding systems with nonlinear interactions where spatial dynamics is essential for function. In addition, microfluidics provides an opportunity to investigate the mechanisms responsible for robust functioning of complex networks. By creating nonideal, stressful, and perturbed environments, microfluidic experiments could reveal the function of pathways thought to be nonessential under ideal conditions.

  17. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  18. Understanding Complex Human Ecosystems: The Case of Ecotourism on Bonaire

    Directory of Open Access Journals (Sweden)

    Thomas Abel

    2003-12-01

    Full Text Available It is suggested that ecotourism development on the island of Bonaire can be productively understood as a perturbation of a complex human ecosystem. Inputs associated with ecotourism have fueled transformations of the island ecology and sociocultural system. The results of this study indicate that Bonaire's social and economic hierarchy is approaching a new, stable systems state following a 50-yr transition begun by government and industry that stabilized with the appearance of ecotourism development and population growth. Ecotourism can be understood to have "filled in" the middle of the production hierarchy of Bonaire. Interpreted from this perspective, population growth has completed the transformation by expanding into production niches at smaller scales in the production hierarchy. Both a consequence and a cause, ecotourism has transformed the island's social structure and demography. The theory and methods applied in this case study of interdisciplinary research in the field of human ecosystems are also presented.

  19. Understanding implementation in complex public organizations – implication for practice

    Directory of Open Access Journals (Sweden)

    Gry Cecilie Høiland

    2016-10-01

    Full Text Available The effective implementation of politically initiated public service innovations to the front-lines of the public service organization, where the innovation is to be applied, is a challenge that both practitioners and researchers struggle to solve. We highlight the importance of analysing contextual factors at several levels of the implementation system, as well as the importance of considering how the practical everyday work situations of the front-line workers influence their application of the innovation in question. We illustrate this by exploring the implementation process of a specific work inclusion measure, looking at its wider context and some of its implementation outcomes at a specific public agency. The intention is to illustrate the significance of considering the contextual complexity influencing implementation work as a reminder for practitioners to take this into account in their planning and practices.

  20. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  1. From structure of the complex to understanding of the biology

    International Nuclear Information System (INIS)

    Rossmann, Michael G.; Arisaka, Fumio; Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan; Kanamaru, Shuji; Kostyuchenko, Victor A.; Mesyanzhinov, Vadim V.; Shneider, Mikhail M.; Morais, Marc C.; Leiman, Petr G.; Palermo, Laura M.; Parrish, Colin R.; Xiao, Chuan

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle

  2. A modeling process to understand complex system architectures

    Science.gov (United States)

    Robinson, Santiago Balestrini

    2009-12-01

    In recent decades, several tools have been developed by the armed forces, and their contractors, to test the capability of a force. These campaign level analysis tools, often times characterized as constructive simulations are generally expensive to create and execute, and at best they are extremely difficult to verify and validate. This central observation, that the analysts are relying more and more on constructive simulations to predict the performance of future networks of systems, leads to the two central objectives of this thesis: (1) to enable the quantitative comparison of architectures in terms of their ability to satisfy a capability without resorting to constructive simulations, and (2) when constructive simulations must be created, to quantitatively determine how to spend the modeling effort amongst the different system classes. The first objective led to Hypothesis A, the first main hypotheses, which states that by studying the relationships between the entities that compose an architecture, one can infer how well it will perform a given capability. The method used to test the hypothesis is based on two assumptions: (1) the capability can be defined as a cycle of functions, and that it (2) must be possible to estimate the probability that a function-based relationship occurs between any two types of entities. If these two requirements are met, then by creating random functional networks, different architectures can be compared in terms of their ability to satisfy a capability. In order to test this hypothesis, a novel process for creating representative functional networks of large-scale system architectures was developed. The process, named the Digraph Modeling for Architectures (DiMA), was tested by comparing its results to those of complex constructive simulations. Results indicate that if the inputs assigned to DiMA are correct (in the tests they were based on time-averaged data obtained from the ABM), DiMA is able to identify which of any two

  3. A complex probe for tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Castro, R.M. de; Silva, R.P. da; Heller, M.V.A.P.; Caldas, I.L.; Nascimento, I.C.; Degasperi, F.T.

    1995-01-01

    The study of the physical processes that occur in the plasma edge of tokamak machines has recently grown due to the evidence that these processes influence those that occur in the center of the plasma column. Experimental studies show the existence of a strong level of fluctuations in the plasma edge. The results of these studies indicate that these fluctuations enhance particle and energy transport and degrade the confinement. In order to investigate these processes in the plasma edge of the TBR-1 Tokamak, a Langmuir probe array, a triple and a set of magnetic probes have been designed and constructed. With this set probes the mean and fluctuation values of the magnetic field were detected and correlated with the fluctuating parameters obtained with the electrostatic probes. (author). 7 refs., 5 figs

  4. Breathing-mode resonance of a complex plasma disk

    International Nuclear Information System (INIS)

    Sheridan, T.E.; Buckey, C.R.; Cox, D.J.; Merrill, R.J.; Theisen, W.L.

    2004-01-01

    We have experimentally characterized the breathing mode oscillation of a strongly-coupled, dusty plasma disk. Steady-state oscillations are excited by sinusoidally modulating the plasma density, creating a single-frequency, in-plane driving force. Resonance curves agree well with damped harmonic oscillator theory. A response at the second harmonic is observed and found to increase with the square of the driving force, indicating a quadratic nonlinearity

  5. Post-cardiac arrest level of free-plasma DNA and DNA-histone complexes

    DEFF Research Database (Denmark)

    Jeppesen, A N; Hvas, A-M; Grejs, A M

    2017-01-01

    Background Plasma DNA-histone complexes and total free-plasma DNA have the potential to quantify the ischaemia-reperfusion damages occurring after cardiac arrest. Furthermore, DNA-histone complexes may have the potential of being a target for future treatment. The aim was to examine if plasma DNA-histone...... after 22, 46 and 70 h. Samples for DNA-histone complexes were quantified by Cell Death Detection ELISAplus. The total free-plasma DNA analyses were quantified with qPCR by analysing the Beta-2 microglobulin gene. The control group comprised 40 healthy individuals. Results We found no difference...... in the level of DNA-histone complexes between the 22-h sample and healthy individuals (P = 0.10). In the 46-h sample, there was an increased level of DNA-histone complexes in non-survivors compared with survivors 30 days after the cardiac arrest (P

  6. An attempt to understand kidney's protein handling function by comparing plasma and urine proteomes.

    Directory of Open Access Journals (Sweden)

    Lulu Jia

    Full Text Available BACKGROUND: With the help of proteomics technology, the human plasma and urine proteomes, which closely represent the protein compositions of the input and output of the kidney, respectively, have been profiled in much greater detail by different research teams. Many datasets have been accumulated to form "reference profiles" of the plasma and urine proteomes. Comparing these two proteomes may help us understand the protein handling aspect of kidney function in a way, however, which has been unavailable until the recent advances in proteomics technology. METHODOLOGY/PRINCIPAL FINDINGS: After removing secreted proteins downstream of the kidney, 2611 proteins in plasma and 1522 in urine were identified with high confidence and compared based on available proteomic data to generate three subproteomes, the plasma-only subproteome, the plasma-and-urine subproteome, and the urine-only subproteome, and they correspond to three groups of proteins that are handled in three different ways by the kidney. The available experimental molecular weights of the proteins in the three subproteomes were collected and analyzed. Since the functions of the overrepresented proteins in the plasma-and-urine subproteome are probably the major functions that can be routinely regulated by excretion from the kidney in physiological conditions, Gene Ontology term enrichment in the plasma-and-urine subproteome versus the whole plasma proteome was analyzed. Protease activity, calcium and growth factor binding proteins, and coagulation and immune response-related proteins were found to be enriched. CONCLUSION/SIGNIFICANCE: The comparison method described in this paper provides an illustration of a new approach for studying organ functions with a proteomics methodology. Because of its distinctive input (plasma and output (urine, it is reasonable to predict that the kidney will be the first organ whose functions are further elucidated by proteomic methods in the near future. It

  7. Changes in plasma cytokines and their soluble receptors in complex regional pain syndrome.

    Science.gov (United States)

    Alexander, Guillermo M; Peterlin, B Lee; Perreault, Marielle J; Grothusen, John R; Schwartzman, Robert J

    2012-01-01

    Complex Regional Pain Syndrome (CRPS) is a chronic and often disabling pain disorder. There is evidence demonstrating that neurogenic inflammation and activation of the immune system play a significant role in the pathophysiology of CRPS. This study evaluated the plasma levels of cytokines, chemokines, and their soluble receptors in 148 subjects afflicted with CRPS and in 60 gender- and age-matched healthy controls. Significant changes in plasma cytokines, chemokines, and their soluble receptors were found in subjects with CRPS as compared with healthy controls. For most analytes, these changes resulted from a distinct subset of the CRPS subjects. When the plasma data from the CRPS subjects was subjected to cluster analysis, it revealed 2 clusters within the CRPS population. The category identified as most important for cluster separation by the clustering algorithm was TNFα. Cluster 1 consisted of 64% of CRPS subjects and demonstrated analyte values similar to the healthy control individuals. Cluster 2 consisted of 36% of the CRPS subjects and demonstrated significantly elevated levels of most analytes and in addition, it showed that the increased plasma analyte levels in this cluster were correlated with disease duration and severity. The identification of biomarkers that define disease subgroups can be of great value in the design of specific therapies and of great benefit to the design of clinical trials. It may also aid in advancing our understanding of the mechanisms involved in the pathophysiology of CRPS, which may lead to novel treatments for this very severe condition. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Understanding Life : The Evolutionary Dynamics of Complexity and Semiosis

    Science.gov (United States)

    Loeckenhoff, Helmut K.

    2010-11-01

    Post-Renaissance sciences created different cultures. To establish an epistemological base, Physics were separated from the Mental domain. Consciousness was excluded from science. Life Sciences were left in between e.g. LaMettrie's `man—machine' (1748) and 'vitalism' [e.g. Bergson 4]. Causative thinking versus intuitive arguing limited strictly comprehensive concepts. First ethology established a potential shared base for science, proclaiming the `biology paradigm' in the middle of the 20th century. Initially procured by Cybernetics and Systems sciences, `constructivist' models prepared a new view on human perception and thus also of scientific `objectivity when introducing the `observer'. In sequel Computer sciences triggered the ICT revolution. In turn ICT helped to develop Chaos and Complexity sciences, Non-linear Mathematics and its spin-offs in the formal sciences [Spencer-Brown 49] as e.g. (proto-)logics. Models of life systems, as e.g. Anticipatory Systems, integrated epistemology with mathematics and Anticipatory Computing [Dubois 11, 12, 13, 14] connecting them with Semiotics. Seminal ideas laid in the turn of the 19th to the 20th century [J. v. Uexküll 53] detected the co-action and co-evolvement of environments and life systems. Bio-Semiotics ascribed purpose, intent and meaning as essential qualities of life. The concepts of Systems Biology and Qualitative Research enriched and develop also anthropologies and humanities. Brain research added models of (higher) consciousness. An avant-garde is contemplating a science including consciousness as one additional base. New insights from the extended qualitative approach led to re-conciliation of basic assumptions of scientific inquiry, creating the `epistemological turn'. Paradigmatically, resting on macro- micro- and recently on nano-biology, evolution biology sired fresh scripts of evolution [W. Wieser 60,61]. Its results tie to hypotheses describing the emergence of language, of the human mind and of

  9. Computer tomography of large dust clouds in complex plasmas

    International Nuclear Information System (INIS)

    Killer, Carsten; Himpel, Michael; Melzer, André

    2014-01-01

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications

  10. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  11. Complexity in practice: understanding primary care as a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Beverley Ellis

    2010-06-01

    Conclusions The results are real-world exemplars of the emergent properties of complex adaptive systems. Improving clinical governance in primary care requires both complex social interactions and underpinning informatics. The socio-technical lessons learned from this research should inform future management approaches.

  12. The role of plasma proteins in formation of obstructive protamine complexes

    International Nuclear Information System (INIS)

    De Paulis, R.; Mohammad, S.F.; Chiariello, L.; Morea, M.; Olsen, D.B.

    1991-01-01

    Formation of complexes between heparin and protamine (in saline), or heparin, plasma proteins, and protamine (in plasma) was assessed by measurements of light transmission through different test solutions. To examine the formation of these complexes, 125I-labeled protamine was used. Addition of 125I-protamine to plasma or blood resulted in the sedimentation of 125I-protamine in the form of insoluble complexes. This complex formation was not affected by the presence of heparin, suggesting that protamine-plasma protein interaction may be primarily responsible for precipitation of 125I-protamine. To assess the capability of these complexes to obstruct the pulmonary circulation, an in vitro experimental model was developed. Citrated serum, plasma, blood, or saline were allowed to flow through a glass bead column with the help of a peristaltic pump. A pressure transducer positioned before the column allowed pressure measurements at a constant flow rate during the experiment. Mixing of protamine with plasma or blood prior to their passage through the glass bead column resulted in a significant increase in pressure suggesting that the column was being clogged with insoluble complexes. The increase in pressure occurred both in the presence and absence of heparin in plasma or blood. Under identical experimental conditions, the increase in pressure was insignificant when protamine was added to saline or serum regardless of whether heparin was present or absent. This was further confirmed by the use of 125I-protamine. These observations suggest that protamine forms insoluble complexes with certain plasma proteins. Based on these observations, it is hypothesized that following intravenous administration, protamine immediately forms complexes in circulating blood

  13. Mixed-Mode Oscillations in Complex-Plasma Instabilities

    International Nuclear Information System (INIS)

    Mikikian, Maxime; Cavarroc, Marjorie; Coueedel, Lenaiec; Tessier, Yves; Boufendi, Laiefa

    2008-01-01

    Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied through dynamical system theories. The time evolution of these instabilities is studied through the change in the associated waveform. Frequency and interspike interval are analyzed and compared to results obtained in other scientific fields concerned by mixed-mode oscillations

  14. Understanding the spark plasma sintering from the view of materials joining

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2016-01-01

    Spark plasma sintering (SPS) is an attractive consolidation process. However, the mechanism behind this process is still an open topic for debate. This paper presents the first attempt to understand the SPS mechanism from perspective of materials joining. For this, TiNi_f/Al composites were fabricated by SPS, and the interfacial microstructures were investigated using field emission scanning electron microscopy and transmission electron microscopy. According to the experimental results, several joining processes were reflected well during SPS, involving micro-arc welding, electric resistance welding and diffusion welding. The proposed understanding of SPS will be helpful to the control of sintering quality.

  15. The ESTER particle and plasma analyzer complex for the Phobos mission

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, V.V.; Shutte, N.M. (AN SSSR, Moscow (USSR). Inst. Kosmicheskikh Issledovanij); McKenna-Lawlor, S.; Rusznyak, P. (Space Technology Ireland Ltd., Maynooth (Ireland)); Kiraly, P.; Szabo, L.; Szalai, S.; Szucs, I.T.; Varhalmi, L. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Marsden, R. (European Space Agency, Noordwijk (Netherlands). Space Science Dept.); Richter, A.; Witte, M. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.))

    1990-05-01

    The ESTER particle and plasma analyzer system for the Phobos Mission comprised a complex of three instruments (LET, SLED and HARP) serviced by a common Data Processing Unit. An account is provided of this complex, its objectives and excellent performance in space. (orig.).

  16. Excitation of nonlinear wave patterns in flowing complex plasmas

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  17. Evaluating the Gifted Students' Understanding Related to Plasma State Using Plasma Experimental System and Two-Tier Diagnostic Test

    Science.gov (United States)

    Korkmaz, Saadet Deniz; Ayas, Bahadir; Aybek, Eren Can; Pat, Suat

    2018-01-01

    The purpose of this study was to investigate the effectiveness of the experimental system design related to plasma state on the gifted students' understanding on the subject of the plasma state. To test the research hypothesis, one group pretest-posttest research model was carried out with 18 eighth-grade (4 girls and 14 boys) gifted students in…

  18. Toward A Better Understanding of Perceived Complexity in Music: A Commentary on Eerola (2016

    Directory of Open Access Journals (Sweden)

    Elizabeth Hellmuth Margulis

    2016-07-01

    Full Text Available Eerola (2016 evaluates models of musical complexity based on expectancy violation and information theory. This commentary notes the deep relationship between these two phenomena, and argues for a more active partnership between computational and psychological approaches in understanding perceptions of musical complexity.

  19. Understanding the SOL flow in L-mode plasma on divertor tokamaks, and its influence on the plasma transport

    International Nuclear Information System (INIS)

    Asakura, Nobuyuki

    2007-01-01

    Significant progress has been made in understanding the driving mechanisms in SOL mass transport along the magnetic field lines (SOL flow). SOL flow measurements by Mach probes and impurity plume have been performed in L-mode plasma at various poloidal locations in divertor tokamaks. All results showed common SOL flow patterns: subsonic flow with parallel Mach number (M parallel ) of 0.2-1 was generated from the Low-Field-Side (LFS) SOL to the High-Field-Side (HFS) divertor for the ion ∇B drift towards the divertor. The SOL flow pattern was formed mainly by LFS-enhanced asymmetry in diffusion and by classical drifts. In addition, divertor detachment and/or intense puffing-and-pump enhanced the HFS SOL flow. Most codes have incorporated drift effects, and asymmetric diffusion was modelled to simulate the fast SOL flow. Influences of the fast SOL flow on the impurity flow in the SOL, shielding from core plasma, and deposition profile, were directly observed in experiments

  20. Understanding large multiprotein complexes: applying a multiple allosteric networks model to explain the function of the Mediator transcription complex.

    Science.gov (United States)

    Lewis, Brian A

    2010-01-15

    The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.

  1. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    Science.gov (United States)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  2. On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pustylnik, M. Y.; Ivlev, A. V.; Heidemann, R.; Mitic, S.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching (Germany); Sadeghi, N. [LIPhy, Universite de Grenoble 1/CNRS, UMR 5588, Grenoble 38401 (France)

    2012-10-15

    A hypothesis on the physical mechanism generating the heartbeat instability in complex (dusty) plasmas is presented. It is suggested that the instability occurs due to the periodically repeated critical transformation on the boundary between the microparticle-free area (void) and the complex plasma. The critical transformation is supposed to be analogous to the formation of the sheath in the vicinity of an electrode. The origin of the transformation is the loss of the electrons and ions on microparticles surrounding the void. We have shown that this hypothesis is consistent with the experimentally measured stability parameter range, with the evolution of the plasma glow intensity and microparticle dynamics during the instability, as well as with the observed excitation of the heartbeat instability by an intensity-modulated laser beam (inducing the modulation of plasma density).

  3. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  4. Dust acoustic waves in complex plasmas at elevated pressure

    International Nuclear Information System (INIS)

    Filippov, A.V.; Starostin, A.N.; Tkachenko, I.M.; Fortov, V.E.

    2011-01-01

    The bi-Yukawa effective interaction potential with different screening constants is employed to calculate dust static correlation functions in the hyper-netted chain approximation and to generalize the theory of dust acoustic waves within the non-perturbative moment approach complemented by hydrodynamic considerations. For the bi-Yukawa interaction potential the sound speed becomes significantly wavenumber-dependent, an additional soft diffusion-like mode is predicted, and the static dielectric function is shown to take negative values. The results can be applied to non-equilibrium dusty plasmas at elevated pressure. -- Highlights: ► Bi-Yukawa interaction potential of dust particles with different screening lengths. ► Dust static correlation functions in the hyper-netted chain approximation. ► The moment and hydrodynamic approaches are in a good agreement at weak non-ideality. ► The dust acoustic wave phase and group velocities depend on the wavenumber. ► The moment approach hints the appearance of the diffusion-like soft mode.

  5. Permutation entropy and statistical complexity in characterising low-aspect-ratio reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Onchi, T; Fujisawa, A; Sanpei, A; Himura, H; Masamune, S

    2017-01-01

    Permutation entropy and statistical complexity are measures for complex time series. The Bandt–Pompe methodology evaluates probability distribution using permutation. The method is robust and effective to quantify information of time series data. Statistical complexity is the product of Jensen–Shannon divergence and permutation entropy. These physical parameters are introduced to analyse time series of emission and magnetic fluctuations in low-aspect-ratio reversed-field pinch (RFP) plasma. The observed time-series data aggregates in a region of the plane, the so-called C – H plane, determined by entropy versus complexity. The C – H plane is a representation space used for distinguishing periodic, chaos, stochastic and noisy processes of time series data. The characteristics of the emissions and magnetic fluctuation change under different RFP-plasma conditions. The statistical complexities of soft x-ray emissions and magnetic fluctuations depend on the relationships between reversal and pinch parameters. (paper)

  6. Increased understanding of the dynamics and transport in ITB plasmas from multi- machine comparisons

    International Nuclear Information System (INIS)

    Gohil, P.

    2002-01-01

    This paper presents details on: (a) examination and compilation of experimental results on transport from the many machines worldwide to better understand the physics of ITB formation and sustainment; (b) the development of an international database on ITB experimental results to determine the requirements for the formation and sustainment of ITBs, especially for reactor relevant conditions; (c) determining and performing comprehensive tests of theory-based models and simulations using the experimental ITB database. This paper will further present the status of research on critical issues in ITB physics including barrier formation and access conditions, particle and impurity transport, fueling, core-edge integration, profile control and stability as well as issues of accessibility in reactor scale devices such as barriers with T e =T i , barriers with low toroidal rotation and flat density profiles. Results will be presented from many devices providing a clearer understanding of transport and ITB physics in present plasmas and how this understanding can be applied to increase the performance of plasmas in future devices. An ITB database is being developed. (author)

  7. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    Science.gov (United States)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  8. New Developments In Particle Image Velocimetry (PIV) For The Study Of Complex Plasmas

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Fisher, Ross; Shaw, Joseph; Jefferson, Robert; Cianciosa, Mark; Williams, Jeremiah

    2011-01-01

    Particle Image Velocimetry (PIV) is a fluid measurement technique in which the average displacement of small groups of particles is made by comparing a pair of images that are separated in time by an interval Δt. For over a decade, a several variations of the PIV technique, e.g., two-dimensional, stereoscopic, and tomographic PIV, have been used to characterize particle transport, instabilities, and the thermal properties of complex plasmas. This paper describes the basic principles involved in the PIV analysis technique and discusses potential future applications of PIV to the study of complex plasmas.

  9. Complexity methods applied to turbulence in plasma astrophysics

    Science.gov (United States)

    Vlahos, L.; Isliker, H.

    2016-09-01

    In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the

  10. Understanding the time dependence of atomic level populations in evolving plasmas

    International Nuclear Information System (INIS)

    Judge, Philip G.

    2005-01-01

    The time dependence of atomic level populations in evolving plasmas is studied using an eigenfunction expansion of the non-LTE rate equations. The work aims to develop understanding without the need for, and as an aid to, numerical solutions. The discussion is mostly limited to linear systems, especially those for optically thin plasmas, but the implicitly non-linear case of non-LTE radiative transfer is briefly discussed. Eigenvalue spectra for typical atomic systems are examined using results compiled by Hearon. Diagonal dominance and sign symmetry of rate matrices show that just one eigenvalue is zero (corresponding to the equilibrium state), that the remaining eigenvalues have negative real parts, and that oscillations, if any, are necessarily damped. Gershgorin's theorems are used to show that many eigenvalues are determined by the radiative lifetimes of certain levels, because of diagonal dominance. With other properties, this demonstrates the existence of both 'slow' and 'fast' time-scales, where the 'slow' evolution is controlled by properties of meta-stable levels. It is shown that, when collisions are present, Rydberg states contribute only 'fast' eigenvalues. This justifies use of the quasi-static approximation, in which atoms containing just meta-stable levels can suffice to determine the atomic evolution on time-scales long compared with typical radiative lifetimes. Analytic solutions for two- and three-level atoms are used to examine the basis of earlier intuitive ideas, such as the 'ionizing plasma' approximation. The power and limitations of Gershgorin's theorems are examined through examples taken from the solar atmosphere. The methods should help in the planning and interpretation of both experimental and numerical experiments in which atomic evolution is important. While the examples are astrophysical, the methods and results are applicable to plasmas in general

  11. New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma

    Science.gov (United States)

    Das, G. C.; Sarma, Ridip

    2018-04-01

    Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.

  12. Three dimensional complex plasma structures in a combined radio frequency and direct current discharge

    International Nuclear Information System (INIS)

    Mitic, S.; Morfill, G. E.; Klumov, B. A.; Khrapak, S. A.

    2013-01-01

    We report on the first detailed analysis of large three dimensional (3D) complex plasma structures in experiments performed in pure rf and combined rf+dc discharge modes. Inductively coupled plasma is generated by an rf coil wrapped around the vertically positioned cylindrical glass tube at a pressure of 0.3 mbar. In addition, dc plasma can be generated by applying voltage to the electrodes at the ends of the tube far from the rf coil. The injected monodisperse particles are levitated in the plasma below the coil. A scanning laser sheet and a high resolution camera are used to determine the 3D positions of about 10 5 particles. The observed bowl-shaped particle clouds reveal coexistence of various structures, including well-distinguished solid-like, less ordered liquid-like, and pronounced string-like phases. New criteria to identify string-like structures are proposed.

  13. Kinetic models of partially ionized complex plasmas in the low frequency regime

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.; Angelis, U. de

    2011-01-01

    The results from three kinetic models of complex plasmas taking into account collisions with neutrals are compared in the low-frequency regime: The ''full'' model which considers the absorption of plasma fluxes on dust particles and dust charge fluctuations, the ''multi-component'' model where both these effects are neglected, and the ''standard'' model which takes into account the dust charge perturbations but not the absorption of fluxes. We derive and numerically evaluate expressions of the low frequency responses of these models, also taking into account the modification of the capture cross-sections due to the effect of neutrals. The role of plasma sources and collisions with neutrals is assessed by computing the plasma permittivities and static permittivities for all the three models.

  14. Understanding the physiology of complex congenital heart disease using cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kappanayil, Mahesh; Kannan, Rajesh; Kumar, Raman Krishna

    2011-01-01

    Complex congenital heart diseases are often associated with complex alterations in hemodynamics. Understanding these key hemodynamic changes is critical to making management decisions including surgery and postoperative management. Existing tools for imaging and hemodynamic assessment like echocardiography, computed tomography and cardiac catheterization have inherent limitations. Cardiac magnetic resonance imaging (MRI) is emerging as a powerful bouquet of tools that allow not only excellent imaging, but also a unique insight into hemodynamics. This article introduces the reader to cardiac MRI and its utility through the clinical example of a child with a complex congenital cyanotic heart disease

  15. Understanding complexity in managing agro-pastoral dams ecosystem services in Northern Benin

    NARCIS (Netherlands)

    Kpera, G.N.

    2015-01-01

    Key words: conflict, water quality, crocodile, fish diversity, vegetable, watershed management, institutional changes, innovation system.

    Understanding complexity in managing agro-pastoral dams ecosystem services in Northern Benin

    Gnanki

  16. Hypothesis: the chaos and complexity theory may help our understanding of fibromyalgia and similar maladies.

    Science.gov (United States)

    Martinez-Lavin, Manuel; Infante, Oscar; Lerma, Claudia

    2008-02-01

    Modern clinicians are often frustrated by their inability to understand fibromyalgia and similar maladies since these illnesses cannot be explained by the prevailing linear-reductionist medical paradigm. This article proposes that new concepts derived from the Complexity Theory may help understand the pathogenesis of fibromyalgia, chronic fatigue syndrome, and Gulf War syndrome. This hypothesis is based on the recent recognition of chaos fractals and complex systems in human physiology. These nonlinear dynamics concepts offer a different perspective to the notion of homeostasis and disease. They propose that the essence of disease is dysfunction and not structural damage. Studies using novel nonlinear instruments have shown that fibromyalgia and similar maladies may be caused by the degraded performance of our main complex adaptive system. This dysfunction explains the multifaceted manifestations of these entities. To understand and alleviate the suffering associated with these complex illnesses, a paradigm shift from reductionism to holism based on the Complexity Theory is suggested. This shift perceives health as resilient adaptation and some chronic illnesses as rigid dysfunction.

  17. A primer on complex systems with applications to astrophysical and laboratory plasmas

    CERN Document Server

    Sánchez, Raúl

    2018-01-01

    The purpose of this book is to illustrate the fundamental concepts of complexity and complex behavior and the best methods to characterize this behavior by means of their applications to some current research topics from within the fields of fusion, earth and solar plasmas. In this sense, it is a departure from the many books already available that discuss general features of complexity. The book is divided in two parts. In the first part the most important properties and features of complex systems are introduced, discussed and illustrated. The second part discusses several instances of possible complex phenomena in magnetized plasmas and some of the analysis tools that were introduced in the first part are used to characterize the dynamics in these systems. A list of problems is proposed at the end of each chapter. This book is intended for graduate and post-graduate students with a solid college background in mathematics and classical physics, who intend to work in the field of plasma physics and, in parti...

  18. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    Science.gov (United States)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  19. Increased understanding of the dynamics and transport in ITB plasmas from multi-machine comparisons

    International Nuclear Information System (INIS)

    Gohil, P.; Kinsey, J.; Parail, V.

    2003-01-01

    Our understanding of the physics of internal transport barriers (ITBs) is being furthered by analysis and comparisons of experimental data from many different tokamaks worldwide. An international database consisting of scalar and 2-D profile data on ITB plasmas is being developed to determine the requirements for the formation and sustainment of ITBs and to perform tests of theory-based transport models in an effort to improve the predictive capability of the models. Tests of several transport models (JETTO, Weiland model) using the 2-D profile data indicate that there is only limited agreement between the model predictions and the experimental results for the range of plasma conditions examined for the different devices (DIII-D, JET, JT-60U). Gyrokinetic stability analysis of the ITB discharges from these devices indicates that the ITG/TEM growth rates decrease with increased negative magnetic shear and that the ExB shear rate is comparable to the linear growth rates at the location of the ITB. (author)

  20. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.

    Science.gov (United States)

    Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  1. Understanding the implementation of complex interventions in health care: the normalization process model

    Directory of Open Access Journals (Sweden)

    Rogers Anne

    2007-09-01

    Full Text Available Abstract Background The Normalization Process Model is a theoretical model that assists in explaining the processes by which complex interventions become routinely embedded in health care practice. It offers a framework for process evaluation and also for comparative studies of complex interventions. It focuses on the factors that promote or inhibit the routine embedding of complex interventions in health care practice. Methods A formal theory structure is used to define the model, and its internal causal relations and mechanisms. The model is broken down to show that it is consistent and adequate in generating accurate description, systematic explanation, and the production of rational knowledge claims about the workability and integration of complex interventions. Results The model explains the normalization of complex interventions by reference to four factors demonstrated to promote or inhibit the operationalization and embedding of complex interventions (interactional workability, relational integration, skill-set workability, and contextual integration. Conclusion The model is consistent and adequate. Repeated calls for theoretically sound process evaluations in randomized controlled trials of complex interventions, and policy-makers who call for a proper understanding of implementation processes, emphasize the value of conceptual tools like the Normalization Process Model.

