WorldWideScience

Sample records for understanding complex mechanisms

  1. Raman analysis of DLC coated engine components with complex shape: Understanding wear mechanisms

    International Nuclear Information System (INIS)

    Jaoul, C.; Jarry, O.; Tristant, P.; Merle-Mejean, T.; Colas, M.; Dublanche-Tixier, C.; Jacquet, J.-M.

    2009-01-01

    Hydrogenated amorphous carbon (a-C:H) films were deposited on flat samples and engine components using an industrial scale reactor. Characterization of the coating allowed validating its application on engine parts due to high hardness (32 GPa) and high level of adhesion achieved using sublayers. The original approach of this work concerned the use of Raman analysis not only on flat samples after tribometer tests but also directly on coated engine parts with complex shape (like cam/follower system), in order to understand wear mechanisms occurring in motorsport engines. As wear could lead to a coating thickness decrease, a particular attention was paid on the Raman signal of the sublayers. Among the different values extracted from Raman spectrum to characterize structural organization, the value of G peak intensity appeared as a criterion of validity of analyses because it is directly linked to the remaining thickness of the a-C:H layer. For flat samples tested on ball-on-disc tribometer, structure of a-C:H film observed by Raman spectroscopy in the wear track remained stable in depth. Then, a-C:H coated engine components were studied before and after working in real conditions. Two different wear mechanisms were identified. The first one did not show any structural modification of the bulk a-C:H layer. In the second one, the high initial roughness of samples (R t = 1.15 μm) lead to coating delaminations after sliding. Massive graphitization which decreases drastically mechanical properties of the coatings was observed by Raman analyses on the contact area. The increase of the temperature on rough edges of the scratches could explain this graphitization.

  2. Understanding Defense Mechanisms.

    Science.gov (United States)

    Cramer, Phebe

    2015-12-01

    Understanding defense mechanisms is an important part of psychotherapy. In this article, we trace the history of the concept of defense, from its origin with Freud to current views. The issue of defense as an unconscious mechanism is examined. The question of whether defenses are pathological, as well as their relation to pathology, is discussed. The effect of psychotherapy on the use of defenses, and their relation to a therapeutic alliance is explored. A series of empirical research studies that demonstrate the functioning of defense mechanisms and that support the theory is presented. Research also shows that as part of normal development, different defenses emerge at different developmental periods, and that gender differences in defense use occur.

  3. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  4. Understanding the mechanisms of lung mechanical stress

    Directory of Open Access Journals (Sweden)

    C.S.N.B. Garcia

    2006-06-01

    Full Text Available Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area or strain (any forced change in length in relation to the initial length and shear stress (the stress component parallel to a given surface. The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

  5. Understanding Bohmian mechanics: A dialogue

    OpenAIRE

    Tumulka, Roderich

    2004-01-01

    This paper is an introduction to the ideas of Bohmian mechanics, an interpretation of quantum mechanics in which the observer plays no fundamental role. Bohmian mechanics describes, instead of probabilities of measurement results, objective microscopic events. In recent years, Bohmian mechanics has attracted increasing attention by researchers. The form of a dialogue allows me to address questions about the Bohmian view that often arise.

  6. Remedial action of matrices contaminated by cobalt with supercritical CO2: contribution to the understanding of the complex formation mechanisms and to the diphasic transfers

    International Nuclear Information System (INIS)

    Gervais, Florence

    2001-01-01

    Soils rehabilitation using supercritical CO 2 seems an interesting alternative way to existing techniques. No effluents are generated during the supercritical fluid extraction, which is the main advantage of this process. In order to be extracted by this techniques, metals or radionuclides have to be complexed by suitable chelating agents. Beta-diketones and dithiocarbamates (fluorinated or not) have been chosen. The first part of this work deals with chemical equilibria mechanisms study in an aqueous phase. Experiments show a very weak cobalt complexation kinetics with acetylacetone. Moreover, this complex exhibit a hydrophilic behaviour. On the other hand, cobalt and dithiocarbamate instantaneously from a chelate which is very hydrophobic. Mass transfer between extracting and aqueous phases (hexane and SC CO 2 ) are also investigated. Supercritical CO 2 seems to have a greater affinity towards fluorinated beta-diketones than hexane. This tendency is confirmed by in situ commercial chelates (fluorinates or not) solubility measurements using X-ray absorption spectroscopy. However, cobalt-beta-diketonates are hydrophilic because of their partial hydration. This kind of chelating agents is not suitable to cobalt supercritical fluid extraction from an aqueous phase. Inversely, distribution coefficients of hydrophobic dithiocarbamates are higher than beta-diketonates, whatever the extracting solvent is. Metals extraction from an aqueous matrix seems possible with these chelating agents. (author) [fr

  7. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  8. Statistical mechanics of complex networks

    CERN Document Server

    Rubi, Miguel; Diaz-Guilera, Albert

    2003-01-01

    Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.

  9. Understanding Mechanical Design with Respect to Manufacturability

    Science.gov (United States)

    Mondell, Skyler

    2010-01-01

    At the NASA Prototype Development Laboratory in Kennedy Space Center, Fl, several projects concerning different areas of mechanical design were undertaken in order to better understand the relationship between mechanical design and manufacturabiIity. The assigned projects pertained specifically to the NASA Space Shuttle, Constellation, and Expendable Launch Vehicle programs. During the work term, mechanical design practices relating to manufacturing processes were learned and utilized in order to obtain an understanding of mechanical design with respect to manufacturability.

  10. Understanding Mechanisms of Radiological Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  11. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral......This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....

  12. Polycomb complexes and silencing mechanisms

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided...

  13. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  14. Understanding biochar mechanisms for practical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Bruno [Halle-Wittenberg Univ. (Germany). Inst. fuer Agrar- und Ernaehrungeswissenschaften Bodenbiogeochemie; Kammann, Claudia [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Loewen, Achim (ed.) [Arbeitskreis zur Nutzung von Sekundaerrohstoffen und fuer Klimaschutz (ANS) e.V., Braunschweig (Germany); HAWK Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim, Holzminden, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik NEUtec

    2015-07-01

    The conference on ''understanding biochar mechanisms for practical implementation'' 2015 at the Geisenheim University aims at understanding biochar mechanism, that are crucial for beneficial and safety biochar technology implementation. Further issues are ecotoxicology, biochar in agriculture, horticulture, and animal husbandry. Practical issues concern analysis and characterization of technological processes, sustainable uses and certification, regulation and marketing aspects. The Conference is structured in 10 sessions.

  15. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  16. Listening, understanding and interpreting: reflections on complexity.

    Science.gov (United States)

    Lichtenberg, J D

    1999-08-01

    Beginning with the premise that a contemporary approach to analytic exchanges has become far more complex and multi-faceted than in earlier times, the author addresses listening, understanding and interpreting. The opening section presents the basis and utility of a proposed theory of five motivational systems and identifies the need for a shift from conceptualising 'structures' to systems. The nature of communication during analysis is considered from several standpoints including listening for needs and intentions, the place of theory as a background to listening, an optimal state for analysand and analyst, and the significance of the distinction between inner monologue and spoken discourse. Differing views of free association and narrative, especially questions arising from findings of the 'adult attachment interview', are discussed. The patient's sensitivity to the presence and influence of the analyst and the analyst's recognition of non-verbal as well as verbal communications completes this section. In the final section a brief clinical example is presented to introduce a differentiated depiction of the variety of interventions that analysts employ. Throughout the paper, the author presents his view of listening, understanding and interpreting in dialectic contrast with the many other perspectives held by analysts in this period of theoretical pluralism.

  17. Quantum mechanics in complex systems

    Science.gov (United States)

    Hoehn, Ross Douglas

    . These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of

  18. Complexities of Parental Understanding of Phenylketonuria

    Science.gov (United States)

    Sibinga, Maarten S.; Friedman, C. Jack

    1971-01-01

    Parental understanding of PKU, investigated through a questionnaire, was evaluated as to completeness and with respect to distortion. Education of parents was found to be unrelated to their understanding or tendency to distort. Effectiveness of the pediatrician's communication with parents is discussed. (Author/KW)

  19. Understanding the Etiology of Tuberous Sclerosis Complex

    Science.gov (United States)

    2012-07-01

    of life as infantile spasms that are unresponsive to conventional anti-epileptic drug therapies (Curatolo et al., 2001; Holmes and Stafstrom, 2007... Infantile spasms in tuberous sclerosis complex. Brain Dev 23:502-507. DiMario FJ, Jr. (2004) Brain abnormalities in tuberous sclerosis complex. J...on chromosome 16. Cell, 75, 1305–1315. 3. Curatolo, P., Seri, S., Verdecchia, M. and Bombardieri, R. (2001) Infantile spasms in tuberous sclerosis

  20. Improving students' understanding of quantum mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2011-03-01

    Learning quantum mechanics is especially challenging, in part due to the abstract nature of the subject. We have been conducting investigations of the difficulties that students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) as well as tools for peer-instruction. The goal of QuILTs and peer-instruction tools is to actively engage students in the learning process and to help them build links between the formalism and the conceptual aspects of quantum physics without compromising the technical content. They focus on helping students integrate qualitative and quantitative understanding, confront and resolve their misconceptions and difficulties, and discriminate between concepts that are often confused. In this talk, I will give examples from my research in physics education of how students' prior knowledge relevant for quantum mechanics can be assessed, and how learning tools can be designed to help students develop a robust knowledge structure and critical thinking skills. Supported by the National Science Foundation.

  1. School Phobia: Understanding a Complex Behavioural Response

    Science.gov (United States)

    Chitiyo, Morgan; Wheeler, John J.

    2006-01-01

    School phobia affects about 5% of the school-age population. If left untreated, school phobia can have devastating long-term consequences in children challenged by this condition. Various treatment approaches have been used to explore this complex behavioural response, major among them being the psychoanalytic, psychodynamic, pharmacological and…

  2. Understanding the Complexity of a Rising China

    Science.gov (United States)

    2016-05-26

    at the macro-level are determined by security interests derived from anarchy.48 From this mindset , Waltz attempted to draw on elements of complexity...artificialities. The restrictions prevented the expansion of the PRC multinational corporations, as it was more difficult for Chinese entrepreneurs to receive...unknowable.” This does not mean there is no point in planning. It simply establishes a mindset that there are no universal truths or solution sets. All

  3. Understanding the Complexity of Teacher Reflection in Action Research

    Science.gov (United States)

    Luttenberg, Johan; Meijer, Paulien; Oolbekkink-Marchand, Helma

    2017-01-01

    Reflection in action research is a complex matter, as is action research itself. In recent years, complexity science has regularly been called upon in order to more thoroughly understand the complexity of action research. The present article investigates the benefits that complexity science may yield for reflection in action research. This article…

  4. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  5. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  6. Promoting mastery of complex biological mechanisms.

    Science.gov (United States)

    Bradshaw, William S; Groneman, Kathryn J; Nelson, Jennifer; Bell, John D

    2018-01-01

    This article describes efforts aimed at improving comprehension and retention of complex molecular mechanisms commonly studied in undergraduate biology and biochemistry courses. The focus is on the design of appropriate assessments, an active classroom emphasizing formative practice, and more effective out-of-class study habits. Assessments that require students to articulate their understanding through writing are the most effective. Frequent formative practice improves performance on problems that require intellectual transfer, the ability to apply conceptual principles in novel settings. We show that success with such problems is a function of mastery of the intrinsic logic of the biology in play, not variations in the way they are written. Survey data demonstrate that many students would prefer a learning style not dominated by memorization of factual details, but how to develop a more effective strategy is rarely intuitive. Matching individual students with specific learning styles has not proven useful. Instead, teachers can strongly promote individual metacognitive appraisal during both classroom activities and other study environments. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):7-21, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Simple, complex and hyper-complex understanding - enhanced sensitivity in observation of information

    DEFF Research Database (Denmark)

    Bering Keiding, Tina

    enhanced transparency in selection of understanding as well as enhanced sensitivity and definition in dept. The contribution suggest that we distinguish between three types of understanding; simple, complex and hyper-complex understanding. Simple understanding is the simultaneous selection of understanding......-order observation. Hyper-complex, or third-order observation, observes conditions for indication; that is conditions for actualization of the specific form of the difference constructed through second-order observation. The three types are partly deduced from Luhmanns concept of understanding, partly generated...

  8. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  9. Ecosystemic Complexity Theory of Conflict: Understanding the Fog of Conflict

    Science.gov (United States)

    Brack, Greg; Lassiter, Pamela S.; Hill, Michele B.; Moore, Sarah A.

    2011-01-01

    Counselors often engage in conflict mediation in professional practice. A model for understanding the complex and subtle nature of conflict resolution is presented. The ecosystemic complexity theory of conflict is offered to assist practitioners in navigating the fog of conflict. Theoretical assumptions are discussed with implications for clinical…

  10. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  11. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  12. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  13. Understanding Kinetic Energy paradox in Quantum Mechanics

    OpenAIRE

    Kornyushin, Yuri

    2008-01-01

    A concept of Kinetic Energy in Quantum Mechanics is analyzed. Kinetic Energy is not zero in many cases where there are no motion and flux. This paradox can be understood, using expansion of the wave function in Fourier integral, that is on the basis of virtual plane waves.

  14. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  15. Promoting Mastery of Complex Biological Mechanisms

    Science.gov (United States)

    Bradshaw, William S.; Groneman, Kathryn J.; Nelson, Jennifer; Bell, John D.

    2018-01-01

    This article describes efforts aimed at improving comprehension and retention of complex molecular mechanisms commonly studied in undergraduate biology and biochemistry courses. The focus is on the design of appropriate assessments, an active classroom emphasizing formative practice, and more effective out-of-class study habits. Assessments that…

  16. Human Error Mechanisms in Complex Work Environments

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1988-01-01

    will account for most of the action errors observed. In addition, error mechanisms appear to be intimately related to the development of high skill and know-how in a complex work context. This relationship between errors and human adaptation is discussed in detail for individuals and organisations......Human error taxonomies have been developed from analysis of industrial incident reports as well as from psychological experiments. In this paper the results of the two approaches are reviewed and compared. It is found, in both cases, that a fairly small number of basic psychological mechanisms...

  17. Human error mechanisms in complex work environments

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1988-01-01

    Human error taxonomies have been developed from analysis of industrial incident reports as well as from psychological experiments. In this paper the results of the two approaches are reviewed and compared. It is found, in both cases, that a fairly small number of basic psychological mechanisms will account for most of the action errors observed. In addition, error mechanisms appear to be intimately related to the development of high skill and know-how in a complex work context. This relationship between errors and human adaptation is discussed in detail for individuals and organisations. The implications for system safety and briefly mentioned, together with the implications for system design. (author)

  18. Understanding complex systems: lessons from Auzoux's and von ...

    Indian Academy of Sciences (India)

    2009-12-09

    Dec 9, 2009 ... Animal and human anatomy is among the most complex systems known, and suitable teaching methods have been of great importance in the progress of knowledge. Examining the human body is part of the process by which medical students come to understand living forms. However, the need to ...

  19. Understanding the Complexity of Social Issues through Process Drama.

    Science.gov (United States)

    O'Mara, Joanne

    2002-01-01

    Attempts to capture the process of understanding and questioning deforestation through process drama (in which students and teacher work both in and out of role to explore a problem, situation, or theme). Notes that moving topics such as the destruction of a rainforest into process drama introduces complexity into social issues. Considers how…

  20. Quantum mechanics: why complex Hilbert space?

    Science.gov (United States)

    Cassinelli, G; Lahti, P

    2017-11-13

    We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  1. Complexity: a new paradigm for fracture mechanics

    Directory of Open Access Journals (Sweden)

    S. Puzzi

    2009-10-01

    Full Text Available The so-called Complexity Sciences are a topic of fast growing interest inside the scientific community. Actually, researchers did not come to a definition of complexity, since it manifests itself in so many different ways [1]. This field itself is not a single discipline, but rather a heterogeneous amalgam of different techniques of mathematics and science. In fact, under the label of Complexity Sciences we comprehend a large variety of approaches: nonlinear dynamics, deterministic chaos theory, nonequilibrium thermodynamics, fractal geometry, intermediate asymptotics, complete and incomplete similarity, renormalization group theory, catastrophe theory, self-organized criticality, neural networks, cellular automata, fuzzy logic, etc. Aim of this paper is at providing insight into the role of complexity in the field of Materials Science and Fracture Mechanics [2-3]. The presented examples will be concerned with the snap-back instabilities in the structural behaviour of composite structures (Carpinteri [4-6], the occurrence of fractal patterns and selfsimilarity in material damage and deformation of heterogeneous materials, and the apparent scaling on the nominal mechanical properties of disordered materials (Carpinteri [7,8]. Further examples will deal with criticality in the acoustic emissions of damaged structures and with scaling in the time-to-failure (Carpinteri et al. [9]. Eventually, results on the transition towards chaos in the dynamics of cracked beams will be reported (Carpinteri and Pugno [10,11].

  2. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  3. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...... understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug...

  4. A simple mechanism for complex social behavior.

    Directory of Open Access Journals (Sweden)

    Katie Parkinson

    2011-03-01

    Full Text Available The evolution of cooperation is a paradox because natural selection should favor exploitative individuals that avoid paying their fair share of any costs. Such conflict between the self-interests of cooperating individuals often results in the evolution of complex, opponent-specific, social strategies and counterstrategies. However, the genetic and biological mechanisms underlying complex social strategies, and therefore the evolution of cooperative behavior, are largely unknown. To address this dearth of empirical data, we combine mathematical modeling, molecular genetic, and developmental approaches to test whether variation in the production of and response to social signals is sufficient to generate the complex partner-specific social success seen in the social amoeba Dictyostelium discoideum. Firstly, we find that the simple model of production of and response to social signals can generate the sort of apparent complex changes in social behavior seen in this system, without the need for partner recognition. Secondly, measurements of signal production and response in a mutant with a change in a single gene that leads to a shift in social behavior provide support for this model. Finally, these simple measurements of social signaling can also explain complex patterns of variation in social behavior generated by the natural genetic diversity found in isolates collected from the wild. Our studies therefore demonstrate a novel and elegantly simple underlying mechanistic basis for natural variation in complex social strategies in D. discoideum. More generally, they suggest that simple rules governing interactions between individuals can be sufficient to generate a diverse array of outcomes that appear complex and unpredictable when those rules are unknown.

  5. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine.

    Science.gov (United States)

    Gilgenkrantz, Hélène; Collin de l'Hortet, Alexandra

    2018-04-16

    Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Understanding Decision Making through Complexity in Professional Networks

    Directory of Open Access Journals (Sweden)

    Kon Shing Kenneth Chung

    2014-01-01

    Full Text Available The attitudes of general practitioners (GP play an influential role in their decision making about patient treatment and care. Considering the GP-patient encounter as a complex system, the interactions between the GP and their personal network of peers give rise to “aggregate complexity,” which in turn influences the GP’s decisions about patient treatment. This study models aggregate complexity and its influence in decision making in primary care through the use of social network metrics. Professional network and attitudinal data on decision making responsibility from 107 rural GPs were analysed. Social network measures of “density” and “inclusiveness” were used for computing the “interrelatedness” of components within such a “complex system.” The “number of components” and “degree of interrelatedness” were used to determine the complexity profiles, which was then used to associate with responsibility in decision making for each GP. GPs in simple profiles (i.e., with low components and interactions in contrast to those in nonsimple profiles, indicate a higher responsibility for the decisions they make in medical care. This study suggests that social networks-based complexity profiles are useful for understanding decision making in primary care as it accounts for the role of influence through the professional networks of GPs.

  7. Understanding the complex interplay between tourism, disability and environmental contexts.

    Science.gov (United States)

    Packer, Tanya L; McKercher, Bob; Yau, Matthew K

    2007-02-28

    To explore and describe the complex issues and factors related to participation in tourism as perceived by people with disabilities in Hong Kong. Naturalistic inquiry using key informant interviews and focus groups with 86 people with disabilities. Interviews were transcribed, translated and coded to develop themes and relationships. Triangulation of three investigators from different backgrounds occurred. The Process of Becoming Travel Active emerged as a six-stage process, intricately related to the personal/disability context and the environmental/travel context. Personal and environmental factors contribute to the six-stage model explaining the complex interplay between tourism, disability and environmental context. Understanding the complexity provides insight into ways to increase active participation in tourism. Health, tourism and disability sectors have a role to play in the development of accessible tourism.

  8. Bronchopulmonary dysplasia: understanding of the underlying pathological mechanisms

    Directory of Open Access Journals (Sweden)

    Daniela Fanni

    2014-06-01

    Full Text Available Bronchopulmonary dysplasia (BPD is a chronic lung disease occurring in preterm infants, typically before 28 weeks of gestational age, characterized by a prolonged need for supplemental oxygen or positive pressure ventilation. The normal stages of lung development and their relation to the timing of preterm birth is strategic in order to understand the pathogenesis of BPD. In embryonic and pseudoglandular stages the lungs arise from the anterior foregut as a bud where the branching morphogenesis generate a tree-like network of airways. The canalicular stage is characterized by increasing proliferation of distal lung epithelial cells and rapid expansion of the intra-acinar capillaries. The complexity of the airways increases, secondary crests begin to form and full maturation of the alveolus occurs during the saccular and the alveolar stages. Mesechyme components, expecially elastin and myofibroblast, display a major role in normal lung development. BPD is thought to result after an acute insult to the neonatal lung following therapy with oxygen supplementation and mechanical ventilation. Chorioamnionitis, infections and genetic susceptibly are hypothesized to contribute to the injury that affect the normal human lung development. Abnormalities in the mesenchyme were consistently seen in association with inhibition of alveolarization. The pathological features that characterize BPD are complex and differ according with the disease progression. Alveolar simplification, interstitial fibrosis, septal thickness, large airways, smooth muscle hypertrophy, fetal artery persistance and decrease in the arterial number can be histologically observed. In conclusion, in order to reach a complete clinical-pathological diagnosis, the correlation of the pathological features with the fundamental steps of lung morphogenesis and a strict dialogue between the neonatologist and the perinatal pathologist are required. Given these conditions, in our experience, a

  9. Disaster forensics understanding root cause and complex causality

    CERN Document Server

    2016-01-01

    This book aims to uncover the root causes of natural and man-made disasters by going beyond the typical reports and case studies conducted post-disaster. It opens the black box of disasters by presenting ‘forensic analysis approaches’ to disasters, thereby revealing the complex causality that characterizes them and explaining how and why hazards do, or do not, become disasters. This yields ‘systemic’ strategies for managing disasters. Recently the global threat landscape has seen the emergence of high impact, low probability events. Events like Hurricane Katrina, the Great Japan Earthquake and tsunami, Hurricane Sandy, Super Typhoon Haiyan, global terrorist activities have become the new norm. Extreme events challenge our understanding regarding the interdependencies and complexity of the disaster aetiology and are often referred to as Black Swans. Between 2002 and 2011, there were 4130 disasters recorded that resulted from natural hazards around the world. In these, 1,117,527 people perished and a mi...

  10. Complexity and simplification in understanding recruitment in benthic populations

    KAUST Repository

    Pineda, Jesús

    2008-11-13

    Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom-dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model-oriented. Simplified approaches identify "macroecological" patterns or attempt to identify and model the essential, "first-order" elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, and larval production. Moreover, these processes are non-linear, some interact, and they may operate on disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom-dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post-settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and "broad-brush first-order approaches" may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it

  11. "Understanding Adam" multiple reciprocal translocations: complex case presentation.

    Science.gov (United States)

    Linder, Carie E; Lu, Xianglan; Kim, Young Mi; Li, Shibo; Pineda, Jose

    2009-01-01

    This article presents a case review of a newborn diagnosed with a complex chromosomal rearrangement, as demonstrated through a painted chromosomal analysis. This infant presented with multiple dysmorphology including cutis aplasia, multiple ocular malformations, bilateral cleft lip and palate, and postnatal hydrocephaly. A chromosomal analysis revealed multiple-ways, balanced translocation involving chromosomes 3, 4, 6, 8, and 9. This case study provides a unique opportunity to, in retrospect, trace each malformation exploring the pathophysiology, etiology, and correlating origin with chromosomal variation. Careful review of this case, enhanced by the visually augmented representation of each translocation, will increase understanding of chromosomal anomalies and their implications in embryological development and clinical presentation.

  12. Understanding Parkinson Disease: A Complex and Multifaceted Illness.

    Science.gov (United States)

    Gopalakrishna, Apoorva; Alexander, Sheila A

    2015-12-01

    Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.

  13. Land, power and conflict in Afghanistan: seeking to understand complexity

    Directory of Open Access Journals (Sweden)

    Adam Pain

    2013-06-01

    Full Text Available This paper explores the diverse links between land and power under conditions of conflict in Afghanistan, taking into account the complexities of Afghan society. These complexities are structured around interconnecting informal institutions and personalised relationships, culturally specific, diverse and shifting patterns of social relations, and spatially specific patterns of land ownership inequalities. The paper draws on a decade of empirical fieldwork in Afghanistan and recent work on livelihood trajectories and the opium economy. An understanding of the evolution of land ownership and access issues needs to be associated with an appreciation of diverse and potentially contradictory long-term drivers of change in the rural economy. The first of these long-term drivers of change relates to the effects of conflict, not only on land but also of water access under conditions of an increasingly scarce water supply. The second driver relates both to the roles played by village elites and to the structural contrasts between villages located in the mountains and in the plains, with the latter displaying major inequalities in land ownership. The third driver relates to the declining economic role of land in rural livelihoods, given long-term agrarian change and falling farm sizes. An understanding of history is fundamental to explaining these phenomena. How such conflicts play out, and which social groups or individuals they involve, also depend to a large degree on spatial positioning.

  14. Evolution in students’ understanding of thermal physics with increasing complexity

    Directory of Open Access Journals (Sweden)

    Elon Langbeheim

    2013-11-01

    Full Text Available We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  15. Neuroanthropological Understanding of Complex Cognition – Numerosity and Arithmetics

    Directory of Open Access Journals (Sweden)

    Zarja Mursic

    2013-10-01

    Full Text Available Humankind has a long evolutionary history. When we are trying to understand human complex cognition, it is as well important to look back to entire evolution. I will present the thesis that our biological predispositions and culture, together with natural and social environment, are tightly connected. During ontogenetically development we are shaped by various factors, and they enabled humans to develop some aspects of complex cognition, such as mathematics.In the beginning of the article I present the importance of natural and cultural evolution in other animals. In the following part, I briefly examine the field of mathematics – numerosity and arithmetic. Presentation of comparative animal studies, mainly made on primates, provides some interesting examples in animals’ abilities to separate between different quantities. From abilities for numerosity in animals I continue to neuroscientific studies of humans and our ability to solve simple arithmetic tasks. I also mention cross-cultural studies of arithmetic skills. In the final part of the text I present the field neuroanthropology as a possible new pillar of cognitive science. Finally, it is important to connect human evolution and development with animal cognition studies, but as well with cross-cultural studies in shaping of human ability for numerosity and arithmetic.

  16. Understanding and measuring quality of care: dealing with complexity.

    Science.gov (United States)

    Hanefeld, Johanna; Powell-Jackson, Timothy; Balabanova, Dina

    2017-05-01

    Existing definitions and measurement approaches of quality of health care often fail to address the complexities involved in understanding quality of care. It is perceptions of quality, rather than clinical indicators of quality, that drive service utilization and are essential to increasing demand. Here we reflect on the nature of quality, how perceptions of quality influence health systems and what such perceptions indicate about measurement of quality within health systems. We discuss six specific challenges related to the conceptualization and measurement of the quality of care: perceived quality as a driver of service utilization; quality as a concept shaped over time through experience; responsiveness as a key attribute of quality; the role of management and other so-called upstream factors; quality as a social construct co-produced by families, individuals, networks and providers; and the implications of our observations for measurement. Within the communities and societies where care is provided, quality of care cannot be understood outside social norms, relationships, trust and values. We need to improve not only technical quality but also acceptability, responsiveness and levels of patient-provider trust. Measurement approaches need to be reconsidered. An improved understanding of all the attributes of quality in health systems and their interrelationships could support the expansion of access to essential health interventions.

  17. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  18. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence

    Directory of Open Access Journals (Sweden)

    Alexey eKolodkin

    2012-07-01

    Full Text Available Healthy functioning is an emergent property of the network of interacting biomolecules that comprise an organism. It follows that disease (a network shift that causes malfunction is also an emergent property, emerging from a perturbation of the network. On one hand, the biomolecular network of every individual is unique and this is evident when similar disease-producing agents cause different individual pathologies. Consequently, a personalized model and approach for every patient may be required for therapies to become effective across mankind. On the other hand, diverse combinations of internal and external perturbation factors may cause a similar shift in network functioning. We offer this as an explanation for the multi-factorial nature of most diseases: they are ‘systems biology diseases’, or ‘network diseases’. Here we focus on neurodegenerative diseases, like Parkinson’s disease, as an example. Because of the inherent complexity of these networks, it is difficult to understand multi-factorial diseases using simply our ‘naked brain’. When describing interactions between biomolecules through mathematical equations and integrating those equations into a mathematical model, we try to reconstruct the emergent properties of the system in silico. The reconstruction of emergence from interactions between huge numbers of macromolecules is one of the aims of systems biology. Systems biology approaches enable us to break through the limitation of the human brain to perceive the extraordinarily large number of interactions, but this also means that we delegate the understanding of reality to the computer. We no longer recognize all those essences in the system’s design crucial for important physiological behavior (the so-called ‘design principles’ of the system. In this paper we review evidence that by using more abstract approaches and by experimenting in silico, one may still be able to discover and understand the design

  19. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT I, UNDERSTANDING MECHANICAL CLUTCHES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    ONE OF A 25-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINENANCE MECHANICS THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO DEVELOP AN UNDERSTANDING OF COMPONENTS, OPERATION, AND ADJUSTMENTS…

  20. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  1. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  2. Understanding and controlling complex states arising from magnetic frustration

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Vivien [Los Alamos National Laboratory

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  3. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  4. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  5. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  6. Understanding the implementation of complex interventions in health care: the normalization process model

    Directory of Open Access Journals (Sweden)

    Rogers Anne

    2007-09-01

    Full Text Available Abstract Background The Normalization Process Model is a theoretical model that assists in explaining the processes by which complex interventions become routinely embedded in health care practice. It offers a framework for process evaluation and also for comparative studies of complex interventions. It focuses on the factors that promote or inhibit the routine embedding of complex interventions in health care practice. Methods A formal theory structure is used to define the model, and its internal causal relations and mechanisms. The model is broken down to show that it is consistent and adequate in generating accurate description, systematic explanation, and the production of rational knowledge claims about the workability and integration of complex interventions. Results The model explains the normalization of complex interventions by reference to four factors demonstrated to promote or inhibit the operationalization and embedding of complex interventions (interactional workability, relational integration, skill-set workability, and contextual integration. Conclusion The model is consistent and adequate. Repeated calls for theoretically sound process evaluations in randomized controlled trials of complex interventions, and policy-makers who call for a proper understanding of implementation processes, emphasize the value of conceptual tools like the Normalization Process Model.

  7. Structural mechanisms of DREAM complex assembly and regulation.

    Science.gov (United States)

    Guiley, Keelan Z; Liban, Tyler J; Felthousen, Jessica G; Ramanan, Parameshwaran; Litovchick, Larisa; Rubin, Seth M

    2015-05-01

    The DREAM complex represses cell cycle genes during quiescence through scaffolding MuvB proteins with E2F4/5 and the Rb tumor suppressor paralog p107 or p130. Upon cell cycle entry, MuvB dissociates from p107/p130 and recruits B-Myb and FoxM1 for up-regulating mitotic gene expression. To understand the biochemical mechanisms underpinning DREAM function and regulation, we investigated the structural basis for DREAM assembly. We identified a sequence in the MuvB component LIN52 that binds directly to the pocket domains of p107 and p130 when phosphorylated on the DYRK1A kinase site S28. A crystal structure of the LIN52-p107 complex reveals that LIN52 uses a suboptimal LxSxExL sequence together with the phosphate at nearby S28 to bind the LxCxE cleft of the pocket domain with high affinity. The structure explains the specificity for p107/p130 over Rb in the DREAM complex and how the complex is disrupted by viral oncoproteins. Based on insights from the structure, we addressed how DREAM is disassembled upon cell cycle entry. We found that p130 and B-Myb can both bind the core MuvB complex simultaneously but that cyclin-dependent kinase phosphorylation of p130 weakens its association. Together, our data inform a novel target interface for studying MuvB and p130 function and the design of inhibitors that prevent tumor escape in quiescence. © 2015 Guiley et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Understanding the GPCR biased signaling through G protein and arrestin complex structures.

    Science.gov (United States)

    Zhou, X Edward; Melcher, Karsten; Xu, H Eric

    2017-08-01

    G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and are important drug targets for many human diseases. The determination of the 3-D structure of GPCRs and their signaling complexes has promoted our understanding of GPCR biology and provided templates for structure-based drug discovery. In this review, we focus on the recent structure work on GPCR signaling complexes, the β2-adrenoreceptor-Gs and the rhodopsin-arrestin complexes in particular, and highlight the structural features of GPCR complexes involved in G protein- and arrestin-mediated signal transduction. The crystal structures reveal distinct structural mechanisms by which GPCRs recruit a G protein and an arrestin. A comparison of the two complex structures provides insight into the molecular mechanism of functionally selective GPCR signaling, and a structural basis for the discovery of G protein- and arrestin-biased treatments of human diseases related to GPCR signal transduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.

  10. MECHANISM OF FINANCIAL SAFETY FORMATION OF ENTERPRISES OF AGROINDUSTRIAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Aleksandr Khomenko

    2016-11-01

    Full Text Available The purpose of work is research of essence of mechanism of forming of financial safety of subjects of agro-industrial complex as to the economic category. Basic financial interests of business entity and financial tasks are certain for their achievement. Considered organization of forming of financial safety of enterprises of agroindustrial complex and offered the measures of realization of the effective system of defence of subjects. The system of financial safety is directed foremost on providing of the own functioning, however, it is necessary to underline that at the same time it is a component part, both at the level of structural subdivisions of subject and at the level of industry, region, state. Financial safety of agrarian sphere is the important constituent of economic security of the state, which acquires an important value for further development of country. Methodology. Methodological basis of the article are methods of scientific cognition, which enable to expose basic conformities to law of development of the probed phenomena and processes, their key problems and priority ways of decision. Such methods are in particular used: analysis and synthesis – during research of constituents of economic security of agricultural enterprises, in particular such as financial safety, and to their aggregate on the whole; systematizations – for dismemberment and more rich in content understanding of essence of the separate probed phenomena and processes; to scientific abstraction – with the purpose of forming of theoretical generalizations and conclusions. A research result is opening of mechanism of financial safety forming of agro-industrial enterprises on the modern stage of socio-economic development of Ukraine. The offered model of strategic prognostication has for an object development of strategy of forming of financial safety of enterprises of agro-industrial complex. Such strategy must avouch for financial prospects enterprises, to

  11. Understanding the mechanism of nanoparticle formation in wire explosion process

    International Nuclear Information System (INIS)

    Bora, B.; Wong, C.S.; Bhuyan, H.; Lee, Y.S.; Yap, S.L.; Favre, M.

    2013-01-01

    The mechanism of nanoparticle formation by wire explosion process has been investigated by optical emission spectroscopy in Antony et al. 2010 [2] [J Quant Spectrosc Radiat Transfer 2010; 111:2509]. It was reported that the size of the nanoparticles formed in Ar ambience increases with increasing pressure, while an opposite trend was observed for the nanoparticles produced in N 2 and He ambiences. However, the physics behind this opposite trend seems unclear. In this work, we have investigated the probable mechanism behind the opposite trend in particle size with pressure of different gases and understand the mechanism of nanoparticle formation in wire explosion process. The experiment was carried out to investigate the effect of ambient gas species (Ar and N 2 ) and pressure on arc plasma formation and its corresponding effects on the characteristics of the produced nanoparticles in wire explosion process. Our results show that the arc plasma formation is probably the mechanism that may account for the opposite trend of particle size with pressure of different gases. -- Highlights: ► Cu nanoparticles have been synthesized by wire explosion technique. ► Investigate the effect of the ambient gas species and pressure. ► Arc plasma formation in wire explosion process is investigated. ► Arc plasma formation plays a crucial role in characteristic of the nanoparticles

  12. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are nonequilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networkshemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to

  13. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  14. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang [Colorado School of Mines, Golden, CO (United States)

    2017-05-31

    A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is to develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will allow

  15. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  16. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  17. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  18. Understanding dyadic promoter-stakeholder relations in complex projects

    Directory of Open Access Journals (Sweden)

    Janita Vos

    2016-01-01

    Full Text Available In this study, we propose a Bilateral Double Motive framework of stakeholder cooperation in complex projects. The framework analyses and explains dyadic promoter-stakeholder relationships at a micro level by acknowledging both transactional and relational motives. We demonstrate the framework’s usefulness by illustrating its explanatory power in two instances of cooperation and two of non-cooperation within two health information technology projects. The study contributes to project management theory through its combined focus on transactional and relational motives. Further, the study contributes to practice by providing a tool for planning and evaluating cooperation in health Information Technology projects and similar complex multi-stakeholder environments.

  19. Matrix Models – An Approach to Understand Complex Systems

    Indian Academy of Sciences (India)

    Matrices with random matrix elements appear to have applications in physics, mathematics, bi- ology, telecommunications, etc. In fact, experi- mental data of many complex systems, such as the spacing distribution of energy level spectra of heavy nuclei, and the distribution of the non- real zeros of the Riemann zeta function ...

  20. Understanding dyadic promoter-stakeholder relations in complex projects

    NARCIS (Netherlands)

    Vos, Janita F.J.; Boonstra, Albert; Achterkamp, Marjolein C.

    2016-01-01

    In this study, we propose a Bilateral Double Motive framework of stakeholder cooperation in complex projects. The framework analyses and explains dyadic promoter-stakeholder relationships at a micro level by acknowledging both transactional and relational motives. We demonstrate the framework’s

  1. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. How Information Visualization Systems Change Users' Understandings of Complex Data

    Science.gov (United States)

    Allendoerfer, Kenneth Robert

    2009-01-01

    User-centered evaluations of information systems often focus on the usability of the system rather its usefulness. This study examined how a using an interactive knowledge-domain visualization (KDV) system affected users' understanding of a domain. Interactive KDVs allow users to create graphical representations of domains that depict important…

  3. Mediation, moderation, and context: Understanding complex relations among cognition, affect, and health behaviour.

    Science.gov (United States)

    Kiviniemi, Marc T; Ellis, Erin M; Hall, Marissa G; Moss, Jennifer L; Lillie, Sarah E; Brewer, Noel T; Klein, William M P

    2018-01-01

    Researchers have historically treated cognition and affect as separate constructs in motivating health behaviour. We present a framework and empirical evidence for complex relations between cognition and affect in predicting health behaviour. Main Outcome, Design and Results: First, affect and cognition can mediate each other's relation to health behaviour. Second, affect and cognition can moderate the other's impact. Third, context can change the interplay of affect and cognition. Fourth, affect and cognition may be indelibly fused in some psychological constructs (e.g. worry, anticipated regret and reactance). These four propositions in our framework are not mutually exclusive. Examination of the types of complex relations described here can benefit theory development, empirical testing of theories and intervention design. Doing so will advance the understanding of mechanisms involved in regulation of health behaviours and the effectiveness of interventions to change health behaviours.

  4. A complex of mechanisms for moving and balancing

    Energy Technology Data Exchange (ETDEWEB)

    Sheykhot, I.; Timofeyev, V.

    1983-01-01

    The use is proposed of a complex of mechanisms in a drilling rig for moving and balancing the wells during cluster drilling in the deposits of Western Siberia. The complex is created at Ural machine building plant and is built on the basis of a bulk hydraulic drive.

  5. Classical and quantum mechanics of complex Hamiltonian systems

    Indian Academy of Sciences (India)

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...

  6. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...

  7. Fusion in computer vision understanding complex visual content

    CERN Document Server

    Ionescu, Bogdan; Piatrik, Tomas

    2014-01-01

    This book presents a thorough overview of fusion in computer vision, from an interdisciplinary and multi-application viewpoint, describing successful approaches, evaluated in the context of international benchmarks that model realistic use cases. Features: examines late fusion approaches for concept recognition in images and videos; describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods; investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, fo

  8. Modeling complex diffusion mechanisms in L12-structured compounds

    International Nuclear Information System (INIS)

    Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.

    2010-01-01

    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L1 2 -structured compounds.

  9. Modeling complex diffusion mechanisms in L1 2 -structured compounds

    Science.gov (United States)

    Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.

    2010-04-01

    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L12-structured compounds.

  10. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  11. Understanding the Complex Patterns Observed during Hepatitis B Virus Therapy.

    Science.gov (United States)

    Carracedo Rodriguez, Andrea; Chung, Matthias; Ciupe, Stanca M

    2017-05-19

    Data from human clinical trials have shown that the hepatitis B virus (HBV) follows complex profiles, such as bi-phasic, tri-phasic, stepwise decay and rebound. We utilized a deterministic model of HBV kinetics following antiviral therapy to uncover the mechanistic interactions behind HBV dynamics. Analytical investigation of the model was used to separate the parameter space describing virus decay and rebound. Monte Carlo sampling of the parameter space was used to determine the virological, pharmacological and immunological factors that separate the bi-phasic and tri-phasic virus profiles. We found that the level of liver infection at the start of therapy best separates the decay patterns. Moreover, drug efficacy, ratio between division of uninfected and infected cells, and the strength of cytotoxic immune response are important in assessing the amount of liver damage experienced over time and in quantifying the duration of therapy leading to virus resolution in each of the observed profiles.

  12. Quantifying 'causality' in complex systems: understanding transfer entropy.

    Directory of Open Access Journals (Sweden)

    Fatimah Abdul Razak

    Full Text Available 'Causal' direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of 'causal' direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets.

  13. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  14. Understanding Complex Human Ecosystems: The Case of Ecotourism on Bonaire

    Directory of Open Access Journals (Sweden)

    Thomas Abel

    2003-12-01

    Full Text Available It is suggested that ecotourism development on the island of Bonaire can be productively understood as a perturbation of a complex human ecosystem. Inputs associated with ecotourism have fueled transformations of the island ecology and sociocultural system. The results of this study indicate that Bonaire's social and economic hierarchy is approaching a new, stable systems state following a 50-yr transition begun by government and industry that stabilized with the appearance of ecotourism development and population growth. Ecotourism can be understood to have "filled in" the middle of the production hierarchy of Bonaire. Interpreted from this perspective, population growth has completed the transformation by expanding into production niches at smaller scales in the production hierarchy. Both a consequence and a cause, ecotourism has transformed the island's social structure and demography. The theory and methods applied in this case study of interdisciplinary research in the field of human ecosystems are also presented.

  15. From structure of the complex to understanding of the biology

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, Michael G., E-mail: mr@purdue.edu [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Arisaka, Fumio [Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Battisti, Anthony J.; Bowman, Valorie D.; Chipman, Paul R.; Fokine, Andrei; Hafenstein, Susan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Kanamaru, Shuji [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Graduate School and School of Bioscience and Biotechnology, Tokyo Institute of Technology, 5249 Nagatsuta-cho, Yokohama 226-8501-B39 (Japan); Kostyuchenko, Victor A. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Mesyanzhinov, Vadim V.; Shneider, Mikhail M. [Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, 117997 (Russian Federation); Morais, Marc C.; Leiman, Petr G. [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States); Palermo, Laura M.; Parrish, Colin R. [James A. Baker Institute, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Xiao, Chuan [Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 (United States)

    2007-01-01

    The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy single-particle reconstructions. This paper concerns itself with the study of the macromolecular complexes that constitute viruses, using structural hybrid techniques. The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahedral heads that have one obvious unique vertex where the genome can enter for DNA packaging and exit when infecting a host cell. The presence of the tail allows cryo-EM reconstructions in which the special vertex is used to orient the head in a unique manner. Some very large dsDNA icosahedral viruses also develop special vertices thought to be required for infecting host cells. Similarly, preliminary cryo-EM data for the small ssDNA canine parvovirus complexed with receptor suggests that these viruses, previously considered to be accurately icosahedral, might have some asymmetric properties that generate one preferred receptor-binding site on the viral surface. Comparisons are made between rhinoviruses that bind receptor molecules uniformly to all 60 equivalent binding sites, canine parvovirus, which appears to have a preferred receptor-binding site, and bacteriophage T4, which gains major biological advantages on account of its unique vertex and tail organelle.

  16. Understanding complex host-microbe interactions in Hydra

    Science.gov (United States)

    Bosch, Thomas C.G.

    2012-01-01

    Any multicellular organism may be considered a metaorganism or holobiont—comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species. PMID:22688725

  17. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-09-15

    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  18. Unraveling the complex epigenetic mechanisms that regulate gene activity

    NARCIS (Netherlands)

    Bemer, Marian

    2018-01-01

    Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve

  19. Understanding sleep-wake mechanisms and drug discovery.

    Science.gov (United States)

    Equihua-Benítez, Ana Clementina; Guzmán-Vásquez, Khalil; Drucker-Colín, René

    2017-07-01

    Although not discernible at first glance, sleep is a highly active and regulated brain state. Although we spend practically one third of our lifetimes in this stage, its importance is often taken for granted. Sleep loss can lead to disease, error and economic loss. Our understanding of how sleep is achieved has greatly advanced in recent years, and with that, the management of sleep disorders has improved. There is still room for improvement and recently many new compounds have reached clinical trials with a few being approved for commercial use. Areas covered: In this review, the authors make the case of sleep disorders as a matter of public health. The mechanisms of sleep transition are discussed emphasizing the wake and sleep promoting interaction of different brain regions. Finally, advances in pharmacotherapy are examined in the context of chronic insomnia and narcolepsy. Expert opinion: The orexinergic system is an example of a breakthrough in sleep medicine that has catalyzed drug development. Nevertheless, sleep is a topic still with many unanswered questions. That being said, the melanin-concentrating hormone system is becoming increasingly relevant and we speculate it will be the next target of sleep medication.

  20. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  1. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    Science.gov (United States)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-01-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. PMID:28660882

  2. Hydrolysis mechanism of (N, N) chelated cytotoxic Pt/Pd(II)-dichloro complexes: A theoretical approach

    Science.gov (United States)

    Mukherjee, Subhajit; Reddy B., Venkata P.; Mitra, Ishani; Linert, Wolfgang; Moi, Sankar Ch

    2017-06-01

    Two cytotoxic complexes cis-[Pt(MAMP)Cl2], 1 and cis-[Pd(MAMP)Cl2], 2 (where, MAMP = 2-[(Methylamino)methyl]pyridine) have been considered to explore their hydrolysis mechanism through Density Functional Theory. The stationary states on potential energy surfaces are optimized and characterized. Activation parameters and rate constants for hydrolysis of the complexes have been calculated in CPCM model and compared with that of renowned anticancer drugs. Second step is the rate-determining step with greater activation energy for both the complexes. Time Dependent Density Functional Theory is performed in order to understand the nature of electronic transition in the complexes.

  3. Understanding the Fatigue Behavior of FML Structures and Materials under Complex Variable Amplitude Loading

    NARCIS (Netherlands)

    Alderdiesten, R.; Benedictus, R.; Khan, S.

    2009-01-01

    This paper presents various failure mechanisms in FMLs, highlights the presence or absence of interaction effects, and describes how the failure mechanisms can be described for predicting damage growth under arbitrary complex load spectra.

  4. Understanding Life : The Evolutionary Dynamics of Complexity and Semiosis

    Science.gov (United States)

    Loeckenhoff, Helmut K.

    2010-11-01

    Post-Renaissance sciences created different cultures. To establish an epistemological base, Physics were separated from the Mental domain. Consciousness was excluded from science. Life Sciences were left in between e.g. LaMettrie's `man—machine' (1748) and 'vitalism' [e.g. Bergson 4]. Causative thinking versus intuitive arguing limited strictly comprehensive concepts. First ethology established a potential shared base for science, proclaiming the `biology paradigm' in the middle of the 20th century. Initially procured by Cybernetics and Systems sciences, `constructivist' models prepared a new view on human perception and thus also of scientific `objectivity when introducing the `observer'. In sequel Computer sciences triggered the ICT revolution. In turn ICT helped to develop Chaos and Complexity sciences, Non-linear Mathematics and its spin-offs in the formal sciences [Spencer-Brown 49] as e.g. (proto-)logics. Models of life systems, as e.g. Anticipatory Systems, integrated epistemology with mathematics and Anticipatory Computing [Dubois 11, 12, 13, 14] connecting them with Semiotics. Seminal ideas laid in the turn of the 19th to the 20th century [J. v. Uexküll 53] detected the co-action and co-evolvement of environments and life systems. Bio-Semiotics ascribed purpose, intent and meaning as essential qualities of life. The concepts of Systems Biology and Qualitative Research enriched and develop also anthropologies and humanities. Brain research added models of (higher) consciousness. An avant-garde is contemplating a science including consciousness as one additional base. New insights from the extended qualitative approach led to re-conciliation of basic assumptions of scientific inquiry, creating the `epistemological turn'. Paradigmatically, resting on macro- micro- and recently on nano-biology, evolution biology sired fresh scripts of evolution [W. Wieser 60,61]. Its results tie to hypotheses describing the emergence of language, of the human mind and of

  5. Measurements of student understanding on complex scientific reasoning problems

    Science.gov (United States)

    Izumi, Alisa Sau-Lin

    While there has been much discussion of cognitive processes underlying effective scientific teaching, less is known about the response nature of assessments targeting processes of scientific reasoning specific to biology content. This study used multiple-choice (m-c) and short-answer essay student responses to evaluate progress in high-order reasoning skills. In a pilot investigation of student responses on a non-content-based test of scientific thinking, it was found that some students showed a pre-post gain on the m-c test version while showing no gain on a short-answer essay version of the same questions. This result led to a subsequent research project focused on differences between alternate versions of tests of scientific reasoning. Using m-c and written responses from biology tests targeted toward the skills of (1) reasoning with a model and (2) designing controlled experiments, test score frequencies, factor analysis, and regression models were analyzed to explore test format differences. Understanding the format differences in tests is important for the development of practical ways to identify student gains in scientific reasoning. The overall results suggested test format differences. Factor analysis revealed three interpretable factors---m-c format, genetics content, and model-based reasoning. Frequency distributions on the m-c and open explanation portions of the hybrid items revealed that many students answered the m-c portion of an item correctly but gave inadequate explanations. In other instances students answered the m-c portion incorrectly yet demonstrated sufficient explanation or answered the m-c correctly and also provided poor explanations. When trying to fit test score predictors for non-associated student measures---VSAT, MSAT, high school grade point average, or final course grade---the test scores accounted for close to zero percent of the variance. Overall, these results point to the importance of using multiple methods of testing and of

  6. Understanding the mechanism of base development of hydrogen silsesquioxane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Chao, Weilun; Liang, Xiaogan; Griedel, Brian D.; Olynick, Deirdre L

    2009-01-09

    There have been numerous studies of electron beam exposed hydrogen silsesquioxane (HSQ) development conditions in order to improve the developer contrast. For TMAH based development, improvements were made by going to higher TMAH normalities and heating the developer. Yang and Berggren showed development of electron beam exposed (HSQ) by NaOH with added Na salts (various anions) significantly improves the contrast. Here, we study the contrast and etching rates of 100 keV exposed HSQ in NaOH in the presence of LiCl, NaCl, and KCl salts and use this as a segway to understand the mechanisms governing contrast during development HSQ development. The basic mechanism of development of HSQ can be understood by comparing to etching of quartz in basic solutions. Hydroxide ions act as nucleophiles which attack silicon. When a silicon-oxygen bond of the Si-O-Si matrix is broken, Si-O{sup -} and Si-OH are formed which can reversibly react to form the original structure. When a Si-H bond is broken via reaction with hydroxide, Si-O{sup -} and H{sub 2} gas are formed. Salts can change the etching rates as a function of dose in a non-linear fashion to increase etch contrast. Figs. 1, 2, and 3 show contrast curves for HSQ developed in 0.25 N sodium hydroxide and with the addition of NaCl, LiCl and KCl salts at several concentrations. NaCl addition resulted in the highest contrast. Contrast improves with additional salt concentration while sensitivity decreases. Interestingly enough, addition of salt decreases the removal of material of NaOH alone at higher doses while increasing the rate at lower concentrations. Addition of LiCl salts improves contrast over NaOH alone. Furthermore, the sensitivity at all doses increases as the LiCl concentration increases, a salting out effect. Similar to NaCl salt behavior, the addition of KCl salts, improves contrast at the expense of sensitivity. However, unlike NaCl, even at very high doses, KCl addition increases removal rate of HSQ. We

  7. Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems

    Science.gov (United States)

    2011-07-01

    us now address complex systems which include a substantial social component. We may start with economics and theory of finance. Given the long memory ...Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems * Constantino Tsallis Centro Brasileiro de...Path for Understanding Complexity in Natural, Artificial and Social Systems 5a. CONTRACT NUMBER FA23861114006 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  8. Development of a Virtual Maintenance System for Complex Mechanical Product

    Directory of Open Access Journals (Sweden)

    Xin-hua Liu

    2013-01-01

    Full Text Available In order to improve the maintenance training effect of complex mechanical product, a virtual maintenance system was developed. The system framework was proposed, and the main functional modules were elaborated. A multilevel information representation model for complex mechanical product was put forward, and the flowchart of model transformation technology was designed. Moreover, a collision detection method based on hierarchical bounding volume was proposed, and the maintainability analysis and evaluation solution based on maintenance knowledge was presented. Finally, a prototype system was developed, and the proposed system was provedto be efficient through an example of hydraulic winch.

  9. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  10. Integrating Classical with Emerging Concepts for Better Understanding of Salinity Stress Tolerance Mechanisms in Rice

    Directory of Open Access Journals (Sweden)

    Navdeep Kaur

    2017-07-01

    Full Text Available Rice is an important cereal crop responsible for world's food security. The sensitivity of rice plants toward a range of abiotic stresses is a prime challenge for its overall growth and productivity. Among these, salinity is a major stress which results in a significant loss of global rice yield annually. For finding straightforward and strict future solutions in order to assure the food security to growing world population, understanding of the various mechanisms responsible for salt stress tolerance in rice is of paramount importance. In classical studies, identification of salt tolerant cultivars and the genetic markers linked to salt tolerance and breeding approaches have been given emphasis. It further affirmed on the identification of various pathways regulating the complex process of salt stress adaptation. However, only limited success has been achieved in these approaches as salt tolerance is a complex process and is governed by multiple factors. Hence, for better understanding of salt tolerance mechanisms, a comprehensive approach involving physiological, biochemical and molecular studies is much warranted. Modern experimental and genetic resources have provided a momentum in this direction and have provided molecular insights into different salt stress responsive pathways at the signaling and regulatory level. The integrative knowledge of classical and modern research of the understanding of salt stress adaptive pathways can help the researchers for designing effective strategies to fight against salt stress. Hence, the present review is focused on the understanding of the salt stress tolerance mechanisms in rice through the consolidative knowledge of classical and modern concepts. It further highlights the emerging new trends of salt stress adaptive pathways in rice.

  11. Understanding human action: integrating meanings, mechanisms, causes, and contexts

    NARCIS (Netherlands)

    Keestra, M.; Repko, A.F.; Newell, W.H.; Szostak, R.

    2012-01-01

    Humans are capable of understanding an incredible variety of actions performed by other humans. Even though these range from primary biological actions like eating and fleeing, to acts in parliament or in poetry, humans generally can make sense of each other’s actions. Understanding other people’s

  12. Mechanism of recycling of post-termination ribosomal complexes in ...

    Indian Academy of Sciences (India)

    Madhu

    all pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor ... [Seshadri A and Varshney U 2006 Mechanism of recycling of post-termination ribosomal complexes in eubacteria: a new role of initiation factor 3 .... RRF binding results in a remarkable conformational change.

  13. Understanding the mechanism of base development of HSQ

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Chao, Weilun; Griedel, Brian; Liang, Xiaogan; Lewis, Mark; Hilken, Dawn; Olynick, Deirdre

    2009-06-16

    We study the dissolution mechanism of HSQ (hydrogen silsesquioxane) in base solutions with the addition of chloride salts to elucidate the development mechanism. Reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics points to two dose-dependent development mechanisms. Considering ion sizes, both hydrated and non-hydrated, and ion exchange, we propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and non-hydrated ion size leads to higher contrast developers, such as tetramethyl ammonium hydroxide (TMAH) with NaCl.

  14. Shoulder complex linkage mechanism for humanlike musculoskeletal robot arms.

    Science.gov (United States)

    Ikemoto, Shuhei; Kimoto, Yuya; Hosoda, Koh

    2015-11-05

    The shoulder complex in the human body consists of the scapula, clavicle, humerus, and thorax and bears the load imposed by arm movements while at the same time realizing a wide range of motions. To mimic and exploit its role, several musculoskeletal robot arms with shoulder complex mechanisms have been developed. However, although many research groups have tried to design the structures using links and joints that faithfully correspond to the bones and joints in the human shoulder complex, its function has not been successfully reproduced because biologically plausible designs seriously compromise engineering plausibility. In this paper, we propose a linkage mechanism that can reproduce complex three-dimensional scapulo movements and considers the trade-off between biological and engineering plausibilities. Subsequently, the design was validated by driving the mechanism using pneumatic artificial muscles (PAMs) placed similarly to muscles in humans. Further, we present experiments in which the robot was controlled by surface electromyographic signals from a human. We show that the proposed design, due to its kinematic similarity with human musculoskeletal systems, eases the conversion between the surface electromyogram signals and the PAMs control inputs.