  2. Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma

  3. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments.

    Science.gov (United States)

    Sezgin, Erdinc; Azbazdar, Yagmur; Ng, Xue W; Teh, Cathleen; Simons, Kai; Weidinger, Gilbert; Wohland, Thorsten; Eggeling, Christian; Ozhan, Gunes

    2017-08-01

    While the cytosolic events of Wnt/β-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/β-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  4. The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?

    Science.gov (United States)

    Wang, Kai; Li, Hong; Yuan, Yue; Etheridge, Alton; Zhou, Yong; Huang, David; Wilmes, Paul; Galas, David

    2012-01-01

    Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under in vitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health. PMID:23251414

  5. Supersonic particle in a low damped complex plasma under microgravity conditions

    Science.gov (United States)

    Zaehringer, E.; Zhdanov, S.; Schwabe, M.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I.; Thomas, H. M.

    2018-01-01

    We discuss the diagnostics of a complex plasma cloud recorded in experiments performed in the framework of the Ekoplasma project. A supersonic extra particle is used as a probe of the cloud dynamics. A fine-structured Mach cone behind the supersonic particle is observed. We investigate the spatial and temporal development of the Mach cone with a computer based measurement to determine the speed of sound of the particle cloud. Also time and position dependent characteristics of the velocity field are recorded.

  6. Circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man

    International Nuclear Information System (INIS)

    Baumann, G.; Amburn, K.; Shaw, M.A.

    1988-01-01

    The recent discovery of a specific binding protein for human GH (hGH) in human plasma suggests that hGH circulates in part as a complex in association with the binding protein(s). However, the magnitude of the complexed fraction prevailing under physiological conditions is unknown because of 1) dissociation of the complex during analysis and 2) potential differences in the binding characteristics of radiolabeled and native hGH. We conducted experiments designed to minimize dissociation during analysis (gel filtration in prelabeled columns, frontal analysis, and batch molecular sieving) with both native and radioiodinated hGH. All three methods yielded similar estimates for the complexed fraction. In normal plasma the bound fraction for 22 K hGH averaged 50.1% (range, 39-59%), that for 20 K hGH averaged 28.5% (range, 26-31%). Above a hGH level of about 20 ng/ml the bound fraction declines in concentration-dependent manner due to saturation of the binding protein. We conclude that a substantial part of circulating hGH is complexed with carrier proteins. This concept has important implications for the metabolism, distribution, and biological activity of hGH

  7. Tackling complexities in understanding the social determinants of health: the contribution of ethnographic research.

    Science.gov (United States)

    Bandyopadhyay, Mridula

    2011-11-25

    The complexities inherent in understanding the social determinants of health are often not well-served by quantitative approaches. My aim is to show that well-designed and well-conducted ethnographic studies have an important contribution to make in this regard. Ethnographic research designs are a difficult but rigorous approach to research questions that require us to understand the complexity of people's social and cultural lives. I draw on an ethnographic study to describe the complexities of studying maternal health in a rural area in India. I then show how the lessons learnt in that setting and context can be applied to studies done in very different settings. I show how ethnographic research depends for rigour on a theoretical framework for sample selection; why immersion in the community under study, and rapport building with research participants, is important to ensure rich and meaningful data; and how flexible approaches to data collection lead to the gradual emergence of an analysis based on intense cross-referencing with community views and thus a conclusion that explains the similarities and differences observed. When using ethnographic research design it can be difficult to specify in advance the exact details of the study design. Researchers can encounter issues in the field that require them to change what they planned on doing. In rigorous ethnographic studies, the researcher in the field is the research instrument and needs to be well trained in the method. Ethnographic research is challenging, but nevertheless provides a rewarding way of researching complex health problems that require an understanding of the social and cultural determinants of health.

  8. Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment

    Science.gov (United States)

    Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei

    2013-01-01

    Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.

  9. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    Science.gov (United States)

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  10. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    Science.gov (United States)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  11. Mediation, moderation, and context: Understanding complex relations among cognition, affect, and health behaviour.

    Science.gov (United States)

    Kiviniemi, Marc T; Ellis, Erin M; Hall, Marissa G; Moss, Jennifer L; Lillie, Sarah E; Brewer, Noel T; Klein, William M P

    2018-01-01

    Researchers have historically treated cognition and affect as separate constructs in motivating health behaviour. We present a framework and empirical evidence for complex relations between cognition and affect in predicting health behaviour. Main Outcome, Design and Results: First, affect and cognition can mediate each other's relation to health behaviour. Second, affect and cognition can moderate the other's impact. Third, context can change the interplay of affect and cognition. Fourth, affect and cognition may be indelibly fused in some psychological constructs (e.g. worry, anticipated regret and reactance). These four propositions in our framework are not mutually exclusive. Examination of the types of complex relations described here can benefit theory development, empirical testing of theories and intervention design. Doing so will advance the understanding of mechanisms involved in regulation of health behaviours and the effectiveness of interventions to change health behaviours.

  12. Understanding valve program complexity in a refurbishment environment - learning from the past

    International Nuclear Information System (INIS)

    Roth, H.E.

    2012-01-01

    The complexity of Valve Program development, planning, execution and management in a refurbishment environment is an enormous undertaking requiring the proper coordination and integration of many moving parts. As such, lack of attention and understanding of this complexity has led to significant cost and schedule overruns in past refurbishment projects in the province. OPEX indicates the challenges in completing valve scope during refurbishments are related but not limited to; lack of detailed condition assessments, improper scope development, insignificant strategic approach to work task planning, scheduling and procurement, absence of contingency planning for common ‘as found’ conditions during execution, lack of proper training requirements, etc. In addition, past contracting strategies to employ numerous companies in collaboration to complete such a complex and specialized program, has resulted in further complications surrounding the management and integration of multiple quality programs and internal company processes. Finally, the aftermath of such fragmented projects results in an absolute closeout nightmare, often times taking years to locate, sift through and re-integrate pertinent information back into customer systems. Valve Program complexity cannot be understood by just anyone, only those that have lived through a refurbishment project and experienced the challenges mentioned above have the knowledge, skill, and ability to appreciate how to tactically apply past learning to realize future improvements. Furthermore, effective contractor-customer collaboration is crucial; true and in-depth knowledge and understanding of the customer quality programs, engineering and work management processes, configuration management requirements, and most importantly the imperative significance of nuclear safety, are all essential components to ensure overall alignment and program success. (author)

  13. Understanding valve program complexity in a refurbishment environment - learning from the past

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H.E. [Babcock & Wilcox Canada Ltd., Cambridge, Ontario (Canada)

    2012-07-01

    The complexity of Valve Program development, planning, execution and management in a refurbishment environment is an enormous undertaking requiring the proper coordination and integration of many moving parts. As such, lack of attention and understanding of this complexity has led to significant cost and schedule overruns in past refurbishment projects in the province. OPEX indicates the challenges in completing valve scope during refurbishments are related but not limited to; lack of detailed condition assessments, improper scope development, insignificant strategic approach to work task planning, scheduling and procurement, absence of contingency planning for common ‘as found’ conditions during execution, lack of proper training requirements, etc. In addition, past contracting strategies to employ numerous companies in collaboration to complete such a complex and specialized program, has resulted in further complications surrounding the management and integration of multiple quality programs and internal company processes. Finally, the aftermath of such fragmented projects results in an absolute closeout nightmare, often times taking years to locate, sift through and re-integrate pertinent information back into customer systems. Valve Program complexity cannot be understood by just anyone, only those that have lived through a refurbishment project and experienced the challenges mentioned above have the knowledge, skill, and ability to appreciate how to tactically apply past learning to realize future improvements. Furthermore, effective contractor-customer collaboration is crucial; true and in-depth knowledge and understanding of the customer quality programs, engineering and work management processes, configuration management requirements, and most importantly the imperative significance of nuclear safety, are all essential components to ensure overall alignment and program success. (author)

  14. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  15. Leveraging Understanding of Flow of Variable Complex Fluid to Design Better Absorbent Hygiene Products

    Science.gov (United States)

    Krautkramer, C.; Rend, R. R.

    2014-12-01

    Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.

  16. Jean’s instability in a complex plasma in presence of secondary electrons and nonthermal ions

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Maity Saumyen

    2013-01-01

    In this paper we have investigated the effect of secondary electron emission and nonthermality of ion velocity distribution simultaneously on Jean’s instability in a complex plasma in presence of negatively charged dust grains. Primary and secondary electron temperatures are assumed to be equal. Thus plasma under consideration consists of Boltzmann distributed electrons, nonthermal ions and negatively charged dust grains. The dust grain component is modeled by continuity and momentum equations. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically it is found that for lower values of the nonthermal parameter Jean’s instability is higher for higher secondary electron emission whereas the effect of secondary electron emission on Jean’s instability becomes insignificant for higher values of the nonthermal parameter. (author)

  17. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    Science.gov (United States)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  18. Force field inside the void in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-01-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force

  19. Non-Maxwellian and magnetic field effects in complex plasma wakes★

    Science.gov (United States)

    Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander

    2018-05-01

    In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

  20. Understanding complexities of synaptic transmission in medically intractable seizures: A paradigm of epilepsy research

    Directory of Open Access Journals (Sweden)

    Jyotirmoy Banerjee

    2013-01-01

    Full Text Available Investigating the changes associated with the development of epileptic state in humans is complex and requires a multidisciplinary approach. Understanding the intricacies of medically intractable epilepsy still remains a challenge for neurosurgeons across the world. A significant number of patients who has undergone resective brain surgery for epilepsy still continue to have seizures. The reason behind this therapy resistance still eludes us. Thus to develop a cure for the difficult to treat epilepsy, we need to comprehensively study epileptogenesis. Although various animal models are developed but none of them replicate the pathological conditions in humans. So the ideal way to understand epileptogenecity is to examine the tissue resected for the treatment of intractable epilepsy. Advanced imaging and electrical localization procedures are utilized to establish the epileptogenic zone in epilepsy patients. Further molecular and cytological studies are required for the microscopic analysis of brain samples collected from the epileptogenic focus. As alterations in inhibitory as well as excitatory synaptic transmission are key features of epilepsy, understanding the regulation of neurotransmission in the resected surgery zone is of immense importance. Here we summarize various modalities of in vitro slice analysis from the resected brain specimen to understand the changes in GABAergic and glutamatergic synaptic transmission in epileptogenic zone. We also review evidence pertaining to the proposed role of nicotinic receptors in abnormal synaptic transmission which is one of the major causes of epileptiform activity. Elucidation of current concepts in regulation of synaptic transmission will help develop therapies for epilepsy cases that cannot me managed pharmacologically.

  1. A mechanistic study to increase understanding of titanium dioxide nanoparticles-increased plasma glucose in mice.

    Science.gov (United States)

    Hu, Hailong; Li, Li; Guo, Qian; Jin, Sanli; Zhou, Ying; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2016-09-01

    Titanium dioxide nanoparticle (TiO2 NP) is an authorized food additive. Previous studies determined oral administration of TiO2 NPs increases plasma glucose in mice via inducing insulin resistance. An increase in reactive oxygen species (ROS) has been considered the possible mechanism of increasing plasma glucose. However, persistently high plasma glucose is also a mechanism of increasing ROS. This study aims to explore whether TiO2 NPs increase plasma glucose via ROS. We found after oral administration of TiO2 NPs, an increase in ROS preceded an increase in plasma glucose. Subsequently, mice were treated with two antioxidants (resveratrol and vitamin E) at the same time as oral administration of TiO2 NPs. Results showed resveratrol and vitamin E reduced TiO2 NPs-increased ROS. An increase in plasma glucose was also inhibited. Further research showed resveratrol and vitamin E inhibited the secretion of TNF-α and IL-6, and the phosphorylation of JNK and p38 MAPK, resulting in improved insulin resistance. These results suggest TiO2 NPs increased ROS levels, and then ROS activated inflammatory cytokines and phosphokinases, and thus induced insulin resistance, resulting in an increase in plasma glucose. Resveratrol and vitamin E can reduce TiO2 NPs-increased ROS and thereby inhibit an increase in plasma glucose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterizing dusty argon-acetylene plasmas as a first step to understand dusty EUV environments

    NARCIS (Netherlands)

    Wetering, van de F.M.J.H.; Nijdam, S.; Kroesen, G.M.W.

    2012-01-01

    In extreme ultraviolet (EUV) lithography, ionic and particulate debris coming from the plasma source plays an important role. We started up a project looking at the principles of particle formation in plasmas and the interaction with EUV radiation. To this end, we study a low-pressure (10 Pa)

  3. Proteomic screen for multiprotein complexes in synaptic plasma membrane from rat hippocampus by blue native gel electrophoresis and tandem mass spectrometry.

    Science.gov (United States)

    Li, Xuanwen; Xie, Chunliang; Jin, Qihui; Liu, Mingjun; He, Quanyuan; Cao, Rui; Lin, Yong; Li, Jianglin; Li, Yan; Chen, Ping; Liang, Songping

    2009-07-01

    Neuronal synapses are specialized sites for information exchange between neurons. Many diseases, such as addiction and mood disorders, likely result from altered expression of synaptic proteins, or altered formation of synaptic complexes involved in neurotransmission or neuroplasticity. A detailed description of native multiprotein complexes in synaptic plasma membranes (PM) is therefore essential for understanding biological mechanisms and disease processes. For the first time in this study, two-dimensional Blue Native/SDS-PAGE electrophoresis, combined with tandem mass spectrometry, was used to screen multiprotein complexes in synaptic plasma membranes from rat hippocampus. As a result, 514 unique proteins were identified, of which 36% were integral membrane proteins. In addition, 19 potentially novel and known heterooligomeric multiprotein complexes were found, such as the SNARE and ATPase complexes. A potentially novel protein complex, involving syntaxin, synapsin I and Na+/K+ ATPase alpha-1, was further confirmed by co-immunoprecipitation and immunofluorescence staining. As demonstrated here, Blue Native-PAGE is a powerful tool for the separation of hydrophobic membrane proteins. The combination of Blue Native-PAGE and mass spectrometry could systematically identify multiprotein complexes.

  4. Trampoline effect and the force field inside the void in complex plasma under microgravity conditions

    International Nuclear Information System (INIS)

    Khrapak, S. A.; Kretschmer, M.; Zhdanov, S. K.; Thomas, H. M.; MOrfill, G. e.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-01-01

    The PKE-Nefedov facility onboard the International Space Station (ISS),operational since March, 2'001, has enabled the study of complex (dusty) plasmas under microgravity conditions. A complex plasma is generated by introducing micron sized grains in a capacitively coupled rf discharge. The grains form a cloud inside the bulk of the discharge and can be easily visualized with the help of standard tools-laser illumination and video cameras. In most of the experiments under microgravity conditions the central region of the discharge is free of grains a so called void is formed. Due to recent theoretical advances, showing that the ion drag force can be more than a factor of ten larger than had traditionally been believed, void formation is now through to be a consequence of this (enhanced) interaction. The way this process works is the following: the ions drifting from the central region of a discharge to its walls and electrodes transfer their momentum to the grains pushing them out of the center. However, no direct experimental results on the origin of the void formation were reported so far. In this paper we report new results on the observation of a weak instability of the void-complex plasma interface observed at a relatively low gas pressure (p=12Pa). The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called trampoline effect), The trajectories of injected particles are analyzed providing information on the force field and potential energy distribution inside the void. For the relatively low neutral gas pressure used in the experiment a direct comparison with theory involving a model of the ion drag force in the collisionless regime is possible. Such a comparison yields good agreement, implying that we have observed the first experimental confirmation of the ion drag mechanism as being responsible for the void formation. (Author)

  5. Trampoline effect and the force field inside the void in complex plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khrapak, S. A.; Kretschmer, M.; Zhdanov, S. K.; Thomas, H. M.; MOrfill, G. e.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-07-01

    The PKE-Nefedov facility onboard the International Space Station (ISS),operational since March, 2'001, has enabled the study of complex (dusty) plasmas under microgravity conditions. A complex plasma is generated by introducing micron sized grains in a capacitively coupled rf discharge. The grains form a cloud inside the bulk of the discharge and can be easily visualized with the help of standard tools-laser illumination and video cameras. In most of the experiments under microgravity conditions the central region of the discharge is free of grains a so called void is formed. Due to recent theoretical advances, showing that the ion drag force can be more than a factor of ten larger than had traditionally been believed, void formation is now through to be a consequence of this (enhanced) interaction. The way this process works is the following: the ions drifting from the central region of a discharge to its walls and electrodes transfer their momentum to the grains pushing them out of the center. However, no direct experimental results on the origin of the void formation were reported so far. In this paper we report new results on the observation of a weak instability of the void-complex plasma interface observed at a relatively low gas pressure (p=12Pa). The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called trampoline effect), The trajectories of injected particles are analyzed providing information on the force field and potential energy distribution inside the void. For the relatively low neutral gas pressure used in the experiment a direct comparison with theory involving a model of the ion drag force in the collisionless regime is possible. Such a comparison yields good agreement, implying that we have observed the first experimental confirmation of the ion drag mechanism as being responsible for the void formation. (Author)

  6. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films.

    Science.gov (United States)

    Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  7. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    Science.gov (United States)

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  8. Simulation-based education: understanding the socio-cultural complexity of a surgical training 'boot camp'.

    Science.gov (United States)

    Cleland, Jennifer; Walker, Kenneth G; Gale, Michael; Nicol, Laura G

    2016-08-01

    The focus of simulation-based education (SBE) research has been limited to outcome and effectiveness studies. The effect of social and cultural influences on SBE is unclear and empirical work is lacking. Our objective in this study was to explore and understand the complexity of context and social factors at a surgical boot camp (BC). A rapid ethnographic study, employing the theoretical lenses of complexity and activity theory and Bourdieu's concept of 'capital', to better understand the socio-cultural influences acting upon, and during, two surgical BCs, and their implications for SBE. Over two 4-day BCs held in Scotland, UK, an observer and two preceptors conducted 81 hours of observations, 14 field interviews and 11 formal interviews with faculty members (n = 10, including the lead faculty member, session leaders and junior faculty members) and participants (n = 19 core surgical trainees and early-stage residents). Data collection and inductive analysis for emergent themes proceeded iteratively. This paper focuses on three analytical themes. First, the complexity of the surgical training system and wider health care education context, and how this influenced the development of the BC. Second, participants' views of the BC as a vehicle not just for learning skills but for gaining 'insider information' on how best to progress in surgical training. Finally, the explicit aim of faculty members to use the Scottish Surgical Bootcamp to welcome trainees and residents into the world of surgery, and how this occurred. To the best of our knowledge, this is the first empirical study of a surgical BC that takes a socio-cultural approach to exploring and understanding context, complexities, uncertainties and learning associated with one example of SBE. Our findings suggest that a BC is as much about social and cultural processes as it is about individual, cognitive and acquisitive learning. Acknowledging this explicitly will help those planning similar enterprises and

  9. Applying a complex adaptive system's understanding of health to primary care [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Johannes Bircher

    2016-09-01

    Full Text Available This paper explores the diagnostic and therapeutic potential of a new concept of health. Investigations into the nature of health have led to a new definition that explains health as a complex adaptive system (CAS and is based on five components (a-e. Humans like all biological creatures must satisfactorily respond to (a the demands of life. For this purpose they need (b a biologically given potential (BGP and (c a personally acquired potential (PAP. These properties of individuals are embedded within (d social and (e environmental determinants of health. Between these five components of health there are 10 complex interactions that justify viewing health as a CAS. In each patient, the current state of health as a CAS evolved from the past, will move forward to a new future, and has to be analyzed and treated as an autonomous whole. A diagnostic procedure is suggested as follows: together with the patient, the five components and 10 complex interactions are assessed. This may help patients to better understand their situations and to recognize possible next steps that may be useful in order to evolve toward better health by themselves. In this process mutual trust in the patient-physician interaction is critical. The described approach offers new possibilities for helping patients improve their health prospects.

  10. Understanding and quantifying cognitive complexity level in mathematical problem solving items

    Directory of Open Access Journals (Sweden)

    SUSAN E. EMBRETSON

    2008-09-01

    Full Text Available The linear logistic test model (LLTM; Fischer, 1973 has been applied to a wide variety of new tests. When the LLTM application involves item complexity variables that are both theoretically interesting and empirically supported, several advantages can result. These advantages include elaborating construct validity at the item level, defining variables for test design, predicting parameters of new items, item banking by sources of complexity and providing a basis for item design and item generation. However, despite the many advantages of applying LLTM to test items, it has been applied less often to understand the sources of complexity for large-scale operational test items. Instead, previously calibrated item parameters are modeled using regression techniques because raw item response data often cannot be made available. In the current study, both LLTM and regression modeling are applied to mathematical problem solving items from a widely used test. The findings from the two methods are compared and contrasted for their implications for continued development of ability and achievement tests based on mathematical problem solving items.

  11. Collaborative Research: Understanding Ion Losses to Plasma Boundaries Sheaths and Presheaths

    Energy Technology Data Exchange (ETDEWEB)

    Hershkowitz, Noah [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Sheaths are common to all bounded steady-state plasmas. This includes laboratory, industrial, fusion, and in some cases even space plasmas. They form in general to balance particle loss and maintain quasi-neutrality in plasmas. Electrons are lighter than the ions by 2000 times or more (depending on the gas), and in most plasmas ion temperatures are rarely higher than the electron temperature and generally much lower. Thus in most cases, negative potential sheaths occur to confine electrons and allow ions to be freely lost. We have investigated how a plasma locally response to a positive bias on a small electrode, and have established area criteria which plasma reacts differently to the positive bias – first a pure electron sheath, and a global non-ambipolar regime where all electrons are lost to the electrode, and a double layer structure identified as a virtual cathode forms to limiting electron loss and maintain quasi-neutrality, and finally a anode spot regime where a secondary discharge occurs in front of the electrode, turning it into the major loss area of the entire plasma. Electrode area and plasma parameters criteria for these regimes were established, and the effect of the virtual cathode on the electrode’s I-V characteristics was investigated. We have also developed a global non-ambipolar electron source to replace hollow cathodes in a number of plasma applications. This eliminates the lifetime limitation and maintenance cost of hollow cathodes as they easily wear out easily and cannot be replaced in space applications.

  12. The Crucible simulation: Behavioral simulation improves clinical leadership skills and understanding of complex health policy change.

    Science.gov (United States)

    Cohen, Daniel; Vlaev, Ivo; McMahon, Laurie; Harvey, Sarah; Mitchell, Andy; Borovoi, Leah; Darzi, Ara

    2017-05-11

    The Health and Social Care Act 2012 represents the most complex National Health Service reforms in history. High-quality clinical leadership is important for successful implementation of health service reform. However, little is known about the effectiveness of current leadership training. This study describes the use of a behavioral simulation to improve the knowledge and leadership of a cohort of medical doctors expected to take leadership roles in the National Health Service. A day-long behavioral simulation (The Crucible) was developed and run based on a fictitious but realistic health economy. Participants completed pre- and postsimulation questionnaires generating qualitative and quantitative data. Leadership skills, knowledge, and behavior change processes described by the "theory of planned behavior" were self-assessed pre- and postsimulation. Sixty-nine medical doctors attended. Participants deemed the simulation immersive and relevant. Significant improvements were shown in perceived knowledge, capability, attitudes, subjective norms, intentions, and leadership competency following the program. Nearly one third of participants reported that they had implemented knowledge and skills from the simulation into practice within 4 weeks. This study systematically demonstrates the effectiveness of behavioral simulation for clinical management training and understanding of health policy reform. Potential future uses and strategies for analysis are discussed. High-quality care requires understanding of health systems and strong leadership. Policymakers should consider the use of behavioral simulation to improve understanding of health service reform and development of leadership skills in clinicians, who readily adopt skills from simulation into everyday practice.

  13. Latest Results on Complex Plasmas with the PK-3 Plus Laboratory on Board the International Space Station

    Science.gov (United States)

    Schwabe, M.; Du, C.-R.; Huber, P.; Lipaev, A. M.; Molotkov, V. I.; Naumkin, V. N.; Zhdanov, S. K.; Zhukhovitskii, D. I.; Fortov, V. E.; Thomas, H. M.

    2018-03-01

    Complex plasmas are low temperature plasmas that contain microparticles in addition to ions, electrons, and neutral particles. The microparticles acquire high charges, interact with each other and can be considered as model particles for effects in classical condensed matter systems, such as crystallization and fluid dynamics. In contrast to atoms in ordinary systems, their movement can be traced on the most basic level, that of individual particles. In order to avoid disturbances caused by gravity, experiments on complex plasmas are often performed under microgravity conditions. The PK-3 Plus Laboratory was operated on board the International Space Station from 2006 - 2013. Its heart consisted of a capacitively coupled radio-frequency plasma chamber. Microparticles were inserted into the low-temperature plasma, forming large, homogeneous complex plasma clouds. Here, we review the results obtained with recent analyzes of PK-3 Plus data: We study the formation of crystallization fronts, as well as the microparticle motion in, and structure of crystalline complex plasmas. We investigate fluid effects such as wave transmission across an interface, and the development of the energy spectra during the onset of turbulent microparticle movement. We explore how abnormal particles move through, and how macroscopic spheres interact with the microparticle cloud. These examples demonstrate the versatility of the PK-3 Plus Laboratory.

  14. Perspectives of experimental and theoretical studies of self-organized dust structures in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Tsytovich, V N

    2015-01-01

    We review research aimed at understanding the phenomena occurring in a complex plasma under microgravity conditions. Some aspects of the work already performed are considered that have not previously been given sufficient attention but which are potentially crucial for future work. These aspects, in particular, include the observation of compact dust structures that are estimated to be capable of confining all components of a dust plasma in a bounded spatial volume; experimental evidence of the nonlinear screening of dust particles; and experimental evidence of the excitation of collective electric fields. In theoretical terms, novel collective attraction processes between likely charged dust particles are discussed and all schemes of the shadowy attraction between dust particles used earlier, including in attempts to interpret observations, are reviewed and evaluated. Dust structures are considered from the standpoint of the current self-organization theory. It is emphasized that phase transitions between states of self-organized systems differ significantly from those in homogeneous states and that the phase diagrams should be constructed in terms of the parameters of a self-organized structure and cannot be constructed in terms of the temperature and density or similar parameters of homogeneous structures. Using the existing theoretical approaches to modeling self-organized structures in dust plasmas, the parameter distribution of a structure is recalculated for a simpler model that includes the quasineutrality condition and neglects diffusion. These calculations indicate that under microgravity conditions, any self-organized structure can contain a limited number of dust particles and is finite in size. The maximum possible number of particles in a structure determines the characteristic inter-grain distance in dust crystals that can be created under microgravity conditions. Crystallization criteria for the structures are examined and the quasispherical

  15. Collaborative Research: Atmospheric Pressure Plasma-Biomaterial Surface Interactions - Bridging Understanding of APP Sources to Rational Modification of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. of California, Berkeley, CA (United States)

    2017-11-24

    The overriding objective of this work is to bridge the gap between understanding of atmospheric pressure plasma (APP) sources and predictive chemical modifications of biomolecules. A key aspect of this problem is to understand what oxidizing species are created in water adjacent to APP jets that would ultimately affect aqueous biomolecules. We report the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, is used as an indicator of oxidative strength and in particular, hydroxyl radical (OH•) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH• at the plasma-liquid interface. These results indicate that reactions at the air plasma-liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma (NE-APP) treatment.

  16. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    Science.gov (United States)

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  17. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Understanding coral reefs as complex systems: degradation and prospects for recovery

    Directory of Open Access Journals (Sweden)

    Raymond T. Dizon

    2006-06-01

    Full Text Available The present century is witness to unprecedented levels of coral reef degradation worldwide. Current understanding based on traditional ideas is unlikely to capture adequately the dynamics of phenomena accompanying this trend. In this regard, the ideas of complexity are reviewed. Some applications to coral reefs as complex systems have already been discussed in the literature although further progress is warranted as the search for new and more effective management tools continues, and the direction towards more holistic, integrative and large scale approaches gains wider acceptance. We distinguish between the concepts of robustness and resilience in the face of disturbance, highlight the various mechanisms that foster these stability properties and provide some coral reef examples. We identify some of the driving forces behind succession that are critical for community assembly and possible reef recovery. Finally, we consider how self-organization arises out of apparently random and chaotic processes and interactions to exhibit certain regularities and patterns especially when moving up on the scale of space and/or time.

  19. The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics

    Science.gov (United States)

    Pavlos, George

    2015-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time

  20. Advances in the understanding of the BBSome complex structure and function

    Directory of Open Access Journals (Sweden)

    Hernandez-Hernandez V

    2015-10-01

    Full Text Available Victor Hernandez-Hernandez, Dagan JenkinsGenetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UKAbstract: Bardet–Biedl syndrome (BBS is an autosomal recessive condition characterized by important clinical features, including obesity, blindness, renal cystic disease, and intellectual disability. BBS is caused by mutations in >20 genes, a subset of which form the so-called BBSome. The BBSome is a complex that coats intracellular vesicles and interacts with key proteins, such as small GTPases, that regulate the trafficking of these vesicles to the base of cilia. Cilia are microtubular protusions present on the surface of most cells that are defective in a key group of disorders known as ciliopathies, of which BBS is one. BBSome components particularly localize to the basal body of cilia, and also centrosomes, where they interact with pericentriolar material proteins that regulate their function. The BBSome also facilitates the transport of key cargo within cilia by acting as an adaptor protein for intraflagellar transport complexes, and as such BBS mutations lead to a variety of functional defects in cilia in a tissue- and cell-type-specific manner. This might include defects in photoreceptor trafficking linked to the connecting cilium, abnormal hedgehog signaling within bone, and aberrant calcium signaling in response to fluid flow along renal tubules, although the precise mechanisms are still not completely understood. Taken together, the BBSome is an important complex that may be targeted for treatment of a variety of common and important disorders, and understanding the precise function of the BBSome will be essential to capitalize on this translationally.Keywords: retinitis pigmentosa GTPase regulator, polycystin, disrupted in schizophrenia 1, Hedgehog signaling, calcium signaling, photoreceptors

  1. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  2. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    Science.gov (United States)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  3. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  4. Toward the Understanding of the Physical Origin of Recombining Plasma in the Supernova Remnant IC 443

    Science.gov (United States)

    Matsumura, Hideaki; Tanaka, Takaaki; Uchida, Hiroyuki; Okon, Hiromichi; Tsuru, Takeshi Go

    2017-12-01

    We perform a spatially resolved spectroscopic analysis of X-ray emission from the supernova remnant (SNR) IC 443 with Suzaku. All of the spectra are well reproduced by a model consisting of a collisional ionization equilibrium (CIE) and two recombining plasma (RP) components. Although previous X-ray studies found an RP in the northeastern region, this is the first report on RPs in the other parts of the remnant. The electron temperature, kT e , of the CIE component is almost uniform at ∼0.2 keV across the remnant. The CIE plasma has metal abundances consistent with solar and is concentrated toward the rim of the remnant, suggesting that it is of shocked interstellar medium origin. The two RP components have different kT e : one in the range of 0.16–0.28 keV and the other in the range of 0.48–0.67 keV. The electron temperatures of both RP components decrease toward the southeast, where the SNR shock is known to be interacting with a molecular cloud. We also find the normalization ratio of the lower-kT e RP to higher-kT e RP components increases toward the southeast. Both results suggest the X-ray emitting plasma in the southeastern region is significantly cooled by some mechanism. One of the plausible cooling mechanisms is a thermal conduction between the hot plasma and the molecular cloud. If the cooling proceeds faster than the recombination timescale of the plasma, the same mechanism can account for the recombining plasma as well.

  5. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery

    International Nuclear Information System (INIS)

    Bormashenko, Edward; Chaniel, Gilad; Grynyov, Roman

    2013-01-01

    The phenomenon of hydrophobic recovery was studied for cold air plasma treated polyethylene films. Plasma-treated polymer films were immersed into liquids with very different polarities such as ethanol, acetone, carbon tetrachloride, benzene and carbon disulphide. Hydrophobic recovery was studied by measurement of contact angles. Immersion into high polarity liquids slows markedly the hydrophobic recovery. We relate this slowing to dipole–dipole interaction of polar groups of the polymer with those of the liquids. This kind of interaction becomes decisive when polar groups of polymer chains are at least partially spatially fixed.

  6. Understanding and suppressing the near Scrape-Off Layer in inboard-limited plasmas in TCV.

    Czech Academy of Sciences Publication Activity Database

    Nespoli, F.; Labit, B.; Furno, I.; Horáček, Jan; Tsui, C.K.; Boedo, J. A.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Ricci, P.; Halpern, F.D.; Sheikh, U.; Verhaegh, K.; Pitts, R.A.; Militello, F.

    2017-01-01

    Roč. 57, č. 12 (2017), č. článku 126029. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA15-10723S EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamak * TCV * scrape-off layer * heat flux * limiter * infrared thermography * Langmuir probes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa84e0

  7. Understanding narrow SOL power flux component in COMPASS limiter plasmas by use of Langmuir probes

    Czech Academy of Sciences Publication Activity Database

    Dejarnac, Renaud; Stangeby, P.C.; Goldston, R.J.; Gauthier, E.; Horáček, Jan; Hron, Martin; Kocan, M.; Komm, Michael; Pánek, Radomír; Pitts, R.A.; Vondráček, Petr

    2015-01-01

    Roč. 463, August (2015), s. 381-384 ISSN 0022-3115. [PLASMA-SURFACE INTERACTIONS 21: International Conference on Plasma-Surface Interactions in Controlled Fusion Devices. Kanazawa, 26.05.2014-30.05.2014] R&D Projects: GA ČR GAP205/11/2341; GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : COMPASS * tokamak * Heat loads * limiter * narrow channel * probes Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022311514010538#

  8. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to

  9. Bringing content understanding into usability testing in complex application domains—a case study in eHealth

    DEFF Research Database (Denmark)

    Andersen, Simon Bruntse; Rasmussen, Claire Kirchert; Frøkjær, Erik

    2017-01-01

    A usability evaluation technique, Cooperative Usability Testing with Questions of Understanding (CUT with QU) intended to illuminate users’ ability to understand the content information of an application is proposed. In complex application domains as for instance the eHealth domain, this issue...... of users’ content understanding is sometimes crucial, and thus should be carefully evaluated. Unfortunately, conventional usability evaluation techniques do not address challenges of content understanding. In a case study within eHealth, specifically the setting of a rehabilitation clinic involving...... the participation of four physiotherapists and four clients in a period of 3.5 months, it was demonstrated how CUT with QU can complement conventional usability testing and provide insight into users’ challenges with understanding of a new complex eHealth application. More experiments in other complex application...

  10. Scale-free crystallization of two-dimensional complex plasmas: Domain analysis using Minkowski tensors

    Science.gov (United States)

    Böbel, A.; Knapek, C. A.; Räth, C.

    2018-05-01

    Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski

  11. Grid-Free 2D Plasma Simulations of the Complex Interaction Between the Solar Wind and Small, Near-Earth Asteroids

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.

    2014-01-01

    We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions

  12. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  13. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  14. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)

    2016-04-15

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  16. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    International Nuclear Information System (INIS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2016-01-01

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  17. Center-of-mass and breathing oscillations in small complex plasma disks

    International Nuclear Information System (INIS)

    Sheridan, T.E.

    2005-01-01

    Center-of-mass and breathing oscillations of a complex (dusty) plasma disk are excited for n=3 and 5 microspheres (≅10 μm diameter) with neutral argon pressures P≅1-4 Pa. The mode frequencies and damping rates are determined directly from measured resonance curves. Millikan's coefficient for the Epstein drag force, the Debye length, and the particle charge is found by comparison with theory. The damping rates are the same for both modes and for n=3 and 5, as predicted. Millikan's coefficient is found to be δ=1.55±0.16, in agreement with δ=1.44 for diffuse reflection. A consistent value of the Debye length that decreases with pressure is measured. The average particle charge for n=3 particles is found to be more negative than that for n=5 particles for the same conditions, indicating that the effective ion collection area of the particles increases as their separation decreases

  18. Peculiarities in film growth of ferroelectric complex oxides in ion-plasma sputtering

    International Nuclear Information System (INIS)

    Mukhortov, V.M.; Golovko, Yu.I.; Mukhortov, Vl.M.; Dudkevich, V.P.

    1981-01-01

    Experimental investigation into the process of complex oxide film growth (using BaTiO 3 and (Ba,Sr)TiO 3 as an example) during ion-plasma sputtering has been carried out. It is shown that neutral excited atoms are knocked out of a ceramic target during its ion bombardment. Removing from the target they loss energy at the expence of collisions and at some distance hsub(cr) the oxidation reaction (BaO, TiO, TiO 2 , SrO) becomes possible. So the ''construction'' material comes in either in the form of atoms or in the form of molecules of simple oxides depending on a distance between cathode and substrate. Two mechanisms of synthesis and crystallization distinguished with dependences of growth rate, elementary cell parameters and other structure characteristics on precipitation temperature correspond to two precipitation mechanisms. Part of re-evaporation and reduction processes is discussed [ru

  19. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    International Nuclear Information System (INIS)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-01

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  20. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy

    Science.gov (United States)

    Riordan, Sean M.; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F.; Wennberg, Richard P.; Shapiro, Steven M.

    2016-01-01

    Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity

  1. Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N. [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation); Thomas, H. M. [Research Group Complex Plasma, DLR, Oberpfaffenhofen, 82234 Wessling (Germany); Ivlev, A. V.; Morfill, G. E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Schwabe, M. [Department of Chemical and Biomolecular Engineering, Graves Lab, D75 Tan Hall, University of California, Berkeley, CA 94720 (United States)

    2015-02-15

    We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.

  2. Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions

    International Nuclear Information System (INIS)

    Zhukhovitskii, D. I.; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Schwabe, M.

    2015-01-01

    We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas

  3. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    International Nuclear Information System (INIS)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures

  4. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    Science.gov (United States)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  5. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  6. Complexities in Understanding Attentional Functioning among Children with Fetal Alcohol Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Kimberly eLane

    2014-03-01

    Full Text Available Parental reports of attention problems and clinical symptomatology of ADHD among children with fetal alcohol syndrome disorder (FASD were assessed in relation to performance on standardized subtests of attantional control/shifting and selective attention from the Test of Everyday Attention for Children (TEA-Ch; Manly et al., 1998. The participants included 14 children with FASD with a mean CA of 11.7 years and a mean MA of 9.7 years, and 14 typically developing (TD children with no reported history of prenatal exposure to alcohol or attention problems with a mean CA of 8.4 years and a mean MA of 9.6 years. The children with FASD were rated by their caregivers as having clinically significant attention difficulties for their developmental age. The reported symptomatology for the majority of the children with FASD were consistent with a diagnosis of ADHD, combined type, and only one child had a score within the average range. These reports are consistent with the finding here that the children with FASD demonstrated difficulties on the Creature Counting subtest of attentional control/shifting, but inconsistent with the finding that they outperformed the TD children on the Map Mission subtest of selective attention. These findings are considered within the context of the complexity in understanding attentional functioning among children with FASD and discrepancies across sources of information and components of attention.

  7. Understanding How to Support Family Caregivers of Seniors with Complex Needs

    Science.gov (United States)

    Charles, Lesley; Brémault-Phillips, Suzette; Parmar, Jasneet; Johnson, Melissa; Sacrey, Lori-Ann

    2017-01-01

    Purpose of the Study The purpose of this study was to describe the experiences and challenges of supporting family caregivers of seniors with complex needs and to outline support strategies and research priorities aimed at supporting them. Design and Methods A CIHR-funded, two-day conference entitled “Supporting Family Caregivers of Seniors: Improving Care and Caregiver Outcomes” was held. An integrated knowledge translation approach guided this planning conference. Day 1 included presentations of research evidence, followed by participant engagement Qualitative data was collected regarding facilitators, barriers/gaps, and recommendations for the provision of caregiver supports. Day 2 focused on determination of research priorities. Results Identified facilitators to the provision of caregiver support included accessibility of health-care and community-based resources, availability of well-intended health-care providers, and recognition of caregivers by the system. Barriers/gaps related to challenges with communication, access to information, knowledge of what is needed, system navigation, access to financial resources, and current policies. Recommendations regarding caregiver services and research revolved around assisting caregivers to self-identify and seek support, formalizing caregiver supports, centralizing resources, making system navigation available, and preparing the next generation for caregiving. Implication A better understanding of the needs of family caregivers and ways to support them is critical to seniors’ health services redesign. PMID:28690707

  8. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  9. Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian; Li, Xingwen; Wei, Wenfu; Jia, Shenli; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2013-11-15

    Plume splitting in low-pressure ambient air was understood in view of ion distribution dynamics from the laser ablated Al plasma (1064 nm 0.57 J/mm{sup 2}) by combining fast photography and spatially resolved spectroscopy. In the beginning, the spectral lines were mainly from the Al III ion. Then, the Bragg peak in stopping power of the ambient gas to Al III could be the dominant reason for the enhanced emission from the fast moving part, and the recombination of Al III to Al I-II ions near the target surface was response to the radiations from the slow moving/stationary part. As the ambient gas pressure increased, stopping distances of the Al III decreased, and radiation from the air ions became pronounced. The laser shadowgraph image at 1100 Pa indicated that the shock wave front located between the fast moving and slow moving parts. Electron densities of the fast moving plasma, which peaked at the plasma front, were on the order of 10{sup 16} cm{sup −3}, and the electron temperatures were 2–3 eV.

  10. A lignan complex isolated from flaxseed does not affect plasma lipid concentrations or antioxidant capacity in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Hallund, Jesper; Ravn-Haren, Gitte; Bügel, S.

    2006-01-01

    A lignan complex rich in the plant lignan secoisolariciresinol diglucoside (SDG) was isolated from flaxseed. SDG is metabolized by the colonic microflora to the mammalian lignans enterodiol (END) and enterolactone (ENL), and was hypothesized to reduce plasma lipid concentrations and improve...... antioxidant capacity, The aim of this study was to investigate the effects of a lignan complex, providing 500 mg/d of SDG, on serum concentration and urinary excretion of ENL, plasma lipids, serum lipoprotein oxidation resistance, and markers of antioxidant capacity. Healthy postmenopausal women (n=22...

  11. Investigations of immunoglobulins, circulating immune complexes and plasma free hemoglobin in cancer patients on 60Co gamma-ray therapy

    International Nuclear Information System (INIS)

    Horvath, M.; Rode, I.L.; Fekete, B.; Kiss, B.; Ringwald, G.

    1981-01-01

    32 patients with different tumours were irradiated by 60 Co gamma-rays. During therapy lasting for several weeks, changes in the content of immunoglobulin and of some other serum proteins, circulating immune complexes and plasma free hemoglobin were determined. Immunosuppression according to immunoglobulin content in serum was not produced by this type of radiation. Decrease in immune complex levels was a good prognostic sign. Low values of plasma hemoglobin content during treatment indicated that no erythrocyte membrane damage had been effected. (orig.) [de

  12. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments

    Science.gov (United States)

    Brandenburg, Ronny

    2017-05-01

    Dielectric barrier discharges (DBDs) are plasmas generated in configurations with an insulating (dielectric) material between the electrodes which is responsible for a self-pulsing operation. DBDs are a typical example of nonthermal atmospheric or normal pressure gas discharges. Initially used for the generation of ozone, they have opened up many other fields of application. Therefore DBDs are a relevant tool in current plasma technology as well as an object for fundamental studies. Another motivation for further research is the fact that so-called partial discharges in insulated high voltage systems are special types of DBDs. The breakdown processes, the formation of structures, and the role of surface processes are currently under investigation. This review is intended to give an update to the already existing literature on DBDs considering the research and development within the last two decades. The main principles and different modes of discharge generation are summarized. A collection of known as well as special electrode configurations and reactor designs will be presented. This shall demonstrate the different and broad possibilities, but also the similarities and common aspects of devices for different fields of applications explored within the last years. The main part is devoted to the progress on the investigation of different aspects of breakdown and plasma formation with the focus on single filaments or microdischarges. This includes a summary of the current knowledge on the electrical characterization of filamentary DBDs. In particular, the recent new insights on the elementary volume and surface memory mechanisms in these discharges will be discussed. An outlook for the forthcoming challenges on research and development will be given.

  13. Advanced Fluorescence Microscopy Approaches to Understand the Dynamic Organization of the Plasma Membrane in Eukaryotes

    DEFF Research Database (Denmark)

    Ziomkiewicz, Iwona

    signaling in plants. Furthermore, it was established that ENODL9 clustering affects the organization of the PM and distribution of other PM proteins. Analysis of the phenotype of mutant lines revealed that ENODL9 has an important role for plant development and the adaptation to osmotic stress. This resulted......The plasma membrane (PM) is a physical barrier that defines the boundaries of a cell. It not only isolates the cell interior from the environment, but also enables cell communication and a selective exchange of solutes. To serve those contrasting functions, the PM has a dynamic structure consisting...

  14. Clinical implications and biochemical understanding of high plasma vitamin B12 levels

    DEFF Research Database (Denmark)

    Arendt, Johan Frederik Håkonsen

    2016-01-01

    : ≤1 år: 200-600 pmol/L: 2,3 %; 601-800 pmol/L: 3,7 %; >800 pmol/L: 6,6 %; og >1 år: 200-600 pmol/L: 4,4 %; 601-800 pmol/L: 4,1 %; >800 pmol/L: 4,4 %. Vi undersøgte kræftrisikoen i studiepopulationen relativt i forhold til den danske baggrundsbefolkning. Vi fandt at jo højere plasma Cbl-niveauer jo...

  15. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity

    Directory of Open Access Journals (Sweden)

    Norma M. Morella

    2017-09-01

    Full Text Available The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by—and in some cases even reliant upon—the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host–microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host–microbiome–immune interactions but also improve our understanding of the role of the microbiome in host health.

  16. Theory and research in audiology education: understanding and representing complexity through informed methodological decisions.

    Science.gov (United States)

    Ng, Stella L

    2013-05-01

    The discipline of audiology has the opportunity to embark on research in education from an informed perspective, learning from professions that began this journey decades ago. The goal of this article is to position our discipline as a new member in the academic field of health professional education (HPE), with much to learn and contribute. In this article, I discuss the need for theory in informing HPE research. I also stress the importance of balancing our research goals by selecting appropriate methodologies for relevant research questions, to ensure that we respect the complexity of social processes inherent in HPE. Examples of relevant research questions are used to illustrate the need to consider alternative methodologies and to rethink the traditional hierarchy of evidence. I also provide an example of the thought processes and decisions that informed the design of an educational research study using a constructivist grounded theory methodology. As audiology enters the scholarly field of HPE, we need to arm ourselves with some of the knowledge and perspective that informs the field. Thus, we need to broaden our conceptions of what we consider to be appropriate styles of academic writing, relevant research questions, and valid evidence. Also, if we are to embark on qualitative inquiry into audiology education (or other audiology topics), we need to ensure that we conduct this research with an adequate understanding of the theories and methodologies informing such approaches. We must strive to conduct high quality, rigorous qualitative research more often than uninformed, generic qualitative research. These goals are imperative to the advancement of the theoretical landscape of audiology education and evolving the place of audiology in the field of HPE. American Academy of Audiology.

  17. Complex Parts, Complex Data: Why You Need to Understand What Radiation Single Event Testing Data Does and Doesn't Show and the Implications Thereof

    Science.gov (United States)

    LaBel, Kenneth A.; Berg, Melanie D.

    2015-01-01

    Electronic parts (integrated circuits) have grown in complexity such that determining all failure modes and risks from single particle event testing is impossible. In this presentation, the authors will present why this is so and provide some realism on what this means. Its all about understanding actual risks and not making assumptions.

  18. Bringing content understanding into usability testing in complex application domains—a case study in eHealth

    DEFF Research Database (Denmark)

    Andersen, Simon Bruntse; Rasmussen, Claire Kirchert; Frøkjær, Erik

    2017-01-01

    A usability evaluation technique, Cooperative Usability Testing with Questions of Understanding (CUT with QU) intended to illuminate users’ ability to understand the content information of an application is proposed. In complex application domains as for instance the eHealth domain, this issue...... the participation of four physiotherapists and four clients in a period of 3.5 months, it was demonstrated how CUT with QU can complement conventional usability testing and provide insight into users’ challenges with understanding of a new complex eHealth application. More experiments in other complex application...... domains involving different kinds of users and evaluators are needed before we can tell whether CUT with QU is an effective usability testing technique of wider applicability. Performing CUT with QU is very demanding by drawing heavily on the evaluators’ ability to respond effectively to openings...

  19. Effect of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Maity, Saumyen; Banerjee, Soumyajyoti

    2011-01-01

    In this paper, we have investigated the role of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions. The equilibrium dust surface potential has been considered negative and hence primary and secondary electron temperatures are equal. Such plasma consists of three components: Boltzman distributed electrons, nonthermal ions and negatively charged inertial dust grains. From the linear dispersion relation, we have calculated the real frequency and growth rate of Jean's instability. Numerically, we have shown that for strong ion nonthermality Jean's mode is unstable. Growth of the instability reduces and the real part of the wave frequency increases with increasing secondary electron emission from dust grains. Hence, strong secondary electron emission suppresses Jean's instability in a complex plasma even when ion nonthermality is strong and equilibrium dust charge is negative.

  20. Impacting Early Childhood Teachers' Understanding of the Complexities of Place Value

    Science.gov (United States)

    Cady, Jo Ann; Hopkins, Theresa M.; Price, Jamie

    2014-01-01

    In order to help children gain a more robust understanding of place value, teachers must understand the connections and relationships among the related concepts as well as possess knowledge of how children learn early number concepts. Unfortunately, teachers' familiarity with the base-ten number system and/or lack of an understanding of…

  1. Electronic load as part of the test complex of the power processing unit of electric and plasma propulsion

    OpenAIRE

    Chubov, S. V.; Soldatov, Aleksey Ivanovich

    2017-01-01

    This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.

  2. Progress in the understanding and the performance of electron cyclotron heating and plasma shaping on TCV

    International Nuclear Information System (INIS)

    Moret, J.-M.; Alberti, S.; Andrebe, Y.

    2005-01-01

    Powerful ECH with an adaptable launching geometry and plasma shaping capability are exploited on TCV to create and control high performance regimes, with 3MW of 2nd and 1.5MW of 3rd harmonic (X3) and real time optimisation of the absorption by mirror feedback. Full X3 absorption with launching parallel to the resonant surface was obtained. Electron temperature profile stiffness was measured as a function of the shape up for a large range of temperature gradients and confirmed that the diffusivity is lower at negative triangularity and high elongation. The link between shear and transport was verified by interleaved modulation of co- and counter- ECCD. ECCD efficiency and fast electron generation and transport measurements demonstrate the role of transport on the driven current profile. Stationary electron ITBs were created and the role of the current profile in transport reduction was clarified by improving or destroying the barrier with a small induced electric field. (author)

  3. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  4. Plasma levels of the MMP-9:TIMP-1 complex as prognostic biomarker in breast cancer: a retrospective study

    International Nuclear Information System (INIS)

    Thorsen, Stine B; Møller, Susanne; Brünner, Nils; Schrohl, Anne-Sofie; Stenvang, Jan; Christensen, Sarah LT; Würtz, Sidse Ø; Lundberg, Martin; Nielsen, Birgitte S; Vinther, Lena; Knowles, Mick; Gee, Nick; Fredriksson, Simon

    2013-01-01

    Worldwide more than one million women are annually diagnosed with breast cancer. A considerable fraction of these women receive systemic adjuvant therapy; however, some are cured by primary surgery and radiotherapy alone. Prognostic biomarkers guide stratification of patients into different risk groups and hence improve management of breast cancer patients. Plasma levels of Matrix Metalloproteinase-9 (MMP-9) and its natural inhibitor Tissue inhibitor of metalloproteinase-1 (TIMP-1) have previously been associated with poor patient outcome and resistance to certain forms of chemotherapy. To pursue additional prognostic information from MMP-9 and TIMP-1, the level of the MMP-9 and TIMP-1 complex (MMP-9:TIMP-1) was investigated in plasma from breast cancer patients. Detection of protein:protein complexes in plasma was performed using a commercially available ELISA kit and, for the first time, the highly sensitive in-solution proximity ligation assay (PLA). We screened plasma from 465 patients with primary breast cancer for prognostic value of the MMP-9:TIMP-1 complex. Both assays were validated and applied for quantification of MMP-9:TIMP-1 concentration. In this retrospective study, we analyzed the association between the concentration of the MMP-9:TIMP-1 complex and clinicopathological data and disease free survival (DFS) in univariate and multivariate survival analyses. Following successful validation both assays were applied for MMP-9:TIMP-1 measurements. Of the clinicopathological parameters, only menopausal status demonstrated significant association with the MMP-9:TIMP-1 complex; P = 0.03 and P = 0.028 for the ELISA and PLA measurements, respectively. We found no correlation between the MMP-9:TIMP-1 protein complex and DFS neither in univariate nor in multivariate survival analyses. Despite earlier reports linking MMP-9 and TIMP-1 with prognosis in breast cancer patients, we here demonstrate that plasma levels of the MMP-9:TIMP-1 protein complex hold no

  5. Improving biological understanding and complex trait prediction by integrating prior information in genomic feature models

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon

    externally founded information, such as KEGG pathways, Gene Ontology gene sets, or genomic features, and estimate the joint contribution of the genetic variants within these sets to complex trait phenotypes. The analysis of complex trait phenotypes is hampered by the myriad of genes that control the trait...

  6. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    Science.gov (United States)

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  7. Characteristics of growth of complex ferroelectric oxide films by plasma-ion sputtering

    Science.gov (United States)

    Mukhortov, V. M.; Golovko, Yu. I.; Mukhortov, Vl. M.; Dudkevich, V. P.

    1981-02-01

    An experimental investigation was made of the process of growth of a complex oxide film, such as BaTiO3 or (Ba, Sr)TiO3, by plasma-ion sputtering. It was found that ion bombardment of a ceramic target knocked out neutral excited atoms. These atoms lost energy away from the target by collisions and at a certain critical distance hcr they were capable of oxidation to produce BaO, TiO, TiO2, and SrO. Therefore, depending on the distance between the cathode and the substrate, the “construction” material arrived in the form of atoms or molecules of simple oxides. These two (atomic and molecular) deposition mechanisms corresponded to two mechanisms of synthesis and crystallization differing in respect of the dependences of the growth rate, unit cell parameters, and other structural properties on the deposition temperature. The role of re-evaporation and of oxidation-reduction processes was analyzed.

  8. Complex suppression patterns distinguish between major energy loss effects in Quark–Gluon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Magdalena, E-mail: magda@ipb.ac.rs

    2016-12-10

    Interactions of high momentum partons with Quark–Gluon Plasma created in relativistic heavy-ion collisions provide an excellent tomography tool for this new form of matter. Recent measurements for charged hadrons and unidentified jets at the LHC show an unexpected flattening of the suppression curves at high momentum, exhibited when either momentum or the collision centrality is changed. Furthermore, a limited data available for B probes indicate a qualitatively different pattern, as nearly the same flattening is exhibited for the curves corresponding to two opposite momentum ranges. We here show that the experimentally measured suppression curves are well reproduced by our theoretical predictions, and that the complex suppression patterns are due to an interplay of collisional, radiative energy loss and the dead-cone effect. Furthermore, for B mesons, we predict that the uniform flattening of the suppression indicated by the limited dataset is in fact valid across the entire span of the momentum ranges, which will be tested by the upcoming experiments. Overall, the study presented here, provides a rare opportunity for pQCD theory to qualitatively distinguish between the major energy loss mechanisms at the same (nonintuitive) dataset.

  9. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  10. Understanding complex clinical reasoning in infectious diseases for improving clinical decision support design.

    Science.gov (United States)

    Islam, Roosan; Weir, Charlene R; Jones, Makoto; Del Fiol, Guilherme; Samore, Matthew H

    2015-11-30

    Clinical experts' cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment. We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants. The following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners' perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases. The cognitive strategies to deal with decision complexity found in this study have important

  11. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    Science.gov (United States)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  12. Looking at the Complexity of Two Young Children's Understanding of Number

    Science.gov (United States)

    Thom, Jennifer S.; Pirie, Susan E. B.

    2006-01-01

    This paper presents a qualitative study that investigated two third-grade students' understanding of number. The children were videotaped while they worked to record everything they knew about the number, 72. Their artifacts and conversations were then analyzed using the Pirie-Kieren dynamical theory for the growth of mathematical understanding as…

  13. The Complexity in Defining Leadership: How Gifted Students' Backgrounds Influence Their Understanding of Effective Leadership

    Science.gov (United States)

    Jackson, Shawon; Sakuma, Satoe; DeVol, Purva

    2015-01-01

    There is no universally accepted definition of what it means to be an effective leader. Individuals understand leadership differently based on their own identities and lived experiences. The purpose of this investigation is to determine how one's ethnicity, class, and gender identities influence their understanding of effective leadership,…

  14. A Phospholipid-Protein Complex from Krill with Antioxidative and Immunomodulating Properties Reduced Plasma Triacylglycerol and Hepatic Lipogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2015-07-01

    Full Text Available Dietary intake of marine omega-3 polyunsaturated fatty acids (n-3 PUFAs can change the plasma profile from atherogenic to cardioprotective. In addition, there is growing evidence that proteins of marine origin may have health benefits. We investigated a phospholipid-protein complex (PPC from krill that is hypothesized to influence lipid metabolism, inflammation, and redox status. Male Wistar rats were fed a control diet (2% soy oil, 8% lard, 20% casein, or diets where corresponding amounts of casein and lard were replaced with PPC at 3%, 6%, or 11% (wt %, for four weeks. Dietary supplementation with PPC resulted in significantly lower levels of plasma triacylglycerols in the 11% PPC-fed group, probably due to reduced hepatic lipogenesis. Plasma cholesterol levels were also reduced at the highest dose of PPC. In addition, the plasma and liver content of n-3 PUFAs increased while n-6 PUFAs decreased. This was associated with increased total antioxidant capacity in plasma and increased liver gene expression of mitochondrial superoxide dismutase (Sod2. Finally, a reduced plasma level of the inflammatory mediator interleukin-2 (IL-2 was detected in the PPC-fed animals. The present data show that PPC has lipid-lowering effects in rats, and may modulate risk factors related to cardiovascular disease progression.

  15. Effect of Weakly Nonthermal Ion Velocity Distribution on Jeans Instability in a Complex Plasma in Presence of Secondary Electrons

    International Nuclear Information System (INIS)

    Sarkar, S.; Maity, S.

    2013-01-01

    In this paper we have investigated the effect of weak nonthermality of ion velocity distribution on Jean’s instability in a complex plasma in presence of secondary electrons and negatively charged dust grains. The primary and secondary electron temperatures are assumed equal. Thus plasma under consideration consists of three components: Boltzman distributed electrons, non-thermal ions and negatively charged inertial dust grains. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically we have found that secondary electron emission destabilizes Jean’s mode when ion nonthermality is weak. (author)

  16. On understanding creative language : The late positive complex and novel metaphor comprehension

    NARCIS (Netherlands)

    Rataj, Karolina; Przekoracka-Krawczyk, Anna; van der Lubbe, Rob H.J.

    2018-01-01

    Novel metaphoric sentences have repeatedly evoked larger N400 amplitudes than literal sentences, while investigations of the late positive complex (LPC) have brought inconsistent results, with reports of both increased and reduced amplitudes. In two experiments, we examined novel metaphor

  17. Understanding the Role of Context in the Interpretation of Complex Battlespace Intelligence

    National Research Council Canada - National Science Library

    Powell, Gerald M; Kokar, Mieczyslaw M; Matheus, Christopher J; Lorenz, David

    2006-01-01

    ... the information and identify critical enemy activities in a timely manner. What makes this information fusion problem particularly difficult is the strong contextual dependency of the interpretation of complex battlespace information...

  18. Understanding and Mitigating the Charging Behavior of Next Generation Complex and Active Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft that are fundamentally more complex and higher powered are necessary to expand our scientific missions and take commercial space endeavors to the next...

  19. On the role of electron quantum tunneling in charging of dust grains in complex plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.O.; Vladimirov, S.V.

    2011-01-01

    The aim of this work is calculate ion additional current associated with the quantum tunneling of plasma electrons, that are classically forbidden to overcome the repulsive potential barrier, onto the negatively charged grain. We compare this additional quantum tunneling current with the classical electron current from plasma onto the grain and analyze how this additional current affects the self-consistent equilibrium grain charge for different plasma parameters and grain sizes.

  20. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Directory of Open Access Journals (Sweden)

    Kjell Fuxe

    2016-01-01

    Full Text Available The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  1. Fluorogenic MMP activity assay for plasma including MMPs complexed to α2-macroglobulin

    NARCIS (Netherlands)

    Beekman, B.; Drijfhout, J.W.; Ronday, H.K.; TeKoppele, J.M.

    1999-01-01

    Elevated MMP activities are implicated in tissue degradation in, e.g., arthritis and cancer. The present study was designed to measure MMP enzyme activity in plasma. Free active MMP is unlikely to be present in plasma: upon entering the circulation, active MMP is expected to be captured by the

  2. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NARCIS (Netherlands)

    Land, V.

    2007-01-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell

  3. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  4. Exploring the practicing-connections hypothesis: using gesture to support coordination of ideas in understanding a complex statistical concept.