  15. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    The Nobel Prize in Physiology or Medicine, 2016, was awarded to Prof Yoshinori Ohsumi from TokyoInstitute of Technology, Yokohoma, Japan, for his work that helped in understanding the molecularmechanisms of autophagy, a process used by most eukaryotic cells to degrade a portion of cytoplasmincluding damaged ...

  16. Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Kundeti Muralidhar

    2015-08-01

    Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.

  17. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    Science.gov (United States)

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understandcomplex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  18. Understanding "Understanding" Flow for Network-Centric Warfare: Military Knowledge-Flow Mechanics

    National Research Council Canada - National Science Library

    Nissen, Mark

    2002-01-01

    Network-centric warfare (NCW) emphasizes information superiority for battlespace efficacy, but it is clear that the mechanics of how knowledge flows are just as important as those pertaining to the networks and communication...

  19. Understanding the Role and Mechanism of Metformin in Obesity ...

    African Journals Online (AJOL)

    Metformin, a biguanide, is a widely used drug for the treatment of type 2 diabetes mellitus. The drug also found to be beneficial in other class of diseases like obesity but its role and mechanism of action in obesity is still not well established. A literature survey was done in order to evaluate the evidence supporting metformin ...

  20. Understanding the Mechanism behind Maternal Imprisonment and Adolescent School Dropout

    Science.gov (United States)

    Cho, Rosa M.

    2011-01-01

    This study empirically tested 3 mechanisms commonly suggested to disadvantage youths whose mothers are incarcerated in prison. An event history analysis of school dropout was conducted on a sample of 6,008 adolescents in a large city created by merging several Illinois state administrative data. Findings revealed that adolescents are indeed at…

  1. Understanding the biological mechanisms of Zika virus disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will use advanced biomolecular, genomics and proteomics techniques to explain the molecular mechanisms by which the Zika virus infects and persists in the human body, how it affects the human reproductive and central nervous system, and how the risk of fetal abnormalities can be better predicted in infected ...

  2. Using Simulations in Linked Courses to Foster Student Understanding of Complex Political Institutions

    Science.gov (United States)

    Williams, Michelle Hale

    2015-01-01

    Political institutions provide basic building blocks for understanding and comparing political systems. Yet, students often struggle to understand the implications of institutional choice, such as electoral system rules, especially when the formulas and calculations used to determine seat allocation can be multilevel and complex. This study brings…

  3. What Influences Children's and Adolescents' Understanding of the Complexity of the Internet?

    Science.gov (United States)

    Yan, Zheng

    2006-01-01

    This study aimed at analyzing complex relationships among Internet use, Internet users, and conceptual understanding of the Internet. It used path models to examine factors related to Internet use (duration of Internet use, frequency of Internet use, and informal Internet classes) and Internet users (age and gender) in affecting understanding of…

  4. Periodic forces trigger a complex mechanical response in ubiquitin.

    Science.gov (United States)

    Szymczak, Piotr; Janovjak, Harald

    2009-07-17

    Mechanical forces govern physiological processes in all living organisms. Many cellular forces, for example, those generated in cyclic conformational changes of biological machines, have repetitive components. In apparent contrast, little is known about how dynamic protein structures respond to periodic mechanical information. Ubiquitin is a small protein found in all eukaryotes. We developed molecular dynamics simulations to unfold single and multimeric ubiquitins with periodic forces. By using a coarse-grained representation, we were able to model forces with periods about 2 orders of magnitude longer than the protein's relaxation time. We found that even a moderate periodic force weakened the protein and shifted its unfolding pathways in a frequency- and amplitude-dependent manner. A complex dynamic response with secondary structure refolding and an increasing importance of local interactions was revealed. Importantly, repetitive forces with broadly distributed frequencies elicited very similar molecular responses compared to fixed-frequency forces. When testing the influence of pulling geometry on ubiquitin's mechanical stability, it was found that the linkage involved in the mechanical degradation of cellular proteins renders the protein remarkably insensitive to periodic forces. We also devised a complementary kinetic energy landscape model that traces these observations and explains periodic-force, single-molecule measurements. In turn, this analytical model is capable of predicting dynamic protein responses. These results provide new insights into ubiquitin mechanics and a potential mechanical role during protein degradation, as well as first frameworks for dynamic protein stability and the modeling of repetitive mechanical processes.

  5. Photoelectrochemical etching of gallium nitride surface by complexation dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao-Rong [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Hou, Fei; Wang, Zu-Gang; Zhang, Shao-Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China); Changchun University of Science and Technology, 130022 Changchun (China); Pan, Ge-Bo, E-mail: gbpan2008@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China)

    2017-07-15

    Graphical abstract: GaN surface was etched by 0.3 M EDTA-2Na. The proposed complexation dissolution mechanism can be applicable to almost all neutral etchants under the prerequisite of strong light and electric field. - Highlights: • GaN surface was etched by EDTA-2Na. • GaN may be dissolved into EDTA-2Na by forming Ga–EDTA complex. • We propose the complexation dissolution mechanism for the first time. - Abstract: Gallium nitride (GaN) surface was etched by 0.3 M ethylenediamine tetraacetic acid disodium (EDTA-2Na) via photoelectrochemical etching technique. SEM images reveal the etched GaN surface becomes rough and irregular. The pore density is up to 1.9 × 10{sup 9} per square centimeter after simple acid post-treatment. The difference of XPS spectra of Ga 3d, N 1s and O 1s between the non-etched and freshly etched GaN surfaces can be attributed to the formation of Ga–EDTA complex at the etching interface between GaN and EDTA-2Na. The proposed complexation dissolution mechanism can be broadly applicable to almost all neutral etchants under the prerequisite of strong light and electric field. From the point of view of environment, safety and energy, EDTA-2Na has obvious advantages over conventionally corrosive etchants. Moreover, as the further and deeper study of such nearly neutral etchants, GaN etching technology has better application prospect in photoelectric micro-device fabrication.

  6. Photoelectrochemical etching of gallium nitride surface by complexation dissolution mechanism

    International Nuclear Information System (INIS)

    Zhang, Miao-Rong; Hou, Fei; Wang, Zu-Gang; Zhang, Shao-Hui; Pan, Ge-Bo

    2017-01-01

    Graphical abstract: GaN surface was etched by 0.3 M EDTA-2Na. The proposed complexation dissolution mechanism can be applicable to almost all neutral etchants under the prerequisite of strong light and electric field. - Highlights: • GaN surface was etched by EDTA-2Na. • GaN may be dissolved into EDTA-2Na by forming Ga–EDTA complex. • We propose the complexation dissolution mechanism for the first time. - Abstract: Gallium nitride (GaN) surface was etched by 0.3 M ethylenediamine tetraacetic acid disodium (EDTA-2Na) via photoelectrochemical etching technique. SEM images reveal the etched GaN surface becomes rough and irregular. The pore density is up to 1.9 × 10 9 per square centimeter after simple acid post-treatment. The difference of XPS spectra of Ga 3d, N 1s and O 1s between the non-etched and freshly etched GaN surfaces can be attributed to the formation of Ga–EDTA complex at the etching interface between GaN and EDTA-2Na. The proposed complexation dissolution mechanism can be broadly applicable to almost all neutral etchants under the prerequisite of strong light and electric field. From the point of view of environment, safety and energy, EDTA-2Na has obvious advantages over conventionally corrosive etchants. Moreover, as the further and deeper study of such nearly neutral etchants, GaN etching technology has better application prospect in photoelectric micro-device fabrication.

  7. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms

    Science.gov (United States)

    Singh, Amit; Kar, Sujita Kumar

    2017-01-01

    Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT. PMID:28783929

  8. Geometry of real and complex canonical transformations in quantum mechanics

    International Nuclear Information System (INIS)

    Grossmann, A.

    1977-08-01

    Quantum mechanics of finitely many particles involves the group of linear (and affine) canonical transformations. A well-defined ray representation of this group acts in the space of states of any quantum-mechanical system with finitely many degrees of freedom and plays a central role in many different contexts. This representation appears quite naturally in quantum mechanics over phase space (Weyl-Wigner correspondence), that it becomes, when suitably written, just a matter of looking at one object from different symplectic reference frames. This is particularly interesting for complex canonical transformations which are represented by unbounded operators. The list of references gives an idea of the variety of motivations and points of view in the subject

  9. Understanding natural moisturizing mechanisms: implications for moisturizer technology.

    Science.gov (United States)

    Chandar, Prem; Nole, Greg; Johnson, Anthony W

    2009-07-01

    Dry skin and moisturization are important topics because they impact the lives of many individuals. For most individuals, dry skin is not a notable concern and can be adequately managed with current moisturizing products. However, dry skin can affect the quality of life of some individuals because of the challenges of either harsh environmental conditions or impaired stratum corneum (SC) dry skin protection processes resulting from various common skin diseases. Dry skin protection processes of the SC, such as the development of natural moisturizing factor (NMF), are complex, carefully balanced, and easily perturbed. We discuss the importance of the filaggrin-NMF system and the composition of NMF in both healthy and dry skin, and also reveal new insights that suggest the properties required for a new generation of moisturizing technologies.

  10. Utilizing toxicogenomic data to understand chemical mechanism of action in risk assessment

    International Nuclear Information System (INIS)

    Wilson, Vickie S.; Keshava, Nagalakshmi; Hester, Susan; Segal, Deborah; Chiu, Weihsueh; Thompson, Chad M.; Euling, Susan Y.

    2013-01-01

    The predominant role of toxicogenomic data in risk assessment, thus far, has been one of augmentation of more traditional in vitro and in vivo toxicology data. This article focuses on the current available examples of instances where toxicogenomic data has been evaluated in human health risk assessment (e.g., acetochlor and arsenicals) which have been limited to the application of toxicogenomic data to inform mechanism of action. This article reviews the regulatory policy backdrop and highlights important efforts to ultimately achieve regulatory acceptance. A number of research efforts on specific chemicals that were designed for risk assessment purposes have employed mechanism or mode of action hypothesis testing and generating strategies. The strides made by large scale efforts to utilize toxicogenomic data in screening, testing, and risk assessment are also discussed. These efforts include both the refinement of methodologies for performing toxicogenomics studies and analysis of the resultant data sets. The current issues limiting the application of toxicogenomics to define mode or mechanism of action in risk assessment are discussed together with interrelated research needs. In summary, as chemical risk assessment moves away from a single mechanism of action approach toward a toxicity pathway-based paradigm, we envision that toxicogenomic data from multiple technologies (e.g., proteomics, metabolomics, transcriptomics, supportive RT-PCR studies) can be used in conjunction with one another to understand the complexities of multiple, and possibly interacting, pathways affected by chemicals which will impact human health risk assessment

  11. Mechanism-based modeling of complex biomedical systems

    DEFF Research Database (Denmark)

    Mosekilde, E; Sosnovtseva, OV; Holstein-Rathlou, NH

    2005-01-01

    ) to examine the sensitivity of a system to parameter variation, (iii) to learn about processes not directly amenable to experimentation, and (iv) to predict system behavior under conditions not previously experienced. The paper illustrates different aspects of the application of mechanism-based modeling......Mechanism-based modeling is an approach in which the physiological, pathological and pharmacological processes of relevance to a given problem are represented as directly as possible. This approach allows us (i) to test whether assumed hypotheses are consistent with observed behaviour, (ii...... regulatory mechanism represents the target for intervention and that the development of new and more effective drugs must be based on a deeper understanding of the biological processes....

  12. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae

    Science.gov (United States)

    Sartor, R. Balfour

    2015-01-01

    Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection. PMID:26097735

  13. Understanding mechanisms of autoimmunity through translational research in vitiligo

    Science.gov (United States)

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  14. Understanding the kinetic mechanism of RNA single base pair formation.

    Science.gov (United States)

    Xu, Xiaojun; Yu, Tao; Chen, Shi-Jie

    2016-01-05

    RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model.

  15. Understanding the mechanisms of glutamine action in critically ill patients

    Directory of Open Access Journals (Sweden)

    Gisele P. Oliveira

    2010-06-01

    Full Text Available Glutamine (Gln is an important energy source and has been used as a supplementary energy substrate. Furthermore, Gln is an essential component for numerous metabolic functions, including acid-base homeostasis, gluconeogenesis, nitrogen transport and synthesis of proteins and nucleic acids. Therefore, glutamine plays a significant role in cell homeostasis and organ metabolism. This article aims to review the mechanisms of glutamine action during severe illnesses. In critically ill patients, the increase in mortality was associated with a decreased plasma Gln concentration. During catabolic stress, Gln consumption rate exceeds the supply, and both plasma and skeletal muscle pools of free Gln are severely reduced. The dose and route of Gln administration clearly influence its effectiveness: high-dose parenteral appears to be more beneficial than low-dose enteral administration. Experimental studies reported that Gln may protect cells, tissues, and whole organisms from stress and injury through the following mechanisms: attenuation of NF (nuclear factor-kB activation, a balance between pro- and anti-inflammatory cytokines, reduction in neutrophil accumulation, improvement in intestinal integrity and immune cell function, and enhanced of heat shock protein expression. In conclusion, high-doses of parenteral Gln (>0.50 g/kg/day demonstrate a greater potential to benefit in critically ill patients, although Gln pathophysiological mechanisms requires elucidation.A glutamina (Gln é uma importante fonte de energia e tem sido usada como substrato energético suplementar. Além disso, a Gln é um componente essencial para numerosas funções metabólicas tais como: homeostase ácido-base, gliconeogênese, transporte de nitrogênio e síntese de proteínas e ácidos nucléicos. Portanto, a glutamina desempenha um papel importante na homeostase celular e no metabolismo dos órgãos. Esse artigo objetiva rever os mecanismos de ação da glutamina na doen

  16. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  17. Understanding Immune Resistance to Infectious Bronchitis Using Major Histocompatibility Complex Chicken Lines.

    Science.gov (United States)

    da Silva, A P; Hauck, R; Zhou, H; Gallardo, R A

    2017-09-01

    Genetic resistance or susceptibility to infectious diseases has been largely associated with the avian major histocompatibility complex (MHC) genes. Our goal was to determine resistance and susceptibility of MHC B haplotype in congenic and inbred chicken lines in order to establish a resistant-susceptible model. Eight congenic lines (253/B18, 254/B15, 330/B21, 312/B24, 331/B2, 335/B19, 336/B21, and 342/BO), two inbred lines (003/B17 and 077/B19), and three commercial lines (white leghorn, brown layers, and broilers) were used in two experiments. We analyzed and compared immunologic responses and the effect of challenge by measuring viral load, IgG and IgA humoral responses, histopathology and histomorphometry, clinical signs, and immune cell populations in the different MHC B haplotype lines. We found that respiratory signs, tracheal deciliation and inflammation, airsacculitis, viral shedding in tears, and local humoral responses were good parameters to determine resistance or susceptibility. Based on these results, we identified 331/B2 as the most resistant and 335/B19 as the most susceptible congenic chicken lines. These two lines will be used as an animal model in subsequent experiments to understand the mechanisms by which the immune system in chickens generates resistance to infectious bronchitis virus.

  18. Douglas Hanahan: The daunting complexity of cancer: understanding the battlefield is a step towards winning the war

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The Inaugural Grace-CERN Lecture The daunting complexity of cancer: understanding the battlefield is a step towards winning the war  Douglas Hanahan, Ph.D. Director, Swiss Institute for Experimental Cancer Research (ISREC)  Professor of Molecular Oncology, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL) Vice Director, Swiss Cancer Center Lausanne Synopsis (version francaise ci-dessous) Cancer is a disease with hundreds of variations, both in affected organs and in responses to different therapies.  Modern human cancer research is producing an avalanche of data about the distinctive genetic aberrations of its specific types, further accentuating the diversity and vast complexity of the disease. There is hope that elucidating its mechanisms will lead to more informed and more effective therapeutic strategies.  Understanding the enemy is paramount, and yet tumors arising in different organs can be so different as to de...

  19. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    . The functionality on the P4-ATPase complex is essential for several cellular processes, such as vesicle-mediated transport. However, the specific role of flippase activity in vesicle biogenesis and the regulatory mechanism behind this process is still poorly understood. In these studies, we identified...... as these transporters are trapped in an environment formed by their own substrate (lipids). Most lipid uptake assays use fluorescent lipid analogues in combination with flow cytometry analysis. However, flow cytometry systems are rather expensive and require extensive maintenance. Thus, we present a simple and more...

  20. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  1. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    Science.gov (United States)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  2. Understanding a Complex World: Why an Emphasis on Empathy Could Better Enable Army Leaders to Win

    Science.gov (United States)

    2016-06-10

    the problem of how to win in a complex world. 1 Brig. Gen. Oscar W. Koch and Robert G. Hayes, G-2: Intelligence for Patton (Atglen, PA: Schiffer...UNDERSTANDING A COMPLEX WORLD: WHY AN EMPHASIS ON EMPATHY COULD BETTER ENABLE ARMY LEADERS TO WIN A thesis presented to the...Leaders to Win 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew J. Fontaine, MAJ 5d. PROJECT NUMBER

  3. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    Science.gov (United States)

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Speech Understanding in Complex Listening Environments by Listeners Fit with Cochlear Implants

    Science.gov (United States)

    Dorman, Michael F.; Gifford, Rene H.

    2017-01-01

    Purpose: The aim of this article is to summarize recent published and unpublished research from our 2 laboratories on improving speech understanding in complex listening environments by listeners fit with cochlear implants (CIs). Method: CI listeners were tested in 2 listening environments. One was a simulation of a restaurant with multiple,…

  5. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    Science.gov (United States)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  6. Dioxins: diagnostic and prognostic challenges arising from complex mechanisms

    DEFF Research Database (Denmark)

    Rysavy, Noel M.; Maaetoft-Udsen, Kristina; Turner, Helen

    2013-01-01

    Dioxins are ubiquitous environmental challenges to humans, with a pervasiveness that arises from 200?years of rapid industrialization and mechanization of Western societies and which is now extending into the developing world. In spite of their penetrance of the human biota, these compounds...... such as cancer and diabetes, which are already multifactorial and highly complex, creates the context for the current review paper. Here, we summarize dioxin exposure paradigms and the resulting physiological effects that have been documented in animals and humans. Novel insights into potential endogenous end...... requiring that researchers leverage the power of genomics and epigenetics. However, the continuation of longitudinal epidemiological studies and the development of a firmer basis from which to extrapolate animal studies will be critical in ensuring optimal insight from these resource-intensive techniques...

  7. Rumor spreading model considering hesitating mechanism in complex social networks

    Science.gov (United States)

    Xia, Ling-Ling; Jiang, Guo-Ping; Song, Bo; Song, Yu-Rong

    2015-11-01

    The study of rumor spreading has become an important issue on complex social networks. On the basis of prior studies, we propose a modified ​susceptible-exposed-infected-removed (SEIR) model with hesitating mechanism by considering the attractiveness and fuzziness of the content of rumors. We derive mean-field equations to characterize the dynamics of SEIR model on both homogeneous and heterogeneous networks. Then a steady-state analysis is conducted to investigate the spreading threshold and the final rumor size. Simulations on both artificial and real networks show that a decrease of fuzziness can effectively increase the spreading threshold of the SEIR model and reduce the maximum rumor influence. In addition, the spreading threshold is independent of the attractiveness of rumor. Simulation results also show that the speed of rumor spreading obeys the relation ;BA network > WS network;, whereas the final scale of spreading obeys the opposite relation.

  8. Axonal wiring in neural development: Target-independent mechanisms help to establish precision and complexity.

    Science.gov (United States)

    Petrovic, Milan; Schmucker, Dietmar

    2015-09-01

    The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target-derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target-independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell-intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon-axon interactions or constitute axon-intrinsic functions and outline how they complement the well-known target-dependent wiring mechanisms. © 2015 WILEY Periodicals, Inc.

  9. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    Science.gov (United States)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  10. Understanding complex clinical reasoning in infectious diseases for improving clinical decision support design.

    Science.gov (United States)

    Islam, Roosan; Weir, Charlene R; Jones, Makoto; Del Fiol, Guilherme; Samore, Matthew H

    2015-11-30

    Clinical experts' cognitive mechanisms for managing complexity have implications for the design of future innovative healthcare systems. The purpose of the study is to examine the constituents of decision complexity and explore the cognitive strategies clinicians use to control and adapt to their information environment. We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious Disease (ID) experts at the University of Utah and Salt Lake City Veterans Administration Medical Center. Participants were asked to recall a complex, critical and vivid antibiotic-prescribing incident using the Critical Decision Method (CDM), a type of Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision Method, questions were posed to fully explore the incident, focusing in depth on the clinical components underlying the complexity. Probes were included to assess cognitive and decision strategies used by participants. The following three themes emerged as the constituents of decision complexity experienced by the Infectious Diseases experts: 1) the overall clinical picture does not match the pattern, 2) a lack of comprehension of the situation and 3) dealing with social and emotional pressures such as fear and anxiety. All these factors contribute to decision complexity. These factors almost always occurred together, creating unexpected events and uncertainty in clinical reasoning. Five themes emerged in the analyses of how experts deal with the complexity. Expert clinicians frequently used 1) watchful waiting instead of over- prescribing antibiotics, engaged in 2) theory of mind to project and simulate other practitioners' perspectives, reduced very complex cases into simple 3) heuristics, employed 4) anticipatory thinking to plan and re-plan events and consulted with peers to share knowledge, solicit opinions and 5) seek help on patient cases. The cognitive strategies to deal with decision complexity found in this study have important

  11. Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells

    Science.gov (United States)

    Jaspers, Maarten; Vaessen, Sarah L.; van Schayik, Pim; Voerman, Dion; Rowan, Alan E.; Kouwer, Paul H. J.

    2017-05-01

    The mechanical properties of cells and the extracellular environment they reside in are governed by a complex interplay of biopolymers. These biopolymers, which possess a wide range of stiffnesses, self-assemble into fibrous composite networks such as the cytoskeleton and extracellular matrix. They interact with each other both physically and chemically to create a highly responsive and adaptive mechanical environment that stiffens when stressed or strained. Here we show that hybrid networks of a synthetic mimic of biological networks and either stiff, flexible and semi-flexible components, even very low concentrations of these added components, strongly affect the network stiffness and/or its strain-responsive character. The stiffness (persistence length) of the second network, its concentration and the interaction between the components are all parameters that can be used to tune the mechanics of the hybrids. The equivalence of these hybrids with biological composites is striking.

  12. Statistical mechanics of complex neural systems and high dimensional data

    International Nuclear Information System (INIS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-01-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks. (paper)

  13. Understanding the dimensions of intensive care: transpersonal caring and complexity theories.

    Science.gov (United States)

    do Nascimento, Keyla Cristiane; Erdmann, Alacoque Lorenzini

    2009-01-01

    This is a descriptive, interpretive and qualitative study carried out at the ICU of a Brazilian teaching hospital. It aimed to understand the dimensions of human caring experienced by health care professionals, clients and their family members at an ICU, based on human caring complexity. The Transpersonal Caring and Complexity theories support theory and data analysis. The following dimensions of care emerged from the themes analyzed according to Ricoeur: self-care, care as an individual value, professional vs. informal care, care as supportive relationship, affective care, humanized care, care as act/attitude, care practice; educative care, dialogical relationship, care coupled to technology, loving care, interactive care, non-care, care ambience, the essence of life and profession, and meaning/purpose of care. We believe in care that encompasses several dimensions presented here, based on the relationship with the other, on the empathetic, sensitive, affectionate, creative, dynamic and understanding being in the totality of the human being.

  14. Understanding mechanisms of raveling to extend open graded friction course (OGFC) service life.

    Science.gov (United States)

    2016-03-01

    To understand the mechanisms of raveling in open graded friction course (OGFC) mixtures, this project was divided into experimental measurements and finite element (FE) modeling. For the experimental part, mixtures with good and poor field performanc...

  15. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms.

    Science.gov (United States)

    Auld, S K J R; Tinsley, M C

    2015-02-01

    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups-from single-celled bacteria to multicellular flatworms-yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host-parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field.

  16. Understanding the mechanism(s) of mosaic trisomy 21 by using DNA polymorphism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pangalos, C.; Abazis, D.; Avramopoulos, D.; Blouin, J.L.; Antonaraksi, S.E. (Univ. of Patras Medical School (Greece)); Raoul, O.; deBlois, M.C.; Prieur, M. (Cytogenetics Laboratory, Paris (France)); Schinzel, A.A.

    1994-03-01

    In order to investigate the mechanism(s) underlying mosaicism for trisomy 21, the authors genotyped 17 families with mosaic trisomy 21 probands, using 28 PCR-detectable DNA polymorphic markers that map in the pericentromeric region and long arm of chromosome 21. The percentage of cells with trisomy 21 in the probands' blood lymphocytes was 6%-94%. There were two classes of autoradiographic results: In class I, a third allele' of lower intensity was detected in the proband's DNA for at least two chromosome 21 markers. The interpretation of this result was that the proband had inherited three chromosomes 21 after meiotic nondisjunction (NDJ) (trisomy 21 zygote) and subsequently lost one because of mitotic (somatic) error, the lost chromosome 21 being that with the lowest-intensity polymorphic allele. The parental origin and the meiotic stage of NDJ could also be determined. In class II, a third allele' was never detected. In these cases, the mosaicism probably occurred either by a postzygotic, mitotic error in anormal zygote that followed a normal meiosis (class IIA mechanism); by premeiotic, mitotic NDJ yielding an aneusomic zygote after meiosis, and subsequent mitotic loss (class IIB mechanism); or by a meiosis II error with lack of crossover in the preceding meiosis I, followed by mitotic loss after fertilization (class IIC mechanism). Among class II mechanisms, the most likely is mechanism IIA, while IIC is the least likely. There were 10 cases of class I and 7 cases of class II results. Within class I, there were nine cases with maternal meitoic errors (six meiosis I and three meiosis II errors, on the basis of pericentromeric markers) and one with paternal meiosis I error. The postzygotic loss of chromosome 21 was determined in eight maternal class I cases, and it was maternally derived in five cases and paternally derived in three; this suggests that the postzygotic loss of chromosome 21 is probably random. 28 refs., 1 fig., 2 tabs.

  17. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

    2009-07-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  18. Complex Systems Biology Approach To Understanding Coordination of JAK-STAT Signaling

    OpenAIRE

    Soebiyanto, Radina P.; Sreenath, Sree N.; Qu, Cheng-Kui; Loparo, Kenneth A.; Bunting, Kevin D.

    2007-01-01

    In this work, we search for coordination as an organizing principle in a complex signaling system using a multilevel hierarchical paradigm. The objective is to explain the underlying mechanism of Interferon (IFNγ) induced JAK-STAT (specifically JAK1/JAK2-STAT1) pathway behavior. Starting with a mathematical model of the pathway from the literature, we modularize the system using biological knowledge via principles of biochemical cohesion, biological significance, and functionality. The modula...

  19. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  20. Spread of Epidemic on Complex Networks Under Voluntary Vaccination Mechanism

    Science.gov (United States)

    Xue, Shengjun; Ruan, Feng; Yin, Chuanyang; Zhang, Haifeng; Wang, Binghong

    Under the assumption that the decision of vaccination is a voluntary behavior, in this paper, we use two forms of risk functions to characterize how susceptible individuals estimate the perceived risk of infection. One is uniform case, where each susceptible individual estimates the perceived risk of infection only based on the density of infection at each time step, so the risk function is only a function of the density of infection; another is preferential case, where each susceptible individual estimates the perceived risk of infection not only based on the density of infection but only related to its own activities/immediate neighbors (in network terminology, the activity or the number of immediate neighbors is the degree of node), so the risk function is a function of the density of infection and the degree of individuals. By investigating two different ways of estimating the risk of infection for susceptible individuals on complex network, we find that, for the preferential case, the spread of epidemic can be effectively controlled; yet, for the uniform case, voluntary vaccination mechanism is almost invalid in controlling the spread of epidemic on networks. Furthermore, given the temporality of some vaccines, the waves of epidemic for two cases are also different. Therefore, our work insight that the way of estimating the perceived risk of infection determines the decision on vaccination options, and then determines the success or failure of control strategy.

  1. Inclusion Mechanism and Heat Stability of the Complex of 4 ...

    African Journals Online (AJOL)

    The physicochemical properties of the complex were evaluated by Fourier transform infrared spectroscopy (FT-IR) and x-ray diffractometry (XRD) while the heat stability of the complex was measured by thermogravimetric/differential scanning calorimetry (TG/DSC). Results: The stability constants of the complexes were ...

  2. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  3. Mechanisms of copy number variation and hybrid gene formation in the KIR immune gene complex.

    Science.gov (United States)

    Traherne, James A; Martin, Maureen; Ward, Rosemary; Ohashi, Maki; Pellett, Fawnda; Gladman, Dafna; Middleton, Derek; Carrington, Mary; Trowsdale, John

    2010-03-01

    The fine-scale structure of the majority of copy number variation (CNV) regions remains unknown. The killer immunoglobulin receptor (KIR) gene complex exhibits significant CNV. The evolutionary plasticity of the KIRs and their broad biomedical relevance makes it important to understand how these immune receptors evolve. In this paper, we describe haplotype re-arrangement creating novel loci at the KIR complex. We completely sequenced, after fosmid cloning, two rare contracted haplotypes. Evidence of frequent hybrid KIR genes in samples from many populations suggested that re-arrangements may be frequent and selectively advantageous. We propose mechanisms for formation of novel hybrid KIR genes, facilitated by protrusive non-B DNA structures at transposon recombination sites. The heightened propensity to generate novel hybrid KIR receptors may provide a proactive evolutionary measure, to militate against pathogen evasion or subversion. We propose that CNV in KIR is an evolutionary strategy, which KIR typing for disease association must take into account.