    Science.gov (United States)

    Son, Ji Y; Ramos, Priscilla; DeWolf, Melissa; Loftus, William; Stigler, James W

    2018-01-01

    In this article, we begin to lay out a framework and approach for studying how students come to understand complex concepts in rich domains. Grounded in theories of embodied cognition, we advance the view that understanding of complex concepts requires students to practice, over time, the coordination of multiple concepts, and the connection of this system of concepts to situations in the world. Specifically, we explore the role that a teacher's gesture might play in supporting students' coordination of two concepts central to understanding in the domain of statistics: mean and standard deviation. In Study 1 we show that university students who have just taken a statistics course nevertheless have difficulty taking both mean and standard deviation into account when thinking about a statistical scenario. In Study 2 we show that presenting the same scenario with an accompanying gesture to represent variation significantly impacts students' interpretation of the scenario. Finally, in Study 3 we present evidence that instructional videos on the internet fail to leverage gesture as a means of facilitating understanding of complex concepts. Taken together, these studies illustrate an approach to translating current theories of cognition into principles that can guide instructional design.

  5. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression.

    Science.gov (United States)

    Pavlatou, M G; Remaley, A T; Gold, P W

    2016-08-30

    Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.

  6. Extrapolation of plasma clearance to understand species differences in toxicokinetics of bisphenol A.

    Science.gov (United States)

    Poet, Torka; Hays, Sean

    2017-10-13

    1. Understanding species differences in the toxicokinetics of bisphenol A (BPA) is central to setting acceptable exposure limits for human exposures to BPA. BPA toxicokinetics have been well studied, with controlled oral dosing studies in several species and across a wide dose range. 2. We analyzed the available toxicokinetic data for BPA following oral dosing to assess potential species differences and dose dependencies. BPA is rapidly conjugated and detoxified in all species. The toxicokinetics of BPA can be well described using non-compartmental analyses. 3. Several studies measured free (unconjugated) BPA in blood and reported area under the curve (AUC) of free BPA in blood of mice, rats, monkeys, chimpanzees and humans following controlled oral doses. Extrinsic clearance was calculated and analyzed across species and dose using allometric scaling. 4. The results indicate free BPA clearance is well described using allometric scaling with high correlation coefficients across all species and doses up to 10 mg/kg. The results indicate a human equivalent dose factor (HEDf) of 0.9 is appropriate for extrapolating a point of departure from mice and rats to a human equivalent dose (HED), thereby replacing default uncertainty factors for animal to human toxicokinetics.

  7. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  8. Understanding the Complex Dimensions of the Digital Divide: Lessons Learned in the Alaskan Arctic

    Science.gov (United States)

    Subramony, Deepak Prem

    2007-01-01

    An ethnographic case study of Inupiat Eskimo in the Alaskan Arctic has provided insights into the complex nature of the sociological issues surrounding equitable access to technology tools and skills, which are referred to as the digital divide. These people can overcome the digital divide if they get the basic ready access to hardware and…

  9. Understanding social behaviour with the help of complexity science (Invited article)

    NARCIS (Netherlands)

    Hemelrijk, C.K.

    2002-01-01

    In the study of complexity, a new kind of explanation has been developed for social behaviour. It shows how patterns of social behaviour can arise as a side-effect of the interaction of individuals with their social or physical environment (e.g. by self-organization). This development may influence

  10. Further Understanding of Complex Information Processing in Verbal Adolescents and Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Williams, Diane L.; Minshew, Nancy J.; Goldstein, Gerald

    2015-01-01

    More than 20?years ago, Minshew and colleagues proposed the Complex Information Processing model of autism in which the impairment is characterized as a generalized deficit involving multiple modalities and cognitive domains that depend on distributed cortical systems responsible for higher order abilities. Subsequent behavioral work revealed a…

  11. Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems

    Science.gov (United States)

    2011-07-01

    details can be seen. Figure 24 – Rank frequency functions of plays ( Shakespeare ) and books (Dickens) fitted by the generalizations of the...0-387-75888-6]. [4] Tsallis, C. (2009b). Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World. (Springer, New York

  12. Understanding the Complex Processes in Developing Student Teachers' Knowledge about Grammar

    Science.gov (United States)

    Svalberg, Agneta M.-L.

    2015-01-01

    This article takes the view that grammar is driven by user choices and is therefore complex and dynamic. This has implications for the teaching of grammar in language teacher education and how teachers' cognitions about grammar, and hence their own grammar teaching, might change. In this small, interpretative study, the participants--students on…

  13. Towards a Better Understanding of Complex Disease: Identifying Endotypes of Childhood Asthma

    Science.gov (United States)

    Complex disease, where the diagnostic criteria cannot distinguish among differing etiologies, is often difficult to diagnose, treat and study due to the inability to classify individuals into suitable subtypes of the disease. Here, we aim to use and compare a combination of met...

  14. Complexity of Geometric Inductive Reasoning Tasks: Contribution to the Understanding of Fluid Intelligence.

    Science.gov (United States)

    Primi, Ricardo

    2002-01-01

    Created two geometric inductive reasoning matrix tests by manipulating four sources of complexity orthogonally. Results for 313 undergraduates show that fluid intelligence is most strongly associated with the part of the central executive component of working memory that is related to controlled attention processing and selective encoding. (SLD)

  15. Supporting Individuals with Autism Spectrum Disorder in Understanding and Coping with Complex Social Emotional Issues

    Science.gov (United States)

    Ahlers, Kaitlyn P.; Gabrielsen, Terisa P.; Lewis, Danielle; Brady, Anna M.; Litchford, April

    2017-01-01

    Core deficits in autism spectrum disorder (ASD) center around social communication and behavior. For those with ASD, these deficits complicate the task of learning how to cope with and manage complex social emotional issues. Although individuals with ASD may receive sufficient academic and basic behavioral support in school settings, supports for…

  16. On Influence of Neutrals on Dust Particle Charging in Complex Plasmas in the Presence of Electromagnetic Radiation

    International Nuclear Information System (INIS)

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-01-01

    Effects associated with neutral component of complex (dusty) ionospheric plasmas which affect dust particle charging are studied. Microscopic ion currents on dust particles with taking into account ion-neutral interaction are presented. Calculations are performed both for the case of negative charges of dust particles, when the influence of Solar radiation on dust particle charging processes is negligible, and for the case of positive charges which is realized in the presence of sufficiently intensive UV or X-ray radiation. We also carry out investigation of the electron heating due to the photoelectric effect. We show that the efficiency of electron heating depends on the density of neutral component of the plasma. As result, we determine altitudes where the influence of the neutral plasma component on dust particle charging processes as well as the electron heating effect are significant and should be taken into account under consideration of the ionospheric complex plasmas. In particular, we show that the effects considered could be important for the description of noctilucent clouds, polar mesosphere summer echoes, and some other physical phenomena associated with dust particles in the ionosphere.

  17. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    Science.gov (United States)

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  18. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    Science.gov (United States)

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  19. Understanding social complexity within the wildland urban interface: A new species of human habitation? Environmental Management

    Science.gov (United States)

    Travis B. Paveglio; Pamela J. Jakes; Matthew S. Carroll; Daniel R. Williams

    2009-01-01

    The lack of knowledge regarding social diversity in the Wildland Urban Interface (WUI) or an in-depth understanding of the ways people living there interact to address common problems is concerning, perhaps even dangerous, given that community action is necessary for successful wildland fire preparedness and natural resource management activities. In this article, we...

  20. Contemporary Leadership Theories. Enhancing the Understanding of the Complexity, Subjectivity and Dynamic of Leadership

    DEFF Research Database (Denmark)

    Winkler, Ingo

    This book provides a comprehensive overview of basic theoretical approaches of today's leadership research. These approaches conceive leadership as an interactive and complex process. They stress the significance of the individual perception for developing and forming leadership relations....... Leadership is understood as product of complex social relationships embedded in the logic and dynamic of the social system. The book discusses theoretical approaches from top leadership journals, but also addresses various alternatives that are suitable to challenge mainstream leadership research....... It includes attributional and psychodynamic approaches, charismatic leadership theories, and theoretical approaches that define leader-member relations in terms of exchange relations leadership under symbolic and political perspectives, in the light of role theory and as process of social learning....

  1. Understanding the complexity of biopsychosocial factors in the public health epidemic of overweight and obesity

    OpenAIRE

    Rosenbaum, Diane L; White, Kamila S

    2016-01-01

    Obesity is a complex and multifaceted public health problem. This commentary reflects on a new theoretical model of obesity (i.e. Homeostatic Theory of Obesity proposed by Marks), and calls for additional research to examine biopsychosocial factors that may be of importance in developing interventions that promote long-term maintenance of weight loss and in developing obesity prevention programs. Furthermore, we discuss the role of socioeconomic factors in obesity and call for interdisciplina...

  2. Eating disorder emergencies: understanding the medical complexities of the hospitalized eating disordered patient.

    Science.gov (United States)

    Cartwright, Martina M

    2004-12-01

    Eating disorders are maladaptive eating behaviors that typically develop in adolescence and early adulthood. Psychiatric maladies and comorbid conditions, especially insulin-dependent diabetes mellitus, frequently co-exist with eating disorders. Serious medical complications affecting all organs and tissues can develop and result in numerous emergent hospitalizations. This article reviews the pathophysiologies of anorexia nervosa, bulimia nervosa, and orthorexia nervosa and discusses the complexities associated with the treatment of medical complications seen in these patients.

  3. Using mLearning and MOOCs to Understand Chaos, Emergence, and Complexity in Education

    Science.gov (United States)

    deWaard, Inge; Abajian, Sean; Gallagher, Michael Sean; Hogue, Rebecca; Keskin, Nilgun; Koutropoulos, Apostolos; Rodriguez, Osvaldo C.

    2011-01-01

    In this paper, we look at how the massive open online course (MOOC) format developed by connectivist researchers and enthusiasts can help analyze the complexity, emergence, and chaos at work in the field of education today. We do this through the prism of a MobiMOOC, a six-week course focusing on mLearning that ran from April to May 2011. MobiMOOC…

  4. Models for Understanding Student Thinking using Data from Complex Computerized Science Tasks

    OpenAIRE

    LaMar, Michelle

    2014-01-01

    The Next Generation Science Standards (NGSS Lead States, 2013) define performance targets which will require assessment tasks that can integrate discipline knowledge and cross-cutting ideas with the practices of science. Complex computerized tasks will likely play a large role in assessing these standards, but many questions remain about how best to make use of such tasks within a psychometric framework (National Research Council, 2014). This dissertation explores the use of a more extensive...

  5. Understanding and revisiting the most complex perovskite system via atomistic simulations

    Science.gov (United States)

    Yang, Yali; Xu, Bin; Xu, Changsong; Ren, Wei; Bellaiche, Laurent

    2018-05-01

    A first-principles-based effective Hamiltonian is developed and used, along with direct ab initio techniques, to investigate finite-temperature properties of the system commonly coined the most complex perovskite, that is NaNbO3. Such simulations successfully reproduce the existence of seven different phases in its phase diagram. The decomposition of the total energy of this effective Hamiltonian into different terms, altogether with the values of the parameters associated with these terms, also allow us to shed some light into puzzling features of such a compound. Examples include revealing the microscopic reasons of why R 3 c is its ground state and why it solely adopts in-phase tiltings at high temperatures versus complex nanotwins for intermediate temperatures. The results of the computations also call for a revisiting of the so-called P ,R , and S states, in the sense that an unexpected and previously overlooked inhomogeneous electrical polarization is numerically found in the P state while complex tiltings associated with the simultaneous condensation of several k points are predicted for the controversial R and S phases.

  6. Understanding the determinants of problem-solving behavior in a complex environment

    Science.gov (United States)

    Casner, Stephen A.

    1994-01-01

    It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.

  7. Douglas Hanahan: The daunting complexity of cancer: understanding the battlefield is a step towards winning the war

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The Inaugural Grace-CERN Lecture The daunting complexity of cancer: understanding the battlefield is a step towards winning the war  Douglas Hanahan, Ph.D. Director, Swiss Institute for Experimental Cancer Research (ISREC)  Professor of Molecular Oncology, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL) Vice Director, Swiss Cancer Center Lausanne Synopsis (version francaise ci-dessous) Cancer is a disease with hundreds of variations, both in affected organs and in responses to different therapies.  Modern human cancer research is producing an avalanche of data about the distinctive genetic aberrations of its specific types, further accentuating the diversity and vast complexity of the disease. There is hope that elucidating its mechanisms will lead to more informed and more effective therapeutic strategies.  Understanding the enemy is paramount, and yet tumors arising in different organs can be so different as to de...

  8. Using a Design Science Perspective to Understand a Complex Design-Based Research Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2012-01-01

    The purpose of the paper is to demonstrate how a design science perspective can be used to describe and understand a set of related design-based research processes. We describe and analyze a case study in a manner that is inspired by design science. The case study involves the design of modeling......-based research processes. And we argue that a design science perspective may be useful for both researchers and practitioners....... tools and the redesign of an information service in a library. We use a set of guidelines from a design science perspective to organize the description and analysis of the case study. By doing this we demonstrate the usefulness of design science as an analytical tool for understanding related design...

  9. A Diagrammatic Approach to Understanding Complex Eco-Social Interactions in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Cynthia. Neudoerffer

    2005-12-01

    Full Text Available As part of developing an international network of community-based ecosystem approaches to health, a project was undertaken in a densely populated and socio-economically diverse area of Kathmandu, Nepal. Drawing on hundreds of pages of narrative reports based on surveys, interviews, secondary data, and focus groups by trained Nepalese facilitators, the authors created systemic depictions of relationships between multiple stakeholder groups, ecosystem health, and human health. These were then combined to examine interactions among stakeholders, activities, concerns, perceived needs, and resource states (ecosystem health indicators. These qualitative models have provided useful heuristics for both community members and research scholars to understand the eco-social systems in which they live; many of the strategies developed by the communities and researchers to improve health intuitively drew on this systemic understanding. The diagrams enabled researchers and community participants to explicitly examine relationships and conflicts related to health and environmental issues in their community.

  10. Enacting understanding of inclusion in complex contexts: Classroom practices of South African teachers

    Directory of Open Access Journals (Sweden)

    Petra Engelbrecht

    2015-08-01

    Full Text Available While the practice of inclusive education has recently been widely embraced as an ideal model for education, the acceptance of inclusive education practices has not translated into reality in most mainstream classrooms. Despite the fact that education policies in South Africa stipulate that all learners should be provided with the opportunities to participate as far as possible in all classroom activities, the implementation of inclusive education is still hampered by a combination of a lack of resources and the attitudes and actions of the teachers in the classroom. The main purpose of this paper was to develop a deeper understanding of a group of South African teachers' personal understanding about barriers to learning and how their understanding relates to their consequent actions to implement inclusive education in their classrooms. A qualitative research approach placed within a cultural-historical and bio-ecological theoretical framework was used. The findings, in this paper, indicate that the way in which teachers understand a diversity of learning needs is based on the training that they initially received as teachers, which focused on a deficit, individualised approach to barriers to learning and development, as well as contextual challenges, and that both have direct and substantial effects on teachers' classroom practices. As a result, they engage in practices in their classrooms that are less inclusive, by creating dual learning opportunities that are not sufficiently made available for everyone, with the result that every learner is not able to participate fully as an accepted member of their peer group in all classroom activities.

  11. MURI: An Integrated Multi-Scale Approach for Understanding Ion Transport in Complex Heterogeneous Organic Materials

    Science.gov (United States)

    2017-09-30

    Thomas A. Witten,f Matthew W. Liberatore,a and Andrew M. Herring,a,* a Department of Chemical and Biological Engineering and bDepartment of Chemistry ...2) To fundamentally understand, with combined experimental and computational approaches, the interplay of chemistry , processing, and morphology on...Society, The International Society of Electrochemistry and The American Institute of Chemical Engineers to give oral and poster presentations. In

  12. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  13. The Affordable Care Act: a case study for understanding and applying complexity concepts to health care reform.

    Science.gov (United States)

    Larkin, D Justin; Swanson, R Chad; Fuller, Spencer; Cortese, Denis A

    2016-02-01

    The current health system in the United States is the result of a history of patchwork policy decisions and cultural assumptions that have led to persistent contradictions in practice, gaps in coverage, unsustainable costs, and inconsistent outcomes. In working toward a more efficient health system, understanding and applying complexity science concepts will allow for policy that better promotes desired outcomes and minimizes the effects of unintended consequences. This paper will consider three applied complexity science concepts in the context of the Patient Protection and Affordable Care Act (PPACA): developing a shared vision around reimbursement for value, creating an environment for emergence through simple rules, and embracing transformational leadership at all levels. Transforming the US health system, or any other health system, will be neither easy nor quick. Applying complexity concepts to health reform efforts, however, will facilitate long-term change in all levels, leading to health systems that are more effective, efficient, and equitable. © 2014 John Wiley & Sons, Ltd.

  14. Understanding the Narratives Explaining the Ukrainian Crisis: Identity Divisions and Complex Diversity in Ukraine

    Directory of Open Access Journals (Sweden)

    Smoor Lodewijk

    2017-09-01

    Full Text Available The central argument of this paper is that radical and opposing interpretations of the Ukrainian conflict in politics and media should be studied as offspring of broader narratives. These narratives can be better understood by examining the national identity of Ukraine. Since Ukrainian national identity shows a high degree of diversity, it offers a rich source of arguments for any party wanting to give an interpretation of the present Ukrainian crisis. Narratives explaining the crisis often ignore this complex diversity or deliberately use elements from it to construct the ‘desired’ narrative.

  15. Understanding characteristics in multivariate traffic flow time series from complex network structure

    Science.gov (United States)

    Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei

    2017-07-01

    Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.

  16. #consumingitall: Understanding The Complex Relationship Between Media Consumption And Eating Behaviors

    OpenAIRE

    Albert, Stephanie L.

    2017-01-01

    Adolescents spend almost nine hours a day engaging with media. As a result, they are confronted with large amounts of obesogenic content that shapes their understanding of what are normal and acceptable eating behaviors. Utilizing primary data collected from a sample of 4,838 low-income, racially and ethnically diverse middle school students in Los Angeles County, I studied the effects of different types of media use (i.e., social media, TV/movies/videos, gaming, music, Internet) on dietary p...

  17. Application for 3d Scene Understanding in Detecting Discharge of Domesticwaste Along Complex Urban Rivers

    Science.gov (United States)

    Ninsalam, Y.; Qin, R.; Rekittke, J.

    2016-06-01

    In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1) a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2) depth for each image is generated through a backward projection of the point clouds; 3) a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D) data; 4) point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5) then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  18. Understanding the Complexities of Subnational Incentives in Supporting a National Market for Distributed Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Bush, B.; Doris, E.; Getman, D.

    2014-09-01

    Subnational policies pertaining to photovoltaic (PV) systems have increased in volume in recent years and federal incentives are set to be phased out over the next few. Understanding how subnational policies function within and across jurisdictions, thereby impacting PV market development, informs policy decision making. This report was developed for subnational policy-makers and researchers in order to aid the analysis on the function of PV system incentives within the emerging PV deployment market. The analysis presented is based on a 'logic engine,' a database tool using existing state, utility, and local incentives allowing users to see the interrelationships between PV system incentives and parameters, such as geographic location, technology specifications, and financial factors. Depending on how it is queried, the database can yield insights into which combinations of incentives are available and most advantageous to the PV system owner or developer under particular circumstances. This is useful both for individual system developers to identify the most advantageous incentive packages that they qualify for as well as for researchers and policymakers to better understand the patch work of incentives nationwide as well as how they drive the market.

  19. Food, health, and complexity: towards a conceptual understanding to guide collaborative public health action

    Directory of Open Access Journals (Sweden)

    Shannon E. Majowicz

    2016-06-01

    Full Text Available Abstract Background What we eat simultaneously impacts our exposure to pathogens, allergens, and contaminants, our nutritional status and body composition, our risks for and the progression of chronic diseases, and other outcomes. Furthermore, what we eat is influenced by a complex web of drivers, including culture, politics, economics, and our built and natural environments. To date, public health initiatives aimed at improving food-related population health outcomes have primarily been developed within ‘practice silos’, and the potential for complex interactions among such initiatives is not well understood. Therefore, our objective was to develop a conceptual model depicting how infectious foodborne illness, food insecurity, dietary contaminants, obesity, and food allergy can be linked via shared drivers, to illustrate potential complex interactions and support future collaboration across public health practice silos. Methods We developed the conceptual model by first conducting a systematic literature search to identify review articles containing schematics that depicted relationships between drivers and the issues of interest. Next, we synthesized drivers into a common model using a modified thematic synthesis approach that combined an inductive thematic analysis and mapping to synthesize findings. Results The literature search yielded 83 relevant references containing 101 schematics. The conceptual model contained 49 shared drivers and 227 interconnections. Each of the five issues was connected to all others. Obesity and food insecurity shared the most drivers (n = 28. Obesity shared several drivers with food allergy (n = 11, infectious foodborne illness (n = 7, and dietary contamination (n = 6. Food insecurity shared several drivers with infectious foodborne illness (n = 9 and dietary contamination (n = 9. Infectious foodborne illness shared drivers with dietary contamination (n = 8. Fewer drivers were

  20. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

    Science.gov (United States)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.

    2015-10-01

    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  1. APPLICATION FOR 3D SCENE UNDERSTANDING IN DETECTING DISCHARGE OF DOMESTICWASTE ALONG COMPLEX URBAN RIVERS

    Directory of Open Access Journals (Sweden)

    Y. Ninsalam

    2016-06-01

    Full Text Available In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1 a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2 depth for each image is generated through a backward projection of the point clouds; 3 a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D data; 4 point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5 then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  2. FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    Science.gov (United States)

    Helbing, D.; Bishop, S.; Conte, R.; Lukowicz, P.; McCarthy, J. B.

    2012-11-01

    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most

  3. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    Science.gov (United States)

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  4. Animals on drugs: understanding the role of pharmaceutical companies in the animal-industrial complex.

    Science.gov (United States)

    Twine, Richard

    2013-12-01

    In this paper I revisit previous critiques that I have made of much, though by no means all, bioethical discourse. These pertain to faithfulness to dualistic ontology, a taken-for-granted normative anthropocentrism, and the exclusion of a consideration of how political economy shapes the conditions for bioethical discourse (Twine Medicine, Health Care and Philosophy 8(3):285-295, 2005; International Journal of Sociology of Agriculture and Food 16(3):1-18, 2007, 2010). Part of my argument around bioethical dualist ontology is to critique the assumption of a division between the "medical" (human) and "agricultural" (nonhuman) and to show various ways in which they are interrelated. I deepen this analysis with a focus on transnational pharmaceutical companies, with specific attention to their role in enhancing agricultural production through animal drug administration. I employ the topical case of antibiotics in order to speak to current debates in not only the interdisciplinary field of bioethics but also that of animal studies. More generally, the animal-industrial complex (Twine Journal for Critical Animal Studies 10(1):12-39, 2012) is underlined as a highly relevant bioethical object that deserves more conceptual and empirical attention.

  5. Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis.

    Science.gov (United States)

    Svetlanov, Anton; Cohen, Paula E

    2004-05-15

    Mammalian meiosis differs from that seen in lower eukaryotes in several respects, not least of which is the added complexity of dealing with chromosomal interactions across a much larger genome (12 MB over 16 chromosome pairs in Saccharomyces cerevisiae compared to 2500 MB over 19 autosome pairs in Mus musculus). Thus, the recombination machinery, while being highly conserved through eukaryotes, has evolved to accommodate such issues to preserve genome integrity and to ensure propagation of the species. One group of highly conserved meiotic regulators is the DNA mismatch repair protein family that, as their name implies, were first identified as proteins that act to repair DNA mismatches that arise primarily during DNA replication. Their function in ensuring chromosomal integrity has also translated into a critical role for this family in meiotic recombination in most sexually reproducing organisms. In mice, targeted deletion of certain family members results in severe consequences for meiotic progression and infertility. This review will focus on the studies involving these mutant mouse models, with occasional comparison to the function of these proteins in other organisms.

  6. Continuity of care in mental health: understanding and measuring a complex phenomenon.

    Science.gov (United States)

    Burns, T; Catty, J; White, S; Clement, S; Ellis, G; Jones, I R; Lissouba, P; McLaren, S; Rose, D; Wykes, T

    2009-02-01

    Continuity of care is considered by patients and clinicians an essential feature of good quality care in long-term disorders, yet there is general agreement that it is a complex concept. Most policies emphasize it and encourage systems to promote it. Despite this, there is no accepted definition or measure against which to test policies or interventions designed to improve continuity. We aimed to operationalize a multi-axial model of continuity of care and to use factor analysis to determine its validity for severe mental illness. A multi-axial model of continuity of care comprising eight facets was operationalized for quantitative data collection from mental health service users using 32 variables. Of these variables, 22 were subsequently entered into a factor analysis as independent components, using data from a clinical population considered to require long-term consistent care. Factor analysis produced seven independent continuity factors accounting for 62.5% of the total variance. These factors, Experience and Relationship, Regularity, Meeting Needs, Consolidation, Managed Transitions, Care Coordination and Supported Living, were close but not identical to the original theoretical model. We confirmed that continuity of care is multi-factorial. Our seven factors are intuitively meaningful and appear to work in mental health. These factors should be used as a starting-point in research into the determinants and outcomes of continuity of care in long-term disorders.

  7. Understanding complexities in coupled dynamics of human-water and food security

    Science.gov (United States)

    Usmani, M.; Kondal, A.; Lin, L.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Traditional premise of food security is associated with satisfying human hunger by providing sufficient calories to population. Water is the key variable associated with the growth of crops, which is then used as a metric of success for abundance of food across globe. The current framework often negates complex coupled interaction between availability of food nutrients and human well-being (such as productivity, work efficiency, low birth weight, physical and mental growth). Our analysis suggests that 1 in 3 humans suffer from malnutrition across the globe. In last five decades, most of the countries have a decreasing availability trend in at least one of the twenty-three essential food nutrients required for human well-being. We argue that food security can only be achieved if information on use of water for crops and consumption of food must include availability of nutrients for humans. Here, we propose a new concept of "consumptive nutrients" that include constant feedback mechanism between water-human and societal processes- essential for growth, distribution and consumption of food nutrients. Using Ethiopia as a signature rain-fed agricultural region, we will show how decreasing precipitation has led to an increase in crop productivity, but decreased availability of nutrients for humans. This in turn has destabilizing impact on overall regional economy. We will demonstrate why inclusion of nutrients must be a part of discussion for ensuring food security to human population.

  8. Nice to know you: Positive emotions, self-other overlap, and complex understanding in the formation of a new relationship.

    Science.gov (United States)

    Waugh, Christian E; Fredrickson, Barbara L

    2006-04-01

    Based on Fredrickson's ((1998). What good are positive emotions? Review of General Psychology, 2, 300-319.; (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218-226) broaden-and-build theory and Aron and Aron's ((1986). Love as expansion of the self: Understanding attraction and satisfaction. New York: Hemisphere) self-expansion theory, it was hypothesized that positive emotions broaden people's feelings of self-other overlap in the beginning of a new relationship. In a prospective study of first-year college students, we found that, after 1 week in college, positive emotions predicted increased self-other overlap with new roommates, which in turn predicted a more complex understanding of the roommate. In addition, participants who experienced a high ratio of positive to negative emotions throughout the first month of college reported a greater increase in self-other overlap and complex understanding than participants with a low positivity ratio. Implications for the role of positive emotions in the formation of new relationships are discussed.

  9. Nice to know you: Positive emotions, self–other overlap, and complex understanding in the formation of a new relationship

    Science.gov (United States)

    WAUGH, CHRISTIAN E.; FREDRICKSON, BARBARA L.

    2007-01-01

    Based on Fredrickson's ((1998). What good are positive emotions? Review of General Psychology, 2, 300–319.; (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226) broaden-and-build theory and Aron and Aron's ((1986). Love as expansion of the self: Understanding attraction and satisfaction. New York: Hemisphere) self-expansion theory, it was hypothesized that positive emotions broaden people's feelings of self–other overlap in the beginning of a new relationship. In a prospective study of first-year college students, we found that, after 1 week in college, positive emotions predicted increased self–other overlap with new roommates, which in turn predicted a more complex understanding of the roommate. In addition, participants who experienced a high ratio of positive to negative emotions throughout the first month of college reported a greater increase in self–other overlap and complex understanding than participants with a low positivity ratio. Implications for the role of positive emotions in the formation of new relationships are discussed. PMID:21691460

  10. Studying the complexity of change: toward an analytical framework for understanding deliberate social-ecological transformations

    Directory of Open Access Journals (Sweden)

    Michele-Lee Moore

    2014-12-01

    Full Text Available Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

  11. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  12. Enhancing Understanding of Magnetized High Energy Density Plasmas from Solid Liner Implosions Using Fluid Modeling with Kinetic Closures

    Science.gov (United States)

    Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric

    2017-10-01

    Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.

  13. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    International Nuclear Information System (INIS)

    Sodha, M. S.; Mishra, S. K.

    2011-01-01

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  14. The facile synthesis of a chitosan Cu(II) complex by solution plasma process and evaluation of their antioxidant activities.

    Science.gov (United States)

    Ma, Fengming; Li, Pu; Zhang, Baiqing; Wang, Zhenyu

    2017-10-01

    Synthesis of chitosan-Cu(II) complex by solution plasma process (SPP) irradiation was investigated. The effects of the distance between the electrodes, initial Cu(II) concentration, and initial pH on the Cu(II) adsorption capacity were evaluated. The results showed that narrower distance between the electrodes, higher initial Cu(II) concentration and higher initial pH (at pHchitosan-Cu(II) complex by ultraviolet-visible (UV-vis), fourier transform infrared (FT-IR) and electron spin resonance (ESR) spectroscopy revealed that the main structure of chitosan was not changed after irradiation. Thermogravimetry (TG) analysis indicated that Cu(II) ions were well incorporated into the chitosan. The antioxidant activity of the chitosan-Cu(II) complex was evaluated by DPPH, ABTS, and reducing power assays. The chitosan-Cu(II) complex exhibited greater antioxidant activity than the original chitosan. Thus, SPP could be used for preparation of chitosan-Cu(II) complexes. Copyright © 2017. Published by Elsevier B.V.

  15. Chromatographic retention of molybdenum, titanium and uranium complexes for removal of some interferences in inductively-coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, S.-J.; Palmieri, M.D.; Fritz, J.S.; Houk, R.S.; Iowa State Univ., of Science and Technology, Ames

    1987-01-01

    Complexes of molybdenum(VI) or titanium(IV) with N-methylfurohydroxamic acid (N-MFHA) are retained on a column packed with polystyrene/divinylbenzene. At the pH values chosen, copper, zinc and cadmium are washed rapidly through the column and are detected by inductively-coupled plasma mass spectrometry without interference from metal oxide ions of titanium or molybdenum. Detection limits are 1 to 2 μg l -1 , and analyte recoveries are essentially 100%. The resin capacity for the titanium and molybdenum complexes is sufficient for several hundred injections, and the complexes can be readily washed from the column. Uranium(VI) also forms a stable complex with N-MFHA, and ionization interference caused by excess of uranium can be avoided by chromatographic removal of the uranium complex. Various other potentially interfering elements with aqueous oxidation states of +4 or higher (e.g. Sn, W, Hf or Zr) could also be separated by this technique. 33 refs.; 4 figs.; 3 tabs

  16. Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one.

    Directory of Open Access Journals (Sweden)

    Javed Mohammed Khan

    Full Text Available Understanding the basis of the binding of a T cell receptor (TR to the peptide-MHC (pMHC complex is essential due to the vital role it plays in adaptive immune response. We describe the use of computed binding (free energy (BE, TR paratope, pMHC epitope, molecular surface electrostatic potential (MSEP and calculated TR docking angle (θ to analyse 61 TR/pMHC crystallographic structures to comprehend TR/pMHC interaction. In doing so, we have successfully demonstrated a novel/rational approach for θ calculation, obtained a linear correlation between BE and θ without any "codon" or amino acid preference, provided an explanation for TR ability to scan many pMHC ligands yet specifically bind one, proposed a mechanism for pMHC recognition by TR leading to T cell activation and illustrated the importance of the peptide in determining TR specificity, challenging the "germline bias" theory.

  17. Relationship between the DC Bias and Debye Length in a Complex Plasma

    OpenAIRE

    Kong, Jie; Reyes, Jorge C.; Creel, James; Hyde, Truell

    2007-01-01

    The levitation height of a dust particle layer within a RF discharge plasma sheath is known to be related to the DC bias, the background pressure, and the Debye length. In this paper, a new experimental technique for measurement of the Debye length is introduced. This technique is based on the relationship between an externally applied DC bias and the particle levitation height and shows that under appropriate conditions, the addition of an externally applied DC bias provides a mechanism for ...

  18. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency

    Directory of Open Access Journals (Sweden)

    Jayasimman Rajendran

    2016-11-01

    Full Text Available Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21 than those on standard diet (33 ± 3.8 days, n = 30, and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders.

  19. Molecular Diagnostics of Fusion and Laboratory Plasmas

    Science.gov (United States)

    Fantz, U.

    2005-05-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.

  20. Molecular Diagnostics of Fusion and Laboratory Plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2005-01-01

    The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments

  1. Understanding the Effect of Gas Dynamics in Plasma Gun Performance for Simulating Fusion Wall Response to Disruption Events

    Science.gov (United States)

    Riedel, Will; Underwood, Thomas; Righetti, Fabio; Cappelli, Mark

    2017-10-01

    In this work, the suitability of a pulsed coaxial plasma accelerator to simulate the interaction of edge-localized modes with plasma first wall materials is investigated. Experimental measurements derived from a suite of diagnostics are presented that focus on both the properties of the plasma flow and the manner in which such jets couple with material interfaces. Specific emphasis is placed on quantifying the variation in these properties using tungsten tokens exposed to the plasma plume as the gun volume is progressively filled with more neutral gas. These results are mapped to the operational dynamics of the gun via a time-resolved Schlieren cinematic visualization of the density gradient within the flow. Resulting videos indicate the existence of two distinct modes with vastly different characteristic timescales, spatial evolution, and plasma properties. Time resolved quantification of the associated plasma heat flux for both modes, including a range spanning 150 MW m-2 - 10 GW m-2, is presented using both a fast thermocouple gauge and an IR camera. Both diagnostics in conjunction with a heat transfer model provide an accurate description of the energy transfer dynamics and operational characteristics of plasma guns. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program.

  2. Flow characteristics of bounded self-organized dust vortex in a complex plasma

    Science.gov (United States)

    Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.

    2018-01-01

    Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.

  3. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    Science.gov (United States)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both

  4. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis.

    Science.gov (United States)

    Javan, Ramin; Herrin, Douglas; Tangestanipoor, Ardalan

    2016-09-01

    Three-dimensional (3D) manufacturing is shaping personalized medicine, in which radiologists can play a significant role, be it as consultants to surgeons for surgical planning or by creating powerful visual aids for communicating with patients, physicians, and trainees. This report illustrates the steps in development of custom 3D models that enhance the understanding of complex anatomy. We graphically designed 3D meshes or modified imported data from cross-sectional imaging to develop physical models targeted specifically for teaching complex segmental and branch anatomy. The 3D printing itself is easily accessible through online commercial services, and the models are made of polyamide or gypsum. Anatomic models of the liver, lungs, prostate, coronary arteries, and the Circle of Willis were created. These models have advantages that include customizable detail, relative low cost, full control of design focusing on subsegments, color-coding potential, and the utilization of cross-sectional imaging combined with graphic design. Radiologists have an opportunity to serve as leaders in medical education and clinical care with 3D printed models that provide beneficial interaction with patients, clinicians, and trainees across all specialties by proactively taking on the educator's role. Complex models can be developed to show normal anatomy or common pathology for medical educational purposes. There is a need for randomized trials, which radiologists can design, to demonstrate the utility and effectiveness of 3D printed models for teaching simple and complex anatomy, simulating interventions, measuring patient satisfaction, and improving clinical care. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Effect of rotating electric field on 3D complex (dusty) plasma

    Science.gov (United States)

    Wörner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Kroll, M.; Schablinski, J.; Block, D.

    2011-06-01

    The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces ("rotating wall" technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 104-107 times lower than applied frequency. The experiment is compared to a recent theory.

  6. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    International Nuclear Information System (INIS)

    Colonna, G.; D'Angola, A.

    2012-01-01

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  7. Cystatin C–Adiponectin Complex in Plasma Associates with Coronary Plaque Instability

    Science.gov (United States)

    Matsuoka, Tetsuro; Kayama, Kento; Onishi, Sumire; Matsuo, Natsumi

    2017-01-01

    Aim: Adiponectin (APN) is an adipocyte-derived bioactive molecule with antiatherogenic properties. We previously reported that cystatin C (CysC) abolished the anti-atherogenic effects of APN. We aimed to elucidate the clinical significance of CysC–APN complex in patients with coronary artery disease (CAD). Methods: We enrolled 43 stable CAD male patients to examine the relationship between CysC–APN complex and coronary plaque characteristics. Serum was immunoprecipitated by the anti-APN antibody and immunoblotted by the anti-CysC antibody to demonstrate the presence of CysC–APN complexes in vivo. To confirm their binding in vitro, HEK293T cell lysates overexpressing myc-APN and FLAG-CysC were immunoprecipitated with an anti-myc or anti-FLAG antibody, followed by immunoblotting with an anti-APN or anti-CysC antibody. Results: CysC was identified as a specific co-immunoprecipitant with APN by the anti-APN antibody in human serum. In vitro, FLAG-CysC was co-immunoprecipitated with myc-APN by the antimyc antibody and myc-APN was co-immunoprecipitated with FLAG-CysC by the anti-FLAG antibody. Among CAD patients, serum CysC–APN complex levels negatively correlated with fibrotic components of coronary plaques and positively correlated with either necrotic or lipidic plus necrotic components. Plaque burden negatively correlated with serum APN levels but not serum CysC–APN complex levels. Serum CysC levels had no association with plaque characteristics. In multivariate analysis, CysC–APN complex levels were identified as the strongest negative factor for fibrotic components and the strongest positive factor for both necrotic and lipidic plus necrotic components. Conclusion: Measuring serum CysC–APN complex levels is helpful for evaluating coronary plaque instability in CAD patients. PMID:28321013

  8. Particle modeling of plasmas computational plasma physics

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1991-01-01

    Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world

  9. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    Science.gov (United States)

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Management of complex data flows in the ASDEX Upgrade plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Neu, Gregor; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Cole, Richard; Lueddecke, Klaus [Unlimited Computer Systems, Iffeldorf (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Control system architectures with data-driven workflows are efficient, flexible and maintainable. Black-Right-Pointing-Pointer Signal groups provide coherence of interrelated signals and increase the efficiency of process synchronisation. Black-Right-Pointing-Pointer Sample tags indicating sample quality form the fundament of a local event handling strategy. Black-Right-Pointing-Pointer A self-organising workflow benefits from sample tags consisting of time stamp and stream activity. - Abstract: Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals

  11. Management of complex data flows in the ASDEX Upgrade plasma control system

    International Nuclear Information System (INIS)

    Treutterer, Wolfgang; Neu, Gregor; Raupp, Gerhard; Zasche, Dieter; Zehetbauer, Thomas; Cole, Richard; Lüddecke, Klaus

    2012-01-01

    Highlights: ► Control system architectures with data-driven workflows are efficient, flexible and maintainable. ► Signal groups provide coherence of interrelated signals and increase the efficiency of process synchronisation. ► Sample tags indicating sample quality form the fundament of a local event handling strategy. ► A self-organising workflow benefits from sample tags consisting of time stamp and stream activity. - Abstract: Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals connecting process outputs and inputs. These are implemented as real-time streams of data samples

  12. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    Science.gov (United States)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  13. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  14. Understanding the dynamics of the Seguro Popular de Salud policy implementation in Mexico from a complex adaptive systems perspective.

    Science.gov (United States)

    Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed

    2016-05-13

    In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power

  15. Ecosystem function in complex mountain terrain: Combining models and long-term observations to advance process-based understanding

    Science.gov (United States)

    Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.

    2017-04-01

    Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.

  16. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  17. Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Ni Yongnian; Peng Yunyan; Kokot, Serge

    2008-01-01

    The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC-a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices-thus, supporting the PCA approach

  18. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological Investigation of the Kunene Complex (Angola)

    Science.gov (United States)

    Brower, A. M.; Corfu, F.; Bybee, G. M.; Lehmann, J.; Owen-Smith, T.

    2016-12-01

    The Kunene Anorthosite Complex, located in south west Angola, is one of the largest massif-type anorthosite intrusions on Earth, with an areal extent of at least 18 000 km2. Previous studies considered the Complex to consist of a series of coalesced plutons. However, the ages and relative emplacement sequence of these plutons are unknown. Understanding the relative timing of the pluton emplacement is crucial for understanding how these enigmatic magmas form and how they rise through the crust. Here we present new high precision U-Pb ID-TIMS ages (n=10) on zircons and baddeleyites for many of the coalesced plutons across the 300-km-long anorthositic complex. These new geochronological results reveal subtle variations in crystallization age between the coalesced plutons. There is no gradual age progression between plutons, but distinct groupings of ages (Fig.1). Age clusters of 1379.8 ± 2 Ma (n=5) occur north of the Red Granite NE-SW-striking intrusions, whereas in the south there is an older age grouping of 1390.4 ± 2.3 (n=3). Two additional ages of 1400.5 ± 1.3 in the centre and 1438.4 ± 1.1 Ma in the south east have been obtained. These results indicate that the Kunene anorthosites were emplaced over 60 Ma and may suggest long-lived magmatic systems and/or slowly ascending plutons. We also find a link between pluton composition and age. In general, leuconoritic domains are older than the leucotroctolitic domains. This may imply that the first pulses of magma received a greater degree of contamination, forcing the broadly basaltic magma to produce orthopyroxene as the main mafic phase. The later pulses receive less contamination as they ascend through the already partially melted crust, producing olivine as the mafic phase and deforming the older domains. This study reiterates the multiphase petrogenesis of Proterozoic anorthosites and sheds light on the assembly of crystal-rich magmas as they ascend through the crust.

  19. Immune complex modulation by plasma proteins. With special reference to the complement system and autoimmune diseases

    DEFF Research Database (Denmark)

    Baatrup, G

    1989-01-01

    The complement (C) system consists of two activation pathways, the classical and the alternative, which may both be activated by immune complexes (IC). C activation products become attached to the IC during activation leading to profound changes in the properties of the complexes. The common...... inflammation. 5) Tissue damage by activation and/or lysis of bystanding cells. 6) Modulation of B-cell proliferation and differentiation. Activation of the C system by IC is an essential normal component in the clearance of invading foreign material. However, in conditions with a persistent high concentration...... preformed, fluid phase IC (CMS assay). The CMS was found to be dependent upon the alternative pathway of C and facilitated by the classical. Further studies concerning the influence of C deficiencies or depletion of C factors, the concentration of divalent metallions, the temperature and the ionic strength...

  20. Using autologous platelet-rich plasma for the treatment of complex fistulas

    Directory of Open Access Journals (Sweden)

    Almudena Moreno-Serrano

    Full Text Available Objective: This study aims to demonstrate the effectiveness and safety of autologous fibrin gel rich in platelet growth factors for the treatment of complex perianal fistulas. Material and methods: Prospective epidemiological study. Patients with complex perianal fistula or perianal fistula mere alteration of continence are included. identification of both holes and the journey, curettage of it and instillation of Vivostat PRF® in the way it is done to observe excess material by OFE. The variables analyzed were: age, sex, use of prior Seton clinic prevalent type of fistula, postoperative complications, fistula closure and impaired quality of life using the SF-36 test (v2. Results: From January 2011 to May 2013 have involved 23 patients, 12 men and 11 women, with an average age of 49 years and a minimum follow-up of 12 months. Two dropped out. 17 patients had low transsphincteric fistulas, 2 and 2 high transsphincteric intersphincteric with impaired continence. The most common symptom is the discharge. Twelve patients had a loose seton (62%, of which nine cured. Of all the patients we have operated the success rate is 62%. No patient developed incontinence after treatment. Only two reported a worse quality of life after surgery. Conclusion: This study demonstrates that there is a clear benefit to the use of Vivostat PRF® as a treatment for complex perianal fistulas. It is a highly reproducible technique with acceptable results and does not produce impairment of continence.

  1. Onset of turbulence induced by electron nonthermality in a complex plasma in presence of positively charged dust grains

    Directory of Open Access Journals (Sweden)

    Susmita Sarkar

    2018-03-01

    Full Text Available In this paper onset of turbulence has been detected from the study of non linear dust acoustic wave propagation in a complex plasma considering electrons nonthermal and equilibrium dust charge positive. Dust grains are charged by secondary electron emission process. Our analysis shows that increase in electron nonthermality makes the grain charging process faster by reducing the magnitude of the nonadiabaticity induced pseudo viscosity. Consequently nature of dust charge variation changes from nonadiabatic to adiabatic one. For further increase of electron nonthermality, this pseudo viscosity becomes negative and hence generates a turbulent grain charging behaviour. This turbulent grain charging phenomenon is exclusively the outcome of this nonlinear study which was not found in linear analysis.

  2. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  3. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane.

    Science.gov (United States)

    De Gois, Stéphanie; Slama, Patrick; Pietrancosta, Nicolas; Erdozain, Amaia M; Louis, Franck; Bouvrais-Veret, Caroline; Daviet, Laurent; Giros, Bruno

    2015-07-17

    Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    Science.gov (United States)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.

    2018-05-01

    The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.

  5. Plasmas for mankind and the understanding of the universe, from ITER to energy production, from laboratory to industry

    International Nuclear Information System (INIS)

    2006-01-01

    During this conference 16 guest papers have been presented dealing with various domains in which plasma physics plays a part: thermonuclear fusion, fuel cells, magnetic activities of stars, power laser interaction, Hall effect propulsion or particle acceleration. This document gathers most of the papers and about 60 posters

  6. The renewable energy industry in Massachussetts as a complex system: Developing a shared understanding for policy making

    Science.gov (United States)

    Jones, Charles A.

    A model-based field study was conducted to understand the mental models of participants in the photovoltaic industry in Massachusetts, with the purpose of understanding of how that industry works as a complex system. Mental models of industry participants are important, both as the holders of the best system information and as the critical actors in any policy solution. Experts from manufacturing, installation, development, policy, and advocacy sectors were interviewed. The knowledge they conveyed was expressed as a set system dynamics models; these models were characterized, compared, and combined in order to answer the following research questions: What are the mental models of participants? How widely are mental models shared among participants? What is the combined model of the system? How accurate are these models? Given these models, what policies would lead to success? The system described by informants is revealed as one of distributed and embedded agency---actors have the ability to take meaningful action, but that action and its effects are limited by the complexity of the system and by the actions of other actors. Both the growth of the industry and constraints on the growth occur through dynamic processes, many however outside local control. Mental models are shared in clusters of informants, with some differences between these groupings. Informants vary on the level of aggregation needed to express their descriptions and on the most important dynamic force. However, many processes are commonly perceived across informants, they perceive the same system trajectories, and the behavior of the simulation models constructed from their mental models was similar. A combined model was constructed which included a full range of potential feedback loops within an abstracted version of the described system. Testing for policy using the combined model reveals that the structures necessary for growth are present, as expected. Under several reasonable conditions

  7. Serum and plasma fibronectin binds to complement reacted immune complexes primarily via Clq

    DEFF Research Database (Denmark)

    Baatrup, G; Svehag, S E

    1986-01-01

    The binding of fibronectin to human Clq, C3b, and complement-reacted immune complexes (IC) was investigated by enzyme-linked immunosorbent assays. Microplates were coated with BSA followed by incubation with rabbit-anti-BSA IgG or F(ab')2 fragments of rabbit anti-BSA. Incubation of the solid phase...... with serum at 37 degrees C caused attachment of Clq and C3b. Addition of EDTA to the serum inhibited the binding of C3b, but not Clq, whereas substitution of the anti-BSA IgG on the solid phase with the F(ab')2 fragments abrogated the Clq, but not the C3b binding. Fibronectin binding was observed after...

  8. New understanding of the complex structure of knee menisci: implications for injury risk and repair potential for athletes.

    Science.gov (United States)

    Rattner, J B; Matyas, J R; Barclay, L; Holowaychuk, S; Sciore, P; Lo, I K Y; Shrive, N G; Frank, C B; Achari, Y; Hart, D A

    2011-08-01

    Menisci help maintain the structural integrity of the knee. However, the poor healing potential of the meniscus following a knee injury can not only end a career in sports but lead to osteoarthritis later in life. Complete understanding of meniscal structure is essential for evaluating its risk for injury and subsequent successful repair. This study used novel approaches to elucidate meniscal architecture. The radial and circumferential collagen fibrils in the meniscus were investigated using novel tissue-preparative techniques for light and electron microscopic studies. The results demonstrate a unique architecture based on differences in the packaging of the fundamental collagen fibrils. For radial arrays, the collagen fibrils are arranged in parallel into ∼10 μm bundles, which associate laterally to form flat sheets of varying dimensions that bifurcate and come together to form a honeycomb network within the body of the meniscus. In contrast, the circumferential arrays display a complex network of collagen fibrils arranged into ∼5 μm bundles. Interestingly, both types of architectural organization of collagen fibrils in meniscus are conserved across mammalian species and are age and sex independent. These findings imply that disruptions in meniscal architecture following an injury contribute to poor prognosis for functional repair. © 2010 John Wiley & Sons A/S.

  9. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II.

    Science.gov (United States)

    Voxeur, Aline; Fry, Stephen C

    2014-07-01

    Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process. © 2014 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  10. Understanding of hysteresis behaviors at the L-H-L transitions in tokamak plasma based on bifurcation concept

    Energy Technology Data Exchange (ETDEWEB)

    Chatthong, B. [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla (Thailand); Onjun, T. [School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani (Thailand)

    2016-08-15

    The hysteresis behaviour at the L-H-L transitions in tokamak plasma is investigated based on bifurcation concept. The formation of an edge transport barrier (ETB) is modeled via thermal and particle transport equations with the flow shear suppression effect on anomalous transport included. The anomalous transport is modeled based on critical gradients threshold and the flow shear is calculated from the force balance equation, couples the two transport equations leading to a non-linear behaviour. Analytical investigation reveals that the fluxes versus gradients space exhibits bifurcation behaviour with s -curve soft bifurcation type. Apparently, the backward H-L transition occurs at lower values than that of the forward L-H transition, illustrating hysteresis behaviour. The hysteresis properties, i.e. locations of threshold fluxes, gradients and their ratios are analyzed as a function of neoclassical and anomalous transport values and critical gradients. It is found that the minimum heat flux for maintaining H -mode depends on several plasma parameters including the strength of anomalous transport and neoclassical transport. In particular, the hysteresis depth becomes larger when neoclassical transport decreases or anomalous transport increases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Comprehensive understandings of energy confinement in LHD plasmas through extensive application of the integrated transport analysis suite

    International Nuclear Information System (INIS)

    Yokoyama, M.; Seki, R.; Suzuki, C.; Ida, K.; Osakabe, M.; Satake, S.; Yamada, H.; Murakami, S.

    2014-10-01

    The integrated transport analysis suite, TASK3D-a, has enhanced energy transport analyses in LHD. It has clearly elucidated (1) the systematic dependence of ion and electron energy confinement on wide variation of plasma parameters, and (2) statistically-derived fitting expressions for the ion and electron heat diffusivities (χ i and χ e ), separately, taking also those radial-profile information into account. In particular, the latter approach can outstrip the conventional scaling laws for the global confinement time (τ E ) in terms of its considerations on profiles (temperature, density, heating depositions etc.). This has been made possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this proceeding, TASK3D-a analysis-database for high-ion-temperature (high-T i ) plasmas in LHD (Large Helical Device) are exemplified. This approach should be applicable to any other combinations of integrated transport analysis suites and fusion experiments. (author)

  12. Computational plasma physics

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-08-01

    The behavior of a plasma confined by a magnetic field is simulated by a variety of numerical models. Some models used on a short time scale give detailed knowledge of the plasma on a microscopic scale, while other models used on much longer time scales compute macroscopic properties of the plasma dynamics. In the last two years there has been a substantial increase in the numerical modelling of fusion devices. The status of MHD, transport, equilibrium, stability, Vlasov, Fokker-Planck, and Hybrid codes is reviewed. These codes have already been essential in the design and understanding of low and high beta toroidal experiments and mirror systems. The design of the next generation of fusion experiments and fusion test reactors will require continual development of these numerical models in order to include the best available plasma physics description and also to increase the geometric complexity of the model. (auth)

  13. Theory of hysteresis during electron heating of electromagnetic wave scattering by self-organized dust structures in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, Vadim, E-mail: tsytov@lpi.ru [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Gusein-zade, Namik; Ignatov, Alexander [A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova str. 38, Moscow 119991 (Russian Federation); Medicobiologic Faculty, Pirogov Russian National Research Medical University, Moscow (Russian Federation)

    2015-07-15

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, the total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.

  14. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP (Argentina)

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  15. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes.

    Directory of Open Access Journals (Sweden)

    Zenawit Girmatsion

    Full Text Available BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks and atrial fibrillation (a human arrhythmia. Structure-function relationship of the KCNE1 N-terminus for I(Ks modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA' were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'. Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.

  16. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  17. Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma cancer treatment

    Science.gov (United States)

    Yusupov, Maksudbek; Yan, Dayun; Cordeiro, Rodrigo M.; Bogaerts, Annemie

    2018-03-01

    Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H2O2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H2O2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H2O2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H2O2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.

  18. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  19. [Conservative treatment using plasma rich in growth factors (PRGF) for injury to the ligamentous complex of the ankle].

    Science.gov (United States)

    Frei, R; Biosca, F E; Handl, M; Trc, T

    2008-02-01

    The authors describe the therapeutic utilization of separated/isolated autologous growth factors in semiconservative treatment of type III injury to the ankle ligamentous complex. Between October 2004 and March 2005 a group of 11 patients, two women and nine men, aged 18 to 41 (average, 25.09) years with acute injury to the lateral ligamentous complex of the ankle were treated by plasma rich in growth factors (PRGF) infiltration. On functional radiographic examination, the post-traumatic lateral opening of the tibiotalar intraarticular space was 17.45 degrees (range, 12.0-30.0; s = 5.68). The injured patients were clinically examined and standard forced inversion radiographs were made using topical anesthesia. Autologous PRGF activated with calcium chloride was used to infiltrate the injured tissues. The treatment was followed by immobilization of the joint and its subsequent rehabilitation. Clinical examination of injured tissues was carried out at 4 and 6 weeks of follow-up, using stability assessment tests and functional radiography of the ankle. Physical therapy included standard procedures, but faster regeneration of the soft tissues allowed for more exercises. The average time of healing was 5.18 weeks. Five patients showed no signs of instability at 4 weeks after therapy and could return to their previous sports activities. One patient had lateral ankle instability at 5 weeks and therefore the therapy continued with prolonged immobilization and then rehabilitation at a slower pace. The average lateral opening of the tibiotalar intra-articular space at 4 or 6 follow-up weeks was 4.73 degrees (range, 3.0 - 7.0; s = 1.19). At 6 weeks after therapy, 90.9% of the patients resumed their full sports activities. Ankle distortion with swelling, hematoma and pain, but with no radiographic findings of ligament lesions, is usually treated conservatively by ankle immobilization and early rehabilitation. When an injury to the fibular ankle ligaments occurs (i.e., opening

  20. FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    OpenAIRE

    Helbing, D.; Bishop, S.; Conte, R.; Lukowicz, P.; McCarthy, J. B.

    2012-01-01

    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the princi-ples underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our be-havior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urg...

  1. Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Zafiu, C.; Melzer, A.; Piel, A.

    2003-01-01

    Experiments on the quantitative determination of the weaker forces (ion drag, thermophoresis, and electric field force) on free-falling dust particles in a rf discharge tube are presented. The strongest force, gravity, is balanced by gas friction and the weaker forces are investigated in the radial (horizontal) plane. Under most discharge conditions, the particles are found to be expelled from the central plasma region. A transition to a situation where the falling particles are focused into the plasma center is observed at low gas pressures using small particles. These investigations allow a quantitative understanding of the mechanism of unwanted dust-free areas (so-called voids) in dusty plasmas under microgravity. Good quantitative agreement with standard models of the ion drag is found

  2. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis

    International Nuclear Information System (INIS)

    Laborda, Francisco; Ruiz-Begueria, Sergio; Bolea, Eduardo; Castillo, Juan R.

    2009-01-01

    High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (HP-SEC-ICP-MS), in combination with deconvolution analysis, has been used to obtain multielemental qualitative and quantitative information about the distributions of metal complexes with different forms of natural dissolved organic matter (DOM). High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms only provide continuous distributions of metals with respect to molecular masses, due to the high heterogeneity of dissolved organic matter, which consists of humic substances as well as biomolecules and other organic compounds. A functional speciation approach, based on the determination of the metals associated to different groups of homologous compounds, has been followed. Dissolved organic matter groups of homologous compounds are isolated from the aqueous samples under study and their high performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry elution profiles fitted to model Gaussian peaks, characterized by their respective retention times and peak widths. High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms of the samples are deconvoluted with respect to these model Gaussian peaks. This methodology has been applied to the characterization of metal-dissolved organic matter complexes in compost leachates. The most significant groups of homologous compounds involved in the complexation of metals in the compost leachates studied have been hydrophobic acids (humic and fulvic acids) and low molecular mass hydrophilic compounds. The environmental significance of these compounds is related to the higher biodegradability of the low molecular mass hydrophilic compounds and the lower mobility of humic acids. In general, the hydrophilic compounds accounted for the complexation of around 50% of the leached

  3. Stability constants important to the understanding of plutonium in environmental waters, hydroxy and carbonate complexation of PuO2+

    International Nuclear Information System (INIS)

    Bennett, D.A.; Lawrence Berkeley Lab., CA

    1990-01-01

    The formation constants for the reactions PuO 2 + + H 2 O = PuO 2 (OH) + H + and PuO 2 + + CO 3 2 = PuO 2 (CO 3 ) - were determined in aqueous sodium perchlorate solutions by laser-induced photoacoustic spectroscopy. The molar absorptivity of the PuO 2 + band at 569 nm decreased with increasing hydroxide concentration. Similarly, spectral changes occurred between 540 and 580 nm as the carbonate concentration was increased. The absorption data were analyzed by the non-linear least-squares program SQUAD to yield complexation constants. Using the specific ion interaction theory, both complexation constants were extrapolated to zero ionic strength. These thermodynamic complexation constants were combined with the oxidation-reduction potentials of Pu to obtain Eh versus pH diagrams. 120 refs., 35 figs., 12 tabs

  4. Complexities in understanding the role of compensation-related factors on recovery from whiplash-associated disorders : discussion paper 2

    NARCIS (Netherlands)

    Carroll, Linda J.; Connelly, Luke B.; Spearing, Natalie M.; Cote, Pierre; Buitenhuis, Jan; Kenardy, Justin

    2011-01-01

    Study Design. Focused discussion. Objective. To present some of the complexities in conducting research on the role of compensation and compensation-related factors in recovery from whiplash-associated disorders (WAD) and to suggest directions for future research. Summary of Background Data. There

  5. The development of second-order social cognition and its relation with complex language understanding and working memory

    NARCIS (Netherlands)

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2012-01-01

    In this study, the development of second-order social cognition and its possible relationship with language and memory were investigated. For this reason two second-order false belief tasks (FBT_2), a short term memory task (WST), a complex working memory task (LST), a linguistic perspective-taking

  6. Methodology to Model and Understand the Complexities of Social, Economic,and Governance Interactions for Regional Assessment in Kenya

    Science.gov (United States)

    2012-07-01

    narcotics trafficking in Mexico , complex commuter rail systems, and nuclear weapons proliferation. Systemigrams provide us with “a basis for systems...1997-1998. Not only did the flooding destroy bridges, roads, and crops, but it also created epidemics of cholera and malaria (CIA, 2011). In a large

  7. Using a Complexity-Based Perspective to Better Understand the Relationships among Mentoring, School Conflicts, and Novice Retention

    Science.gov (United States)

    Waterman, Sheryn Elaine Spencer

    2011-01-01

    In this study I used complexity-thinking, ecologically-based sustainable capacity-building, narrative methodology, and pragmatism to explore the relationships among mentoring, conflict, and novice retention. In order to explore these relationships, I constructed stories from my interviews with six mentor-novice dyads in a southeastern 9-12 high…

  8. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    Science.gov (United States)

    Chen, Bin

    2017-10-01

    QCMs (quasi-coherent modes) are well characterized in the edge of Alcator C-Mod, when operating in the Enhanced Dα (EDA) H-mode, a promising alternative regime for ELM (edge localized modes) suppressed operation. To improve the understanding of the physics behind the QCMs, three typical C-Mod EDA H-Mode discharges are simulated by BOUT + + using a six-field two-fluid model (based on the Braginskii equations). The simulated characteristics of the frequency versus wave number spectra of the modes is in reasonable agreement with phase contrast imaging data. The key simulation results are: 1) Linear spectrum analysis and the nonlinear phase relationship indicate the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; 2) QCMs originate inside the separatrix; (3) magnetic flutter causes the mode spreading into the SOL; 4) the boundary electric field Er changes the turbulent characteristics of the QCMs and controls edge transport and the divertor heat flux width; 5) the magnitude of the divertor heat flux depends on the physics models, such as sources and sinks, sheath boundary conditions, and parallel heat flux limiting coefficient. The BOUT + + simulations have also been performed for inter-ELM periods of DIII-D and EAST discharges, and similar quasi-coherent modes have been found. The parallel electron heat fluxes projected onto the target from these BOUT + + simulations follow the experimental heat flux width scaling, in particular the inverse dependence of the width on the poloidal magnetic field with an outlier. Further turbulence statistics analysis shows that the blobs are generated near the pedestal peak gradient region inside the separatrix and contribute to the transport of the particle and heat in the SOL region. To understand the Goldston heuristic drift-based model, results will also be presented from self-consistent transport simulations with the electric and magnetic drifts in BOUT + + and with the sheath potential included in the

  9. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds

    DEFF Research Database (Denmark)

    Fang, Lingzhao; Sahana, Goutam; Ma, Peipei

    2017-01-01

    sequence variants in Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term. We then extended the genomic best linear unbiased......BACKGROUND: A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants of complex traits might be enriched in a subset of genomic...