  4. Understanding valve program complexity in a refurbishment environment - learning from the past

    International Nuclear Information System (INIS)

    Roth, H.E.

    2012-01-01

    The complexity of Valve Program development, planning, execution and management in a refurbishment environment is an enormous undertaking requiring the proper coordination and integration of many moving parts. As such, lack of attention and understanding of this complexity has led to significant cost and schedule overruns in past refurbishment projects in the province. OPEX indicates the challenges in completing valve scope during refurbishments are related but not limited to; lack of detailed condition assessments, improper scope development, insignificant strategic approach to work task planning, scheduling and procurement, absence of contingency planning for common ‘as found’ conditions during execution, lack of proper training requirements, etc. In addition, past contracting strategies to employ numerous companies in collaboration to complete such a complex and specialized program, has resulted in further complications surrounding the management and integration of multiple quality programs and internal company processes. Finally, the aftermath of such fragmented projects results in an absolute closeout nightmare, often times taking years to locate, sift through and re-integrate pertinent information back into customer systems. Valve Program complexity cannot be understood by just anyone, only those that have lived through a refurbishment project and experienced the challenges mentioned above have the knowledge, skill, and ability to appreciate how to tactically apply past learning to realize future improvements. Furthermore, effective contractor-customer collaboration is crucial; true and in-depth knowledge and understanding of the customer quality programs, engineering and work management processes, configuration management requirements, and most importantly the imperative significance of nuclear safety, are all essential components to ensure overall alignment and program success. (author)

  5. Understanding, creating, and managing complex techno-socio-economic systems: Challenges and perspectives

    Science.gov (United States)

    Helbing, D.; Balietti, S.; Bishop, S.; Lukowicz, P.

    2011-05-01

    This contribution reflects on the comments of Peter Allen [1], Bikas K. Chakrabarti [2], Péter Érdi [3], Juval Portugali [4], Sorin Solomon [5], and Stefan Thurner [6] on three White Papers (WP) of the EU Support Action Visioneer (www.visioneer.ethz.ch). These White Papers are entitled "From Social Data Mining to Forecasting Socio-Economic Crises" (WP 1) [7], "From Social Simulation to Integrative System Design" (WP 2) [8], and "How to Create an Innovation Accelerator" (WP 3) [9]. In our reflections, the need and feasibility of a "Knowledge Accelerator" is further substantiated by fundamental considerations and recent events around the globe. newpara The Visioneer White Papers propose research to be carried out that will improve our understanding of complex techno-socio-economic systems and their interaction with the environment. Thereby, they aim to stimulate multi-disciplinary collaborations between ICT, the social sciences, and complexity science. Moreover, they suggest combining the potential of massive real-time data, theoretical models, large-scale computer simulations and participatory online platforms. By doing so, it would become possible to explore various futures and to expand the limits of human imagination when it comes to the assessment of the often counter-intuitive behavior of these complex techno-socio-economic-environmental systems. In this contribution, we also highlight the importance of a pluralistic modeling approach and, in particular, the need for a fruitful interaction between quantitative and qualitative research approaches. newpara In an appendix we briefly summarize the concept of the FuturICT flagship project, which will build on and go beyond the proposals made by the Visioneer White Papers. EU flagships are ambitious multi-disciplinary high-risk projects with a duration of at least 10 years amounting to an envisaged overall budget of 1 billion EUR [10]. The goal of the FuturICT flagship initiative is to understand and manage complex

  6. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  7. Landscape community genomics: understanding eco-evolutionary processes in complex environments

    Science.gov (United States)

    Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon

    2015-01-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.

  8. Complex anxiety disorders : Risk factors, underlying mechanisms, and treatment enhancement

    NARCIS (Netherlands)

    Klein Hofmeijer-Sevink, M.

    2016-01-01

    This thesis aims to address lacunas in the current knowledge of complex anxiety disorders. This is an important topic since complex anxiety disorders tend to develop a chronic course and because current guidelines are incomplete. In this thesis, several studies are presented regarding the various

  9. New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis

    Science.gov (United States)

    2015-11-01

    Award Number: W81XWH-12-1-0449 TITLE: New Drugs for Anemia Treatment Based on a New Understanding of the Mechanisms of Stress Erythropoiesis...COVERED 1Sep2012 - 31Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER New Drugs for Anemia Treatment Based on a New Understanding of the...cell formation in "Nan" (neonatal anemia ) mice, raising the level of red cells to almost normal. It also causes an increase in the numbers of splenic

  10. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    Science.gov (United States)

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  11. Understanding the topological characteristics and flow complexity of urban traffic congestion

    Science.gov (United States)

    Wen, Tzai-Hung; Chin, Wei-Chien-Benny; Lai, Pei-Chun

    2017-05-01

    For a growing number of developing cities, the capacities of streets cannot meet the rapidly growing demand of cars, causing traffic congestion. Understanding the spatial-temporal process of traffic flow and detecting traffic congestion are important issues associated with developing sustainable urban policies to resolve congestion. Therefore, the objective of this study is to propose a flow-based ranking algorithm for investigating traffic demands in terms of the attractiveness of street segments and flow complexity of the street network based on turning probability. Our results show that, by analyzing the topological characteristics of streets and volume data for a small fraction of street segments in Taipei City, the most congested segments of the city were identified successfully. The identified congested segments are significantly close to the potential congestion zones, including the officially announced most congested streets, the segments with slow moving speeds at rush hours, and the areas near significant landmarks. The identified congested segments also captured congestion-prone areas concentrated in the business districts and industrial areas of the city. Identifying the topological characteristics and flow complexity of traffic congestion provides network topological insights for sustainable urban planning, and these characteristics can be used to further understand congestion propagation.

  12. Simulation-based education: understanding the socio-cultural complexity of a surgical training 'boot camp'.

    Science.gov (United States)

    Cleland, Jennifer; Walker, Kenneth G; Gale, Michael; Nicol, Laura G

    2016-08-01

    The focus of simulation-based education (SBE) research has been limited to outcome and effectiveness studies. The effect of social and cultural influences on SBE is unclear and empirical work is lacking. Our objective in this study was to explore and understand the complexity of context and social factors at a surgical boot camp (BC). A rapid ethnographic study, employing the theoretical lenses of complexity and activity theory and Bourdieu's concept of 'capital', to better understand the socio-cultural influences acting upon, and during, two surgical BCs, and their implications for SBE. Over two 4-day BCs held in Scotland, UK, an observer and two preceptors conducted 81 hours of observations, 14 field interviews and 11 formal interviews with faculty members (n = 10, including the lead faculty member, session leaders and junior faculty members) and participants (n = 19 core surgical trainees and early-stage residents). Data collection and inductive analysis for emergent themes proceeded iteratively. This paper focuses on three analytical themes. First, the complexity of the surgical training system and wider health care education context, and how this influenced the development of the BC. Second, participants' views of the BC as a vehicle not just for learning skills but for gaining 'insider information' on how best to progress in surgical training. Finally, the explicit aim of faculty members to use the Scottish Surgical Bootcamp to welcome trainees and residents into the world of surgery, and how this occurred. To the best of our knowledge, this is the first empirical study of a surgical BC that takes a socio-cultural approach to exploring and understanding context, complexities, uncertainties and learning associated with one example of SBE. Our findings suggest that a BC is as much about social and cultural processes as it is about individual, cognitive and acquisitive learning. Acknowledging this explicitly will help those planning similar enterprises and

  13. A reduced complexity discrete particle model for understanding the sediment dynamics of steep upland river confluences

    Science.gov (United States)

    Tancock, M. J.; Lane, S. N.; Hardy, R. J.

    2012-12-01

    There has been a significant amount of research conducted in order to understand the flow fields at natural river confluences. Much of this has been made possible due to advances in the use of Computational Fluid Dynamics (CFD). However, much of this research has been conducted on river confluences with negligible water surface slopes and any understanding of the sediment dynamics is largely implied from the flow fields. Therefore, a key challenge is to understand the flow and sediment dynamics of steep river confluences with dynamic boundaries. Two numerical modelling developments are presented which together are capable of increasing our understanding of the sediment dynamics of steep river confluences. The first is the application of a Height-of-Liquid (HOL) model within a CFD framework to explicitly solve the water surface elevation. This is a time-dependent, multiphase treatment of the fluid dynamics which solves for the change in volume of water and air in each vertical column of the mesh. The second is the development of a reduced complexity discrete particle transport model which uses the change in momentum on a spherical particle to predict the transport paths through the flow field determined from CFD simulations. The performance of the two models is tested using field data from a series of highly dynamic, steep gravel-bed confluences on a braidplain of the Borgne d'Arolla, Switzerland. The HOL model is validated against the water surface elevation and flow velocity data and is demonstrated to provide a reliable representation of the flow field in fast-flowing, supercritical flows. In order to validate the discrete particle model, individual particles were tracked using electronic tacheometry. The model is demonstrated to accurately represent the particle tracks obtained in the field and provides a new methodology to understand the dynamic morphology of braid plains.

  14. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  15. Understanding and quantifying cognitive complexity level in mathematical problem solving items

    Directory of Open Access Journals (Sweden)

    SUSAN E. EMBRETSON

    2008-09-01

    Full Text Available The linear logistic test model (LLTM; Fischer, 1973 has been applied to a wide variety of new tests. When the LLTM application involves item complexity variables that are both theoretically interesting and empirically supported, several advantages can result. These advantages include elaborating construct validity at the item level, defining variables for test design, predicting parameters of new items, item banking by sources of complexity and providing a basis for item design and item generation. However, despite the many advantages of applying LLTM to test items, it has been applied less often to understand the sources of complexity for large-scale operational test items. Instead, previously calibrated item parameters are modeled using regression techniques because raw item response data often cannot be made available. In the current study, both LLTM and regression modeling are applied to mathematical problem solving items from a widely used test. The findings from the two methods are compared and contrasted for their implications for continued development of ability and achievement tests based on mathematical problem solving items.

  16. Applying a complex adaptive system's understanding of health to primary care [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Johannes Bircher

    2016-09-01

    Full Text Available This paper explores the diagnostic and therapeutic potential of a new concept of health. Investigations into the nature of health have led to a new definition that explains health as a complex adaptive system (CAS and is based on five components (a-e. Humans like all biological creatures must satisfactorily respond to (a the demands of life. For this purpose they need (b a biologically given potential (BGP and (c a personally acquired potential (PAP. These properties of individuals are embedded within (d social and (e environmental determinants of health. Between these five components of health there are 10 complex interactions that justify viewing health as a CAS. In each patient, the current state of health as a CAS evolved from the past, will move forward to a new future, and has to be analyzed and treated as an autonomous whole. A diagnostic procedure is suggested as follows: together with the patient, the five components and 10 complex interactions are assessed. This may help patients to better understand their situations and to recognize possible next steps that may be useful in order to evolve toward better health by themselves. In this process mutual trust in the patient-physician interaction is critical. The described approach offers new possibilities for helping patients improve their health prospects.

  17. Using a complex adaptive system lens to understand family caregiving experiences navigating the stroke rehabilitation system.

    Science.gov (United States)

    Ghazzawi, Andrea; Kuziemsky, Craig; O'Sullivan, Tracey

    2016-10-01

    Family caregivers provide the stroke survivor with social support and continuity during the transition home from a rehabilitation facility. In this exploratory study we examined family caregivers' perceptions and experiences navigating the stroke rehabilitation system. The theories of continuity of care and complex adaptive systems were integrated to examine the transition from a stroke rehabilitation facility to the patient's home. This study provides an understanding of the interacting complexities at the macro and micro levels. A convenient sample of family caregivers (n = 14) who provide care for a stroke survivor were recruited 4-12 weeks following the patient's discharge from a stroke rehabilitation facility in Ontario, Canada. Interviews were conducted with family caregivers to examine their perceptions and experiences navigating the stroke rehabilitation system. Directed and inductive content analysis and the theory of Complex Adaptive Systems were used to interpret the perceptions of family caregivers. Health system policies and procedures at the macro-level determined the types and timing of information being provided to caregivers, and impacted continuity of care and access to supports and services at the micro-level. Supports and services in the community, such as outpatient physiotherapy services, were limited or did not meet the specific needs of the stroke survivors or family caregivers. Relationships with health providers, informational support, and continuity in case management all influence the family caregiving experience and ultimately the quality of care for the stroke survivor, during the transition home from a rehabilitation facility.

  18. The Crucible simulation: Behavioral simulation improves clinical leadership skills and understanding of complex health policy change.

    Science.gov (United States)

    Cohen, Daniel; Vlaev, Ivo; McMahon, Laurie; Harvey, Sarah; Mitchell, Andy; Borovoi, Leah; Darzi, Ara

    2017-05-11

    The Health and Social Care Act 2012 represents the most complex National Health Service reforms in history. High-quality clinical leadership is important for successful implementation of health service reform. However, little is known about the effectiveness of current leadership training. This study describes the use of a behavioral simulation to improve the knowledge and leadership of a cohort of medical doctors expected to take leadership roles in the National Health Service. A day-long behavioral simulation (The Crucible) was developed and run based on a fictitious but realistic health economy. Participants completed pre- and postsimulation questionnaires generating qualitative and quantitative data. Leadership skills, knowledge, and behavior change processes described by the "theory of planned behavior" were self-assessed pre- and postsimulation. Sixty-nine medical doctors attended. Participants deemed the simulation immersive and relevant. Significant improvements were shown in perceived knowledge, capability, attitudes, subjective norms, intentions, and leadership competency following the program. Nearly one third of participants reported that they had implemented knowledge and skills from the simulation into practice within 4 weeks. This study systematically demonstrates the effectiveness of behavioral simulation for clinical management training and understanding of health policy reform. Potential future uses and strategies for analysis are discussed. High-quality care requires understanding of health systems and strong leadership. Policymakers should consider the use of behavioral simulation to improve understanding of health service reform and development of leadership skills in clinicians, who readily adopt skills from simulation into everyday practice.

  19. Complex numbers, quantum mechanics and the beginning of time

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Pohle, H.J.

    1993-01-01

    A basic problem in quantizing a field in curved space is the decomposition of the classical modes in positive and negative frequency. The decomposition is equivalent to a choice of a complex structure in the space of classical solutions. In our construction the real tunneling geometries provide the link between this complex structure and analytic properties of the classical solutions in a riemannian section of space. This is related to the Osterwalder-Schrader approach to euclidean field theory. (orig.)

  20. Complex Systems Are More than the Sum of Their Parts: Using Integration to Understand Performance, Biomechanics, and Diversity.

    Science.gov (United States)

    Kane, Emily A; Higham, Timothy E

    2015-07-01

    Organisms are comprised of many interacting parts, and an increased number or specialization of those parts leads to greater complexity and the necessity for increased integration (the ability of those parts to perform together and maintain a functioning organism). Although this idea is widely recognized among biologists, organisms are more tangibly studied when those parts are considered independently. This reductionist approach has successfully advanced our understanding of organisms' performance. However, performance of one system might (or might not) be dependent on performance of another system to achieve a relevant outcome, and the mechanism of this dependence is poorly understood. We synthesize the concepts of complexity and integration and discuss their application in a biomechanical context. Capture of prey by predatory fishes is used as an example to highlight the application of these ideas. We provide a theoretical framework for future hypotheses of integration and predict an "integration space" for fishes that is then populated with data extracted from the literature. Additionally, using the kinematics of prey-capture in two species of sculpin (Scorpaeniformes: Cottidae), we show that species exhibit multivariate integration in distinct ways, and that these differences add additional insight into ecological divergence that would not be apparent by considering systems independently. Finally, we discuss new insights into organismal performance gained through the study of integration as an emergent property of kinematic systems working together during a common task. Integration is rarely the trait of interest, but we show that future work should adopt a more holistic approach to understand why and how animals perform complex behaviors. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Mechanism of Coupled Folding and Binding in the siRNA-PAZ Complex.

    Science.gov (United States)

    Chen, Hai-Feng

    2008-08-01

    The PAZ domain plays a key role in gene silencing pathway. The PAZ domain binds with siRNAs to form the multimeric RNA-induced silencing complex (RISC). RISC identifies mRNAs homologous to the siRNAs and promotes their degradation. It was found that binding with siRNA significantly enhances apo-PAZ folding. However, the mechanism by which folding is coupled to binding is poorly understood. Thus, the coupling relationship between binding and folding is very important for understanding the function of gene silencing. We have performed molecular dynamics (MD) of both bound and apo-PAZ to study the coupling mechanism between binding and folding in the siRNA-PAZ complex. Room-temperature MD simulations suggest that both PAZ and siRNA become more rigid and stable upon siRNA binding. Kinetic analysis of high-temperature MD simulations shows that both bound and apo-PAZ unfold via a two-state process. The unfolding pathways are different between bound and apo-PAZ: the order of helix III and helices I & II unfolding is switched. Furthermore, transition probability was used to determine the transition state ensemble for both bound and apo-PAZ. It was found that the transition state of bound PAZ is more compact than that of apo-PAZ. The predicted Φ-values suggest that the Φ-values of helix III and sheets of β3-β7 for bound PAZ are more native-like than those of apo-PAZ upon the binding of siRNA. The results can help us to understand the mechanism of gene silencing.

  2. Understanding the dynamics of the Seguro Popular de Salud policy implementation in Mexico from a complex adaptive systems perspective.

    Science.gov (United States)

    Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed

    2016-05-13

    In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power

  3. Effects of Representation Sequences and Spatial Ability on Students' Scientific Understandings about the Mechanism of Breathing

    Science.gov (United States)

    Wu, Hsin-Kai; Lin, Yu-Fen; Hsu, Ying-Shao

    2013-01-01

    The purpose of this study was to investigate the effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing…

  4. Enhanced understanding of the relationship between chemical modification and mechanical properties of wood

    Science.gov (United States)

    Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes

    2008-01-01

    Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...

  5. The major histocompatibility complex: a model for understanding graft-versus-host disease.

    Science.gov (United States)

    Petersdorf, Effie W

    2013-09-12

    Acute graft-versus-host disease (GVHD) afflicts as much as 80% of all patients who receive an unrelated donor hematopoietic cell transplant (HCT) for the treatment of blood disorders, even with optimal donor HLA matching and use of prophylactic immunosuppressive agents. Of patients who develop acute GVHD, many are at risk for chronic GVHD and bear the burden of considerable morbidity and lowered quality of life years after transplantation. The immunogenetic basis of GVHD has been the subject of intensive investigation, with the classic HLA genetic loci being the best-characterized determinants. Recent information on the major histocompatibility complex (MHC) region of chromosome 6 as an important source of untyped genetic variation has shed light on novel GVHD determinants. These data open new paradigms for understanding the genetic basis of GVHD.

  6. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    the data taken in the behavioural domain involving living Beings. Besides the conventional complexity that arises ... in more ways than one in future. Besides providing a mathematical beauty of ..... above certain substance (say water, a piece of metal or a living Being), then the presence of the latter induces the pendulum's ...

  7. Complex coacervation core micelles. Colloidal stability and aggregation mechanism

    NARCIS (Netherlands)

    Burgh, van der S.; Keizer, de A.; Cohen Stuart, M.A.

    2004-01-01

    Complex coacervation core micelles were prepared with various polyelectrolytes and oppositely charged diblock copolymers. The diblock copolymers consist of a charged block and a water-soluble neutral block. Our experimental technique was dynamic light scattering in combination with titrations. At

  8. Material removal mechanisms in abrasive vibration polishing of complex molds

    Science.gov (United States)

    Brinksmeier, E.; Riemer, O.; Schulte, H.

    2010-10-01

    Optical and medical industries are demanding a large variety of optical elements exhibiting complex geometries and multitude opto-functional areas in the range of a few millimeters [1]. Therefore, mold inserts made of steel or carbides must be finished by polishing for the replication of glass and plastic lenses [2]. For polishing theses complex components in the shape of localized cavities or grooves the application of rotating polishing pads is very limited. Established polishing processes are not applicable, so state of the art is a time consuming and therefore expensive polishing procedures by hand. An automated process with conventional polishing machines is impossible because of the complex mold insert geometry. The authors will present the development of a new abrasive polishing process for finishing these complex mold geometries to optical quality. The necessary relative velocity in the contact area between polishing pad and workpiece surface is exclusively realized by vibration motions which is an advantage over vibration assisted rotating polishing processes. The absence of rotation of the pad opens up the possibility to machine new types of surface geometries. The specific influence factors of vibration polishing were analyzed and will be presented. The determination of material removal behavior and polishing effect on planar steel samples has shown that the conventional abrasive polishing hypothesis of Preston is applicable to the novel vibration polishing process. No overlaid chemical material removal appears.

  9. The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain.

    Science.gov (United States)

    Gustin, Mae Sexauer; Fine, Rebekka; Miller, Matthieu; Jaffe, Dan; Burley, Joel

    2015-10-15

    The Nevada Rural Ozone Initiative (NVROI) was established to better understand O3 concentrations in the Western United States (US). The major working hypothesis for development of the sampling network was that the sources of O3 to Nevada are regional and global. Within the framework of this overarching hypothesis, we specifically address two conceptual meteorological hypotheses: (1) The high elevation, complex terrain, and deep convective mixing that characterize Nevada, make this state ideally located to intercept polluted parcels of air transported into the US from the free troposphere; and (2) site specific terrain features will influence O3 concentrations observed at surface sites. Here, the impact of complex terrain and site location on observations are discussed. Data collected in Nevada at 6 sites (1385 to 2082 m above sea level (asl)) are compared with that collected at high elevation sites in Yosemite National Park and the White Mountains, California. Average daily maximum 1-hour concentrations of O3 during the first year of the NVROI ranged from 58 to 69 ppbv (spring), 53 to 62 ppbv (summer), 44 to 49 ppbv (fall), and 37 to 45 ppbv (winter). These were similar to those measured at 3 sites in Yosemite National Park (2022 to 3031 m asl), and at 4 sites in the White Mountains (1237 to 4342 m asl) (58 to 67 ppbv (summer) and 47 to 58 ppbv (fall)). Results show, that in complex terrain, collection of data should occur at high and low elevation sites to capture surface impacts, and site location with respect to topography should be considered. Additionally, concentrations measured are above the threshold reported for causing a reduction in growth and visible injury for plants (40 ppbv), and sustained exposure at high elevation locations in the Western USA may be detrimental for ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  11. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An

    2013-04-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.

  12. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    Science.gov (United States)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  13. Exponential complexity and ontological theories of quantum mechanics

    International Nuclear Information System (INIS)

    Montina, A.

    2008-01-01

    Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods

  14. Unit Mechanisms of Fission Gas Release: Current Understanding and Future Needs

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael; Andersson , David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter A.; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-03-16

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas release during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  15. Mechanism of water oxidation by trivalent ruthenium trisdipyridyl complex

    International Nuclear Information System (INIS)

    Moravskij, A.P.; Khannanov, N.K.; Khramov, A.V.; Shafirovich, V.Ya.

    1983-01-01

    Results of kinetic investigation of water oxidation reaction with photogenerated single-electron oxidizer-trisdipyridyl complex of Ru(3) are presented. CoCl 2 x6H 2 O within the concentration range of [Co 2+ ] 0 =5x10 -7 - 5x10 -5 M was used as a reaction catalyst. The method of stopped flow with spectrophotometric recording was used in order to control the reaction kinetics

  16. Molecular architecture and mechanism of the anaphase-promoting complex

    Science.gov (United States)

    Yang, Jing; McLaughlin, Stephen H.; Barford, David

    2015-01-01

    The ubiquitination of cell cycle regulatory proteins by the anaphase-promoting complex/cyclosome (APC/C) controls sister chromatid segregation, cytokinesis and the establishment of G1. The APC/C is an unusually large multimeric cullin-RING ligase. Its activity is strictly dependent on regulatory coactivator subunits that promote APC/C – substrate interactions and stimulate its catalytic reaction. Because the structures of many APC/C subunits and their organization within the assembly are unknown, the molecular basis for these processes is poorly understood. Here, from a cryo-EM reconstruction of a human APC/C-coactivator-substrate complex at 7.4 Å resolution, we have determined the complete secondary structural architecture of the complex. With this information we identified protein folds for structurally uncharacterized subunits, and the definitive location of all 20 APC/C subunits within the 1.2 MDa assembly. Comparison with apo APC/C shows that coactivator promotes a profound allosteric transition involving displacement of the cullin-RING catalytic subunits relative to the degron recognition module of coactivator and Apc10. This transition is accompanied by increased flexibility of the cullin-RING subunits and enhanced affinity for UbcH10~ubiquitin, changes which may contribute to coactivator-mediated stimulation of APC/C E3 ligase activity. PMID:25043029

  17. The effect of protein complexation on the mechanical stability of Im9.

    Science.gov (United States)

    Hann, Eleanore; Kirkpatrick, Nadine; Kleanthous, Colin; Smith, D Alastair; Radford, Sheena E; Brockwell, David J

    2007-05-01

    Force mode microscopy can be used to examine the effect of mechanical manipulation on the noncovalent interactions that stabilize proteins and their complexes. Here we describe the effect of complexation by the high affinity protein ligand E9 on the mechanical resistance of the simple four-helical protein, Im9. When concatenated into a construct of alternating I27 domains, Im9 unfolded below the thermal noise limit of the instrument ( approximately 20 pN). Complexation of E9 had little effect on the mechanical resistance of Im9 (unfolding force approximately 30 pN) despite the high avidity of this complex (K(d) approximately 10 fM).

  18. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to

  19. Bringing content understanding into usability testing in complex application domains—a case study in eHealth

    DEFF Research Database (Denmark)

    Andersen, Simon Bruntse; Rasmussen, Claire Kirchert; Frøkjær, Erik

    2017-01-01

    A usability evaluation technique, Cooperative Usability Testing with Questions of Understanding (CUT with QU) intended to illuminate users’ ability to understand the content information of an application is proposed. In complex application domains as for instance the eHealth domain, this issue...... of users’ content understanding is sometimes crucial, and thus should be carefully evaluated. Unfortunately, conventional usability evaluation techniques do not address challenges of content understanding. In a case study within eHealth, specifically the setting of a rehabilitation clinic involving...... the participation of four physiotherapists and four clients in a period of 3.5 months, it was demonstrated how CUT with QU can complement conventional usability testing and provide insight into users’ challenges with understanding of a new complex eHealth application. More experiments in other complex application...

  20. Production compilation : A simple mechanism to model complex skill acquisition

    NARCIS (Netherlands)

    Taatgen, N.A.; Lee, F.J.

    2003-01-01

    In this article we describe production compilation, a mechanism for modeling skill acquisition. Production compilation has been developed within the ACT-Rational (ACT-R; J. R. Anderson, D. Bothell, M. D. Byrne, & C. Lebiere, 2002) cognitive architecture and consists of combining and specializing

  1. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  2. Understanding the growth mechanism of carbon nanotubes via the ``cluster volume to surface area" model

    Science.gov (United States)

    Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio

    2010-03-01

    The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.

  3. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  4. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Zhang, Guoqi; Vasudevan, Kalyan V; Scott, Brian L; Hanson, Susan K

    2013-06-12

    Cobalt(II) alkyl complexes of aliphatic PNP pincer ligands have been synthesized and characterized. The cationic cobalt(II) alkyl complex [(PNHP(Cy))Co(CH2SiMe3)]BAr(F)4 (4) (PNHP(Cy) = bis[(2-dicyclohexylphosphino)ethyl]amine) is an active precatalyst for the hydrogenation of olefins and ketones and the acceptorless dehydrogenation of alcohols. To elucidate the possible involvement of the N-H group on the pincer ligand in the catalysis via a metal-ligand cooperative interaction, the reactivities of 4 and [(PNMeP(Cy))Co(CH2SiMe3)]BAr(F)4 (7) were compared. Complex 7 was found to be an active precatalyst for the hydrogenation of olefins. In contrast, no catalytic activity was observed using 7 as a precatalyst for the hydrogenation of acetophenone under mild conditions. For the acceptorless dehydrogenation of 1-phenylethanol, complex 7 displayed similar activity to complex 4, affording acetophenone in high yield. When the acceptorless dehydrogenation of 1-phenylethanol with precatalyst 4 was monitored by NMR spectroscopy, the formation of the cobalt(III) acetylphenyl hydride complex [(PNHP(Cy))Co(III)(κ(2)-O,C-C6H4C(O)CH3)(H)]BAr(F)4 (13) was detected. Isolated complex 13 was found to be an effective catalyst for the acceptorless dehydrogenation of alcohols, implicating 13 as a catalyst resting state during the alcohol dehydrogenation reaction. Complex 13 catalyzed the hydrogenation of styrene but showed no catalytic activity for the room temperature hydrogenation of acetophenone. These results support the involvement of metal-ligand cooperativity in the room temperature hydrogenation of ketones but not the hydrogenation of olefins or the acceptorless dehydrogenation of alcohols. Mechanisms consistent with these observations are presented for the cobalt-catalyzed hydrogenation of olefins and ketones and the acceptorless dehydrogenation of alcohols.