  10. Stochastic heating of dust particles in complex plasmas as an energetic instability of a harmonic oscillator with random frequency

    Energy Technology Data Exchange (ETDEWEB)

    Marmolino, Ciro [Dipartimento di Scienze e Tecnologie dell' Ambiente e del Territorio-DiSTAT, Universita del Molise, Contrada Fonte Lappone, I-86090 Pesche (Italy)

    2011-10-15

    The paper describes the occurrence of stochastic heating of dust particles in dusty plasmas as an energy instability due to the correlations between dust grain charge and electric field fluctuations. The possibility that the mean energy (''temperature'') of dust particles can grow in time has been found both from the self-consistent kinetic description of dusty plasmas taking into account charge fluctuations [U. de Angelis, A. V. Ivlev, V. N. Tsytovich, and G. E. Morfill, Phys. Plasmas 12(5), 052301 (2005)] and from a Fokker-Planck approach to systems with variable charge [A. V. Ivlev, S. K. Zhdanov, B. A. Klumov, and G. E. Morfill, Phys. Plasmas 12(9), 092104 (2005)]. Here, a different derivation is given by using the mathematical techniques of the so called multiplicative stochastic differential equations. Both cases of ''fast'' and ''slow'' fluctuations are discussed.

  11. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    Science.gov (United States)

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  12. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  13. Nice to know you: Positive emotions, self–other overlap, and complex understanding in the formation of a new relationship

    OpenAIRE

    WAUGH, CHRISTIAN E.; FREDRICKSON, BARBARA L.

    2006-01-01

    Based on Fredrickson's ((1998). What good are positive emotions? Review of General Psychology, 2, 300–319.; (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226) broaden-and-build theory and Aron and Aron's ((1986). Love as expansion of the self: Understanding attraction and satisfaction. New York: Hemisphere) self-expansion theory, it was hypothesized that positive emotions broaden people's feeling...

  14. Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies

    Directory of Open Access Journals (Sweden)

    Jason Stofleth

    2012-01-01

    Full Text Available All life persists in an environment that is rich in molecular oxygen. The production of oxygen free radicals, or superoxide, is a necessary consequence of the biogenesis of energy in cells. Both mitochondrial and photosynthetic electron transport chains have been found to produce superoxide associated with cell differentiation, proliferation, and cell death, thereby contributing to the effects of aging. Aerobic respiration in mitochondria consumes oxygen, whereas photosynthesis in chloroplasts or cyanobacteria produces oxygen. The increased concentration of molecular oxygen may serve to allow greater availability for the production of superoxide by cytochrome bc complexes in photosynthetic membranes compared to those of mitochondrial membranes. The isolation of well-coupled chloroplasts, containing the cytochrome b6f complex of oxygenic photosynthesis, is a vital initial step in the process of comparing the rate of production of superoxide to those of the homologous cytochrome bc1 complex of aerobic respiration. It is necessary to determine if the isolated chloroplasts have retained their oxygengenerating capability after isolation by an oxygen evolution assay with a Clark-type electrode. A necessary second step, which is the isolation of cytochrome b6f from spinach, has yet to be successfully performed. Oxygen measurements taken from chloroplasts in the presence of the uncoupler, NH4Cl, exhibited a rate of oxygen evolution over three times greater at 344 +/- 18 μmol O2/mg Chlorophyll a/hr than the rate of oxygen evolution without uncoupler at 109 +/- 29 μmol O2/mg Chlorophyll a/hr. These data demonstrate that the technique used to isolate spinach chloroplasts preserves their light-driven electron-transport activity, making them reliable for future superoxide assays.

  15. Complexities in understanding the role of compensation-related factors on recovery from whiplash-associated disorders: discussion paper 2.

    Science.gov (United States)

    Carroll, Linda J; Connelly, Luke B; Spearing, Natalie M; Côté, Pierre; Buitenhuis, Jan; Kenardy, Justin

    2011-12-01

    Focused discussion. To present some of the complexities in conducting research on the role of compensation and compensation-related factors in recovery from whiplash-associated disorders (WAD) and to suggest directions for future research. There is divergence of opinion, primary research findings, and systematic reviews on the role of compensation and/or compensation-related factors in WAD recovery. The topic of research of compensation/compensation-related factors was discussed at an international summit meeting of 21 researchers from diverse fields of scientific enquiry. This article summarizes the main points raised in that discussion. Traffic injury compensation is a complex sociopolitical construct, which varies widely across jurisdictions. This leads to conceptual and methodological challenges in conducting and interpreting research in this area. It is important that researchers and their audiences be clear about what aspect of the compensation system is being addressed, what compensation-related variables are being studied, and what social/economic environment the compensation system exists in. In addition, summit participants also recommended that nontraditional, sophisticated study designs and analysis strategies be employed to clarify the complex causal pathways and mechanisms of effects. Care must be taken by both researchers and their audiences not to overgeneralize or confuse different aspects of WAD compensation. In considering the role of compensation/compensation-related factors on WAD and WAD recovery, it is important to retain a broad-based conceptualization of the range of biological, psychological, social, and economic factors that combine and interact to define and determine how people recover from WAD.

  16. Regional molecular and cellular differences in the female rabbit Achilles tendon complex: potential implications for understanding responses to loading.

    Science.gov (United States)

    Huisman, Elise S; Andersson, Gustav; Scott, Alexander; Reno, Carol R; Hart, David A; Thornton, Gail M

    2014-05-01

    The aim of this study was: (i) to analyze the morphology and expression of extracellular matrix genes in six different regions of the Achilles tendon complex of intact normal rabbits; and (ii) to assess the effect of ovariohysterectomy (OVH) on the regional expression of these genes. Female New Zealand White rabbits were separated into two groups: (i) intact normal rabbits (n = 4); and (ii) OVH rabbits (n = 8). For each rabbit, the Achilles tendon complex was dissected into six regions: distal gastrocnemius (DG); distal flexor digitorum superficialis; proximal lateral gastrocnemius (PLG); proximal medial gastrocnemius; proximal flexor digitorum superficialis; and paratenon. For each of the regions, hematoxylin and eosin staining was performed for histological evaluation of intact normal rabbit tissues and mRNA levels for proteoglycans, collagens and genes associated with collagen regulation were assessed by real-time reverse transcription-quantitative polymerase chain reaction for both the intact normal and OVH rabbit tissues. The distal regions displayed a more fibrocartilaginous phenotype. For intact normal rabbits, aggrecan mRNA expression was higher in the distal regions of the Achilles tendon complex compared with the proximal regions. Collagen Type I and matrix metalloproteinase-2 expression levels were increased in the PLG compared to the DG in the intact normal rabbit tissues. The tendons from OVH rabbits had lower gene expressions for the proteoglycans aggrecan, biglycan, decorin and versican compared with the intact normal rabbits, although the regional differences of increased aggrecan expression in distal regions compared with proximal regions persisted. The tensile and compressive forces experienced in the examined regions may be related to the regional differences found in gene expression. The lower mRNA expression of the genes examined in the OVH group confirms a potential effect of systemic estrogen on tendon. © 2014 Anatomical Society.

  17. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8

    International Nuclear Information System (INIS)

    Tidow, Henning; Hein, Kim L.; Baekgaard, Lone; Palmgren, Michael G.; Nissen, Poul

    2010-01-01

    Plant plasma-membrane Ca 2+ -ATPase is regulated via binding of calmodulin to its autoinhibitory N-terminal domain. In this study, the expression, purification, crystallization and preliminary X-ray diffraction analysis of this protein complex from A. thaliana are reported. Plasma-membrane Ca 2+ -ATPases (PMCAs) are calcium pumps that expel Ca 2+ from eukaryotic cells to maintain overall Ca 2+ homoeostasis and to provide local control of intracellular Ca 2+ signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca 2+ regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca 2+ -CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca 2+ -ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 Å, β = 113.2°. A complete data set was collected to 3.0 Å resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin

  18. Participatory Ethnographic Evaluation and Research: Reflections on the Research Approach Used to Understand the Complexity of Maternal Health Issues in South Sudan.

    Science.gov (United States)

    Elmusharaf, Khalifa; Byrne, Elaine; Manandhar, Mary; Hemmings, Joanne; O'Donovan, Diarmuid

    2017-07-01

    Many methodological approaches have been used to understand cultural dimensions to maternal health issues. Although a well-designed quantitative survey with a representative sample can provide essential information on trends in behavior, it does not necessarily establish a contextualized understanding of the complexity in which different behaviors occur. This article addresses how contextualized data can be collected in a short time and under conditions in which participants in conflict-affected zones might not have established, or time to establish, trust with the researchers. The solution, the Participatory Ethnographic Evaluation and Research (PEER) approach, is illustrated through a study whereby South Sudanese marginalized women were trained to design research instruments, and collect and analyze qualitative data. PEER overcomes the problem that many ethnographic or participatory approaches face-the extensive time and resources required to develop trusting relationships with the community to understand the local context and the social networks they form.

  19. Avoiding genetic genocide: understanding good intentions and eugenics in the complex dialogue between the medical and disability communities.

    Science.gov (United States)

    Miller, Paul Steven; Levine, Rebecca Leah

    2013-02-01

    The relationship between the medical and disability communities is complex and is influenced by historical, social, and cultural factors. Although clinicians, health-care researchers, and people with disabilities all work from the standpoint of the best interest of disabled individuals, the notion of what actually is "best" is often understood quite differently among these constituencies. Eugenics campaigns, legal restrictions on reproductive and other freedoms, and prenatal testing recommendations predicated on the lesser worth of persons with disabilities have all contributed toward the historic trauma experienced by the disability community, particularly with respect to medical genetics. One premise of personalized medicine is that different individuals require different solutions. Disabled persons' experiences are a reminder that these solutions can be best realized by maintaining awareness and sensitivity in a complex ethical and moral terrain. Geneticists should recognize that their research may have implications for those with disabilities; they should recognize the impact of the historical trauma of the eugenics movement, and seek to involve people with disabilities in discussions about policies that affect them. Dialogue can be messy and uncomfortable, but it is the only way to avoid the mistakes of the past and to ensure a more equitable, and healthful, future.

  20. Know Your Client and Know Your Team: A Complexity Inspired Approach to Understanding Safe Transitions in Care

    Directory of Open Access Journals (Sweden)

    Deborah Tregunno

    2013-01-01

    Full Text Available Background. Transitions in care are one of the most important and challenging client safety issues in healthcare. This project was undertaken to gain insight into the practice setting realities for nurses and other health care providers as they manage increasingly complex care transitions across multiple settings. Methods. The Appreciative Inquiry approach was used to guide interviews with sixty-six healthcare providers from a variety of practice settings. Data was collected on participants’ experience of exceptional care transitions and opportunities for improving care transitions. Results. Nurses and other healthcare providers need to know three things to ensure safe care transitions: (1 know your client; (2 know your team on both sides of the transfer; and (3 know the resources your client needs and how to get them. Three themes describe successful care transitions, including flexible structures; independence and teamwork; and client and provider focus. Conclusion. Nurses often operate at the margins of acceptable performance, and flexibility with regulation and standards is often required in complex sociotechnical work like care transitions. Priority needs to be given to creating conditions where nurses and other healthcare providers are free to creatively engage and respond in ways that will optimize safe care transitions.

  1. Implementation of a school-based social and emotional learning intervention: understanding diffusion processes within complex systems.

    Science.gov (United States)

    Evans, Rhiannon; Murphy, Simon; Scourfield, Jonathan

    2015-07-01

    Sporadic and inconsistent implementation remains a significant challenge for social and emotional learning (SEL) interventions. This may be partly explained by the dearth of flexible, causative models that capture the multifarious determinants of implementation practices within complex systems. This paper draws upon Rogers (2003) Diffusion of Innovations Theory to explain the adoption, implementation and discontinuance of a SEL intervention. A pragmatic, formative process evaluation was conducted in alignment with phase 1 of the UK Medical Research Council's framework for Developing and Evaluating Complex Interventions. Employing case-study methodology, qualitative data were generated with four socio-economically and academically contrasting secondary schools in Wales implementing the Student Assistance Programme. Semi-structured interviews were conducted with 15 programme stakeholders. Data suggested that variation in implementation activity could be largely attributed to four key intervention reinvention points, which contributed to the transformation of the programme as it interacted with contextual features and individual needs. These reinvention points comprise the following: intervention training, which captures the process through which adopters acquire knowledge about a programme and delivery expertise; intervention assessment, which reflects adopters' evaluation of an intervention in relation to contextual needs; intervention clarification, which comprises the cascading of knowledge through an organisation in order to secure support in delivery; and intervention responsibility, which refers to the process of assigning accountability for sustainable delivery. Taken together, these points identify opportunities to predict and intervene with potential implementation problems. Further research would benefit from exploring additional reinvention activity.

  2. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  3. A model for understanding diagnostic imaging referrals and complex interaction processes within the bigger picture of a healthcare system

    International Nuclear Information System (INIS)

    Makanjee, Chandra R.; Bergh, Anne-Marie; Hoffmann, Willem A.

    2014-01-01

    Using experiences from the South African public healthcare system with limited resources, this review proposes a model that captures a holistic perspective of diagnostic imaging services embedded in a network of negotiated decision-making processes. Professional interdependency and interprofessional collaboration, cooperation and coordination are built around the central notion of integration in order to achieve a seamless transition through the continuum of various types of services needed to come to a diagnosis. Health-system role players interact with patients who enter the system from the perspective of their life-world. The distribution of diagnostic imaging services – within one setting or at multiple levels of care – demonstrates how fragments of information are filtered, interpreted and transformed at each point of care. The proposed model could contribute to alignment towards a common goal: services providing holistic quality of care within and beyond a complex healthcare system

  4. Using GeoVisual Analytics for understanding the distribution of complex movement patterns on the arterial roads

    DEFF Research Database (Denmark)

    Kveladze, Irma; Agerholm, Niels

    streets by igniting traffic rules. This will be studied on the basis of clusters of big unexplainable deviations from driving speed in FCD. The results will allow us to uncover meaningful patterns from complex traffic movements in populated areas, and provide some recommendations that are critical......Arterial roads have a particular operational significance and play a substantial role in the mobility and economic development of the modern society. They make up the majority of the road transport in urban and rural areas, and allow high-speed movement despite speed limitations and traffic...... controlling elements urban areas. In densely populated areas, where the presence of Vulnerable Road Users (VRU) is high, a high-speed movement is problematic from a road safety perspective, since many VRUs do crossroads by ignoring regardless of regulation and design limitations of the road network...

  5. A preliminary investigation of the applicability of surface complexation modeling to the understanding of transportation cask weeping

    International Nuclear Information System (INIS)

    Granstaff, V.E.; Chambers, W.B.; Doughty, D.H.

    1994-01-01

    A new application for surface complexation modeling is described. These models, which describe chemical equilibria among aqueous and adsorbed species, have typically been used for predicting groundwater transport of contaminants by modeling the natural adsorbents as various metal oxides. Our experiments suggest that this type of modeling can also explain stainless steel surface contamination and decontamination mechanisms. Stainless steel transportation casks, when submerged in a spent fuel storage pool at nuclear power stations, can become contaminated with radionuclides such as 137 Cs, 134 Cs, and 60 Co. Subsequent release or desorption of these contaminants under varying environmental conditions occasionally results in the phenomenon known as open-quotes cask weeping.close quotes We have postulated that contaminants in the storage pool adsorb onto the hydrous metal oxide surface of the passivated stainless steel and are subsequently released (by conversion from a fixed to a removable form) during transportation, due to varying environmental factors, such as humidity, road salt, dirt, and acid rain. It is well known that 304 stainless steel has a chromium enriched passive surface layer; thus its adsorption behavior should be similar to that of a mixed chromium/iron oxide. To help us interpret our studies of reversible binding of dissolved metals on stainless steel surfaces, we have studied the adsorption of Co +2 on Cr 2 O 3 . The data are interpreted using electrostatic surface complexation models. The FITEQL computer program was used to obtain the model binding constants and site densities from the experimental data. The MINTEQA2 computer speciation model was used, with the fitted constants, in an attempt to validate this approach

  6. Combined experimental and theoretical approach to understand the reactivity of a mononuclear Cu(II)-hydroperoxo complex in oxygenation reactions.

    Science.gov (United States)

    Kamachi, Takashi; Lee, Yong-Min; Nishimi, Tomonori; Cho, Jaeheung; Yoshizawa, Kazunari; Nam, Wonwoo

    2008-12-18

    A copper(II) complex bearing a pentadentate ligand, [Cu(II)(N4Py)(CF(3)SO(3))(2)] (1) (N4Py = N,N-bis(2-pyridylmethyl)bis(2-pyridyl)methylamine), was synthesized and characterized with various spectroscopic techniques and X-ray crystallography. A mononuclear Cu(II)-hydroperoxo complex, [Cu(II)(N4Py)(OOH)](+) (2), was then generated in the reaction of 1 and H(2)O(2) in the presence of base, and the reactivity of the intermediate was investigated in the oxidation of various substrates at -40 degrees C. In the reactivity studies, 2 showed a low oxidizing power such that 2 reacted only with triethylphosphine but not with other substrates such as thioanisole, benzyl alcohol, 1,4-cyclohexadiene, cyclohexene, and cyclohexane. In theoretical work, we have conducted density functional theory (DFT) calculations on the epoxidation of ethylene by 2 and a [Cu(III)(N4Py)(O)](+) intermediate (3) at the B3LYP level. The activation barrier is calculated to be 39.7 and 26.3 kcal/mol for distal and proximal oxygen attacks by 2, respectively. This result indicates that the direct ethylene epoxidation by 2 is not a plausible pathway, as we have observed in the experimental work. In contrast, the ethylene epoxidation by 3 is a downhill and low-barrier process. We also found that 2 cannot be a precursor to 3, since the homolytic cleavage of the O-O bond of 2 is very endothermic (i.e., 42 kcal/mol). On the basis of the experimental and theoretical results, we conclude that a mononuclear Cu(II)-hydroperoxo species bearing a pentadentate N5 ligand is a sluggish oxidant in oxygenation reactions.

  7. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  8. Chaos and Structures in Nonlinear Plasmas

    Science.gov (United States)

    Chen, James

    In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.

  9. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.

    Science.gov (United States)

    Busch, Verónica M; Loosli, Fréderic; Santagapita, Patricio R; Buera, M Pilar; Stoll, Serge

    2015-11-01

    The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer

  10. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    Science.gov (United States)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung

  11. Associations between speech understanding and auditory and visual tests of verbal working memory: effects of linguistic complexity, task, age, and hearing loss.

    Science.gov (United States)

    Smith, Sherri L; Pichora-Fuller, M Kathleen

    2015-01-01

    Listeners with hearing loss commonly report having difficulty understanding speech, particularly in noisy environments. Their difficulties could be due to auditory and cognitive processing problems. Performance on speech-in-noise tests has been correlated with reading working memory span (RWMS), a measure often chosen to avoid the effects of hearing loss. If the goal is to assess the cognitive consequences of listeners' auditory processing abilities, however, then listening working memory span (LWMS) could be a more informative measure. Some studies have examined the effects of different degrees and types of masking on working memory, but less is known about the demands placed on working memory depending on the linguistic complexity of the target speech or the task used to measure speech understanding in listeners with hearing loss. Compared to RWMS, LWMS measures using different speech targets and maskers may provide a more ecologically valid approach. To examine the contributions of RWMS and LWMS to speech understanding, we administered two working memory measures (a traditional RWMS measure and a new LWMS measure), and a battery of tests varying in the linguistic complexity of the speech materials, the presence of babble masking, and the task. Participants were a group of younger listeners with normal hearing and two groups of older listeners with hearing loss (n = 24 per group). There was a significant group difference and a wider range in performance on LWMS than on RWMS. There was a significant correlation between both working memory measures only for the oldest listeners with hearing loss. Notably, there were only few significant correlations among the working memory and speech understanding measures. These findings suggest that working memory measures reflect individual differences that are distinct from those tapped by these measures of speech understanding.

  12. Associations between speech understanding and auditory and visual tests of verbal working memory: effects of linguistic complexity, task, age, and hearing loss

    Science.gov (United States)

    Smith, Sherri L.; Pichora-Fuller, M. Kathleen

    2015-01-01

    Listeners with hearing loss commonly report having difficulty understanding speech, particularly in noisy environments. Their difficulties could be due to auditory and cognitive processing problems. Performance on speech-in-noise tests has been correlated with reading working memory span (RWMS), a measure often chosen to avoid the effects of hearing loss. If the goal is to assess the cognitive consequences of listeners’ auditory processing abilities, however, then listening working memory span (LWMS) could be a more informative measure. Some studies have examined the effects of different degrees and types of masking on working memory, but less is known about the demands placed on working memory depending on the linguistic complexity of the target speech or the task used to measure speech understanding in listeners with hearing loss. Compared to RWMS, LWMS measures using different speech targets and maskers may provide a more ecologically valid approach. To examine the contributions of RWMS and LWMS to speech understanding, we administered two working memory measures (a traditional RWMS measure and a new LWMS measure), and a battery of tests varying in the linguistic complexity of the speech materials, the presence of babble masking, and the task. Participants were a group of younger listeners with normal hearing and two groups of older listeners with hearing loss (n = 24 per group). There was a significant group difference and a wider range in performance on LWMS than on RWMS. There was a significant correlation between both working memory measures only for the oldest listeners with hearing loss. Notably, there were only few significant correlations among the working memory and speech understanding measures. These findings suggest that working memory measures reflect individual differences that are distinct from those tapped by these measures of speech understanding. PMID:26441769

  13. Understanding the complex determinants of height and adiposity in disadvantaged daycare preschoolers in Salvador, NE Brazil through structural equation modelling.

    Science.gov (United States)

    Lander, Rebecca L; Williams, Sheila M; Costa-Ribeiro, Hugo; Mattos, Angela P; Barreto, Danile L; Houghton, Lisa A; Bailey, Karl B; Lander, Alastair G; Gibson, Rosalind S

    2015-10-23

    Earlier we reported on growth and adiposity in a cross-sectional study of disadvantaged Brazilian preschoolers. Here we extend the work on these children, using structural equation modelling (SEM) to gather information on the complex relationships between the variables influencing height and adiposity. We hope this information will help improve the design and effectiveness of future interventions for preschoolers. In 376 preschoolers aged 3-6 years attending seven philanthropic daycares in Salvador, we used SEM to examine direct and indirect relationships among biological (sex, ethnicity, birth order, maternal height and weight), socio-economic, micronutrient (haemoglobin, serum selenium and zinc), and environmental (helminths, de-worming) variables on height and adiposity, as reflected by Z-scores for height-for-age (HAZ) and body mass index (BMIZ). Of the children, 11 % had HAZ  1. Of their mothers, 8 % had short stature, and 50 % were overweight or obese. Based on standardized regression coefficients, significant direct effects (p growth, helminth infection was a modifiable risk factor directly and indirectly affecting HAZ and BMIZ, respectively. Hence the WHO de-worming recommendation should include preschoolers living in at-risk environments as well as school-aged children.

  14. The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies

    Directory of Open Access Journals (Sweden)

    Mehdi Alirezaei

    2017-01-01

    Full Text Available Road accidents have the highest externality costs to society and to the economy, even when compared to the externality damages associated with air emissions and oil dependency. Road safety is one of the most complicated topics, which involves many interdependencies, and so, a sufficiently thorough analysis of roadway safety will require a novel system-based approach in which the associated feedback relationships and causal effects are given appropriate consideration. The factors affecting accident frequency and severity are highly dependent on economic parameters, environmental factors and weather conditions. In this study, we try to use a system dynamics modeling approach to model the climate change-road safety-economy nexus, thereby investigating the complex interactions among these important areas by tracking how they affect each other over time. For this purpose, five sub-models are developed to model each aspect of the overall nexus and to interact with each other to simulate the overall system. As a result, this comprehensive model can provide a platform for policy makers to test the effectiveness of different policy scenarios to reduce the negative consequences of traffic accidents and improve road safety.

  15. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: a Quasi-experimental Study

    Science.gov (United States)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2017-03-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.

  16. Advances and Challenges in Computational Plasma Science

    International Nuclear Information System (INIS)

    Tang, W.M.; Chan, V.S.

    2005-01-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology

  17. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  18. What Do Transgender Women’s Experiences Tell Us about Law? Towards an Understanding of Law as Legal Complex

    Directory of Open Access Journals (Sweden)

    Esen Ezgi Tascioglu

    2011-01-01

    Full Text Available Based on ethnographic study conducted in Istanbul, this thesis investigates the effects of law and legal operations on transgender women’s sex work and daily lives, and seeks to disentangle the multidimensional ways through which they and their conduct are governmentalized by law in Turkey. The first part of the thesis discusses the legal dynamics surrounding transgender sex work and delineates how transgender women are expulsed from regulated sex work by the interaction of the socially produced desire around their bodies and law. Led to work outside the regulated sex trade, transgender women navigate spaces which are regulated in an ambivalent manner yet which have the net effect of drawing transgender women into street sex work. The second part shows that these legal practices on sex work do not apply to all sex workers but to nearly all transgender women, depriving them from their most basic rights. Overall my analysis demonstrates that transgender women find themselves in a multitude of legal and institutional practices that are borne out of the interaction of their social contexts, their bodily performances and legal texts and their application, and that this is done through various regulatory agents. I argue that such an examination demonstrates law’s multiplicity and heterogeneity against the unitary and sovereigntist understandings of law which prevail in popular discourse as well as scholarly and activist thinking in Turkey and abroad. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=1730260

  19. Toward an analytical framework for understanding complex social-ecological systems when conducting environmental impact assessments in South Africa

    Directory of Open Access Journals (Sweden)

    Rebecca Bowd

    2015-03-01

    counterpoint to established approaches and could contribute to improving the quality of EIAs with respect to the complex SESs that characterize the developing world.

  20. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    Science.gov (United States)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde

  1. The Complexities of Accessing Care and Treatment: Understanding Alcohol Use by Aboriginal Persons Living with HIV and AIDS

    Science.gov (United States)

    Masching, Renée; Dell, Colleen A.; Egan, John P.; McHugh, Nancy Gros-Louis; Lee, David; Prentice, Tracey; Storm, Lyanna; Thomas, Cliff; McGee, Amy; Dale-Harris, Hugh

    2016-01-01

    The role of alcohol in the transmission of HIV and access to health services for persons living with HIV/AIDS is relatively unexamined across the globe. Our team’s community-based, mixed methods study examined both of these questions from the perspectives of Aboriginal persons living in Canada with HIV/AIDS (APHA) and service providers (SP). A bilingual national survey was undertaken with APHAs and SPs and the findings were followed up on in peer interviews. A complex relationship was identified between alcohol use, perceptions of alcohol use and access to services. Nearly half of APHAs surveyed reported that alcohol played a role in their becoming HIV positive. APHAs and SPs differed in their assessment of the impact of alcohol in the lives of Aboriginal persons once diagnosed, with a far greater proportion of SPs identifying it as problematic. Both SPs and APHAs associated the misuse of alcohol with diminished health. Nearly half of the APHAs surveyed shared they had been told they were drinking by a SP when they were not, while over one-third reported ever being denied services because of drinking when in fact they were not. Both SPs and APHAs identified physical health and discrimination as key reasons. Notwithstanding these results that point to shortcomings in service provision, the data also reveal that most APHAs are recieving care in which their choices are respected and from providers they trust. The findings point to the need for a nuanced strategy to solidify the strengths and address the shortcomings in APHA’s service provision. PMID:27867443

  2. Understanding the addiction cycle: a complex biology with distinct contributions of genotype vs. sex at each stage.

    Science.gov (United States)

    Wilhelm, C J; Hashimoto, J G; Roberts, M L; Sonmez, M K; Wiren, K M

    2014-10-24

    Ethanol abuse can lead to addiction, brain damage and premature death. The cycle of alcohol addiction has been described as a composite consisting of three stages: intoxication, withdrawal and craving/abstinence. There is evidence for contributions of both genotype and sex to alcoholism, but an understanding of the biological underpinnings is limited. Utilizing both sexes of genetic animal models with highly divergent alcohol withdrawal severity, Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) mice, the distinct contributions of genotype/phenotype and of sex during addiction stages on neuroadaptation were characterized. Transcriptional profiling was performed to identify expression changes as a consequence of chronic intoxication in the medial prefrontal cortex. Significant expression differences were identified on a single platform and tracked over a behaviorally relevant time course that covered each stage of alcohol addiction; i.e., after chronic intoxication, during peak withdrawal, and after a defined period of abstinence. Females were more sensitive to ethanol with higher fold expression differences. Bioinformatics showed a strong effect of sex on the data structure of expression profiles during chronic intoxication and at peak withdrawal irrespective of genetic background. However, during abstinence, differences were observed instead between the lines/phenotypes irrespective of sex. Confirmation of identified pathways showed distinct inflammatory signaling following intoxication at peak withdrawal, with a pro-inflammatory phenotype in females but overall suppression of immune signaling in males. Combined, these results suggest that each stage of the addiction cycle is influenced differentially by sex vs. genetic background and support the development of stage- and sex-specific therapies for alcohol withdrawal and the maintenance of sobriety. Published by Elsevier Ltd.