  5. Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes

    Science.gov (United States)

    Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S. K.; Baker, D. N.

    2017-10-01

    To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. The evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.

  6. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins.

    Science.gov (United States)

    Arai, Munehito

    2018-01-06

    Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation-condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation-condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.

  7. A flexible navigation mechanism for complex data models

    Directory of Open Access Journals (Sweden)

    Oleg Burlaca

    2010-07-01

    Full Text Available The paper presents a way to build flexible navigation tools over a big dataset of well structured data models. The mechanism is underpinned by a search engine that is used to slice and dice the database. By applying a series of consecutive groupings, the result of a search query can be organized in a hierarchical structure and browsed using traditional user interface controls.

  8. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  9. Improving student understanding of addition of angular momentum in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Guangtian Zhu

    2013-01-01

    Full Text Available We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT, to reduce these difficulties. The preliminary evaluation shows that the QuILT related to the basics of the addition of angular momentum is helpful in improving students’ understanding of these concepts.

  10. Understanding treatment effect mechanisms of the CAMBRA randomized trial in reducing caries increment

    OpenAIRE

    Cheng, J; Chaffee, BW; Cheng, NF; Gansky, SA; Featherstone, JDB

    2015-01-01

    © International & American Associations for Dental Research 2014. The Caries Management By Risk Assessment (CAMBRA) randomized controlled trial showed that an intervention featuring combined antibacterial and fluoride therapy significantly reduced bacterial load and suggested reduced caries increment in adults with 1 to 7 baseline cavitated teeth. While trial results speak to the overall effectiveness of an intervention, insight can be gained from understanding the mechanism by which an int...

  11. High School Students' Understanding of Change over Time and System Complexity: A Focus on the Cryosphere

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Guthrie, C.

    2010-12-01

    Most students have difficulty articulating processes that are key for Earth’s changes and may have limited ability to understand Earth system science and think across spatial and temporal dimensions. The cryosphere, a complex and dynamic Earth system that exhibits change over time (e.g., seasonal, yearly, decadal, and millennial), can be difficult for students to reason about. The presented research assesses the effectiveness of the project developed on-line modules on high school students’ cryosphere content knowledge and skill development, including their: (1) conceptual understanding of ice, thermodynamics, climate, changes in ice cover over time, Earth system interactions, and complexity, and (2) use and interpretation of data and graphs about the cryosphere. Pre- and post- student assessments, classroom observations, and teacher interviews were collected from four high school classrooms in Texas to determine the effectiveness of the Earthlabs cryosphere modules in reaching the specified learning goals. Preliminary analysis of pre-and post-test data revealed a number of interesting changes where students displayed an increase in their awareness of the cryosphere, increase in confidence about cryosphere knowledge, and an increase in their ability to read and interpret graphs. Furthermore, classroom observations made for 25 minutes during a class period illustrated that for over 84% of the class period the students were engaged with the Earthlabs materials and spent the majority (>50%) of their time either discussing (31%) or working on the on-line Earthlabs cryosphere materials (29%). Finally, forty-five minute individual telephone interviews conducted with the four implementing cryosphere teachers revealed that teachers overwhelmingly reflected that the materials supported students’ ability to learn about the (i) nature and importance of the cryosphere, (ii) manipulation, analysis, interpretation of data, (iii) physical changes over multiple time scales

  12. Towards an understanding of hot carrier cooling mechanisms in multiple quantum wells

    Science.gov (United States)

    Conibeer, Gavin; Zhang, Yi; Bremner, Stephen P.; Shrestha, Santosh

    2017-09-01

    Multiple quantum wells have been shown significantly reduced hot carrier cooling rates compared to bulk material and are thus a promising candidate for hot carrier solar cell absorbers. However, the mechanism(s) by which hot carrier cooling is restricted is not clear. A systematic study of carrier cooling rates in GaAs/AlAs multiple quantum wells (MQWs) with either varying barrier thickness or varying well thickness is presented in this paper. These allow an investigation as to whether the mechanisms of either a modification in hot carrier diffusion or a localisation of phonons emitted by hot carriers are primarily responsible for reduced carrier cooling rates. With the conclusion that for the structures investigated the situation is rather more complex with both carrier mobility to modify hot carrier diffusion, different diffusion rates for electrons and holes and reflection and localisation of phonons to enhance phonon bottleneck all playing their parts in modulating phonon reabsorption and hot carrier behaviour.

  13. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    Science.gov (United States)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  14. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  15. Complexities in Understanding Attentional Functioning among Children with Fetal Alcohol Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Kimberly eLane

    2014-03-01

    Full Text Available Parental reports of attention problems and clinical symptomatology of ADHD among children with fetal alcohol syndrome disorder (FASD were assessed in relation to performance on standardized subtests of attantional control/shifting and selective attention from the Test of Everyday Attention for Children (TEA-Ch; Manly et al., 1998. The participants included 14 children with FASD with a mean CA of 11.7 years and a mean MA of 9.7 years, and 14 typically developing (TD children with no reported history of prenatal exposure to alcohol or attention problems with a mean CA of 8.4 years and a mean MA of 9.6 years. The children with FASD were rated by their caregivers as having clinically significant attention difficulties for their developmental age. The reported symptomatology for the majority of the children with FASD were consistent with a diagnosis of ADHD, combined type, and only one child had a score within the average range. These reports are consistent with the finding here that the children with FASD demonstrated difficulties on the Creature Counting subtest of attentional control/shifting, but inconsistent with the finding that they outperformed the TD children on the Map Mission subtest of selective attention. These findings are considered within the context of the complexity in understanding attentional functioning among children with FASD and discrepancies across sources of information and components of attention.

  16. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex.

    Science.gov (United States)

    Bae, Brian; Chen, James; Davis, Elizabeth; Leon, Katherine; Darst, Seth A; Campbell, Elizabeth A

    2015-09-08

    A key point to regulate gene expression is at transcription initiation, and activators play a major role. CarD, an essential activator in Mycobacterium tuberculosis, is found in many bacteria, including Thermus species, but absent in Escherichia coli. To delineate the molecular mechanism of CarD, we determined crystal structures of Thermus transcription initiation complexes containing CarD. The structures show CarD interacts with the unique DNA topology presented by the upstream double-stranded/single-stranded DNA junction of the transcription bubble. We confirm that our structures correspond to functional activation complexes, and extend our understanding of the role of a conserved CarD Trp residue that serves as a minor groove wedge, preventing collapse of the transcription bubble to stabilize the transcription initiation complex. Unlike E. coli RNAP, many bacterial RNAPs form unstable promoter complexes, explaining the need for CarD.

  17. Collaborative Research. Damage and Burst Dynamics in Failure of Complex Geomaterials. A Statistical Physics Approach to Understanding the Complex Emergent Dynamics in Near Mean-Field Geological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rundle, John B. [Univ. of California, Davis, CA (United States); Klein, William [Boston Univ., MA (United States)

    2015-09-29

    We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.

  18. Mechanisms mediating the perception of complex acoustic patterns

    Science.gov (United States)

    Warren, Richard M.

    1990-11-01

    Five studies were completed: (1) It was found that, following repetition, long period (500 ms) random waveforms excised from Gaussian noise could be identified when embedded in longer segments of Gaussian noise even when the inter-stimulus interval exceeded the limits of echoic memory; (2) It was demonstrated that some spectral regions of these long-period random waveforms could be recognized with greater accuracy than others; (3) Experiments with three consecutive odd-numbered harmonics demonstrated that triads with low harmonic numbers have a pitch corresponding to the fundamental of the harmonic series, but triads centered at the 9th or 11th harmonic had pitches roughly one octave higher. Deviations from the octave were consistent with the waveform pseudoperiodicities. These pitch judgements have implications for theories concerning the bases from the dominant region of complex tones. Two series of experiments involving (4) the vowel conversion effect and (5) dichotic verbal transformations, which compared the rules governing perceptual organization of speech in Japanese and English, were carried out by the principal investigator during May and June at the Basic Research Laboratories of the Nippon Telegraph and Telephone Co., Tokyo.

  19. Understanding complexities in coupled dynamics of human-water and food security

    Science.gov (United States)

    Usmani, M.; Kondal, A.; Lin, L.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Traditional premise of food security is associated with satisfying human hunger by providing sufficient calories to population. Water is the key variable associated with the growth of crops, which is then used as a metric of success for abundance of food across globe. The current framework often negates complex coupled interaction between availability of food nutrients and human well-being (such as productivity, work efficiency, low birth weight, physical and mental growth). Our analysis suggests that 1 in 3 humans suffer from malnutrition across the globe. In last five decades, most of the countries have a decreasing availability trend in at least one of the twenty-three essential food nutrients required for human well-being. We argue that food security can only be achieved if information on use of water for crops and consumption of food must include availability of nutrients for humans. Here, we propose a new concept of "consumptive nutrients" that include constant feedback mechanism between water-human and societal processes- essential for growth, distribution and consumption of food nutrients. Using Ethiopia as a signature rain-fed agricultural region, we will show how decreasing precipitation has led to an increase in crop productivity, but decreased availability of nutrients for humans. This in turn has destabilizing impact on overall regional economy. We will demonstrate why inclusion of nutrients must be a part of discussion for ensuring food security to human population.

  20. Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory

    Directory of Open Access Journals (Sweden)

    Nai-Ru Xu

    2016-01-01

    Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.

  1. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  2. The dichotomy between disease phenotype databases and the implications for understanding complex diseases involving the major histocompatibility complex.

    Science.gov (United States)

    Clark, P M; Kunkel, M; Monos, D S

    2015-12-01

    Many genes related to innate and adaptive immunity reside within the major histocompatibility complex (MHC) and have been associated with a multitude of complex, immune-related disorders. Despite years of genetic study, this region has seen few causative determinants discovered for immune-mediated diseases. Reported associations have been curated in various databases including the Genetic Association Database, NCBI database of clinically relevant variants (ClinVar) and the Human Gene Mutation Database and together capture genetic associations and annotated pathogenic loci within the MHC and across the genome for a variety of complex, immune-mediated diseases. A review of these three distinct databases reveals disparate annotations between associated genes and pathogenic loci, alluding to the polygenic, multifactorial nature of immune-mediated diseases and the pleiotropic character of genes within the MHC. The technical limitations and inherent biases imposed by current approaches and technologies in studying the MHC create a strong case for the need to perform targeted deep sequencing of the MHC and other immunologically relevant loci in order to fully elucidate and study the causative elements of complex immune-mediated diseases. © 2015 The Authors. International Journal of Immunogenetics Published by John Wiley & Sons Ltd.

  3. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance.

    Science.gov (United States)

    Rouch, D A; Lee, B T; Morby, A P

    1995-02-01

    Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.

  4. Mechanisms initiating deep convection over complex terrain during COPS

    Directory of Open Access Journals (Sweden)

    Christoph Kottmeier

    2008-12-01

    Full Text Available Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i surface heating and low-level flow convergence; (ii surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii mid-tropospheric dynamical processes due to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analysed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line

  5. In vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex.

    Science.gov (United States)

    Sergent, Thérèse; Croizet, Karine; Schneider, Yves-Jacques

    2017-02-01

    Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established. Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA-VC). The transport of this species was found proportional to the initial concentration and to the duration of incubation, with absorption and excretion mean rates similar to those of Lucifer yellow, a marker of paracellular diffusion, and increasing in the presence of EGTA, a chelator of divalents cations including calcium. A cellular accumulation of Si, polarized from the apical side of cells, was furthermore detected. These results provide evidence that Si, ingested as a food supplement containing OSA-VC, crosses the intestinal mucosa by passive diffusion via the paracellular pathway through the intercellular tight junctions and accumulates intracellularly, probably by an uptake mechanism of facilitated diffusion. This study can help to further understand the kinetic of absorption of Si. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity.

    Science.gov (United States)

    Morella, Norma M; Koskella, Britt

    2017-01-01

    The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by-and in some cases even reliant upon-the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host-microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host-microbiome-immune interactions but also improve our understanding of the role of the microbiome in host health.

  7. The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity

    Directory of Open Access Journals (Sweden)

    Norma M. Morella

    2017-09-01

    Full Text Available The eukaryote immune system evolved and continues to evolve within a microbial world, and as such is critically shaped by—and in some cases even reliant upon—the presence of host-associated microbial species. There are clear examples of adaptations that allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota while protecting itself against pathogens, but the relationship between immunity and the microbiome reaches far beyond simple recognition and includes complex cross talk between host and microbe as well as direct microbiome-mediated protection against pathogens. Here, we present a broad but brief overview of how the microbiome is controlled by and interacts with diverse immune systems, with the goal of identifying questions that can be better addressed by taking a comparative approach across plants and animals and different types of immunity. As two key examples of such an approach, we focus on data examining the importance of early exposure on microbiome tolerance and immune system development and function, and the importance of transmission among hosts in shaping the potential coevolution between, and long-term stability of, host–microbiome associations. Then, by comparing existing evidence across short-lived plants, mouse model systems and humans, and insects, we highlight areas of microbiome research that are strong in some systems and absent in others with the hope of guiding future research that will allow for broad-scale comparisons moving forward. We argue that such an approach will not only help with identification of generalities in host–microbiome–immune interactions but also improve our understanding of the role of the microbiome in host health.

  8. Applying Within-Family Differences Approaches to Enhance Understanding of the Complexity of Intergenerational Relations.

    Science.gov (United States)

    Suitor, J Jill; Gilligan, Megan; Pillemer, Karl; Fingerman, Karen L; Kim, Kyungmin; Silverstein, Merril; Bengtson, Vern L

    2017-12-15

    The role of family relationships in the lives of older adults has received substantial attention in recent decades. Scholars have increasingly looked beyond simple models of family relations to approaches that recognize the complex and sometimes contradictory nature of these ties. One of the most exciting conceptual and methodological developments is the application of within-family differences approaches. In this paper, we focus on the ways in which such within-family approaches can extend the understanding of patterns and consequences of intergenerational ties in adulthood. Following a review of the conceptual underpinnings of within-family differences approaches, we provide empirical illustrations of these approaches from three projects conducted in the United States: the Family Exchanges Study (FES), the Longitudinal Study of Generations (LSOG), and the Within-Family Differences Study (WFDS). Analyses from the FES, LSOG, and WFDS reveal differences in the consequences of patterns of intergenerational relations found when using within-family compared to between-family approaches. In particular, these analyses demonstrate considerable variation within families that shapes patterns and consequences of parent-adult child ties that is masked when such variations are not taken into account. Within-family differences approaches have been shown to shed new light on intergenerational relations. Despite the value of within-family designs, their use may be limited by the higher investment of finances and time required to implement such studies. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The role of protein complexes in a complex disease: molecular mechanisms of ALS

    NARCIS (Netherlands)

    Blokhuis, A.M.

    2016-01-01

    Amyotrophic Lateral Sclerosis is a devastating neurodegenerative diease caused by the selective loss of motor neurons. The pathogenic mechanism underlying the disease is largely unknown but a number of genes, proteins and cellular processes have been implicated. In this thesis we aimed to identify

  10. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    Science.gov (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.

    2015-03-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  11. It's Rather like Learning a Language: Development of talk and conceptual understanding in mechanics lessons

    Science.gov (United States)

    Rincke, Karsten

    2011-01-01

    Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research goal was to investigate and understand how students develop an understanding of the concept of force and how they use and understand the term 'force'. Therefore, we make relation to the research field of students' preconceptions and the field of second language learning. Two classes of students (N = 47) were videotaped during a time period of nine lessons, each transcribed and analysed using a category system. Additional data were obtained via written tasks, logs kept by the students, and tests. The detailed analysis of the talk and the results of the tests indicate that students face difficulties in using the term 'force' scientifically similar to those in a foreign language instruction. Vygotsky already recognised a relationship between learning in science and learning a language. In this paper, important aspects of this relationship are discussed based upon empirical data. We conclude that in some respects it might be useful to make reference to the research related to language learning when thinking about improving science education. In particular, according to Selinker's concept of interlanguage describing language-learning processes within language instruction, the language used by the students during physics lessons can be viewed as a 'scientific interlanguage'.

  12. Understanding dental CAD/CAM for restorations--the digital workflow from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, L; Lebon, N; Mawussi, B; Fron Chabouis, H; Duret, F; Attal, J-P

    2015-01-01

    As digital technology infiltrates every area of daily life, including the field of medicine, so it is increasingly being introduced into dental practice. Apart from chairside practice, computer-aided design/computer-aided manufacturing (CAD/CAM) solutions are available for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental solutions can be considered a chain of digital devices and software for the almost automatic design and creation of dental restorations. However, dentists who want to use the technology often do not have the time or knowledge to understand it. A basic knowledge of the CAD/CAM digital workflow for dental restorations can help dentists to grasp the technology and purchase a CAM/CAM system that meets the needs of their office. This article provides a computer-science and mechanical-engineering approach to the CAD/CAM digital workflow to help dentists understand the technology.

  13. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach.

    Science.gov (United States)

    Chen, Meimei; Yang, Fafu; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-12-16

    Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)-a famous traditional Chinese medicine formula-has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  14. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Meimei Chen

    2016-12-01

    Full Text Available Metabolic syndrome (MS is becoming a worldwide health problem. Wendan decoction (WDD—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.

  15. Bringing content understanding into usability testing in complex application domains—a case study in eHealth

    DEFF Research Database (Denmark)

    Andersen, Simon Bruntse; Rasmussen, Claire Kirchert; Frøkjær, Erik

    2017-01-01

    A usability evaluation technique, Cooperative Usability Testing with Questions of Understanding (CUT with QU) intended to illuminate users’ ability to understand the content information of an application is proposed. In complex application domains as for instance the eHealth domain, this issue...... the participation of four physiotherapists and four clients in a period of 3.5 months, it was demonstrated how CUT with QU can complement conventional usability testing and provide insight into users’ challenges with understanding of a new complex eHealth application. More experiments in other complex application...... domains involving different kinds of users and evaluators are needed before we can tell whether CUT with QU is an effective usability testing technique of wider applicability. Performing CUT with QU is very demanding by drawing heavily on the evaluators’ ability to respond effectively to openings...

  16. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    Science.gov (United States)

    Marshall, Paul; Bredy, Timothy W.

    2016-07-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.

  17. Mechanism of management of competitiveness of production of agrarian and industrial complex

    Directory of Open Access Journals (Sweden)

    Buryak E. A.

    2016-04-01

    Full Text Available the concept of competitiveness and mechanisms of management of competitiveness of production is considered. Major factors of ensuring competitiveness of production of agrarian and industrial complex are allocated. The main problems of production of wheat in the Republic of Crimea making negative impact on the level of her competitiveness are revealed. The mechanism of management of competitiveness of production of agrarian and industrial complex is developed.

  18. Advances in understanding of soil biogeochemical cycles: the mechanism of HS entry into the root interior

    Science.gov (United States)

    Aleksandrova, Olga

    2017-04-01

    Humic substances represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. As shown by some investigators [1-2], the phenomenon of the uptake of the whole humic particles by plant roots is a significant step of biogeochemical cycle of carbon in soils. The mechanism of HS entry the root interior remained unknown for a long time. However recently, the last one was discovered [3]. An advanced model [3] includes two hypotheses. These hypotheses are as follows: (1) each nano-size particle possesses a quantum image that can be revealed as a packet of electromagnetic waves; (2) the interaction of nano-size particle with the membrane (plasma membrane) of living cells, on which it is adsorbed, occurs via the development of the Rayleigh-Taylor (RT) instability on the membrane surface. An advanced model allows us to look insight some into some phenomena that were observed by experiments but remained not understood [2]. The authors [2] applied tritium autoradiography to wheat seedlings cultivated with tritium-labeled HS to consider the uptake of humic particles by plant roots. They found a significant increase in the content of some polar (monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylcholine (PC)) and neutral (free fatty acids, FFA) lipids which were detected in the wheat seedlings treated with humic particles. Authors [2] pointed that lipids MGDG, DGDG, SQDG are crucial for functional and structural integrity of the photosystem complex. Therefore, a stimulating action of adsorbed humic particles evoked phenomena like photosynthesis in root cells that can be interpreted using an advanced model: humic particles being nano-size particles become adsorbed on the plant roots in soils, and influence their micro environment, where they are located, with the specific electromagnetic exposure. Another finding of authors consisted in the

  19. A Supernetwork-Based Model for Design Processes of Complex Mechanical Products

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zheng

    2016-10-01

    Full Text Available Complex mechanical products are a priority area of advanced manufacturing strategy in the USA and Europe. Excellent models for design processes of complex mechanical products are essential for managers or designers to manage design processes and further improve design efficiency. Multiple elements and complicated relationships between elements in the design processes of complex mechanical products cause difficulties in systematically and quantitatively expressing the design processes. Therefore, we put forth a supernetwork-based model for designing complex mechanical products. First, we identified the key elements in the design processes of complex mechanical products. Next, based on this we analyzed sub-elements of the key elements and relationships between sub-elements. Then we built sub-networks with sub-elements as nodes and their relationships as edges and the supernetwork model for design processes of complex mechanical products based on the sub-networks and their relationships. Meanwhile, we also present a method for combining linguistic variables with the corresponding triangular fuzzy numbers, and a max/min synthesis method to accurately compute the edge weights. Finally, we suggest the practical applications of the proposed model and give a comparison of the proposed model and existing ones to verify the feasibility and validity of this study.

  20. Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century

    Science.gov (United States)

    Newton, Paul K.

    2017-01-01

    The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…

  1. Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism

    Science.gov (United States)

    Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin

    2015-01-01

    The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.

  2. Modeling complex diffusion mechanisms in L1{sub 2}-structured compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu; Lape, M. [Northern Kentucky University, Department of Physics and Geology (United States); Stufflebeam, M.; Evenson, W. E. [Utah Valley University, College of Science and Health (United States)

    2010-04-15

    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L1{sub 2}-structured compounds.

  3. Understanding Adult Learning in the Midst of Complex Social "Liquid Modernity"

    Science.gov (United States)

    Nicolaides, Aliki; Marsick, Victoria J.

    2016-01-01

    This chapter describes the changing nature of adult education theory and practice in the face of complex, disruptive change and explores theories that are suited to tectonic shifts in a period of what we describe as "liquid modernity" in the midst of complex sociocultural-economic-political change in a global environment.

  4. Understanding IS Complexity and the Heterogeneity of Frames: The Illusion of Agreement

    NARCIS (Netherlands)

    Jochemsen, E.J.; Rezazade Mehrizi, M.H.; van den Hooff, B.J.; Plomp, M.G.A.

    2016-01-01

    Organizations are confronted with increasing levels of IS complexity. The socio-technical nature of IS implies that IS complexity stems from not only the structure of technology (e.g., how many elements and relations), but also from the subjective perceptions organizational actors have regarding

  5. Understanding complex governance relationships in food safety regulation : The RIT model as a theoretical lens

    NARCIS (Netherlands)

    Havinga, Tetty; Verbruggen, Paul

    In this contribution we discuss the added value of the RIT model for the analysis of complex governance relationships in the regulation of food safety. By exploring regimes of food safety involving the European Union and the Global Food Safety Initiative, we highlight the diverse and complex

  6. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  7. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae)

    Science.gov (United States)

    Barfod, Anders S.; Hagen, Melanie; Borchsenius, Finn

    2011-01-01

    Background With more than 90 published studies of pollination mechanisms, the palm family is one of the better studied tropical families of angiosperms. Understanding palm–pollinator interactions has implications for tropical silviculture, agroforestry and horticulture, as well as for our understanding of palm evolution and diversification. We review the rich literature on pollination mechanisms in palms that has appeared since the last review of palm pollination studies was published 25 years ago. Scope and Conclusions Visitors to palm inflorescences are attracted by rewards such as food, shelter and oviposition sites. The interaction between the palm and its visiting fauna represents a trade-off between the services provided by the potential pollinators and the antagonistic activities of other insect visitors. Evidence suggests that beetles constitute the most important group of pollinators in palms, followed by bees and flies. Occasional pollinators include mammals (e.g. bats and marsupials) and even crabs. Comparative studies of palm–pollinator interactions in closely related palm species document transitions in floral morphology, phenology and anatomy correlated with shifts in pollination vectors. Synecological studies show that asynchronous flowering and partitioning of pollinator guilds may be important regulators of gene flow between closely related sympatric taxa and potential drivers of speciation processes. Studies of larger plant–pollinator networks point out the importance of competition for pollinators between palms and other flowering plants and document how the insect communities in tropical forest canopies probably influence the reproductive success of palms. However, published studies have a strong geographical bias towards the South American region and a taxonomic bias towards the tribe Cocoseae. Future studies should try to correct this imbalance to provide a more representative picture of pollination mechanisms and their evolutionary

  8. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    Science.gov (United States)

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  9. Understanding the mechanisms of thermal disintegrating treatment in the reduction of sludge production.

    Science.gov (United States)

    Camacho, P; Ginestet, P; Audic, J-M

    2005-01-01

    Among the technologies aimed at reducing sludge production, the combination of thermal treatment at 95 degrees C of sludge and the activated sludge process is a promising route. The feasibility of such a combined process is demonstrated (up to 60% sludge reduction) and the impacts of operating conditions on its efficiency are presented. Major emphasis was put on understanding the complex phenomena occurring within the thermal treatment: release and biodegradability of sludge organic matter, impact on the biological activity (decay, maintenance requirements, etc.). These effects were taken into account for the development of an ASM1-based model. Comparison between the modeling approach and experimental data (continuous and batch) showed that thermal treatment had three major issues partly explaining the reduction of sludge production: (i) a low release of organics; (ii) an immediate and reversible biological inactivation associated with additional maintenance energy requirements; and (iii) a potential inert production.

  10. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics

    KAUST Repository

    Mateker, William R.

    2016-12-23

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  11. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics.

    Science.gov (United States)

    Mateker, William R; McGehee, Michael D

    2017-03-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms

    Science.gov (United States)

    Hankin, Benjamin L.; Snyder, Hannah R.; Gulley, Lauren D.; Schweizer, Tina H.; Bijttebier, Patricia; Nelis, Sabine; Toh, Gim; Vasey, Michael W.

    2016-01-01

    It is well known that comorbidity is the rule, not the exception, for categorically defined psychiatric disorders, and this is also the case for internalizing disorders of depression and anxiety. This theoretical review paper addresses the ubiquity of comorbidity among internalizing disorders. Our central thesis is that progress in understanding this co-occurrence can be made by employing latent dimensional structural models that organize both psychopathology as well as vulnerabilities and risk mechanisms and by connecting the multiple levels of risk and psychopathology outcomes together. Different vulnerabilities and risk mechanisms are hypothesized to predict different levels of the structural model of psychopathology. We review the present state of knowledge based on concurrent and developmental sequential comorbidity patterns among common discrete psychiatric disorders in youth, and then we advocate for the use of more recent bifactor dimensional models of psychopathology (e.g., p factor, Caspi et al., 2014) that can help to explain the co-occurrence among internalizing symptoms. In support of this relatively novel conceptual perspective, we review six exemplar vulnerabilities and risk mechanisms, including executive function, information processing biases, cognitive vulnerabilities, positive and negative affectivity aspects of temperament, and autonomic dysregulation, along with the developmental occurrence of stressors in different domains, to show how these vulnerabilities can predict the general latent psychopathology factor, a unique latent internalizing dimension, as well as specific symptom syndrome manifestations. PMID:27739389

  13. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  14. The Understanding of "Concept Study" in Teachers' Professional Learning: A Lived Experience of Complexity Inquiry

    Science.gov (United States)

    Wang, Xiong

    2015-01-01

    This paper used narrative to present the author's understanding process of "concept study" in teachers' professional learning. The understanding process was advanced by several questions emerging from the preparation of doing "concept study". Thus, the several questions and their solutions became the threads of the narrative.…

  15. Complex contexts and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area

    NARCIS (Netherlands)

    Sassen, M.; Sheil, D.; Giller, K.E.; Braak, ter C.J.F.

    2013-01-01

    Protected forests are sometimes encroached by surrounding communities. But patterns of cover change can vary even within one given setting – understanding these complexities can offer insights into the effective maintenance of forest cover. Using satellite image analyses together with historical

  16. The activation mechanism of Ru-indenylidene complexes in olefin metathesis.

    Science.gov (United States)

    Urbina-Blanco, César A; Poater, Albert; Lebl, Tomas; Manzini, Simone; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations.

  17. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  18. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    Science.gov (United States)

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  19. Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey.

    Science.gov (United States)

    Khan, Rifat Ullah; Naz, Shabana; Abudabos, Alaeldein M

    2017-12-01

    Honey is a bee-derived supersaturated solution composed of complex contents mainly glucose, fructose, amino acids, vitamins, and minerals. Composition of honey may vary due to the difference in nectar, season, geography, and storage condition. Honey has been used since times immemorial in folk medicine and has recently been rediscovered as an excellent therapeutic agent. In the past, honey was used for a variety of ailments without knowing the scientific background and active ingredients of honey. Today, honey has been scientifically proven for its antioxidant, regulation of glycemic response, antitumor, antimicrobial, anti-inflammatory, and cardiovascular potentiating agent. It can be used as a wound dressing and healing substance. Honey is different in color, flavor, sensory perception, and medical response. Apart from highlighting the nutritional facts of honey, we collected the finding of the published literature to know the mechanism of action of honey in different diseases. This review covers the composition, physiochemical characteristics, and some medical uses.

  20. Understanding the Impact of Root Morphology on Overturning Mechanisms: A Modelling Approach

    Science.gov (United States)

    Fourcaud, Thierry; Ji, Jin-Nan; Zhang, Zhi-Qiang; Stokes, Alexia

    2008-01-01

    Background and Aims The Finite Element Method (FEM) has been used in recent years to simulate overturning processes in trees. This study aimed at using FEM to determine the role of individual roots in tree anchorage with regard to different rooting patterns, and to estimate stress distribution in the soil and roots during overturning. Methods The FEM was used to carry out 2-D simulations of tree uprooting in saturated soft clay and loamy sand-like soil. The anchorage model consisted of a root system embedded in a soil block. Two root patterns were used and individual roots removed to determine their contribution to anchorage. Key Results In clay-like soil the size of the root–soil plate formed during overturning was defined by the longest roots. Consequently, all other roots localized within this plate had no influence on anchorage strength. In sand-like soil, removing individual root elements altered anchorage resistance. This result was due to a modification of the shape and size of the root–soil plate, as well as the location of the rotation axis. The tap root and deeper roots had more influence on overturning resistance in sand-like soil compared with clay-like soil. Mechanical stresses were higher in the most superficial roots and also in leeward roots in sand-like soil. The relative difference in stresses between the upper and lower sides of lateral roots was sensitive to root insertion angle. Assuming that root eccentricity is a response to mechanical stresses, these results explain why eccentricity differs depending on root architecture. Conclusions A simple 2-D Finite Element model was developed to better understand the mechanisms involved during tree overturning. It has been shown how root system morphology and soil mechanical properties can modify the shape of the root plate slip surface as well as the position of the rotation axis, which are major components of tree anchorage. PMID:17942593

  1. On understanding creative language : The late positive complex and novel metaphor comprehension

    NARCIS (Netherlands)

    Rataj, Karolina; Przekoracka-Krawczyk, Anna; van der Lubbe, Rob H.J.

    2018-01-01

    Novel metaphoric sentences have repeatedly evoked larger N400 amplitudes than literal sentences, while investigations of the late positive complex (LPC) have brought inconsistent results, with reports of both increased and reduced amplitudes. In two experiments, we examined novel metaphor

  2. Understanding and Mitigating the Charging Behavior of Next Generation Complex and Active Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft that are fundamentally more complex and higher powered are necessary to expand our scientific missions and take commercial space endeavors to the next...

  3. Gender differences in conceptual understanding of Newtonian mechanics: a UK cross-institution comparison

    International Nuclear Information System (INIS)

    Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R

    2013-01-01

    We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps. (paper)

  4. Emerging understanding of the mechanism of action of Bronchial Thermoplasty in asthma.

    Science.gov (United States)

    d'Hooghe, J N S; Ten Hacken, N H T; Weersink, E J M; Sterk, P J; Annema, J T; Bonta, P I

    2018-01-01

    Bronchial Thermoplasty (BT) is an endoscopic treatment for moderate-to-severe asthma patients who are uncontrolled despite optimal medical therapy. Effectiveness of BT has been demonstrated in several randomized clinical trials. However, the asthma phenotype that benefits most of this treatment is unclear, partly because the mechanism of action is incompletely understood. BT was designed to reduce the amount of airway smooth muscle (ASM), but additional direct and indirect effects on airway pathophysiology are expected. This review will provide an overview of the different components of airway pathophysiology including remodeling, with the ASM as the key player. Current concepts in the understanding of BT clinical effectiveness with a focus on its impact on airway remodeling will be reviewed. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    Science.gov (United States)

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. 2013 APA, all rights reserved

  6. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Dongdong Gu

    2017-10-01

    Full Text Available Selective laser melting (SLM additive manufacturing (AM technology has become an important option for the precise manufacturing of complex-shaped metallic parts with high performance. The SLM AM process involves complicated physicochemical phenomena, thermodynamic behavior, and phase transformation as a high-energy laser beam melts loose powder particles. This paper provides multiscale modeling and coordinated control for the SLM of metallic materials including an aluminum (Al-based alloy (AlSi10Mg, a nickel (Ni-based super-alloy (Inconel 718, and ceramic particle-reinforced Al-based and Ni-based composites. The migration and distribution mechanisms of aluminium nitride (AlN particles in SLM-processed Al-based nanocomposites and the in situ formation of a gradient interface between the reinforcement and the matrix in SLM-processed tungsten carbide (WC/Inconel 718 composites were studied in the microscale. The laser absorption and melting/densification behaviors of AlSi10Mg and Inconel 718 alloy powder were disclosed in the mesoscale. Finally, the stress development during line-by-line localized laser scanning and the parameter-dependent control methods for the deformation of SLM-processed composites were proposed in the macroscale. Multiscale numerical simulation and experimental verification methods are beneficial in monitoring the complicated powder-laser interaction, heat and mass transfer behavior, and microstructural and mechanical properties development during the SLM AM process.

  7. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Carlsson, Jens; Ambrogini, Patricia; Narváez, Manuel; Wydra, Karolina; Tarakanov, Alexander O; Li, Xiang; Millón, Carmelo; Ferraro, Luca; Cuppini, Riccardo; Tanganelli, Sergio; Liu, Fang; Filip, Malgorzata; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2017-01-01

    The introduction of allosteric receptor-receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor-receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and

  8. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    Science.gov (United States)

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. PMID:24833580

  9. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods

    Science.gov (United States)

    Alsaleh, Mansour; Alomar, Noura; Alarifi, Abdulrahman

    2017-01-01

    Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users’ security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users’ behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals’ awareness of the consequences of security threats. By comparing participants’ behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users’ security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones. PMID:28297719

  11. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods.

    Science.gov (United States)

    Alsaleh, Mansour; Alomar, Noura; Alarifi, Abdulrahman

    2017-01-01

    Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users' security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users' behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals' awareness of the consequences of security threats. By comparing participants' behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users' security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones.

  12. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint.

    Science.gov (United States)

    Tapie, Laurent; Lebon, Nicolas; Mawussi, Bernardin; Fron-Chabouis, Hélène; Duret, Francois; Attal, Jean-Pierre

    2015-01-01

    As is the case in the field of medicine, as well as in most areas of daily life, digital technology is increasingly being introduced into dental practice. Computer-aided design/ computer-aided manufacturing (CAD/CAM) solutions are available not only for chairside practice but also for creating inlays, crowns, fixed partial dentures (FPDs), implant abutments, and other dental prostheses. CAD/CAM dental practice can be considered as the handling of devices and software processing for the almost automatic design and creation of dental restorations. However, dentists who want to use dental CAD/CAM systems often do not have enough information to understand the variations offered by such technology practice. Knowledge of the random and systematic errors in accuracy with CAD/CAM systems can help to achieve successful restorations with this technology, and help with the purchasing of a CAD/CAM system that meets the clinical needs of restoration. This article provides a mechanical engineering viewpoint of the accuracy of CAD/ CAM systems, to help dentists understand the impact of this technology on restoration accuracy.

  13. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-07-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations.

  14. Smartphone users: Understanding how security mechanisms are perceived and new persuasive methods.

    Directory of Open Access Journals (Sweden)

    Mansour Alsaleh

    Full Text Available Protecting smartphones against security threats is a multidimensional problem involving human and technological factors. This study investigates how smartphone users' security- and privacy-related decisions are influenced by their attitudes, perceptions, and understanding of various security threats. In this work, we seek to provide quantified insights into smartphone users' behavior toward multiple key security features including locking mechanisms, application repositories, mobile instant messaging, and smartphone location services. To the best of our knowledge, this is the first study that reveals often unforeseen correlations and dependencies between various privacy- and security-related behaviors. Our work also provides evidence that making correct security decisions might not necessarily correlate with individuals' awareness of the consequences of security threats. By comparing participants' behavior and their motives for adopting or ignoring certain security practices, we suggest implementing additional persuasive approaches that focus on addressing social and technological aspects of the problem. On the basis of our findings and the results presented in the literature, we identify the factors that might influence smartphone users' security behaviors. We then use our understanding of what might drive and influence significant behavioral changes to propose several platform design modifications that we believe could improve the security levels of smartphones.

  15. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    Science.gov (United States)

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  16. Towards understanding the mechanisms and the kinetics of nanoparticle penetration through protective gloves

    International Nuclear Information System (INIS)

    Vinches, L; Boutrigue, N; Zemzem, M; Hallé, S; Peyrot, C; Lemarchand, L; Wilkinson, K J; Tufenkji, N

    2015-01-01

    Parallel to the increased use of engineered nanoparticles (ENP) in the formulation of commercial products or in medicine, numerous health and safety agencies have recommended the application of the precautionary principle to handle ENP; namely, the recommendation to use protective gloves against chemicals. However, recent studies reveal the penetration of titanium dioxide nanoparticles through nitrile rubber protective gloves in conditions simulating occupational use. This project is designed to understand the links between the penetration of gold nanoparticles (nAu) through nitrile rubber protective gloves and the mechanical and physical behaviour of the elastomer material subjected to conditions simulating occupational use (i.e., mechanical deformations (MD) and sweat). Preliminary analyses show that nAu suspensions penetrate selected glove materials after exposure to prolonged (3 hours) dynamic deformations. Significant morphological changes are observed on the outer surface of the glove sample; namely, the number and the surface of the micropores on the surface increase. Moreover, nitrile rubber protective gloves are also shown to be sensitive to the action of nAu suspension and to the action of the saline solution used to simulate sweat (swelling). (paper)

  17. Understanding the mechanisms of familiar voice-identity recognition in the human brain.

    Science.gov (United States)

    Maguinness, Corrina; Roswandowitz, Claudia; Von Kriegstein, Katharina

    2018-03-31

    Humans have a remarkable skill for voice-identity recognition: most of us can remember many voices that surround us as 'unique'. In this review, we explore the computational and neural mechanisms which may support our ability to represent and recognise a unique voice-identity. We examine the functional architecture of voice-sensitive regions in the superior temporal gyrus/sulcus, and bring together findings on how these regions may interact with each other, and additional face-sensitive regions, to support voice-identity processing. We also contrast findings from studies on neurotypicals and clinical populations which have examined the processing of familiar and unfamiliar voices. Taken together, the findings suggest that representations of familiar and unfamiliar voices might dissociate in the human brain. Such an observation does not fit well with current models for voice-identity processing, which by-and-large assume a common sequential analysis of the incoming voice signal, regardless of voice familiarity. We provide a revised audio-visual integrative model of voice-identity processing which brings together traditional and prototype models of identity processing. This revised model includes a mechanism of how voice-identity representations are established and provides a novel framework for understanding and examining the potential differences in familiar and unfamiliar voice processing in the human brain. Copyright © 2018. Published by Elsevier Ltd.

  18. The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis

    Science.gov (United States)

    Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele

    2016-11-01

    Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).

  19. Understanding the molecular mechanisms of human microtia via a pig model of HOXA1 syndrome

    Directory of Open Access Journals (Sweden)

    Ruimin Qiao

    2015-06-01

    Full Text Available Microtia is a congenital malformation of the outer ears. Although both genetic and environmental components have been implicated in microtia, the genetic causes of this innate disorder are poorly understood. Pigs have naturally occurring diseases comparable to those in humans, providing exceptional opportunity to dissect the molecular mechanism of human inherited diseases. Here we first demonstrated that a truncating mutation in HOXA1 causes a monogenic disorder of microtia in pigs. We further performed RNA sequencing (RNA-Seq analysis on affected and healthy pig embryos (day 14.25. We identified a list of 337 differentially expressed genes (DEGs between the normal and mutant samples, shedding light on the transcriptional network involving HOXA1. The DEGs are enriched in biological processes related to cardiovascular system and embryonic development, and neurological, renal and urological diseases. Aberrant expressions of many DEGs have been implicated in human innate deformities corresponding to microtia-associated syndromes. After applying three prioritizing algorithms, we highlighted appealing candidate genes for human microtia from the 337 DEGs. We searched for coding variants of functional significance within six candidate genes in 147 microtia-affected individuals. Of note, we identified one EVC2 non-synonymous mutation (p.Asp1174Asn as a potential disease-implicating variant for a human microtia-associated syndrome. The findings advance our understanding of the molecular mechanisms underlying human microtia, and provide an interesting example of the characterization of human disease-predisposing variants using pig models.

  20. Improving the understanding and treatment of complex grief: an important issue for psychotraumatology

    Directory of Open Access Journals (Sweden)

    Paul A. Boelen

    2016-09-01

    Full Text Available In the Netherlands, every year 500,000 people are confronted with the death of a close relative. Many of these people experience little emotional distress. In some, bereavement precipitates severe grief, distress, and dysphoria. A small yet significant minority of bereaved individuals develops persistent and debilitating symptoms of persistent complex bereavement disorder (PCBD (also termed prolonged grief disorder, posttraumatic stress disorder, and depression. Knowledge about early identification of, and preventive care for complex grief has increased. Moreover, in recent years there has been an increase in treatment options for people for whom loss leads to persistent psychological problems. That said, preventive and curative treatments are effective for some, but not all bereaved individuals experiencing distress and dysfunction following loss. This necessitates further research on the development, course, and treatment of various stages of complex grief, including PCBD. Highlights of the article:

  1. Reality and dimension of space and the complexity of quantum mechanics

    International Nuclear Information System (INIS)

    Mirman, R.

    1988-01-01

    The dimension (and signature) of space is a result of distances being real numbers and quantum mechanical state functions being complex ones; it is an inescapable consequence of quantum mechanics and group theory. So nonrelativistic quantum mechanics cannot be complete (it requires ad hoc additional assumptions) and consistent (nor can classical physics), leading to relativity, quantum mechanics, and field theory. Implications of the constraints of consistency and physical reasonableness and of group theory for the structure of these theories are considered. It appears that there are simple, perhaps unavoidable reasons for the laws of physics, the nature of the world they describe, and the space in which they act

  2. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    factor alone implying at least some shared underlying mechanisms. Thus, both ground based and spaceflight research utilizing model organisms provide the opportunity to better understand environmental factors and biological mechanisms that contribute to human health and survival in space.

  3. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Further Understanding of Complex Information Processing in Verbal Adolescents and Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Williams, Diane L.; Minshew, Nancy J.; Goldstein, Gerald

    2015-01-01

    More than 20?years ago, Minshew and colleagues proposed the Complex Information Processing model of autism in which the impairment is characterized as a generalized deficit involving multiple modalities and cognitive domains that depend on distributed cortical systems responsible for higher order abilities. Subsequent behavioral work revealed a…

  5. Contemporary Leadership Theories. Enhancing the Understanding of the Complexity, Subjectivity and Dynamic of Leadership

    DEFF Research Database (Denmark)

    Winkler, Ingo

    . Leadership is understood as product of complex social relationships embedded in the logic and dynamic of the social system. The book discusses theoretical approaches from top leadership journals, but also addresses various alternatives that are suitable to challenge mainstream leadership research...

  6. Sedimentary Melanges and Fossil Mass-Transport Complexes: A Key for Better Understanding Submarine Mass Movements?

    NARCIS (Netherlands)

    Pini, Gian Andrea; Ogata, Kei; Camerlenghi, Angelo; Festa, Andrea; Lucente, Claudio Corrado; Codegone, Giulia

    2012-01-01

    Mélanges originated from sedimentary processes (sedimentary mélanges) and olistostromes are frequently present in mountain chains worldwide. They are excellent fossil examples of mass- Transport complexes (MTC), often cropping out in well-preserved and laterally continuous exposures. In this article

  7. Understanding the Complex Dimensions of the Digital Divide: Lessons Learned in the Alaskan Arctic

    Science.gov (United States)

    Subramony, Deepak Prem

    2007-01-01

    An ethnographic case study of Inupiat Eskimo in the Alaskan Arctic has provided insights into the complex nature of the sociological issues surrounding equitable access to technology tools and skills, which are referred to as the digital divide. These people can overcome the digital divide if they get the basic ready access to hardware and…

  8. Understanding the Complex Processes in Developing Student Teachers' Knowledge about Grammar

    Science.gov (United States)

    Svalberg, Agneta M.-L.

    2015-01-01

    This article takes the view that grammar is driven by user choices and is therefore complex and dynamic. This has implications for the teaching of grammar in language teacher education and how teachers' cognitions about grammar, and hence their own grammar teaching, might change. In this small, interpretative study, the participants--students on…

  9. Language complexity during read-alouds and kindergartners' vocabulary and symbolic understanding

    NARCIS (Netherlands)

    Mascareño Lara, Mayra; Snow, Catherine E.; Deunk, Marjolein I.; Bosker, Roel J.

    2016-01-01

    We explored links between complexity of teacher-child verbal interaction and child language and literacy outcomes in fifteen whole-class read-aloud sessions in Chilean kindergarten classrooms serving children from low socioeconomic backgrounds. We coded teacher and child turns for function

  10. Supporting Individuals with Autism Spectrum Disorder in Understanding and Coping with Complex Social Emotional Issues

    Science.gov (United States)

    Ahlers, Kaitlyn P.; Gabrielsen, Terisa P.; Lewis, Danielle; Brady, Anna M.; Litchford, April

    2017-01-01

    Core deficits in autism spectrum disorder (ASD) center around social communication and behavior. For those with ASD, these deficits complicate the task of learning how to cope with and manage complex social emotional issues. Although individuals with ASD may receive sufficient academic and basic behavioral support in school settings, supports for…

  11. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  12. Techniques to better understand complex epikarst hydrogeology and contaminant transport in telogenetic karst settings

    Science.gov (United States)

    The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, groundwater storage, and contaminant transport processes. The groundwater flow in agricultural karst areas, such as Kentucky’s Pennyroyal Plat...

  13. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    Science.gov (United States)

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  14. Preschoolers' Implicit and Explicit False-Belief Understanding: Relations with Complex Syntactical Mastery

    Science.gov (United States)

    Low, Jason

    2010-01-01

    Three studies were carried out to investigate sentential complements being the critical device that allows for false-belief understanding in 3- and 4-year-olds (N = 102). Participants across studies accurately gazed in anticipation of a character's mistaken belief in a predictive looking task despite erring on verbal responses for direct…

  15. Accelerating Our Understanding of Supernova Explosion Mechanism via Simulations and Visualizations with GenASiS

    Energy Technology Data Exchange (ETDEWEB)

    Budiardja, R. D. [University of Tennessee, Knoxville (UTK); Cardall, Christian Y [ORNL; Endeve, Eirik [ORNL

    2015-01-01

    Core-collapse supernovae are among the most powerful explosions in the Universe, releasing about 1053 erg of energy on timescales of a few tens of seconds. These explosion events are also responsible for the production and dissemination of most of the heavy elements, making life as we know it possible. Yet exactly how they work is still unresolved. One reason for this is the sheer complexity and cost of a self-consistent, multi-physics, and multi-dimensional core-collapse supernova simulation, which is impractical, and often impossible, even on the largest supercomputers we have available today. To advance our understanding we instead must often use simplified models, teasing out the most important ingredients for successful explosions, while helping us to interpret results from higher fidelity multi-physics models. In this paper we investigate the role of instabilities in the core-collapse supernova environment. We present here simulation and visualization results produced by our code GenASiS.

  16. Eating disorder emergencies: understanding the medical complexities of the hospitalized eating disordered patient.

    Science.gov (United States)

    Cartwright, Martina M

    2004-12-01

    Eating disorders are maladaptive eating behaviors that typically develop in adolescence and early adulthood. Psychiatric maladies and comorbid conditions, especially insulin-dependent diabetes mellitus, frequently co-exist with eating disorders. Serious medical complications affecting all organs and tissues can develop and result in numerous emergent hospitalizations. This article reviews the pathophysiologies of anorexia nervosa, bulimia nervosa, and orthorexia nervosa and discusses the complexities associated with the treatment of medical complications seen in these patients.

  17. Using mLearning and MOOCs to Understand Chaos, Emergence, and Complexity in Education

    Science.gov (United States)

    deWaard, Inge; Abajian, Sean; Gallagher, Michael Sean; Hogue, Rebecca; Keskin, Nilgun; Koutropoulos, Apostolos; Rodriguez, Osvaldo C.

    2011-01-01

    In this paper, we look at how the massive open online course (MOOC) format developed by connectivist researchers and enthusiasts can help analyze the complexity, emergence, and chaos at work in the field of education today. We do this through the prism of a MobiMOOC, a six-week course focusing on mLearning that ran from April to May 2011. MobiMOOC…

  18. Systems-synthetic biology in understanding the complexities and simple devices in immunology.

    Science.gov (United States)

    Soni, Bhavnita; Nimsarkar, Prajakta; Mol, Milsee; Saha, Bhaskar; Singh, Shailza

    2018-03-23

    Systems and synthetic biology in the coming era has the ability to manipulate, stimulate and engineer cells to counteract the pathogenic immune response. The inherent biological complexities associated with the creation of a device allow capitalizing the biotechnological resources either by simply administering a recombinant cytokine or just reprogramming the immune cells. The strategy outlined, adopted and discussed may mark the beginning with promising therapeutics based on the principles of synthetic immunology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Understanding ageing effects using complexity analysis of foot-ground clearance during walking.

    Science.gov (United States)

    Karmakar, Chandan; Khandoker, Ahsan; Begg, Rezaul; Palaniswami, Marimuthu

    2013-01-01

    Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is highly sensitive to the spatial balance control properties of the locomotor system. The aim of this research was to investigate the regularity and complexity of the MTC time series due to healthy ageing and locomotors' disorders. MTC data from 30 healthy young (HY), 27 healthy elderly (HE) and 10 falls risk (FR) elderly subjects with balance problems were analysed. Continuous MTC data were collected and using the first 500 data points, MTC mean, standard deviation (SD) and entropy-based complexity analysis were performed using sample entropy (SampEn) for different window lengths (m) and filtering levels (r). The MTC SampEn values were lower in the FR group compared to the HY and HE groups for all m and r. The HY group had a greater mean SampEn value than both HE and FR reflecting higher complexity in their MTC series. The mean SampEn values of HY and FR groups were found significantly different for m = 2, 4, 5 and r = (0.1-0.9) × SD, (0.3-0.9) × SD and (0.3-0.9) × SD, respectively. They were also significant difference between HE and FR groups for m = 4-5 and r = (0.3-0.7) × SD, but no significant differences were seen between HY and HE groups for any m and r. A significant correlation of SampEn with SD of MTC was revealed for the HY and HE groups only, suggesting that locomotor disorders could significantly change the regularity or the complexity of the MTC series while healthy ageing does not. These results can be usefully applied to the early diagnosis of common gait pathologies.

  20. Organizational-Economic Mechanism for Industrial Complex Management as a Tool of Regional Economic Development

    Directory of Open Access Journals (Sweden)

    Evgenii Aleksandrovich Mazilov

    2015-07-01

    Full Text Available Effective functioning of economy is possible only if all economic sectors function successfully. However, only the regions with a developed industrial complex can provide a decent quality of life and promote economic growth. At the same time, certain systemic problems have emerged in the industrial complex during the years of market reforms; these problems can be solved only with the help of profound and comprehensive transformations, such as an extensive use of advanced scientific and technological achievements and the formation of a fundamentally new approach to the development of the industrial complex. Under current economic conditions the functioning and development of the industrial complex depends to a great extent on the efficiency of their management mechanism. Therefore, it is expedient to begin modernization of the industrial complex and enhance its competitiveness with the changes in the existing management system. The paper outlines main problems in the development of the industrial complex, presents the typology of regions according to the level of development of the industrial complex. The authors prove that innovation has the greatest effect on the performance of the industrial complex. In addition, the article presents the results of mathematical modeling of the influence of the main components of innovative activity on the volume of shipped products by enterprises of Russia’s industrial complex. The authors put forward their suggestions concerning the adjustment of existing mechanism for the regional industrial complex management and present the priorities of its development in the long term. The authors also substantiate a viewpoint about the necessity of establishing a Foundation for the development of industrial technology in the region

  1. Using a Design Science Perspective to Understand a Complex Design-Based Research Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2012-01-01

    The purpose of the paper is to demonstrate how a design science perspective can be used to describe and understand a set of related design-based research processes. We describe and analyze a case study in a manner that is inspired by design science. The case study involves the design of modeling......-based research processes. And we argue that a design science perspective may be useful for both researchers and practitioners....... tools and the redesign of an information service in a library. We use a set of guidelines from a design science perspective to organize the description and analysis of the case study. By doing this we demonstrate the usefulness of design science as an analytical tool for understanding related design...

  2. A Diagrammatic Approach to Understanding Complex Eco-Social Interactions in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Cynthia. Neudoerffer

    2005-12-01

    Full Text Available As part of developing an international network of community-based ecosystem approaches to health, a project was undertaken in a densely populated and socio-economically diverse area of Kathmandu, Nepal. Drawing on hundreds of pages of narrative reports based on surveys, interviews, secondary data, and focus groups by trained Nepalese facilitators, the authors created systemic depictions of relationships between multiple stakeholder groups, ecosystem health, and human health. These were then combined to examine interactions among stakeholders, activities, concerns, perceived needs, and resource states (ecosystem health indicators. These qualitative models have provided useful heuristics for both community members and research scholars to understand the eco-social systems in which they live; many of the strategies developed by the communities and researchers to improve health intuitively drew on this systemic understanding. The diagrams enabled researchers and community participants to explicitly examine relationships and conflicts related to health and environmental issues in their community.

  3. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries.

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-07-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g -1 ). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li + ) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li + and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries.

  4. Enacting understanding of inclusion in complex contexts: Classroom practices of South African teachers

    Directory of Open Access Journals (Sweden)

    Petra Engelbrecht

    2015-08-01

    Full Text Available While the practice of inclusive education has recently been widely embraced as an ideal model for education, the acceptance of inclusive education practices has not translated into reality in most mainstream classrooms. Despite the fact that education policies in South Africa stipulate that all learners should be provided with the opportunities to participate as far as possible in all classroom activities, the implementation of inclusive education is still hampered by a combination of a lack of resources and the attitudes and actions of the teachers in the classroom. The main purpose of this paper was to develop a deeper understanding of a group of South African teachers' personal understanding about barriers to learning and how their understanding relates to their consequent actions to implement inclusive education in their classrooms. A qualitative research approach placed within a cultural-historical and bio-ecological theoretical framework was used. The findings, in this paper, indicate that the way in which teachers understand a diversity of learning needs is based on the training that they initially received as teachers, which focused on a deficit, individualised approach to barriers to learning and development, as well as contextual challenges, and that both have direct and substantial effects on teachers' classroom practices. As a result, they engage in practices in their classrooms that are less inclusive, by creating dual learning opportunities that are not sufficiently made available for everyone, with the result that every learner is not able to participate fully as an accepted member of their peer group in all classroom activities.

  5. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  6. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  7. Understanding the Narratives Explaining the Ukrainian Crisis: Identity Divisions and Complex Diversity in Ukraine

    Directory of Open Access Journals (Sweden)

    Smoor Lodewijk

    2017-09-01

    Full Text Available The central argument of this paper is that radical and opposing interpretations of the Ukrainian conflict in politics and media should be studied as offspring of broader narratives. These narratives can be better understood by examining the national identity of Ukraine. Since Ukrainian national identity shows a high degree of diversity, it offers a rich source of arguments for any party wanting to give an interpretation of the present Ukrainian crisis. Narratives explaining the crisis often ignore this complex diversity or deliberately use elements from it to construct the ‘desired’ narrative.

  8. Towards Understanding the Catalytic Mechanism of Human Paraoxonase 1: Experimental and In Silico Mutagenesis Studies.

    Science.gov (United States)

    Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H

    2017-08-01

    Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.

  9. Understanding the mechanisms of secondary nucleation for protein aggregation: an analytical approach

    Science.gov (United States)

    Michaels, Thomas; Knowles, Tuomas P. J.

    2013-03-01

    Filamentous protein self-assembly is a general type of behaviour accessible to a wide range of different polypeptide sequences. This phenomenon underlies key molecular events both in normal and aberrant biology, but a general theory of the crucial nucleation steps that govern this process has remained elusive. In this talk we discuss our attempts to provide a general description of secondary nucleation in filamentous protein assembly based on the Becker-Döring kinetic scheme to describe cluster-catalytic effects. This systematic procedure allows extracting low-dimensional systems of equations out of the full kinetic model, in a master equation formalism typically consisting of infinitely many coupled non-linear equations. Using this procedure, we propose and discuss various mechanisms that can underlie the secondary nucleation process. Using data curve-fitting and analysis we show that the addition of a monomer to heterogeneous nuclei is effectively irreversible and discuss the implications of our framework for the more general understanding of the physics of multi-step nucleation phenomena in nature.