  3. Using an adaptive expertise lens to understand the quality of teachers' classroom implementation of computer-supported complex systems curricula in high school science

    Science.gov (United States)

    Yoon, Susan A.; Koehler-Yom, Jessica; Anderson, Emma; Lin, Joyce; Klopfer, Eric

    2015-05-01

    Background: This exploratory study is part of a larger-scale research project aimed at building theoretical and practical knowledge of complex systems in students and teachers with the goal of improving high school biology learning through professional development and a classroom intervention. Purpose: We propose a model of adaptive expertise to better understand teachers' classroom practices as they attempt to navigate myriad variables in the implementation of biology units that include working with computer simulations, and learning about and teaching through complex systems ideas. Sample: Research participants were three high school biology teachers, two females and one male, ranging in teaching experience from six to 16 years. Their teaching contexts also ranged in student achievement from 14-47% advanced science proficiency. Design and methods: We used a holistic multiple case study methodology and collected data during the 2011-2012 school year. Data sources include classroom observations, teacher and student surveys, and interviews. Data analyses and trustworthiness measures were conducted through qualitative mining of data sources and triangulation of findings. Results: We illustrate the characteristics of adaptive expertise of more or less successful teaching and learning when implementing complex systems curricula. We also demonstrate differences between case study teachers in terms of particular variables associated with adaptive expertise. Conclusions: This research contributes to scholarship on practices and professional development needed to better support teachers to teach through a complex systems pedagogical and curricular approach.

  4. The Holocene history of the North American Monsoon: 'known knowns' and 'known unknowns' in understanding its spatial and temporal complexity

    Science.gov (United States)

    Metcalfe, Sarah E.; Barron, John A.; Davies, Sarah J.

    2015-01-01

    Evidence for climatic change across the North American Monsoon (NAM) and adjacent areas is reviewed, drawing on continental and marine records and the application of climate models. Patterns of change at 12,000, 9000, 6000 and 4000 cal yr BP are presented to capture the nature of change from the Younger Dryas (YD) and through the mid-Holocene. At the YD, conditions were cooler overall, wetter in the north and drier in the south, while moving into the Holocene wetter conditions became established in the south and then spread north as the NAM strengthened. Until c. 8000 cal yr BP, the Laurentide Ice Sheet influenced precipitation in the north by pushing the Bermuda High further south. The peak extent of the NAM seems to have occurred around 6000 cal yr BP. 4000 cal yr BP marks the start of important changes across the NAM region, with drying in the north and the establishment of the clear differences between the summer-rain dominated south and central areas and the north, where winter rain is more important. This differentiation between south and north is crucial to understanding many climate responses across the NAM. This increasing variability is coincident with the declining influence of orbital forcing. 4000 cal yr BP also marks the onset of significant anthropogenic activity in many areas. For the last 2000 years, the focus is on higher temporal resolution change, with strong variations across the region. The Medieval Climate Anomaly (MCA) is characterised by centennial scale ‘megadrought’ across the southwest USA, associated with cooler tropical Pacific SSTs and persistent La Niña type conditions. Proxy data from southern Mexico, Central America and the Caribbean reveal generally wetter conditions, whereas records from the highlands of central Mexico and much of the Yucatan are typified by long -term drought. The Little Ice Age (LIA), in the north, was characterised by cooler, wetter winter conditions that have been linked with increased

  5. Understanding the complex relationships among actors involved in the implementation of public-private mix (PPM) for TB control in India, using social theory.

    Science.gov (United States)

    Salve, Solomon; Harris, Kristine; Sheikh, Kabir; Porter, John D H

    2018-06-07

    Public Private Partnerships (PPP) are increasingly utilized as a public health strategy for strengthening health systems and have become a core component for the delivery of TB control services in India, as promoted through national policy. However, partnerships are complex systems that rely on relationships between a myriad of different actors with divergent agendas and backgrounds. Relationship is a crucial element of governance, and relationship building an important aspect of partnerships. To understand PPPs a multi-disciplinary perspective that draws on insights from social theory is needed. This paper demonstrates how social theory can aid the understanding of the complex relationships of actors involved in implementation of Public-Private Mix (PPM)-TB policy in India. Ethnographic research was conducted within a district in a Southern state of India over a 14 month period, combining participant observations, informal interactions and in-depth interviews with a wide range of respondents across public, private and non-government organisation (NGO) sectors. Drawing on the theoretical insights from Bourdieu's "theory of practice" this study explores the relationships between the different actors. The study found that programme managers, frontline TB workers, NGOs, and private practitioners all had a crucial role to play in TB partnerships. They were widely regarded as valued contributors with distinct social skills and capabilities within their organizations and professions. However, their potential contributions towards programme implementation tended to be unrecognized both at the top and bottom of the policy implementation chain. These actors constantly struggled for recognition and used different mechanisms to position themselves alongside other actors within the programme that further complicated the relationships between different actors. This paper demonstrates that applying social theory can enable a better understanding of the complex relationship

  6. Plasma-surface interactions

    International Nuclear Information System (INIS)

    Goeckner, M J; Nelson, C T; Sant, S P; Jindal, A K; Joseph, E A; Zhou, B S; Padron-Wells, G; Jarvis, B; Pierce, R; Overzet, L J

    2008-01-01

    Materials processing is at a crossroads. Currently a large fraction of industrially viable materials processing is via plasmas. Until recently it has been economical to just examine the influence the plasma properties on the desired surface processes and through this ultimately optimize manufacturing. For example, it is well known that the surface processes (etch or deposition), occur in the top few mono-layers of the surface. Thus, in film growth one requires that molecules from the gas-phase land and bond on the surface. However as processing has reached the nano-scale, development of viable processes has become more and more difficult. In part, this is because of all of the free parameters that exist in plasmas. To overcome this economic issue, tool vendors and semiconductor companies have turned to complex computational models of processing plasmas. For those models to work, one requires a through understanding of all of the gas-phase and surface-phase processes that are exhibited in plasmas. Unfortunately, these processes, particularly those at the surface, are not well understood. In this article we describe a viable model of the surface-phase based on cross sections for processes that occur. While originally developed of fluorocarbon systems, the model also appears to be applicable to hydrocarbon systems.

  7. Plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckner, M J; Nelson, C T; Sant, S P; Jindal, A K; Joseph, E A; Zhou, B S; Padron-Wells, G; Jarvis, B; Pierce, R; Overzet, L J [Department of Electrical Engineering, University of Texas at Dallas (United States)], E-mail: goeckner@utdallas.edu

    2008-10-01

    Materials processing is at a crossroads. Currently a large fraction of industrially viable materials processing is via plasmas. Until recently it has been economical to just examine the influence the plasma properties on the desired surface processes and through this ultimately optimize manufacturing. For example, it is well known that the surface processes (etch or deposition), occur in the top few mono-layers of the surface. Thus, in film growth one requires that molecules from the gas-phase land and bond on the surface. However as processing has reached the nano-scale, development of viable processes has become more and more difficult. In part, this is because of all of the free parameters that exist in plasmas. To overcome this economic issue, tool vendors and semiconductor companies have turned to complex computational models of processing plasmas. For those models to work, one requires a through understanding of all of the gas-phase and surface-phase processes that are exhibited in plasmas. Unfortunately, these processes, particularly those at the surface, are not well understood. In this article we describe a viable model of the surface-phase based on cross sections for processes that occur. While originally developed of fluorocarbon systems, the model also appears to be applicable to hydrocarbon systems.

  8. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : Understanding the basis of differential inhibition and the role of water

    Directory of Open Access Journals (Sweden)

    Mukhopadhayay Bishnu P

    2001-09-01

    Full Text Available Abstract Background This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. Results The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. Conclusion The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn...H2O....Sn of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design.

  9. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    International Nuclear Information System (INIS)

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-01-01

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  10. Plasma in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1982-10-01

    Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium

  11. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  12. The application of the constants of motion to nonlinear stationary waves in complex plasmas: a unified fluid dynamic viewpoint

    Science.gov (United States)

    McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.

    2004-08-01

    Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow

  13. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up

  14. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds.

    Science.gov (United States)

    Fang, Lingzhao; Sahana, Goutam; Ma, Peipei; Su, Guosheng; Yu, Ying; Zhang, Shengli; Lund, Mogens Sandø; Sørensen, Peter

    2017-08-10

    A better understanding of the genetic architecture underlying complex traits (e.g., the distribution of causal variants and their effects) may aid in the genomic prediction. Here, we hypothesized that the genomic variants of complex traits might be enriched in a subset of genomic regions defined by genes grouped on the basis of "Gene Ontology" (GO), and that incorporating this independent biological information into genomic prediction models might improve their predictive ability. Four complex traits (i.e., milk, fat and protein yields, and mastitis) together with imputed sequence variants in Holstein (HOL) and Jersey (JER) cattle were analysed. We first carried out a post-GWAS analysis in a HOL training population to assess the degree of enrichment of the association signals in the gene regions defined by each GO term. We then extended the genomic best linear unbiased prediction model (GBLUP) to a genomic feature BLUP (GFBLUP) model, including an additional genomic effect quantifying the joint effect of a group of variants located in a genomic feature. The GBLUP model using a single random effect assumes that all genomic variants contribute to the genomic relationship equally, whereas GFBLUP attributes different weights to the individual genomic relationships in the prediction equation based on the estimated genomic parameters. Our results demonstrate that the immune-relevant GO terms were more associated with mastitis than milk production, and several biologically meaningful GO terms improved the prediction accuracy with GFBLUP for the four traits, as compared with GBLUP. The improvement of the genomic prediction between breeds (the average increase across the four traits was 0.161) was more apparent than that it was within the HOL (the average increase across the four traits was 0.020). Our genomic feature modelling approaches provide a framework to simultaneously explore the genetic architecture and genomic prediction of complex traits by taking advantage of

  15. Osteosarcoma models : understanding complex disease

    NARCIS (Netherlands)

    Mohseny, Alexander Behzad

    2012-01-01

    A mesenchymal stem cell (MSC) based osteosarcoma model was established. The model provided evidence for a MSC origin of osteosarcoma. Normal MSCs transformed spontaneously to osteosarcoma-like cells which was always accompanied by genomic instability and loss of the Cdkn2a locus. Accordingly loss of

  16. Stimulation of Slack K+ channels alters mass at the plasma membrane by triggering dissociation of a phosphatase-regulatory complex

    Science.gov (United States)

    Fleming, Matthew R.; Brown, Maile R.; Kronengold, Jack; Zhang, Yalan; Jenkins, David P.; Barcia, Gulia; Nabbout, Rima; Bausch, Anne E.; Ruth, Peter; Lukowski, Robert; Navaratnam, Dhasakumar S.; Kaczmarek, Leonard K.

    2016-01-01

    Summary Human mutations in the cytoplasmic C-terminal domain of Slack sodium-activated potassium (KNa) channels result in childhood epilepsy with severe intellectual disability. Slack currents can be increased by pharmacological activators or by phosphorylation of a Slack C-terminal residue by protein kinase C. Using an optical biosensor assay, we find that Slack channel stimulation in neurons or transfected cells produces loss of mass near the plasma membrane. Slack mutants associated with intellectual disability fail to trigger any change in mass. The loss of mass results from the dissociation of the protein phosphatase 1 (PP1) targeting protein, Phactr-1, from the channel. Phactr1 dissociation is specific to wild-type Slack channels and is not observed when related potassium channels are stimulated. Our findings suggest that Slack channels are coupled to cytoplasmic signaling pathways, and that dysregulation of this coupling may trigger the aberrant intellectual development associated with specific childhood epilepsies. PMID:27545877

  17. Stimulation of Slack K+ Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex

    Directory of Open Access Journals (Sweden)

    Matthew R. Fleming

    2016-08-01

    Full Text Available Human mutations in the cytoplasmic C-terminal domain of Slack sodium-activated potassium (KNa channels result in childhood epilepsy with severe intellectual disability. Slack currents can be increased by pharmacological activators or by phosphorylation of a Slack C-terminal residue by protein kinase C. Using an optical biosensor assay, we find that Slack channel stimulation in neurons or transfected cells produces loss of mass near the plasma membrane. Slack mutants associated with intellectual disability fail to trigger any change in mass. The loss of mass results from the dissociation of the protein phosphatase 1 (PP1 targeting protein, Phactr-1, from the channel. Phactr1 dissociation is specific to wild-type Slack channels and is not observed when related potassium channels are stimulated. Our findings suggest that Slack channels are coupled to cytoplasmic signaling pathways and that dysregulation of this coupling may trigger the aberrant intellectual development associated with specific childhood epilepsies.

  18. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  19. Terbutaline causes immobilization of single β2-adrenergic receptor-ligand complexes in the plasma membrane of living A549 cells as revealed by single-molecule microscopy

    Science.gov (United States)

    Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns

    2011-02-01

    G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.

  20. An observation on the quality of interfaces in order to understand the complexity and coherence of informal settlement: A study on Tamansari Kampung in Bandung

    Science.gov (United States)

    Sawira, S.; Rahman, T.

    2018-05-01

    Self-organized settlements are formed within the limited capacity of the inhabitants with or without the Government’s interventions. This pattern is mostly found in the informal settlements, where occupants are the planners who are guided by their needs, limited resources and vernacular knowledge about place making. Understanding the process of its development and transformation could be a way of unfolding the complexity it offers to a formal urban setting. To identify the patterns of adaptation process, a study of morphological elements (i.e. house form, streets) could be a possible way. A case study of an informal settlement (Kampung of Tamansari, Bandung in Indonesia) has been taken to dissect these elements. Two of important components of the study area: house forms and streets created the first layer of urban fabric. High population density demanded layers of needs and activities which eventually guided the multifunctional characteristics of streets and house forms. Thus, streets create dialogue with the complex built forms-often known as interface is the key element to understand the underneath order of Tamansari. Here interface can be divided into two categories depending on their scale – small and large. Small scale interfaces are comprised of small elements such as, extended platform, fence, steps, low height wall, blank wall and elements to set above, set forth, set over in house forms. These components help to create and define semipublic spaces in the settlement. These spaces could be visually and physically interactive or no interactive which result into active or inactive spaces respectively. Small scale interfaces are common features of the settlement, whereas large scale interfaces are placed at strategic locations and act as active spaces. Connecting bridges, open spaces and contours often create special dialogue within and beyond the study area. Interfaces cater diversity in the settlement by creating hierarchy of spaces. Sense of belonging

  1. Experimental plasma physics

    International Nuclear Information System (INIS)

    Dreicer, H.; Banton, M.E.; Ingraham, J.C.; Wittman, F.; Wright, B.L.

    1976-01-01

    The Experimental Plasma Physics group's main efforts continue to be directed toward the understanding of the mechanisms of electromagnetic energy absorption in a plasma, and the resultant plasma heating and energy transport. The high-frequency spectrum of plasma waves parametrically excited by the microwave signal at high powers has been measured. The absorption of a small test microwave signal in a plasma made parametrically unstable by a separate high-power driver microwave signal was also studied

  2. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane.

    Science.gov (United States)

    Mills, Kate M; Brocardo, Mariana G; Henderson, Beric R

    2016-02-01

    Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations. © 2016 Mills et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Plasma clearance of sup(99m)Tc-N/2,4-dimethyl-acetanilido/iminodiacetate complex as a measure of parenchymal liver damage

    International Nuclear Information System (INIS)

    Studniarek, M.; Durski, K.; Liniecki, J.; Akademia Medyczna, Lodz

    1983-01-01

    Fifty-two patients were studied with various diseases affecting liver parenchyma. Any disorders of bile transport were excluded on the basis of dynamic liver scintigraphy using intravenously injected N/2,4-dimethyl acetanilid/iminodiacetate sup(99m)Tc complex (HEPIDA). The activity concentration of sup(99m)Tc-HEPIDA in plasma was measured from 5 through 60 min post injection. Clearance of the substance (Clsub(B)) was calculated from blood plasma disappearance curves and compared with results of 13 laboratory tests used conventionally for assessment of damage of the liver and its functional capacity; age and body weight was also included in the analysis. Statistical relations were studied using linear regression analysis of two variables, multiple regression analysis as well as multidimensional analysis of variance. It was demonstrated that sup(99m)Tc-HEPIDA clearance is a simple, accurate and repeatable measure of liver parenchyma damage. In males, values of Clsub(B) above 245 ml min - 1 /1.73 m 2 exclude hepatic damage with high probability; values below 195 ml min - 1 /1.73 m 2 indicate evident impairment of liver parenchyma function. (orig.) [de

  4. Surface modification of coronary artery stent by Ti-O/Ti-N complex film coating prepared with plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Huang, N.; Leng, Y.X.; Yang, P.

    2006-01-01

    This paper reported the work of surface coating of Ti-O/Ti-N complex films on coronary stents by means of the plasma immersion ion implantation/deposition process. The deformation behavior of the Ti-O/Ti-N coated stainless steel stents was investigated. In vivo investigation of the anticoagulation behavior of Ti-O coated coronary stents was also performed. The results of mechanical characterization of the Ti-O/Ti-N coated stents show that the film has strong binding strength, and to some extent the ability to withstand plastic deformation. The biological response behavior of the coated stent surface was significantly different from the uncoated. The results of implantation of stents into rabbit ventral aorta show no thrombus formation on the surfaces of the Ti-O coated stents, although serious coagulation had occurred on the surfaces of unmodified stents over a period of 4 weeks under conditions with no anticoagulant

  5. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  6. Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex.

    Science.gov (United States)

    Fleming, Matthew R; Brown, Maile R; Kronengold, Jack; Zhang, Yalan; Jenkins, David P; Barcia, Gulia; Nabbout, Rima; Bausch, Anne E; Ruth, Peter; Lukowski, Robert; Navaratnam, Dhasakumar S; Kaczmarek, Leonard K

    2016-08-30

    Human mutations in the cytoplasmic C-terminal domain of Slack sodium-activated potassium (KNa) channels result in childhood epilepsy with severe intellectual disability. Slack currents can be increased by pharmacological activators or by phosphorylation of a Slack C-terminal residue by protein kinase C. Using an optical biosensor assay, we find that Slack channel stimulation in neurons or transfected cells produces loss of mass near the plasma membrane. Slack mutants associated with intellectual disability fail to trigger any change in mass. The loss of mass results from the dissociation of the protein phosphatase 1 (PP1) targeting protein, Phactr-1, from the channel. Phactr1 dissociation is specific to wild-type Slack channels and is not observed when related potassium channels are stimulated. Our findings suggest that Slack channels are coupled to cytoplasmic signaling pathways and that dysregulation of this coupling may trigger the aberrant intellectual development associated with specific childhood epilepsies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  8. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  9. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K 3 Fe(CN) 6 in plumbane generation. • Clarified the controversial aspects in the mechanism of K 3 Fe(CN) 6 enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K 3 Fe(CN) 6 and K 4 Fe(CN) 6 as new additives. - Absract: To understand the formation of plumbane in the Pb II -NaBH 4 -K 3 Fe(CN) 6 system, the intermediate products produced in the reaction of lead(II) and NaBH 4 in the presence of K 3 Fe(CN) 6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH 4 ; (2) the black Pb is oxidized by K 3 Fe(CN) 6 to form Pb 2 [Fe(CN) 6 ], which further reacts with NaBH 4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K 3 Fe(CN) 6 to form more Pb 2 [Fe(CN) 6 ] complex, which would produce more plumbane. In short, the black Pb and Pb 2 [Fe(CN) 6 ] complex are the key intermediate products for the formation of plumbane in the Pb II -NaBH 4 -K 3 Fe(CN) 6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L −1 . The linearity range of lead was found between 0.3 and 50,000 μg L −1 with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n = 5) for adding 10 μg L −1 lead into the milk sample

  10. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  11. Turbulence measurements in fusion plasmas

    International Nuclear Information System (INIS)

    Conway, G D

    2008-01-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  12. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  13. ''Dusty plasmas''

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bingham, R.; Angelis, U. de

    1989-09-01

    The field of ''dusty plasmas'' promises to be a very rewarding topic of research for the next decade or so, not only from the academic point of view where the emphasis is on developing the theory of the often complex collective and non-linear processes, but also from the point of view of applications in astrophysics, space physics, environmental and energy research. In this ''comment'' we should like to sketch the current development of this fast growing and potentially very important research area. We will discuss the new features of ''dusty'' plasmas in the most general terms and then briefly mention some successful applications and effects which have already been examined. (author)

  14. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  15. Understanding disruptions in tokamaksa)

    Science.gov (United States)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  16. Augmentation and Control of Burn Rates in Plasma Devices

    National Research Council Canada - National Science Library

    Bourham, Mohamed

    1999-01-01

    Interaction of electrothermal plasmas with solid propellants necessitates thorough understanding of plasma-propellant interface physics, momentum and energy transfer, plasma flow regimes, and mixing processes...

  17. Understanding Maple

    CERN Document Server

    Thompson, Ian

    2016-01-01

    Maple is a powerful symbolic computation system that is widely used in universities around the world. This short introduction gives readers an insight into the rules that control how the system works, and how to understand, fix, and avoid common problems. Topics covered include algebra, calculus, linear algebra, graphics, programming, and procedures. Each chapter contains numerous illustrative examples, using mathematics that does not extend beyond first-year undergraduate material. Maple worksheets containing these examples are available for download from the author's personal website. The book is suitable for new users, but where advanced topics are central to understanding Maple they are tackled head-on. Many concepts which are absent from introductory books and manuals are described in detail. With this book, students, teachers and researchers will gain a solid understanding of Maple and how to use it to solve complex mathematical problems in a simple and efficient way.

  18. A Rab11A/myosin Vb/Rab11-FIP2 complex frames two late recycling steps of langerin from the ERC to the plasma membrane.

    Science.gov (United States)

    Gidon, Alexandre; Bardin, Sabine; Cinquin, Bertrand; Boulanger, Jerome; Waharte, François; Heliot, Laurent; de la Salle, Henri; Hanau, Daniel; Kervrann, Charles; Goud, Bruno; Salamero, Jean

    2012-06-01

    A large body of knowledge relating to the constitution of Rab GTPase/Rab effector complexes and their impact on both membrane domain organization and overall membrane trafficking has been built up in recent years. However in the context of the live cell there are still many questions that remain to be answered, such as where and when these complexes assemble and where they perform their primary function(s). We describe here the dynamic processes that take place in the final steps of the Rab11A dependent recycling pathway, in the context of the membrane platform constituted by Myosin Vb, Rab11A, and Rab11-FIP2. We first confirm that a series of previously reported observations obtained during the study of a number of trafficking cargoes also apply to langerin. Langerin is a cargo molecule that traffics through Rab11A-positive membrane domains of the endosomal recycling pathway. In order to explore the relative dynamics of this set of partners, we make extensive use of a combinatory approach of Live-FRET, fast FRAP video, fast confocal and TIRF microscopy modalities. Our data show that the Myosin Vb/Rab11A/Rab11-FIP2 platform is spatially involved in the regulation of langerin trafficking at two distinct sites within live cells, first at the sorting site in the endosomal recycling compartment (ERC) where transport vesicles are formed, and subsequently, in a strict time-defined order, at the very late stage of docking/tethering and fusion of these langerin recycling vesicles to the plasma membrane. © 2012 John Wiley & Sons A/S.

  19. Study of the nucleotide binding site of the yeast Schizosaccharomyces pombe plasma membrane H+-ATPase using formycin triphosphate-terbium complex

    International Nuclear Information System (INIS)

    Ronjat, M.; Lacapere, J.J.; Dufour, J.P.; Dupont, Y.

    1987-01-01

    The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H 2 O by D 2 O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex

  20. On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry

    International Nuclear Information System (INIS)

    Ortega, Claudia; Cerutti, Soledad; Silva, Maria F.; Olsina, Roberto A.; Martinez, Luis D.

    2003-01-01

    An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L -1 nitric acid at a flow rate of 1.5 mL min -1 , directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 μg L -1 . The precision for 10 replicate determinations at the 2.0 μg L -1 Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 μg L -1 . The method was successfully applied to the determination of dysprosium in urine. (orig.)

  1. Fundamental Processes in Plasmas. Final report

    International Nuclear Information System (INIS)

    O'Neil, Thomas M.; Driscoll, C. Fred

    2009-01-01

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN

  2. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  3. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    International Nuclear Information System (INIS)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products

  4. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Tan, Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Badve, Aditya [Business and Biology, The University of North Carolina at Chapel Hill, NC 27514 (United States); Dong, Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Park, Chanhee; Kim, Cheol Sang [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States)

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products.

  5. Diffusion in a cylindrical plasma

    International Nuclear Information System (INIS)

    Reid, J.

    1977-04-01

    Modern plasma containment devices, such as the Tokamak, employ magnetic fields which are toroidal in shape. They are able to contain a plasma for times approaching a second. Magnetohydrodynamics (M.H.D.) is one of the most attractive theoretical methods for understanding their behaviour, but the equations involved are complex non-linear partial differential equations, and analytic methods are not available for their solution. Numerical methods must be used. A model system of equations representing a cylindrical plasma with no axial variation is considered. It is convenient to introduce a flux function psi for the component of the magnetic field directed around the axis of the cylinder, called the poloidal field, and the M.H.D. equations are rewritten in terms of psi. This produces a set of highly coupled equations describing the evolution of the flux function, the axial field and the plasma pressure. Various steps are taken to gain a better understanding of the properties of these equations. (author)

  6. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Biyang, E-mail: dengby16@163.com; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K{sub 3}Fe(CN){sub 6} in plumbane generation. • Clarified the controversial aspects in the mechanism of K{sub 3}Fe(CN){sub 6} enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K{sub 3}Fe(CN){sub 6} and K{sub 4}Fe(CN){sub 6} as new additives. - Absract: To understand the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system, the intermediate products produced in the reaction of lead(II) and NaBH{sub 4} in the presence of K{sub 3}Fe(CN){sub 6} were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH{sub 4}; (2) the black Pb is oxidized by K{sub 3}Fe(CN){sub 6} to form Pb{sub 2}[Fe(CN){sub 6}], which further reacts with NaBH{sub 4} to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K{sub 3}Fe(CN){sub 6} to form more Pb{sub 2}[Fe(CN){sub 6}] complex, which would produce more plumbane. In short, the black Pb and Pb{sub 2}[Fe(CN){sub 6}] complex are the key intermediate products for the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L{sup −1}. The linearity range of lead was found between 0.3 and 50,000 μg L{sup −1} with correlation coefficient of 0

  7. Understanding corrosion behavior of Mg–Zn–Ca alloys from subcutaneous mouse model: Effect of Zn element concentration and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Tan, Zongqing [Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Xu, Zhigang [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Dong, Zhongyun [Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States)

    2015-03-01

    Mg–Zn–Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg–xZn–0.3Ca (x = 1, 3 and 5 wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg–xZn–0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca{sub 2}Mg{sub 6}Zn{sub 3} formed along grain boundaries, 2) the corrosion rate of Mg–xZn–0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH){sub 2}), hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), and magnesite (MgCO{sub 3}·3H{sub 2}O). - Highlights: • Effects of PEO and Zn concentration in Mg–xZn–0.3Ca alloys on biodegradation • Corrosion rate of Mg–xZn–0.3Ca alloys increases with increasing Zn concentration. • Plasma electrolytic oxidation retards the biodegradation of Mg–xZn–0.3Ca alloys.

  8. Unraveling the Molecular Complexity of O-Glycosylated Endogenous (N-Terminal) pro-B-Type Natriuretic Peptide Forms in Blood Plasma of Patients with Severe Heart Failure.

    Science.gov (United States)

    Halfinger, Bernhard; Hammerer-Lercher, Angelika; Amplatz, Benno; Sarg, Bettina; Kremser, Leopold; Lindner, Herbert H

    2017-01-01

    Currently, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and its physiologically active counterpart, BNP, are most frequently used as biomarkers for diagnosis, prognosis, and disease monitoring of heart failure (HF). Commercial NT-proBNP and BNP immunoassays cross-react to varying degrees with unprocessed proBNP, which is also found in the circulation. ProBNP processing and immunoassay response are related to O-linked glycosylation of NT-proBNP and proBNP. There is a clear and urgent need to identify the glycosylation sites in the endogenously circulating peptides requested by the community to gain further insights into the different naturally occurring forms. The glycosylation sites of (NT-) proBNP (NT-proBNP and/or proBNP) were characterized in leftovers of heparinized plasma samples of severe HF patients (NT-proBNP: >10000 ng/L) by using tandem immunoaffinity purification, sequential exoglycosidase treatment for glycan trimming, β-elimination and Michael addition chemistry, as well as high-resolution nano-flow liquid chromatography electrospray multistage mass spectrometry. We describe 9 distinct glycosylation sites on circulating (NT-) proBNP in HF patients. Differentially glycosylated variants were detected based on highly accurate mass determination and multistage mass spectrometry. Remarkably, for each of the identified proteolytic glycopeptides, a nonglycosylated form also was detectable. Our results directly demonstrate for the first time a rather complex distribution of the endogenously circulating glycoforms by mass spectrometric analysis in HF patients, and show 9 glycosites in human (NT-) proBNP. This information may also have an impact on commercial immunoassays applying antibodies specific for the central region of (NT-) proBNP, which detect mostly nonglycosylated forms. © 2016 American Association for Clinical Chemistry.

  9. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b.

    Science.gov (United States)

    Tran, Quang-Kim; VerMeer, Mark; Burgard, Michelle A; Hassan, Ali B; Giles, Jennifer

    2015-05-22

    The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca(2+)-ATPase (PMCA) is essential for removal of cytoplasmic Ca(2+) and for shaping the time courses of Ca(2+)-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca(2+) extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17β-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca(2+) signaling and GPER/GPR30-mediated activities. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A Retrospective Propensity Score-Matched Early Thromboembolic Event Analysis of Prothrombin Complex Concentrate vs Fresh Frozen Plasma for Warfarin Reversal Prior to Emergency Neurosurgical Procedures.

    Science.gov (United States)

    Agarwal, Prateek; Abdullah, Kalil G; Ramayya, Ashwin G; Nayak, Nikhil R; Lucas, Timothy H

    2017-06-29

    Reversal of therapeutic anticoagulation prior to emergency neurosurgical procedures is required in the setting of intracranial hemorrhage. Multifactor prothrombin complex concentrate (PCC) promises rapid efficacy but may increase the probability of thrombotic complications compared to fresh frozen plasma (FFP). To compare the rate of thrombotic complications in patients treated with PCC or FFP to reverse therapeutic anticoagulation prior to emergency neurosurgical procedures in the setting of intracranial hemorrhage at a level I trauma center. Sixty-three consecutive patients on warfarin therapy presenting with intracranial hemorrhage who received anticoagulation reversal prior to emergency neurosurgical procedures were retrospectively identified between 2007 and 2016. They were divided into 2 cohorts based on reversal agent, either PCC (n = 28) or FFP (n = 35). The thrombotic complications rates within 72 h of reversal were compared using the χ 2 test. A multivariate propensity score matching analysis was used to limit the threat to interval validity from selection bias arising from differences in demographics, laboratory values, history, and clinical status. Thrombotic complications were uncommon in this neurosurgical population, occurring in 1.59% (1/63) of treated patients. There was no significant difference in the thrombotic complication rate between groups, 3.57% (1/28; PCC group) vs 0% (0/35; FFP group). Propensity score matching analysis validated this finding after controlling for any selection bias. In this limited sample, thrombotic complication rates were similar between use of PCC and FFP for anticoagulation reversal in the management of intracranial hemorrhage prior to emergency neurosurgical procedures. Copyright © 2017 by the Congress of Neurological Surgeons

  11. Information Theory and Plasma Turbulence

    International Nuclear Information System (INIS)

    Dendy, R. O.