  10. Understanding the mechanisms of sickle cell disease by simulations with a discrete particle model

    Science.gov (United States)

    Hui, Katrina; Lin, Guang; Pan, Wenxiao

    2013-01-01

    Sickle cell disease (SCD) is an inherited blood disorder characterized by rigid, sickle-shaped red blood cells (RBCs). Because of their rigidity and shape, sickle cells can get stuck in smaller blood vessels, causing blockages and depriving oxygen to tissues. This study develops and applies mathematical models to better understand the mechanism of SCD. Two-dimensional models of RBCs and blood vessels have been constructed by representing them as discrete particles interacting with different forces. The nonlinear, elastic property of healthy RBCs could be adequately reproduced using a cosine angle bending force and a worm-like chain spring force. With the ability to deform, RBCs can squeeze through narrow blood vessels. In modeling sickle cells as rigid bodies and applying repelling and friction forces from the blood vessel, this study shows that geometrical factors (dimensions of the sickle cell and blood vessels) as well as rigidity and adhesiveness of the sickle cell all play an important role in determining how, and if, sickle cells become trapped within narrow blood capillaries. With lack of data to validate the model, this study primarily provides a sensitivity analysis of factors influencing sickle cell occlusion and identified critical data to support future modeling.

  11. Mechanism for the Reaction of a Tungsten-Germylyne Complex with ...

    Indian Academy of Sciences (India)

    Abstract. In this report we present results of theoretical analysis for the reaction mechanism involving a tungsten-germylyne complex with α, β-unsaturated ketones. Three different substituents, namely H, Me and. CF3 in α-position of the unsaturated ketones have been selected to account for a variety of experimental obser-.

  12. Two different mechanisms of immune-complex trapping in the mouse spleen during immune responses

    NARCIS (Netherlands)

    Yoshida, K.; van den Berg, T. K.; Dijkstra, C. D.

    1993-01-01

    The capacity of immune-complex (IC) trapping was examined using purified horse radish peroxidase (HRP)-anti-HRP (PAP) on frozen sections of mouse spleen in vitro. We investigated the trapping mechanisms by applying the IC with or without fresh mouse serum added on the spleen sections of naive as

  13. Take a stand on understanding: electrophysiological evidence for stem access in German complex verbs.

    Science.gov (United States)

    Smolka, Eva; Gondan, Matthias; Rösler, Frank

    2015-01-01

    The lexical representation of complex words in Indo-European languages is generally assumed to depend on semantic compositionality. This study investigated whether semantically compositional and noncompositional derivations are accessed via their constituent units or as whole words. In an overt visual priming experiment (300 ms stimulus onset asynchrony, SOA), event-related potentials (ERPs) were recorded for verbs (e.g., ziehen, "pull") that were preceded by purely semantically related verbs (e.g., zerren, "drag"), by morphologically related and semantically compositional verbs (e.g., zuziehen, "pull together"), by morphologically related and semantically noncompositional verbs (e.g., erziehen, "educate"), by orthographically similar verbs (e.g., zielen, "aim"), or by unrelated verbs (e.g., tarnen, "mask"). Compared to the unrelated condition, which evoked an N400 effect with the largest amplitude at centro-parietal recording sites, the N400 was reduced in all other conditions. The rank order of N400 amplitudes turned out as follows: morphologically related and semantically compositional ≈ morphologically related and semantically noncompositional morphologically related primes produced similar N400 modulations-irrespective of their semantic compositionality. The control conditions with orthographic similarity confirmed that these morphological effects were not the result of a simple form overlap between primes and targets. Our findings suggest that the lexical representation of German complex verbs refers to their base form, regardless of meaning compositionality. Theories of the lexical representation of German words need to incorporate this aspect of language processing in German.

  14. Understanding characteristics in multivariate traffic flow time series from complex network structure

    Science.gov (United States)

    Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei

    2017-07-01

    Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.

  15. #consumingitall: Understanding The Complex Relationship Between Media Consumption And Eating Behaviors

    OpenAIRE

    Albert, Stephanie L.

    2017-01-01

    Adolescents spend almost nine hours a day engaging with media. As a result, they are confronted with large amounts of obesogenic content that shapes their understanding of what are normal and acceptable eating behaviors. Utilizing primary data collected from a sample of 4,838 low-income, racially and ethnically diverse middle school students in Los Angeles County, I studied the effects of different types of media use (i.e., social media, TV/movies/videos, gaming, music, Internet) on dietary p...

  16. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates

    Science.gov (United States)

    Watson, Peter J.; Millard, Christopher J.; Riley, Andrew M.; Robertson, Naomi S.; Wright, Lyndsey C.; Godage, Himali Y.; Cowley, Shaun M.; Jamieson, Andrew G.; Potter, Barry V. L.; Schwabe, John W. R.

    2016-01-01

    Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation. PMID:27109927

  17. Application for 3d Scene Understanding in Detecting Discharge of Domesticwaste Along Complex Urban Rivers

    Science.gov (United States)

    Ninsalam, Y.; Qin, R.; Rekittke, J.

    2016-06-01

    In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1) a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2) depth for each image is generated through a backward projection of the point clouds; 3) a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D) data; 4) point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5) then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  18. Understanding the Complexities of Subnational Incentives in Supporting a National Market for Distributed Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Bush, B.; Doris, E.; Getman, D.

    2014-09-01

    Subnational policies pertaining to photovoltaic (PV) systems have increased in volume in recent years and federal incentives are set to be phased out over the next few. Understanding how subnational policies function within and across jurisdictions, thereby impacting PV market development, informs policy decision making. This report was developed for subnational policy-makers and researchers in order to aid the analysis on the function of PV system incentives within the emerging PV deployment market. The analysis presented is based on a 'logic engine,' a database tool using existing state, utility, and local incentives allowing users to see the interrelationships between PV system incentives and parameters, such as geographic location, technology specifications, and financial factors. Depending on how it is queried, the database can yield insights into which combinations of incentives are available and most advantageous to the PV system owner or developer under particular circumstances. This is useful both for individual system developers to identify the most advantageous incentive packages that they qualify for as well as for researchers and policymakers to better understand the patch work of incentives nationwide as well as how they drive the market.

  19. Food, health, and complexity: towards a conceptual understanding to guide collaborative public health action

    Directory of Open Access Journals (Sweden)

    Shannon E. Majowicz

    2016-06-01

    Full Text Available Abstract Background What we eat simultaneously impacts our exposure to pathogens, allergens, and contaminants, our nutritional status and body composition, our risks for and the progression of chronic diseases, and other outcomes. Furthermore, what we eat is influenced by a complex web of drivers, including culture, politics, economics, and our built and natural environments. To date, public health initiatives aimed at improving food-related population health outcomes have primarily been developed within ‘practice silos’, and the potential for complex interactions among such initiatives is not well understood. Therefore, our objective was to develop a conceptual model depicting how infectious foodborne illness, food insecurity, dietary contaminants, obesity, and food allergy can be linked via shared drivers, to illustrate potential complex interactions and support future collaboration across public health practice silos. Methods We developed the conceptual model by first conducting a systematic literature search to identify review articles containing schematics that depicted relationships between drivers and the issues of interest. Next, we synthesized drivers into a common model using a modified thematic synthesis approach that combined an inductive thematic analysis and mapping to synthesize findings. Results The literature search yielded 83 relevant references containing 101 schematics. The conceptual model contained 49 shared drivers and 227 interconnections. Each of the five issues was connected to all others. Obesity and food insecurity shared the most drivers (n = 28. Obesity shared several drivers with food allergy (n = 11, infectious foodborne illness (n = 7, and dietary contamination (n = 6. Food insecurity shared several drivers with infectious foodborne illness (n = 9 and dietary contamination (n = 9. Infectious foodborne illness shared drivers with dietary contamination (n = 8. Fewer drivers were

  20. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    Science.gov (United States)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  1. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways.

    Science.gov (United States)

    Sun, Changhui; Chen, Dan; Fang, Jun; Wang, Pingrong; Deng, Xiaojian; Chu, Chengcai

    2014-12-01

    Although the molecular basis of flowering time control is well dissected in the long day (LD) plant Arabidopsis, it is still largely unknown in the short day (SD) plant rice. Rice flowering time (heading date) is an important agronomic trait for season adaption and grain yield, which is affected by both genetic and environmental factors. During the last decade, as the nature of florigen was identified, notable progress has been made on exploration how florigen gene expression is genetically controlled. In Arabidopsis expression of certain key flowering integrators such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) are also epigenetically regulated by various chromatin modifications, however, very little is known in rice on this aspect until very recently. This review summarized the advances of both genetic networks and chromatin modifications in rice flowering time control, attempting to give a complete view of the genetic and epigenetic architecture in complex network of rice flowering pathways.

  2. Structures of human exonuclease I DNA complexes suggest a unified mechanism for nuclease family

    Science.gov (United States)

    Orans, Jillian; McSweeney, Elizabeth A.; Iyer, Ravi R.; Hast, Michael A.; Hellinga, Homme W.; Modrich, Paul; Beese, Lorena S.

    2011-01-01

    Summary Human exonuclease 1 (hExo1) plays important roles in DNA repair and recombination processes that maintain genomic integrity. It is a member of the 5′ structure-specific nuclease family of exonucleases and endonucleases that includes FEN-1, XPG, and GEN1. We present structures of hExo1 in complex with a DNA substrate, followed by mutagenesis studies, and propose a common mechanism by which this nuclease family recognizes and processes diverse DNA structures. hExo1 induces a sharp bend in the DNA at nicks or gaps. Frayed 5′ ends of nicked duplexes resemble flap junctions, unifying the mechanisms of endo- and exo-nucleolytic processing. Conformational control of a mobile region in the catalytic site suggests a mechanism for allosteric regulation by binding to protein partners. The relative arrangement of substrate binding sites in these enzymes provides an elegant solution to a complex geometrical puzzle of substrate recognition and processing. PMID:21496642

  3. A Complexity-Aware Video Adaptation Mechanism for Live Streaming Systems

    Science.gov (United States)

    Lu, Meng-Ting; Yao, Jason J.; Chen, Homer H.

    2007-12-01

    The paradigm shift of network design from performance-centric to constraint-centric has called for new signal processing techniques to deal with various aspects of resource-constrained communication and networking. In this paper, we consider the computational constraints of a multimedia communication system and propose a video adaptation mechanism for live video streaming of multiple channels. The video adaptation mechanism includes three salient features. First, it adjusts the computational resource of the streaming server block by block to provide a fine control of the encoding complexity. Second, as far as we know, it is the first mechanism to allocate the computational resource to multiple channels. Third, it utilizes a complexity-distortion model to determine the optimal coding parameter values to achieve global optimization. These techniques constitute the basic building blocks for a successful application of wireless and Internet video to digital home, surveillance, IPTV, and online games.

  4. A Complexity-Aware Video Adaptation Mechanism for Live Streaming Systems

    Directory of Open Access Journals (Sweden)

    Chen Homer H

    2007-01-01

    Full Text Available The paradigm shift of network design from performance-centric to constraint-centric has called for new signal processing techniques to deal with various aspects of resource-constrained communication and networking. In this paper, we consider the computational constraints of a multimedia communication system and propose a video adaptation mechanism for live video streaming of multiple channels. The video adaptation mechanism includes three salient features. First, it adjusts the computational resource of the streaming server block by block to provide a fine control of the encoding complexity. Second, as far as we know, it is the first mechanism to allocate the computational resource to multiple channels. Third, it utilizes a complexity-distortion model to determine the optimal coding parameter values to achieve global optimization. These techniques constitute the basic building blocks for a successful application of wireless and Internet video to digital home, surveillance, IPTV, and online games.

  5. Using design principles to foster understanding of complex health concepts in consumer informatics tools.

    Science.gov (United States)

    Misra, Rupananda; Mark, Jessica H; Khan, Sharib; Kukafka, Rita

    2010-11-13

    Consumer health informatics tools can only be effective if patients comprehend their content. Optimal design may foster better patient comprehension and health literacy, which can improve health outcomes. We developed a patient-centric decision aid, Tailored Lifestyle Conversations (TLC), to help patients comprehend behavioral risks and set behavior change priorities for reducing risk of cardiovascular disease. The TLC decision aid was developed using a design framework based on Gestalt Principles of Perception. Further iteration was informed by qualitative user feedback. Preliminary analysis showed that the TLC decision aid helped patients understand their risk and supported their decisions on health behavior change. We identified design elements that supported patient comprehension, and other elements that were not effective, to inform iterative revision. This paper describes an effective methodology for the development of consumer health informatics tools that includes grounding in design principles complemented by iterative revision based on user testing and feedback.

  6. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Directory of Open Access Journals (Sweden)

    H. Mao

    2016-10-01

    Full Text Available Atmospheric mercury (Hg is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM, gaseous oxidized mercury (GOM, and particulate-bound mercury (PBM in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL, the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring–summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain–valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM

  7. Understanding treatment effect mechanisms of the CAMBRA randomized trial in reducing caries increment.

    Science.gov (United States)

    Cheng, J; Chaffee, B W; Cheng, N F; Gansky, S A; Featherstone, J D B

    2015-01-01

    The Caries Management By Risk Assessment (CAMBRA) randomized controlled trial showed that an intervention featuring combined antibacterial and fluoride therapy significantly reduced bacterial load and suggested reduced caries increment in adults with 1 to 7 baseline cavitated teeth. While trial results speak to the overall effectiveness of an intervention, insight can be gained from understanding the mechanism by which an intervention acts on putative intermediate variables (mediators) to affect outcomes. This study conducted mediation analyses on 109 participants who completed the trial to understand whether the intervention reduced caries increment through its action on potential mediators (oral bacterial load, fluoride levels, and overall caries risk based on the composite of bacterial challenge and salivary fluoride) between the intervention and dental outcomes. The primary outcome was the increment from baseline in decayed, missing, and filled permanent surfaces (ΔDMFS) 24 mo after completing restorations for baseline cavitated lesions. Analyses adjusted for baseline overall risk, bacterial challenge, and fluoride values under a potential outcome framework using generalized linear models. Overall, the CAMBRA intervention was suggestive in reducing the 24-mo DMFS increment (reduction in ΔDMFS: -0.96; 95% confidence interval [CI]: -2.01 to 0.08; P = 0.07); the intervention significantly reduced the 12-mo overall risk (reduction in overall risk: -19%; 95% CI, -7 to -41%;], P = 0.005). Individual mediators, salivary log10 mutans streptococci, log10 lactobacilli, and fluoride level, did not represent statistically significant pathways alone through which the intervention effect was transmitted. However, 36% of the intervention effect on 24-mo DMFS increment was through a mediation effect on 12-mo overall risk (P = 0.03). These findings suggest a greater intervention effect carried through the combined action on multiple aspects of the caries process rather than

  8. Model-based flaw localization from perturbations in the dynamic response of complex mechanical structures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2009-02-24

    A new method of locating structural damage using measured differences in vibrational response and a numerical model of the undamaged structure has been presented. This method is particularly suited for complex structures with little or no symmetry. In a prior study the method successively located simulated damage from measurements of the vibrational response on two simple structures. Here we demonstrate that it can locate simulated damage in a complex structure. A numerical model of a complex structure was used to calculate the structural response before and after the introduction of a void. The method can now be considered for application to structures of programmatic interest. It could be used to monitor the structural integrity of complex mechanical structures and assemblies over their lifetimes. This would allow early detection of damage, when repair is relatively easy and inexpensive. It would also allow one to schedule maintenance based on actual damage instead of a time schedule.

  9. Statistical mechanics of the distribution of charge on particles in complex plasmas

    International Nuclear Information System (INIS)

    Sodha, M S; Mishra, S K; Misra, Shikha

    2011-01-01

    This paper presents an analytical study of the distribution of charge on the particles in a complex plasma; the study is based on statistical mechanics and ensures that the charge on the particles is an integral multiple of the electronic charge. The formulation incorporates both the number and energy balance of electrons/ions. Three specific cases of charging of particles have been considered, namely (i) in a plasma in the absence of electron emission from the particles, (ii) in a complex plasma in thermal equilibrium and (iii) in a complex plasma irradiated by monochromatic radiation, causing photoelectric emission of electrons from the particles. The effect of various parameters on the charge distribution has also been investigated. This paper is in reasonably good agreement with the fluctuation theory for large values of Z (Ze is the charge on a particle). It is seen that under certain conditions, a significant number of oppositely charged particles occur in the complex plasma.

  10. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    Directory of Open Access Journals (Sweden)

    Liufeng Zheng

    2016-09-01

    Full Text Available The mammalian target of rapamycin (mTOR is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs, especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9 and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1 also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity.

  11. APPLICATION FOR 3D SCENE UNDERSTANDING IN DETECTING DISCHARGE OF DOMESTICWASTE ALONG COMPLEX URBAN RIVERS

    Directory of Open Access Journals (Sweden)

    Y. Ninsalam

    2016-06-01

    Full Text Available In our study we use 3D scene understanding to detect the discharge of domestic solid waste along an urban river. Solid waste found along the Ciliwung River in the neighbourhoods of Bukit Duri and Kampung Melayu may be attributed to households. This is in part due to inadequate municipal waste infrastructure and services which has caused those living along the river to rely upon it for waste disposal. However, there has been little research to understand the prevalence of household waste along the river. Our aim is to develop a methodology that deploys a low cost sensor to identify point source discharge of solid waste using image classification methods. To demonstrate this we describe the following five-step method: 1 a strip of GoPro images are captured photogrammetrically and processed for dense point cloud generation; 2 depth for each image is generated through a backward projection of the point clouds; 3 a supervised image classification method based on Random Forest classifier is applied on the view dependent red, green, blue and depth (RGB-D data; 4 point discharge locations of solid waste can then be mapped by projecting the classified images to the 3D point clouds; 5 then the landscape elements are classified into five types, such as vegetation, human settlement, soil, water and solid waste. While this work is still ongoing, the initial results have demonstrated that it is possible to perform quantitative studies that may help reveal and estimate the amount of waste present along the river bank.

  12. Understanding and Exploration of the Biomineralization Mechanisms for the Controllable Synthesis of Nanomaterials

    Science.gov (United States)

    Xiao, Junwu

    This thesis is mainly concerned with understanding the biomineralization mechanisms, and further extrapolating them for the controllable synthesis of transition metal compound nanomaterials on graphene sheets for energy storage applications in electrochemical capacitors and lithium ion batteries (LIB). Firstly, we have studied the mimetic biomineralization process of CaCO 3 on a stearic acid or 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) Langmuir monolayer at the air-water interface by in-situ Brewster angle microscopy (BAM) and ex-situ electron microscopy. Amorphous calcium carbonate (ACC) precursors are directly nucleated from solvated ions prior to the crystal nuclei on a Langmuir monolayer. On a DPPC monolayer, numerous fresh ACC nanoparticles heterogeneously and continuously nucleated at the air-water interface are transformed into the metastable vaterite nanocrystals. Driven by the trend to decrease surface energy, the vaterite nanocrystals self-aggregate and grow into the loose-packed hollow ellipsoidal vaterite polycrystals. These nanocrystals in vaterite polycrystals are then gradually orientated in the same direction to evolve into tight-packed ellipsoidal mesocrystals. As the crystallization time is further increased, the metastable vaterite mesocrystals are eventually transformed into the most thermodynamically stable calcite crystals. Secondly, organic and inorganic additives control over the shapes, sizes and phases of inorganic nanocrystals and arrange them into ordered structures from amorphous precursors in the organisms. This interesting phenomenon has galvanized many attempts to mimic the biomineralization process for synthesizing novel materials. We have studied the crystallization processes from small citrate molecules stabilized ACC precursors under cetyltrimethyl ammonium bromide (CTAB) micellar structures. Amorphous precursors, with a hydrated and disordered structure, are easily transformed and molded into CaCO 3 crystals with

  13. Cytoxicity and Apoptotic Mechanism of Ruthenium(II) Amino Acid Complexes in Sarcoma-180 Tumor Cells

    Science.gov (United States)

    Lima, Aliny Pereira; Pereira, Flávia Castro; Almeida, Marcio Aurelio Pinheiro; Mello, Francyelli Mariana Santos; Pires, Wanessa Carvalho; Pinto, Thallita Monteiro; Delella, Flávia Karina; Felisbino, Sérgio Luis; Moreno, Virtudes; Batista, Alzir Azevedo; de Paula Silveira-Lacerda, Elisângela

    2014-01-01

    Over the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells. The cytotoxicity of the complexes was evaluated by an MTT assay, and their mechanism of action was investigated. The results demonstrated that the five complexes inhibited the growth of the S180 tumor cell line, with IC50 values ranging from 22.53 µM to 50.18 µM, and showed low cytotoxicity against normal L929 fibroblast cells. Flow cytometric analysis revealed that the [Ru(gly)(bipy)(dppb)]PF6 complex (2) inhibited the growth of the tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and G0/G1 phase cell cycle arrest. Further investigation showed that complex 2 caused a loss of mitochondrial membrane potential; activated caspases 3, caspase-8, and caspase-9 and caused a change in the mRNA expression levels of caspase 3, caspase-9 as well as the bax genes. The levels of the pro-apoptotic Bcl-2 family protein Bak were increased. Thus, we demonstrated that ruthenium amino acid complexes are promising drugs against S180 tumor cells, and we recommend further investigations of their role as chemotherapeutic agents for sarcomas. PMID:25329644

  14. Cytoxicity and apoptotic mechanism of ruthenium(II amino acid complexes in sarcoma-180 tumor cells.

    Directory of Open Access Journals (Sweden)

    Aliny Pereira Lima

    Full Text Available Over the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells. The cytotoxicity of the complexes was evaluated by an MTT assay, and their mechanism of action was investigated. The results demonstrated that the five complexes inhibited the growth of the S180 tumor cell line, with IC50 values ranging from 22.53 µM to 50.18 µM, and showed low cytotoxicity against normal L929 fibroblast cells. Flow cytometric analysis revealed that the [Ru(gly(bipy(dppb]PF6 complex (2 inhibited the growth of the tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and G0/G1 phase cell cycle arrest. Further investigation showed that complex 2 caused a loss of mitochondrial membrane potential; activated caspases 3, caspase-8, and caspase-9 and caused a change in the mRNA expression levels of caspase 3, caspase-9 as well as the bax genes. The levels of the pro-apoptotic Bcl-2 family protein Bak were increased. Thus, we demonstrated that ruthenium amino acid complexes are promising drugs against S180 tumor cells, and we recommend further investigations of their role as chemotherapeutic agents for sarcomas.

  15. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS.

    Science.gov (United States)

    Staudacher, Heidi M; Whelan, Kevin

    2017-08-01

    There is an intensifying interest in the interaction between diet and the functional GI symptoms experienced in IBS. Recent studies have used MRI to demonstrate that short-chain fermentable carbohydrates increase small intestinal water volume and colonic gas production that, in those with visceral hypersensitivity, induces functional GI symptoms. Dietary restriction of short-chain fermentable carbohydrates (the low fermentable oligosaccharide, disaccharide, monosaccharide and polyol (FODMAP) diet) is now increasingly used in the clinical setting. Initial research evaluating the efficacy of the low FODMAP diet was limited by retrospective study design and lack of comparator groups, but more recently well-designed clinical trials have been published. There are currently at least 10 randomised controlled trials or randomised comparative trials showing the low FODMAP diet leads to clinical response in 50%-80% of patients with IBS, in particular with improvements in bloating, flatulence, diarrhoea and global symptoms. However, in conjunction with the beneficial clinical impact, recent studies have also demonstrated that the low FODMAP diet leads to profound changes in the microbiota and metabolome, the duration and clinical relevance of which are as yet unknown. This review aims to present recent advances in the understanding of the mechanisms by which the low FODMAP diet impacts on symptoms in IBS, recent evidence for its efficacy, current findings regarding the consequences of the diet on the microbiome and recommendations for areas for future research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    Science.gov (United States)

    Helbing, D.; Bishop, S.; Conte, R.; Lukowicz, P.; McCarthy, J. B.

    2012-11-01

    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most

  17. Childhood disability in Turkana, Kenya: Understanding how carers cope in a complex humanitarian setting.

    Science.gov (United States)

    Zuurmond, Maria; Nyapera, Velma; Mwenda, Victoria; Kisia, James; Rono, Hilary; Palmer, Jennifer

    2016-01-01

    Although the consequences of disability are magnified in humanitarian contexts, research into the difficulties of caring for children with a disability in such settings has received limited attention. Based on in-depth interviews with 31 families, key informants and focus group discussions in Turkana, Kenya, this article explores the lives of families caring for children with a range of impairments (hearing, vision, physical and intellectual) in a complex humanitarian context characterised by drought, flooding, armed conflict, poverty and historical marginalisation. The challenging environmental and social conditions of Turkana magnified not only the impact of impairment on children, but also the burden of caregiving. The remoteness of Turkana, along with the paucity and fragmentation of health, rehabilitation and social services, posed major challenges and created opportunity costs for families. Disability-related stigma isolated mothers of children with disabilities, especially, increasing their burden of care and further limiting their access to services and humanitarian programmes. In a context where social systems are already stressed, the combination of these factors compounded the vulnerabilities faced by children with disabilities and their families. The needs of children with disabilities and their carers in Turkana are not being met by either community social support systems or humanitarian aid programmes. There is an urgent need to mainstream disability into Turkana services and programmes.

  18. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness

    International Nuclear Information System (INIS)

    Stewart-Hutchinson, P.J.; Hale, Christopher M.; Wirtz, Denis; Hodzic, Didier

    2008-01-01

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins

  19. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  20. Studying the complexity of change: toward an analytical framework for understanding deliberate social-ecological transformations

    Directory of Open Access Journals (Sweden)

    Michele-Lee Moore

    2014-12-01

    Full Text Available Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

  1. Understanding the Complexities of Food Safety Using a "One Health" Approach.

    Science.gov (United States)

    Kniel, Kalmia E; Kumar, Deepak; Thakur, Siddhartha

    2018-02-01

    The philosophy of One Health is growing in concept and clarity. The interdependence of human, animal, and environmental health is the basis for the concept of One Health. One Health is a comprehensive approach to ensure the health of people, animals, and the environment through collaborative efforts. Preharvest food safety issues align with the grand concept of One Health. Imagine any food production system, and immediately, parallel images from One Health emerge: for example, transmission of zoonotic diseases, antibiotic residues, or resistance genes in the environment; environmental and animal host reservoirs of disease; challenges with rearing animals and growing fresh produce on the same farm; application and transport of manure or diseased animals. During a recent celebration of #OneHealthDay, information was shared around the globe concerning scientists dedicated to One Health research systems. An ever-growing trade and global commerce system mixed with our incessant desire for food products during the whole year makes it all the more important to take a global view through the One Health lens to solve these growing challenges. The recent explosion of Zika virus around the globe renewed the need for assessing transmissible diseases through the eyes of One Health. It is not good enough to know how a disease affects the human population without a thorough understanding of the environment and vector reservoirs. If 60 to 75% of infectious diseases affecting humans are of animal origin, the need for better One Health research strategies and overdue solutions is imperative.

  2. Understanding the complexities of functional ability in Alzheimer's disease: more than just basic and instrumental factors.

    Science.gov (United States)

    Kahle-Wrobleski, Kristin; Coley, Nicola; Lepage, Benoit; Cantet, Christelle; Vellas, Bruno; Andrieu, Sandrine

    2014-05-01

    Dementia of the Alzheimer's type (AD) is defined by both cognitive and functional decline; new criteria allow for identification of milder, non-functionally impaired patients. Understanding loss of autonomy in AD is essential, as later stages represent a significant burden and cost to patients, their families, and society. The purpose of the present analyses was to determine the factor structure of the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale (ADCS-ADL) in a cohort of AD patients. Baseline ADCS-ADL assessments of 734 AD patients from the PLASA study were included in an exploratory factor analysis (EFA). Because the ADCS-ADL was designed to assess change over time, change from baseline scores over 2 years were also analyzed using an EFA. Factorial solutions were evaluated based on cross-loading, non-loadings, and number of items per factor. Mean age at baseline was 79.3, mean MMSE was 19.8 and 73.3% of participants were female. Baseline data suggested a 4-factor solution that included factors for basic ADLs (BADLs), domestic/household activities, communication/engagement with the environment, and outside activities. The change scores EFA suggested a 2-factor solution of BADLs and instrumental ADLs (IADLs). Distinct factors of IADLs should be considered for further validation as areas of attention to catch early functional decline.