    2009-01-01

    Information theory, applied directly to measured signals, yields new perspectives on, and quantitative knowledge of, the physics of strongly nonlinear and turbulent phenomena in plasmas. It represents a new and productive element of the topical research programmes that use modern techniques to characterise strongly nonlinear signals from plasmas, and that address global plasma behaviour from a complex systems perspective. We here review some pioneering studies of mutual information in solar wind and magnetospheric plasmas, using techniques tested on standard complex systems.

  12. Coherent control of plasma dynamics

    Science.gov (United States)

    He, Zhaohan

    2014-10-01

    subsequently produces electron beams with a different divergence. The proof-of-principle demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications. This study should also enable a significantly improved understanding of the complex dynamics of laser plasma interactions. This work was supported by DARPA under Contract No. N66001-11-1-4208, the NSF under Contract No. 0935197 and MCubed at the University of Michigan.

  13. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    International Nuclear Information System (INIS)

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-01-01

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  14. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  15. Plasma physics: innovation in energy and industrial technology

    International Nuclear Information System (INIS)

    Harris, J.H.

    2000-01-01

    Full text: Plasmas-ionised gases-are truly ubiquitous. More than 99% of the matter in the universe is in the plasma state. All of the matter that comprises the Earth, and all of the energy that powers it, has been processed through plasma fusion reactions in stars. Plasmas also play a crucial role in the Earth's atmosphere, which screens out harmful radiation, and make long distance radio propagation possible. While the study of plasma physics was originally motivated by astrophysics, the discipline has grown to address terrestrial concerns. These include lighting, welding, the switching of large electrical currents, the processing of materials such as semiconductors, and the quest to build fusion power reactors artificial stars for low-emissions generation of electricity from hydrogen isotopes. Plasma physics is fundamentally multi-disciplinary. It requires understanding not only of the complex collective behaviour of ionised gases in unusual conditions, but also knowledge of the atomic and nuclear physics that determines how plasmas are formed and maintained, and the specialised engineering and instrumentation of the mechanical and electromagnetic containers needed to confine plasmas on Earth. These characteristics make plasma physics a fertile breeding ground for imagination and innovation. This paper draws together examples of innovation stimulated by plasma physics research in the areas of energy, materials, communications, and computation

  16. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    Science.gov (United States)

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  17. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  20. Understanding the Data Complexity continuum to reduce data management costs and increase data usability through partnerships with the National Centers for Environmental Information

    Science.gov (United States)

    Mesick, S.; Weathers, K. W.

    2017-12-01

    Data complexity can be seen as a continuum from complex to simple. The term data complexity refers to data collections that are disorganized, poorly documented, and generally do not follow best data management practices. Complex data collections are challenging and expensive to manage. Simplified collections readily support automated archival processes, enhanced discovery and data access, as well as production of services that make data easier to reuse. In this session, NOAA NCEI scientific data stewards will discuss the data complexity continuum. This talk will explore data simplification concepts, methods, and tools that data managers can employ which may offer more control over data management costs and processes, while achieving policy goals for open data access and ready reuse. Topics will include guidance for data managers on best allocation of limited data management resources; models for partnering with NCEI to accomplish shared data management goals; and will demonstrate through case studies the benefits of investing in documentation, accessibility, and services to increase data value and return on investment.

  1. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    Science.gov (United States)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  2. Understanding the Effects of Team Cognition Associated with Complex Engineering Tasks: Dynamics of Shared Mental Models, Task-SMM, and Team-SMM

    Science.gov (United States)

    Lee, Miyoung; Johnson, Tristan E.

    2008-01-01

    This study investigates how shared mental models (SMMs) change over time in teams of students in a manufacturing engineering course. A complex ill-structured project was given to each team. The objective of the team project was to analyze, test, and propose ways to improve their given manufactured product. Shared mental models were measured in…

  3. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: A Quasi-Experimental Study

    Science.gov (United States)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2018-01-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A…

  4. The Nature of Conceptual Understanding in Biomedicine: The Deep Structure of Complex Ideas and the Development of Misconceptions. Technical Report No. 440.

    Science.gov (United States)

    Feltovich, Paul J.; And Others

    This report presents a general framework for studying the acquisition and cognitive representation of biomedical concepts and analyzing the nature and development of misconceptions. The central approach of the report is a selective and highly concentrated analysis of the true nature of clusters of complex concepts and the manner in which they are…

  5. Plasma engineering: a perspective

    International Nuclear Information System (INIS)

    Gralnick, S.L.

    1978-01-01

    This review paper will present the authors perspective of the field of Plasma Engineering as it has evolved over the preceding five years. This embrionic discipline has grown in that period of time to the point where it is sufficiently mature to become part of the curriculum, and a speciality within, the discipline of Nuclear Engineering. Plasma Engineering can be distinguished from the underlying science of plasma physics in that in the pursuit of the latter, our goal is the understanding of the fundamental processes governing the behavior of plasmas while the former discipline seeks the embodiment of these concepts in useful devices. Consequent to this goal, the plasma engineer, of necessity, is concerned with the interfaces between a plasma configuration and the device by which it is produced and maintained. These interface problems, often referred to as kitchen physics are multidisciplinary in nature, and their solution requires careful attention to both plasma physics and machine engineering detail

  6. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  7. Instabilities, turbulence and transport in a magnetized plasma; Instabilites, turbulence et transport dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  8. A Characeae Cells Plasma Membrane as a Model for Selection of Bioactive Compounds and Drugs: Interaction of HAMLET-Like Complexes with Ion Channels of Chara corallina Cells Plasmalemma.

    Science.gov (United States)

    Kataev, Anatoly; Zherelova, Olga; Grishchenko, Valery

    2016-12-01

    Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca 2+ and Cl - transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca 2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca 2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La-OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca 2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.

  9. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners with Bilateral and with Hearing-Preservation Cochlear Implants

    Science.gov (United States)

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.

    2016-01-01

    Purpose: To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods: Eleven bilateral listeners with MED-EL…

  10. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya; Samantaray, Manoja; Tretiakov, Mykyta; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2017-01-01

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2

  11. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  12. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  13. Colloque S&T Symposium 2008: Understanding the Human Dimension in 21st Century Conflict/Warfare: The Complexities of Human-with-Human Relationships

    Science.gov (United States)

    2008-08-01

    intentionally left blank. DRDC Corporate TR [2008-004] v Executive summary Colloque S&T Symposium 2008: The Complexities of Human...mettaient en jeu notre capacité ou notre incapacité de déterminer le prochain choc radical et la manière dont la communauté y réagit. Il a aussi...iii Executive summary

  14. ECR Plasma Photos

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2009-01-01

    Complete text of publication follows. In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The effects of the main external setting parameters (gas pressure, gas composition, magnetic field, microwave power, microwave frequency) were studied to the shape, color and structure of the plasma. The double frequency mode (9+14 GHz) was also realized and photos of this special 'star-in-star' shape plasma were recorded. A study was performed to analyze and understand the color of the ECR plasmas. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas. To our best knowledge our work is the first systematic study of ECR plasmas in the visible light region. When looking in the plasma chamber of an ECRIS we can see an axial image of the plasma (figure 1) in conformity with experimental setup. Most of the quantitative information was obtained through the summarised values of the Analogue Digital Unit (ADU) of pixels. By decreasing the strength of the magnetic trap we clearly observed that the brightness of the central part of the plasma gradually decreases, i.e. the plasma becomes more and more 'empty'. Figure 2 shows a photo series of ECR plasma at decreasing axial magnetic field. The radial size of the plasma increased because of the ascendant resonant zone. By increasing the power of the injected microwave an optimum (or at least saturation) was found in the brightness of the plasma. We found correlation between the gas dosing rates and plasma intensities. When sweeping the frequency of the microwave in a wide region

  15. Remedial action of matrices contaminated by cobalt with supercritical CO_2: contribution to the understanding of the complex formation mechanisms and to the diphasic transfers

    International Nuclear Information System (INIS)

    Gervais, Florence

    2001-01-01

    Soils rehabilitation using supercritical CO_2 seems an interesting alternative way to existing techniques. No effluents are generated during the supercritical fluid extraction, which is the main advantage of this process. In order to be extracted by this techniques, metals or radionuclides have to be complexed by suitable chelating agents. Beta-diketones and dithiocarbamates (fluorinated or not) have been chosen. The first part of this work deals with chemical equilibria mechanisms study in an aqueous phase. Experiments show a very weak cobalt complexation kinetics with acetylacetone. Moreover, this complex exhibit a hydrophilic behaviour. On the other hand, cobalt and dithiocarbamate instantaneously from a chelate which is very hydrophobic. Mass transfer between extracting and aqueous phases (hexane and SC CO_2) are also investigated. Supercritical CO_2 seems to have a greater affinity towards fluorinated beta-diketones than hexane. This tendency is confirmed by in situ commercial chelates (fluorinates or not) solubility measurements using X-ray absorption spectroscopy. However, cobalt-beta-diketonates are hydrophilic because of their partial hydration. This kind of chelating agents is not suitable to cobalt supercritical fluid extraction from an aqueous phase. Inversely, distribution coefficients of hydrophobic dithiocarbamates are higher than beta-diketonates, whatever the extracting solvent is. Metals extraction from an aqueous matrix seems possible with these chelating agents. (author) [fr

  16. Complex polarimetric and spectral techniques in diagnostics of blood plasma of patients with ovarian cancer as a preliminary stage molecular genetic screening

    Science.gov (United States)

    Grzegorzewski, B.; Peresunko, O. P.; Yermolenko, S. B.

    2018-01-01

    This work is devoted to the substantiation and selection of patients with ovarian cancer (OC) for the purpose of conducting expensive molecular genetic studies on genotyping. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues. Obtained results showed that the use of spectrophotometry in the range of 1000-3000 cm-1 allowed to establish quantitative parameters of the plasma absorption rate of blood of patients in the third group in different ranges, which would allow in the future to conduct an express analysis of the patient's condition (procedure screening) for further molecular-genetic typing on BRCA I and II.

  17. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  18. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  19. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  20. The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane.

    Science.gov (United States)

    Tanimura, Natsuko; Saitoh, Shin-Ichiroh; Ohto, Umeharu; Akashi-Takamura, Sachiko; Fujimoto, Yukari; Fukase, Koichi; Shimizu, Toshiyuki; Miyake, Kensuke

    2014-06-01

    TLR4/MD-2 senses lipid A, activating the MyD88-signaling pathway on the plasma membrane and the TRIF-signaling pathway after CD14-mediated TLR4/MD-2 internalization into endosomes. Monophosphoryl lipid A (MPL), a detoxified derivative of lipid A, is weaker than lipid A in activating the MyD88-dependent pathway. Little is known, however, about mechanisms underlying the attenuated activation of MyD88-dependent pathways. We here show that MPL was impaired in induction of CD14-dependent TLR4/MD-2 dimerization compared with lipid A. Impaired TLR4/MD-2 dimerization decreased CD14-mediated TNFα production. In contrast, MPL was comparable to lipid A in CD14-independent MyD88-dependent TNFα production and TRIF-dependent responses including cell surface CD86 up-regulation and IFNβ induction. Although CD86 up-regulation is dependent on TRIF signaling, it was induced by TLR4/MD-2 at the plasma membrane. These results revealed that the attenuated MPL responses were due to CD14-initiated responses at the plasma membrane, but not just to responses initiated by MyD88, that is, MPL was specifically unable to induce CD14-dependent TLR4/MD-2 dimerization that selectively enhances MyD88-mediated responses at the plasma membrane. © The Japanese Society for Immunology. 2013. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  2. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of NiII-LnIII-WV Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    Science.gov (United States)

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni II -Ln III -W V trimetallics, [(CN) 7 W(CN)Ni(H 2 O)(valpn)Ln(H 2 O) 4 ]·H 2 O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy III and Tb III metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W V Ni II Ln III ] core structure, [(CN) 7 W(CN)Ni(dmf)(valdmpn)Ln(dmf) 4 ]·H 2 O (Ln = Gd III 7, Tb III 8a, Dy III 9, Ho III 10), [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Tb(dmf) 2.5 (H 2 O) 1.5 ]·H 2 O·0.5dmf 8b, and [(CN) 7 W(CN)Ni(H 2 O)(valdmpn)Er(dmf) 3 (H 2 O) 1 ]·H 2 O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel

  3. Global numerical modeling of magnetized plasma in a linear device

    DEFF Research Database (Denmark)

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  4. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  5. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome

    OpenAIRE

    Moaddel, Ruin; Venkata, Swarajya Lakshmi Vattem; Tanga, Mary J.; Bupp, James E.; Green, Carol E.; Iyer, Lalitha; Furimsky, Anna; Goldberg, Michael E.; Torjman, Marc C.; Wainer, Irving W.

    2010-01-01

    A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in Complex Regional Pain Syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)-and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric ...

  6. Understanding the complex interplay of barriers to physical activity amongst black and minority ethnic groups in the United Kingdom: a qualitative synthesis using meta-ethnography.

    Science.gov (United States)

    Koshoedo, Sejlo A; Paul-Ebhohimhen, Virginia A; Jepson, Ruth G; Watson, Margaret C

    2015-07-12

    To conduct a meta-ethnographic analysis of qualitative studies to identify barriers to Black and Minority Ethnic (BME) individuals engaging in physical activity in the UK context. A qualitative synthesis using meta-ethnographic methods to synthesis studies of barriers to engaging in physical activity among BME groups in the UK. A comprehensive search strategy of multiple databases was employed to identify qualitative research studies published up to October 2012. The eleven searched databases included ASSIA, MEDLINE, EMBASE, CINAHL, Health Technology Assessment (HTA), NHS Scotland Library, Physical Activity Health Alliance (PAHA), PsyINFO, Social Services Abstract, Sport discuss and Web of Science. The Noblit and Hare's meta-ethnographic approach was undertaken to develop an inductive and interpretive form of knowledge synthesis. Fourteen papers met the inclusion criteria. The synthesis indicated that barriers to physical activity among BME individuals were influenced by four main concepts: perceptions; cultural expectations; personal barriers; and factors limiting access to facilities. BME individuals had different understandings of physical activity were influenced by migration history, experiences, cultural and health beliefs. This in turn may have a disempowering effect on BME individuals in terms of adopting or maintaining physical activity. These barriers to physical activity were explained at a higher conceptual level by a socio-ecological model. The social construct 'individual perception and understanding of physical activity' was particularly relevant to theoretical models and interventions. Interventions to promote engagement with physical activity need to address perceptions of this behaviour. The elicited concepts and contexts could be used to enhance the development of tailored effective health promotion interventions for BME individuals.

  7. Advanced computations in plasma physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2002-01-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  8. Understanding the complexity of trans fatty acid reduction in the American diet: American Heart Association Trans Fat Conference 2006: report of the Trans Fat Conference Planning Group.

    Science.gov (United States)

    Eckel, Robert H; Borra, Susan; Lichtenstein, Alice H; Yin-Piazza, Shirley Y

    2007-04-24

    A 2-day forum was convened to discuss the current status and future implications of reducing trans fatty acids without increasing saturated fats in the food supply while maintaining functionality and consumer acceptance of packaged, processed, and prepared foods. Attendees represented the agriculture and oilseed industry and oil processing, food manufacturing, food service, government, food technology, and health and nutrition disciplines. Presentations included food science behind fatty acid technology, the health science of dietary fatty acids, alternatives to trans fatty acids, and the use of alternatives in food manufacturing and food service. The reduction of trans fatty acids in the food supply is a complex issue involving interdependent and interrelated stakeholders. Actions to reduce trans fatty acids need to carefully consider both intended and unintended consequences related to nutrition and public health. The unintended consequence of greatest concern is that fats and oils high in saturated fats, instead of the healthier unsaturated fats, might be used to replace fats and oils with trans fatty acids. Many different options of alternative oils and fats to replace trans fatty acids are available or in development. Decisions on the use of these alternatives need to consider availability, health effects, research and development investments, reformulated food quality and taste, supply-chain management, operational modifications, consumer acceptance, and cost. The conference demonstrated the value of collaboration between the food industry and health and nutrition professionals, and this conference model should be used to address other food development, processing, and/or technology issues.

  9. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  10. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F. [J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nishida, K.; Mochizuki, S.; Hatayama, A. [Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Mattei, S.; Lettry, J. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  11. The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It

    Directory of Open Access Journals (Sweden)

    Heather Armstrong

    2018-03-01

    Full Text Available Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.

  12. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  13. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  14. Time-dependent changes in extra-domain A-fibronectin concentration and relative amounts of fibronectin-fibrin complexes in plasma of patients with peripheral arterial disease after endovascular revascularisation.

    Science.gov (United States)

    Pupek, Małgorzata; Krzyżanowska-Gołąb, Dorota; Kotschy, Daniel; Witkiewicz, Wojciech; Kwiatkowska, Wiesława; Kotschy, Maria; Kątnik-Prastowska, Iwona

    2018-03-13

    Fibronectin (FN) may be involved in time- and stage-dependent and inter-related controlled processes of inflammation, coagulation, and wound healing accompanying peripheral arterial disease (PAD). In the present study, FN and FN-containing extra-domain A (EDA-FN), macromolecular FN-fibrin complexes, and FN monomer were analysed in the plasma of 142 PAD patients, including 37 patients with restenosis, for 37 months after revascularisation. FN concentration increased significantly in the plasma of PAD patients within 7 to 12 months after revascularisation, whereas the high concentration of EDA-FN was maintained up to 24 months, significantly higher in the group 7 to 12 months after revascularisation with recurrence of stenosis and lower in the PAD groups 1 to 3 months and 4 to 6 months after revascularisation with comorbid diabetes and ulceration, respectively. The relative amounts of FN-fibrin complexes up to 1600 kDa and FN monomer were significantly higher, within intervals of 4 to 24 months and 4 to 6 months after revascularisation, respectively. Moreover, the relative amounts of 750 to 1600 kDa FN-fibrin complexes within 13 to 24 months after revascularisation were higher in comparison with those in the group without restenosis. In conclusion, high levels of EDA-FN and FN-fibrin complexes could have potential diagnostic value in the management of PAD patients after revascularisation, predicting restenosis risk. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Understanding the visual resource

    Science.gov (United States)

    Floyd L. Newby

    1971-01-01

    Understanding our visual resources involves a complex interweaving of motivation and cognitive recesses; but, more important, it requires that we understand and can identify those characteristics of a landscape that influence the image formation process. From research conducted in Florida, three major variables were identified that appear to have significant effect...

  16. Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine

    Science.gov (United States)

    Neyts, Erik C.; Yusupov, Maksudbek; Verlackt, Christof C.; Bogaerts, Annemie

    2014-07-01

    Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficult—if not impossible—to obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasma-biomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.

  17. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  18. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Liu, C.S.; Sagdeev, R.; Antonsen, T.; Drake, J.; Hassma, A.; Guzdar, P.N.

    1995-12-01

    This progress report reports work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE from 1992-1995. The purpose of this program has been to promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport and to fully utilize the scientific expertise of Russian fusion and plasma community in collaboration with our group to address outstanding fusion theory problems. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. We have also studied linear stability problems which incorporated important physics issues related to geometry involving closed field lines and open field lines. This allows for a deeper analysis and understanding of the system both analytically and numerically. The strong collaboration between the Russian visitors and the US participants has led to a fruitful and strong research program that taps the complementary analytic and numerical capabilities of the two groups. Over the years several distinguished Russian visitors have interacted with various members of the group and set up collaborative work which forms a significant part of proposed research. Dr. Galeev, Director of the Space Research Institute of Moscow and Dr. Novakovskii from the Kurchatov Institute are two such ongoing collaborations. 21 refs

  20. The plasma-sheath boundary region

    International Nuclear Information System (INIS)

    Franklin, R N

    2003-01-01

    In this review an attempt is made to give a broad coverage of the problem of joining plasma and sheath over a wide range of physical conditions. We go back to the earliest works quoting them, where appropriate, to understand what those who introduced the various terms associated with the structure of the plasma-sheath had in mind. We try to bring out the essence of the insights that have been gained subsequently, by quoting from the literature selectively, indicating how misunderstandings have arisen. In order to make it accessible to the generality of those currently working in low temperature plasmas we have sought to avoid mathematical complexity but retain physical insight, quoting from published work where appropriate. Nevertheless, in clarifying my own ideas I have found it necessary to do additional original work in order to give a consistent picture. In this way I have sought to bring together work in the late 1920s, the 1960s, and now mindful of the commercial importance of plasma processing, work over the past 15 years that adds to the general understanding. (topical review)

  1. Understanding the complexity of the Lévy-walk nature of human mobility with a multi-scale cost∕benefit model.

    Science.gov (United States)

    Scafetta, Nicola

    2011-12-01

    human mobility, that the proposed model predicts the statistical properties of human mobility below 1 km ranges, where people just walk. In the latter case, the threshold between zone 1 and zone 2 may be around 100-200 m and, perhaps, may have been evolutionary determined by the natural human high resolution visual range, which characterizes an area of interest where the benefits are assumed to be randomly and uniformly distributed. This rich and suggestive interpretation of human mobility may characterize other complex random walk phenomena that may also be described by a N-piece fit Pareto distributions with increasing integer exponents. This study also suggests that distribution functions used to fit experimental probability distributions must be carefully chosen for not improperly obscuring the physics underlying a phenomenon.

  2. Understanding the complexity of the Lévy-walk nature of human mobility with a multi-scale cost/benefit model

    Science.gov (United States)

    Scafetta, Nicola

    2011-12-01

    mobility, that the proposed model predicts the statistical properties of human mobility below 1 km ranges, where people just walk. In the latter case, the threshold between zone 1 and zone 2 may be around 100-200 m and, perhaps, may have been evolutionary determined by the natural human high resolution visual range, which characterizes an area of interest where the benefits are assumed to be randomly and uniformly distributed. This rich and suggestive interpretation of human mobility may characterize other complex random walk phenomena that may also be described by a N-piece fit Pareto distributions with increasing integer exponents. This study also suggests that distribution functions used to fit experimental probability distributions must be carefully chosen for not improperly obscuring the physics underlying a phenomenon.

  3. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8

    DEFF Research Database (Denmark)

    Tidow, Henning; Hein, Kim Langmach; Palmgren, Michael Broberg

    2010-01-01

    Plasma-membrane Ca2+-ATPases (PMCAs) are calcium pumps that expel Ca2+ from eukaryotic cells to maintain overall Ca2+ homoeostasis and to provide local control of intracellular Ca2+ signalling. They are of major physiological importance, with different isoforms being essential, for example, for p...... group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 Å, = 113.2°. A complete data set was collected to 3.0 Å resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin...

  4. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  5. Dynamics of magnetospheric plasmas

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1985-01-01

    The dynamical behavior of the magnetospheric plasmas which control the electrostatic charging of spacecraft is the result of the complex interaction of a variety of production, loss, transport, and energization mechanisms in the magnetosphere. This paper is intended to provide the spacecraft engineer with a foundation in the basic morphology and controlling processes pertaining to magnetospheric plasma dynamics in the inner magnetosphere, including the synchronous orbit region. 32 references

  6. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  7. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  8. Instabilities, turbulence and transport in a magnetized plasma

    International Nuclear Information System (INIS)

    Garbet, X.

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  9. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    Science.gov (United States)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  10. Double plasma system with inductively coupled source plasma and quasi-quiescent target plasma

    International Nuclear Information System (INIS)

    Massi, M.; Maciel, H.S.

    1995-01-01

    Cold plasmas have successfully been used in the plasma-assisted material processing industry. An understanding of the physicochemical mechanisms involved in the plasma-surface interaction is needed for a proper description of deposition and etching processes at material surfaces. Since these mechanisms are dependent on the plasma properties, the development of diagnostic techniques is strongly desirable for determination of the plasma parameters as well as the characterization of the electromagnetic behaviour of the discharge. In this work a dual discharge chamber, was specially designed to study the deposition of thin films via plasma polymerization process. In the Pyrex chamber an inductively coupled plasma can be excited either in the diffuse low density E-mode or in the high density H-mode. This plasma diffuses into the cylindrical stainless steel chamber which is covered with permanent magnets to produce a multidipole magnetic field configuration at the surface. By that means a double plasma is established consisting of a RF source plasma coupled to a quasi-quiescent target plasma. The preliminary results presented here refer to measurements of the profiles of plasma parameters along the central axis of the double plasma apparatus. Additionally a spectrum analysis performed by means of a Rogowski coil probe immersed into the source plasma is also presented. The discharge is made in argon with pressure varying from 10 -2 to 1 torr, and the rf from 10 to 150 W

  11. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  12. Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices

    Directory of Open Access Journals (Sweden)

    S. Wiesen

    2017-08-01

    Full Text Available Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs. For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures, SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation

  13. Contact activation of blood-plasma coagulation

    Science.gov (United States)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 moderated by adsorption of plasma proteins unrelated to coagulation through an "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not

  14. Laser-induced plasmas as an analytical source for quantitative analysis of gaseous and aerosol systems: Fundamentals of plasma-particle interactions

    Science.gov (United States)

    Diwakar, Prasoon K.

    2009-11-01

    Laser-induced Breakdown Spectroscopy (LIBS) is a relatively new analytical diagnostic technique which has gained serious attention in recent past due to its simplicity, robustness, and portability and multi-element analysis capabilities. LIBS has been used successfully for analysis of elements in different media including solids, liquids and gases. Since 1963, when the first breakdown study was reported, to 1983, when the first LIBS experiments were reported, the technique has come a long way, but the majority of fundamental understanding of the processes that occur has taken place in last few years, which has propelled LIBS in the direction of being a well established analytical technique. This study, which mostly focuses on LIBS involving aerosols, has been able to unravel some of the mysteries and provide knowledge that will be valuable to LIBS community as a whole. LIBS processes can be broken down to three basic steps, namely, plasma formation, analyte introduction, and plasma-analyte interactions. In this study, these three steps have been investigated in laser-induced plasma, focusing mainly on the plasma-particle interactions. Understanding plasma-particle interactions and the fundamental processes involved is important in advancing laser-induced breakdown spectroscopy as a reliable and accurate analytical technique. Critical understanding of plasma-particle interactions includes study of the plasma evolution, analyte atomization, and the particle dissociation and diffusion. In this dissertation, temporal and spatial studies have been done to understand the fundamentals of the LIBS processes including the breakdown of gases by the laser pulse, plasma inception mechanisms, plasma evolution, analyte introduction and plasma-particle interactions and their influence on LIBS signal. Spectral measurements were performed in a laser-induced plasma and the results reveal localized perturbations in the plasma properties in the vicinity of the analyte species, for

  15. Numerical simulation of a novel non-transferred arc plasma torch operating with nitrogen

    International Nuclear Information System (INIS)

    Hiremath, Gavisiddayya; Kandasamy, Ramachandran; Ganesh, Ravi

    2015-01-01

    High power plasma torches with higher electro-thermal efficiency are required for industrial applications. To increase the plasma power and electrothermal efficiency, conventional torches are being modified to operate with molecular gases such as air and nitrogen. Since increasing arc current enhances the heat loss to the anode, torches are being developed to operate under high voltage and low current. The plasma flow dynamics and electromagnetic coupling with plasma flow inside the torch etc. are highly complex and knowledge on the same is required to develop high torches with higher efficiency. Unfortunately detailed experimentation on the same is very difficult. Numerical modeling and simulation is one of the best tools to understand the physics involved in such complex processes. A 2D numerical model is developed to simulate the characteristics of the plasma inside the torch. Though plasma is not in local thermodynamic equilibrium (LTE) close to the electrodes, LTE is assumed everywhere in the plasma to avoid complex and time consuming calculations. Other valid assumptions used in the model are plasma flow is optically thin, laminar and incompressible. Flow, energy and electromagnetic equations are solved with appropriate boundary conditions and volume sources using SIMPLE algorithm with finite volume method. Temperature dependent thermophysical properties of nitrogen are used for the simulations. Simulations are carried out for different experimental conditions. The effects of arc current, gas flow rate of plasma generating gas and sheath gas injected above the bottom anode on the arc voltage, electrothermal efficiency of the torch, plasma temperature and plasma velocity are simulated. Predicted results are compared with experimental results. (author)

  16. Understanding the Etiology of Tuberous Sclerosis Complex

    Science.gov (United States)

    2011-07-01

    neurological symptoms (e.g. seizures), which are the most significant causes of disability and morbidity. Presently, there are no known cures for TSC and...diseases such as symptomatic epilepsy syndrome, fragile X syndrome, schizophrenia , and autism spectrum disorders (Orlova et al., 2010; Chu et al., 2009...hydramnios, megalencephaly, symptomatic epilepsy syndrome,  fragile X syndrome,  schizophrenia , and autism spectrum disorders  technical advance The

  17. Understanding the Complexity of a Rising China

    Science.gov (United States)

    2016-05-26

    tourism , shipping, and remittances from Hong Kong and other sources that resulted in overall current accounts surpluses of (US) $900 million and (US) $1.2... tourism and a surge in FDI. 95 Encyclopedia of the Nations, s.v. “China - Balance of Payments...Expenditures General Public Services Foreign Affairs National Defense Public Security Education Science and Technology Culture, Sport and Media Social Safety

  18. Understanding the Etiology of Tuberous Sclerosis Complex

    Science.gov (United States)

    2012-07-01

    catalog #4856), mouse anti-NeuN (1:500; Millipore), GFAP (1:100, DAKO) and DCX (1:500, Santa Cruz Biotechnology). Each staining was replicated in slices...Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel -Garcia, V.J. et al

  19. Neuroscience-Enabled Complex Visual Scene Understanding

    Science.gov (United States)

    2012-04-12

    34, Rivista di Psicologia 49 (1): 7–30 • Kauppinen, Hannu. Seppanen, Tapio and Pietikainen, Matti. An Experimental Comparison of Autoregressive and...a Social Robot,“ IJCAI, pp. 1146-1151, 1999. [63] G. Heidemann, R. Rae, H. Bekel, I. Bax, and H. Ritter, ”Inte- grating Context-free and Context... social interaction. In Interna- tional Conference on Robotics, Automation, and Mecha- tronics (RAM 2006), Bangkok Thailand. Se, S., Lowe, D. G

  20. Understanding implementation and change in complex interventions

    DEFF Research Database (Denmark)

    Agergaard, Sine; Dankers, Silke; Munk, Mette

    2018-01-01

    and experiences of social inclusion in the PE context using a multi-method approach integrating quantitative and qualitative approaches. The multi-method approach allowed an integration of the findings with regard to the implementation as well as the effect of the intervention. First of all, standardized...... questionnaires provided a manipulation check of the delivery of the intervention, while qualitative observations and interviews identified the diversity in pupils’ reactions thereto. Secondly, quantitative findings on the effect of the intervention were related to qualitative findings pointing to ambiguities...