  3. Childhood disability in Turkana, Kenya: Understanding how carers cope in a complex humanitarian setting

    Directory of Open Access Journals (Sweden)

    Maria Zuurmond

    2016-02-01

    Full Text Available Background: Although the consequences of disability are magnified in humanitarian contexts, research into the difficulties of caring for children with a disability in such settings has received limited attention.Methods: Based on in-depth interviews with 31 families, key informants and focus group discussions in Turkana, Kenya, this article explores the lives of families caring for children with a range of impairments (hearing, vision, physical and intellectual in a complex humanitarian context characterised by drought, flooding, armed conflict, poverty and historical marginalisation.Results: The challenging environmental and social conditions of Turkana magnified not only the impact of impairment on children, but also the burden of caregiving. The remoteness of Turkana, along with the paucity and fragmentation of health, rehabilitation and social services, posed major challenges and created opportunity costs for families. Disability-related stigma isolated mothers of children with disabilities, especially, increasing their burden of care and further limiting their access to services and humanitarian programmes. In a context where social systems are already stressed, the combination of these factors compounded the vulnerabilities faced by children with disabilities and their families.Conclusion: The needs of children with disabilities and their carers in Turkana are not being met by either community social support systems or humanitarian aid programmes. There is an urgent need to mainstream disability into Turkana services and programmes.

  4. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed

    2014-11-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation change the conductivity of ITO devices remains unclear. We propose a systematic micro-mechanics-based approach to clarify the relationship between degradation and changes in electrical resistance. By comparing experimentally measured channel crack densities to changes in electrical resistance returned by the different micro-mechanical schemes, we highlight the key role played by the residual conductivity in the interface between the ITO electrode and its substrate after delamination. We demonstrate that channel cracking alone does not explain the experimental observations. Our results indicate that delamination has to take place between the ITO electrode and the substrate layers and that the residual conductivity of this delaminated interface plays a major role in changes in electrical resistance of the degraded device. © 2014 Elsevier B.V.

  5. Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation.

    Science.gov (United States)

    Li, Yunqi; Zhao, Qin; Huang, Qingrong

    2014-01-30

    A combination of turbidimetric titration, a sigmoidal Boltzmann equation approach and Monte Carlo simulation has been used to study the complex coacervation in serum albumin and pectin mixtures. The effects of the mass ratio of protein to polysaccharide on the critical pH values, the probability of complex coacervation and the electrostatic interaction from charge patches in serum albumin were investigated. Turbidimetric titration results showed an optimum pH for complex coacervation (pHm), which corresponded to the maximum turbidity in the protein/polysaccharide mixture. The pHm monotonically decreased as the ratio decreased, and could be fitted using the sigmoidal Boltzmann equation. It suggests that pHm could be a good ordering parameter to characterize the phase behavior associated with protein/polysaccharide complex coacervation. Qualitative understanding of pHm by taking into account the minimization of electrostatic interaction, as well as quantitative matching of pHm according to the concept of charge neutralization were both achieved. Our results suggest that the serum albumin/pectin complexes were ultimately neutralized by the partial charges originated from the titratable residues in protein and polysaccharide chains at pHm. The Monte Carlo simulation provided consistent phase boundaries for complex coacervation in the same system, and the intermolecular association strength was determined to be several kBT below the given ionic strength. The strongest binding site in the protein is convergent to the largest positive charge patch if pure electrostatic interaction was considered. Further inclusion of contribution from excluded volume resulted in the binding site distribution over five different positive charge patches at different protein/polysaccharide ratios and pH values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    Science.gov (United States)

    2016-10-01

    in different subtypes of brain cells , including neurons, glia or progenitor cells , all cause spontaneous seizures in animal models, suggesting that...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We seek to understand four basic questions related to epileptogenesis: 1) What is the role of mTOR...mutations in the TSC1 or TSC2 genes, which form a regulatory complex responsible for limiting the activity of an important intracellular regulator of cell

  7. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  8. Biogenetic mechanisms predisposing to complex phenotypes in parents may function differently in their children

    DEFF Research Database (Denmark)

    Kulminski, Alexander M; Arbeev, Konstantin G; Christensen, Kaare

    2013-01-01

    This study focuses on the participants of the Long Life Family Study to elucidate whether biogenetic mechanisms underlying relationships among heritable complex phenotypes in parents function in the same way for the same phenotypes in their children. Our results reveal 3 characteristic groups...... of relationships among phenotypes in parents and children. One group composed of 3 pairs of phenotypes confirms that associations among some phenotypes can be explained by the same biogenetic mechanisms working in parents and children. Two other groups including 9 phenotype pairs show that this is not a common......-related processes in changing environment may be conceptually underestimated in current genetic association studies using genome wide resources....

  9. INTEGRATED SCIENTIFIC-MANUFACTURING COMPLEXES AS A BASIS OF MODERN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    N.A. Malyh

    2007-03-01

    Full Text Available The experience of FGUP PO "Uralvagonzavod" development is shown in the article, the analysis of mechanical engineering development in our country on modern stage is given. The authors’ approach upon the possibility, necessity and inevitability of a single right perspective decision of such economical problem in short period by the native financial, scientific-technical and people resources of Russia is proven. The position of seeing defensive enterprises as modern integrated scientific-manufacturing complexes, which are a real basis for creation of qualitatively new technique and technology of mechanical engineering and other country’s industry sectors.

  10. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    Science.gov (United States)

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Elucidation of the electronic spectrum changes of KA-Al3+ complex by potentiometric titration, FTIR, 13C NMR and quantum mechanics

    International Nuclear Information System (INIS)

    Piantavini, Mário S.; Gonçalves, Alan G.; Trindade, Ângela C.L.B.; Noseda, Miguel D.; Mercê, Ana L.R.; Pontarolo, Roberto; Machado, Antonio E.H.

    2017-01-01

    Kojic acid (KA) is an organic acid widely used in pharmaceutical industry, mainly as a skin lightening agent. Based on the ability of KA to form complexes with ions, we found the most possible kind of complex formed with cation aluminum. KA-Al 3+ complex structures were studied using potentiometric and spectrophotometric (UV) titrations, FTIR and 13 C NMR. The electronic spectroscopy showed that the KA-Al 3+ complexes absorb at higher wavelengths (λ max = 305 nm) than do the non-complexed KA (λ max = 269 nm), confirming complexation. The IR spectra of KA complexed and not complexed allowed to correlate the changes in the absorption of enol and carbonyl groups in absence and presence of Al 3+ in aqueous solutions. The complexation suggested by the potentiometric titration and FTIR spectroscopy are in accordance with the data obtained from NMR results. Calculations based on quantum mechanics were utilized to understand the differences found in the non complexed and complexed KAH electronic spectra. (author)

  12. Elucidation of the electronic spectrum changes of KA-Al{sup 3+} complex by potentiometric titration, FTIR, {sup 13}C NMR and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Piantavini, Mário S.; Gonçalves, Alan G.; Trindade, Ângela C.L.B.; Noseda, Miguel D.; Mercê, Ana L.R.; Pontarolo, Roberto, E-mail: pontarolo@ufpr.br [Universidade Federal do Paraná (UFPR), Curitiba (Brazil); Machado, Antonio E.H. [Universidade Federal de Uberlândia (UFU), MG (Brazil)

    2017-08-15

    Kojic acid (KA) is an organic acid widely used in pharmaceutical industry, mainly as a skin lightening agent. Based on the ability of KA to form complexes with ions, we found the most possible kind of complex formed with cation aluminum. KA-Al{sup 3+} complex structures were studied using potentiometric and spectrophotometric (UV) titrations, FTIR and {sup 13}C NMR. The electronic spectroscopy showed that the KA-Al{sup 3+} complexes absorb at higher wavelengths (λ{sub max}= 305 nm) than do the non-complexed KA (λ{sub max}= 269 nm), confirming complexation. The IR spectra of KA complexed and not complexed allowed to correlate the changes in the absorption of enol and carbonyl groups in absence and presence of Al{sup 3+} in aqueous solutions. The complexation suggested by the potentiometric titration and FTIR spectroscopy are in accordance with the data obtained from NMR results. Calculations based on quantum mechanics were utilized to understand the differences found in the non complexed and complexed KAH electronic spectra. (author)

  13. The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?

    Science.gov (United States)

    Crofts, Antony R; Holland, J Todd; Victoria, Doreen; Kolling, Derrick R J; Dikanov, Sergei A; Gilbreth, Ryan; Lhee, Sangmoon; Kuras, Richard; Kuras, Mariana Guergova

    2008-01-01

    Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a "two-electron gate" in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer

  14. The Q-cycle reviewed: how well does a monomeric mechanism of the bc1 complex account for the function of a dimeric complex?

    Science.gov (United States)

    Crofts, Antony R.; Holland, J. Todd; Victoria, Doreen; Kolling, Derrick R.J.; Dikanov, Sergei A.; Gilbreth, Ryan; Lhee, Sangmoon; Kuras, Richard; Kuras, Mariana Guergova

    2008-01-01

    Recent progress in understanding the Q-cycle mechanism of the bc1 complex is reviewed. The data strongly support a mechanism in which the Qo-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Qo-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c1 and liberate the H+. When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O2 is available. When the b-heme chain is available as acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved –PEWY- sequence, and the semiquinone anion passes its electron to heme bL to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme bL to enhance the rate constant. The acceptor reactions at the Qi-site are still controversial, but likely involve a “two-electron gate” in which a stable semiquinone stores an electron. Possible mechanisms to explain the cytb150 phenomenon are discussed, and the information from pulsed EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc1 complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from

  15. Laboratory experiments for understanding mechanical properties of fractured granite under supercritical conditions

    Science.gov (United States)

    Kitamura, M.; Takahashi, M.; Takagi, K.; Hirano, N.; Tsuchiya, N.

    2017-12-01

    To extract geothermal energy effectively and safely from magma and/or adjacent hot rock, we need to tackle many issues which require new technology development, such as a technique to control a risk from induced-earthquakes. On a development of induced-earthquake mitigation technology, it is required to understand roles of factors on occurrences of the induced-earthquake (e.g., strength, crack density, and fluid-rock reaction) and their intercorrelations (e.g., Asanuma et al., 2012). Our purpose of this series of experiments is to clarify a relationship between the rock strength and the crack density under supercritical conditions. We conducted triaxial deformation test on intact granite rock strength under high-temperature (250 - 750°C), high-pressure (104 MPa) condition at a constant load velocity (0.1 μm/sec) using a gas-rig at AIST. We used Oshima granite, which has initially stress drop became smaller at higher temperature. Young's modulus increased with decreasing the temperature from 32.3 GPa at 750°C to 57.4 GPa at 250°C. At 400 °C, the stress drop accelerated the deformation with 98 times faster velocity than that at load-point. In contrast, at 650°C and 750°C, the velocity during stress drop kept the same order of the load-point velocity. Therefore, the deformation mechanism may start to be changed from brittle to ductile when the temperature exceeds 650°C. Highly dense cracked granite specimens were formed by a rapid decompression test (RDT) using an autoclave settled at Tohoku University (Hirano et al., 2016JpGU), caused by a reduction of fluid pressure within 1-2 sec from vapor/supercritical state (10 - 48 MPa, 550 °C) to ambient pressure. The specimens after RDT show numerous microcracks on X-ray CT images. The RDT imposed the porosity increasing towards 3.75 % and Vp and Vs decreasing towards 1.37±0.52 km/s and 0.97±0.25 km/s. The Poisson's ratio shows the negative values in dry and 0.5 in wet. In the meeting, we will present results of

  16. Toward Understanding Mechanisms Controlling Urea Delivery in a Coastal Plain Watershed

    Science.gov (United States)

    Tzilkowski, S. S.; Buda, A. R.; Boyer, E. W.; Bryant, R. B.; May, E. B.

    2012-12-01

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver of coastal eutrophication, particularly through the development of harmful algal blooms. While several studies have documented elevated urea concentrations in tributaries draining to the Chesapeake Bay, little is known about the potential sources and flow pathways responsible for urea delivery from the landscape to surface waters, as well as how these sources and pathways might vary with changing seasons, antecedent conditions, and storm types. In this study, we investigated hydrologic controls on urea delivery in the Manokin River watershed through the analysis of urea concentration dynamics and hysteresis patterns during seven storm events that occurred in 2010 and 2011. The Manokin River is a Coastal Plain watershed (11.1 km2) on the Delmarva Peninsula that drains directly to the Chesapeake Bay and is characterized by extensive rural development coupled with intensive agriculture, particularly poultry production. Sampling was conducted through monthly grab sampling at baseflow conditions and by time-weighted, automated (Sigma) samplers during stormflow events. Monitored storms were chosen to represent a spectrum of antecedent conditions based on precipitation and groundwater levels in the area. Flushing from the landscape during events was found to be the predominant urea delivery mechanism, as urea concentrations increased 3-9 times above baseflow concentrations during storms. The timing and number of flushes, as well as the degree of increased concentrations were dependent on antecedent conditions and the characteristics of the storm event. For instance, during an intense (13.7 mm hr-1), short-duration (4 hrs) storm in August of 2010 when antecedent conditions were

  17. Research on a scheduling mechanism in a complex system based on TOC

    International Nuclear Information System (INIS)

    Wen, Zhang; Ya-Ming, Zhang; Jinbo, Chen; Kaijun, Leng

    2016-01-01

    Under the condition where there is no seasonal demand fluctuation, short life cycle product supply chain should confront the market environment such as the decreasing of product value, the launch of substitutes and the appearance of competitors’ similar products, and the supply chain will become a very complex system. In this paper, the authors consider a TOC-based scheduling mechanism in this complex supply chain system. under the constant total production cost, it is more important to improve the availability of the wanted product in order to enhance the overall supply chain competitiveness so to obtain more effective output(profit rate) for the supply chain in a long period. Especially we try to apply the SDBR concept into a schedule mechanism in a particular supply chain system, and use numerical analysis to test the efficiency of the proposed method.

  18. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin.

    Science.gov (United States)

    Tripathi, Ravi; Nair, Nisanth N

    2016-03-17

    Understanding the molecular details of antibiotic resistance by the bacterial enzymes β-lactamases is vital for the development of novel antibiotics and inhibitors. In this spirit, the detailed mechanism of deacylation of the acyl-enzyme complex formed by cephalothin and class C β-lactamase is investigated here using hybrid quantum-mechanical/molecular-mechanical molecular dynamics methods. The roles of various active-site residues and substrate in the deacylation reaction are elucidated. We identify the base that activates the hydrolyzing water molecule and the residue that protonates the catalytic serine (Ser64). Conformational changes in the active sites and proton transfers that potentiate the efficiency of the deacylation reaction are presented. We have also characterized the oxyanion holes and other H-bonding interactions that stabilize the reaction intermediates. Together with the kinetic and mechanistic details of the acylation reaction, we analyze the complete mechanism and the overall kinetics of the drug hydrolysis. Finally, the apparent rate-determining step in the drug hydrolysis is scrutinized.

  19. The Crystallographic and Quantum Mechanical Analysis of some Pd(II) N-heterocyclic carbene Complexes

    International Nuclear Information System (INIS)

    Goekce, A. G.

    2008-01-01

    Because of their extraordinary properties, N-heterocyclic carbenes (NHC) have found access to a great variety of catalytic processes which include C-C coupling reactions, formation of furans, cyclopropanation, olefin metathesis, hydroformylation, polymerization and hydrosilylation reactions. In this study, molecular and crystal structures of Pd(II) NHC complexes have been determined by single crystal x-ray diffraction technique. In addition, molecular geometries of all complexes under study were optimized at the B3LYP level of density functional theory (DFT) and the effective core potentials of Hay and Wadt with LanL2DZ basis set were used. In order to investigate binding orbitals of metal and charge transfer mechanism occurred in NHC ring, natural bond orbital (NBO) analyses were performed at the B3LYP/LanL2DZ level on the basis of the optimized ground state for complexes

  20. Inhibition Mechanism of Uranyl Reduction Induced by Calcium-Carbonato Complexes

    Science.gov (United States)

    Jones, M. E.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium mobility in the subsurface is controlled by the redox state and chemical speciation, generally as minimally soluble U(IV) or soluble U(VI) species. In the presence of even low carbonate concentrations the uranyl-carbonato complex quickly becomes the dominant aqueous species; they are, in fact, the primary aqueous species in most groundwaters. Calcium in groundwater leads to ternary calcium-uranyl-carbonato complexes that limit the rate and extent of U(VI) reduction. This decrease in reduction rate has been attributed to surface processes, thermodynamic limitations, and kinetic factors. Here we present a new mechanism for the inhibition of ferrous iron reduction of uranyl-carbonato species in the presence of calcium. A series of experiments under variable Ca conditions were preformed to determine the role of Ca in the inhibition of U reduction by ferrous iron. Calcium ions in the Ca2UO2(CO3)3 complex sterically prevent the interaction of Fe(II) with U(VI), in turn preventing the Fe(II)-U(VI) distance required for electron transfer. The mechanism described here helps to predict U redox transformations in suboxic environments and clarifies the role of Ca in the fate and mobility of U. Electrochemical measurements further show the decrease of the U(VI) to U(V) redox potential of the uranyl-carbonato complex with decreasing pH suggesting the first electron transfer is critical determining the rate and extent of uranium reduction.

  1. Use of rheometry and {sup 1}H NMR spectroscopy for understanding the mechanisms behind the generation of coking pressure

    Energy Technology Data Exchange (ETDEWEB)

    Karen M. Steel; Miguel Castro Diaz; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2004-10-01

    The fluid phase which forms during carbonization of a range of coals was studied using rheometry and {sup 1}H NMR spectroscopy to study the mechanisms behind the generation of excessive wall pressures during coking. It is proposed that high coking pressures are generated for low volatile matter coals when the temperature of maximum fluidity (T{sub mf}) is {gt} 465{degree}C, the minimum complex viscosity ({eta}{asterisk}) is {gt} 10{sup 5} Pa s, the percentage of mobile 1H (fluid phase) is {lt} 40%, and the {sup 1}H mobility in the fluid phase is {lt} 65 {mu}s. It is suggested for these coals that the particles fuse to form a rigid network containing pockets of fluid material which have a low fluidity and do not link up. This arrangement could present an impermeable barrier for gas flow and force the gas to the coal side where it builds up in a diminishing region to a critical level, causing pressure on the walls. The magnitude of the pressure generated may be proportional to T{sub mf} and {eta}{asterisk} and inversely proportional to the percentage and mobility of mobile {sup 1}H. It was also found that a high volatile coal which formed a highly fluid phase over a broad temperature range gave rise to a significant coking pressure. In this case, it is proposed that the sheer expansion of the coal charge as it converts to gas and liquid phases is the reason for pressure on the oven walls. These proposals agree with current thinking on the generation of coking pressure. This work is based on the testing of only nine samples and further work is planned to gain a greater fundamental understanding of fluidity development from which models for predicting coking pressure and coke quality for coal blends may be developed. 20 refs., 10 figs., 5 tabs.

  2. Mechanisms of molecular recognition: crystal structure analysis of human and rat transthyretin inhibitor complexes.

    Science.gov (United States)

    Cody, Vivian

    2002-12-01

    Structure-activity data show that many pharmacological agents are strong competitive inhibitors for thyroxine (T4) binding to transthyretin (TTR) and that this competition can interfere with their normal pharmacological actions. TTR is a tetrameric serum protein responsible for the transport of 20% of the circulating T4 in man, while in lower vertebrates such as rats it is the only carrier. The sequence of rat TTR is 85% homologous to the human protein. Crystallographic analyses of ligand co-crystal complexes of human and rat TTR have been studied to understand the molecular basis for binding selectivity of competitor binding to TTR. Analysis of TTR crystal complexes with several classes of competitors (hormone metabolites, flavonoids, fluorescent probes, analgesics and cardiac agents) revealed multiple modes of binding with both forward and reverse ligand binding orientations. These ligands also have different binding positions along the length of the channel with the smallest ligands located deeper within the hormone domain. Data for the human TTR complex with the bromoflavone EMD21388 incubated at different times revealed variable binding positions and occupancies dependent upon incubation time. Comparison of the structures of T4 thyroacetic acid in complex with both human and rat TTR revealed forward and reverse binding, but also showed different modes of binding in the rat compared to the human complex. These data highlight the importance of hydrogen bonding with Lys-15 and Ser-117 and provide insight into ligand binding affinity and negative cooperativity.

  3. Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family

    Directory of Open Access Journals (Sweden)

    Chaikuad Apirat

    2012-06-01

    Full Text Available Abstract Backround Aspartyl aminopeptidase (DNPEP, with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.

  4. Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment

    Directory of Open Access Journals (Sweden)

    Søren S. Olesen

    2017-12-01

    Conclusion:. Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.

  5. Mechanism study on ion-pair complexes controlling skin permeability: Effect of ion-pair dissociation in the viable epidermis on transdermal permeation of bisoprolol.

    Science.gov (United States)

    Zhao, Hanqing; Liu, Chao; Quan, Peng; Wan, Xiaocao; Shen, Meiyue; Fang, Liang

    2017-10-30

    Though ion-pair strategy has been widely used in transdermal drug delivery system, knowledge about the molecular mechanisms involved in the skin permeation processes of ion-pair complexes is still limited. In the present study, a homologous series of fatty acids were chosen to form model ion-pair complexes with bisoprolol (BSP) to rule out the influence of functional groups on polar surface area, stability and other physicochemical properties of ion-pair complexes. The ion-pair complexes were characterized by FTIR, thermal analysis, and 1 H NMR. The skin permeability of BSP as well as its ion-pair complexes was investigated by in vitro skin permeation experiments then visualized by CLSM. The skin permeability coefficient (k p ) of BSP ion-pair complex was negatively related to its n-octanol/water apparent partition coefficient (P' o/w ) in the hydrophobic vehicle caprylic/capric triglyceride, (log k p =-1.657-1.229 log P' o/w ), suggesting that the instability of ion-pair complexes due to their dissociation in the viable epidermis (VED) played an important role in controlling the skin permeability of BSP, which was further proved by 1 H NMR and molecular docking. These findings broadened our understanding about the molecular mechanisms involved in the skin permeation processes of ion-pair complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    Directory of Open Access Journals (Sweden)

    Jha Prashant

    2009-08-01

    Full Text Available Abstract Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI, U(V, U(IV, U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG, and U-2-Keto-3-doxyoctanoate (KDO with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI to U(IV is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V- and U(IV-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI and U(IV rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids.

  7. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis.

    Science.gov (United States)

    Javan, Ramin; Herrin, Douglas; Tangestanipoor, Ardalan

    2016-09-01

    Three-dimensional (3D) manufacturing is shaping personalized medicine, in which radiologists can play a significant role, be it as consultants to surgeons for surgical planning or by creating powerful visual aids for communicating with patients, physicians, and trainees. This report illustrates the steps in development of custom 3D models that enhance the understanding of complex anatomy. We graphically designed 3D meshes or modified imported data from cross-sectional imaging to develop physical models targeted specifically for teaching complex segmental and branch anatomy. The 3D printing itself is easily accessible through online commercial services, and the models are made of polyamide or gypsum. Anatomic models of the liver, lungs, prostate, coronary arteries, and the Circle of Willis were created. These models have advantages that include customizable detail, relative low cost, full control of design focusing on subsegments, color-coding potential, and the utilization of cross-sectional imaging combined with graphic design. Radiologists have an opportunity to serve as leaders in medical education and clinical care with 3D printed models that provide beneficial interaction with patients, clinicians, and trainees across all specialties by proactively taking on the educator's role. Complex models can be developed to show normal anatomy or common pathology for medical educational purposes. There is a need for randomized trials, which radiologists can design, to demonstrate the utility and effectiveness of 3D printed models for teaching simple and complex anatomy, simulating interventions, measuring patient satisfaction, and improving clinical care. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms

    Directory of Open Access Journals (Sweden)

    Ebany J. Martinez-Finley

    2011-01-01

    Full Text Available Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans, contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.

  9. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik

    2013-04-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  10. Using realist synthesis to understand the mechanisms of interprofessional teamwork in health and social care.

    Science.gov (United States)

    Hewitt, Gillian; Sims, Sarah; Harris, Ruth

    2014-11-01

    Realist synthesis offers a novel and innovative way to interrogate the large literature on interprofessional teamwork in health and social care teams. This article introduces realist synthesis and its approach to identifying and testing the underpinning processes (or "mechanisms") that make an intervention work, the contexts that trigger those mechanisms and their subsequent outcomes. A realist synthesis of the evidence on interprofessional teamwork is described. Thirteen mechanisms were identified in the synthesis and findings for one mechanism, called "Support and value" are presented in this paper. The evidence for the other twelve mechanisms ("collaboration and coordination", "pooling of resources", "individual learning", "role blurring", "efficient, open and equitable communication", "tactical communication", "shared responsibility and influence", "team behavioural norms", "shared responsibility and influence", "critically reviewing performance and decisions", "generating and implementing new ideas" and "leadership") are reported in a further three papers in this series. The "support and value" mechanism referred to the ways in which team members supported one another, respected other's skills and abilities and valued each other's contributions. "Support and value" was present in some, but far from all, teams and a number of contexts that explained this variation were identified. The article concludes with a discussion of the challenges and benefits of undertaking this realist synthesis.

  11. Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex

    Science.gov (United States)

    Orf, Gregory S.; Saer, Rafael G.; Niedzwiedzki, Dariusz M.; Zhang, Hao; McIntosh, Chelsea L.; Schultz, Jason W.; Mirica, Liviu M.; Blankenship, Robert E.

    2016-01-01

    Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna–Matthews–Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum. Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems. PMID:27335466

  12. Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases

    Directory of Open Access Journals (Sweden)

    Karin Nienhaus

    2018-01-01

    Full Text Available The human heme enzymes tryptophan 2,3-dioxygenase (hTDO and indoleamine 2,3 dioxygenase (hIDO catalyze the initial step in L-tryptophan (L-Trp catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites.

  13. Understanding User Preferences and Awareness: Privacy Mechanisms in Location-Based Services

    Science.gov (United States)

    Burghardt, Thorben; Buchmann, Erik; Müller, Jens; Böhm, Klemens

    Location based services (LBS) let people retrieve and share information related to their current position. Examples are Google Latitude or Panoramio. Since LBS share user-related content, location information etc., they put user privacy at risk. Literature has proposed various privacy mechanisms for LBS. However, it is unclear which mechanisms humans really find useful, and how they make use of them. We present a user study that addresses these issues. To obtain realistic results, we have implemented a geotagging application on the web and on GPS cellphones, and our study participants use this application in their daily lives. We test five privacy mechanisms that differ in the awareness, mental effort and degree of informedness required from the users. Among other findings, we have observed that in situations where a single simple mechanism does not meet all privacy needs, people want to use simple and sophisticated mechanisms in combination. Further, individuals are concerned about the privacy of others, even when they do not value privacy for themselves.

  14. Interest of uranium complexes for the mechanism study of the McMurry reaction

    International Nuclear Information System (INIS)

    Maury, O.

    1997-01-01

    The reducing coupling reactions of ketones in diols and olefins are generally carried out with titanium or samarium compounds. In this work uranium complexes have been used. They have allowed to study the chemical reaction mechanism. This thesis is divided into three parts: 1) the reduction mechanism of uranium tetrachloride by cyclic voltametry has been studied at first. It has been shown that this reduction is followed by a transfer reaction of chlorides between the reduced specie of the higher electronic density and UCl . 2) In the second part is described: the synthesis, the crystal structure, the reactivity of the chemical agents, the stereochemistry of diols and alkenes formation and the pinacolisation reaction catalysis. 3) In the last part, the limits of the McMurry reaction are given by the study of the aromatic ketones pinacolisation reaction by-products. The obtained results show that the complexes of the metals which present a high reducing and oxo-philic (Ti, Sm, U..) character react in a similar way with the carbonyl compounds. If the uranium compounds are less used than those of the titanium in the field of the organic synthesis applications, they are precious auxiliaries and excellent models for reactions mechanisms study and for the synthesis methods optimization. (O.M.)

  15. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design.

    Science.gov (United States)

    Albanaz, Amanda T S; Rodrigues, Carlos H M; Pires, Douglas E V; Ascher, David B

    2017-06-01

    Mutations introduce diversity into genomes, leading to selective changes and driving evolution. These changes have contributed to the emergence of many of the current major health concerns of the 21st century, from the development of genetic diseases and cancers to the rise and spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is impractical and not cost-effective, which has created interest in the development of computational tools to understand the molecular consequences of mutations to aid and guide rational experimentation. Areas covered: Here, the authors discuss the recent development of computational methods to understand the effects of coding mutations to protein function and interactions, particularly in the context of the 3D structure of the protein. Expert opinion: While significant progress has been made in terms of innovative tools to understand and quantify the different range of effects in which a mutation or a set of mutations can give rise to a phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions linking variants. This often requires a detailed understanding of the system being perturbed. However, as part of the drug development process it can be used preemptively in a similar fashion to pharmacokinetics predictions, to guide development of therapeutics to help guide the design and analysis of clinical trials, patient treatment and public health policy strategies.

  16. Laboratory Activities to Support Student Understanding of the Molecular Mechanisms of Mutation & Natural Selection

    Science.gov (United States)

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important and challenging concept for students to understand. In a previous article, we provided some of the scientific background necessary to teach this topic. This article features a series of laboratory activities demonstrating that molecular events can alter the genomes of organisms. These activities are…

  17. The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone

    Directory of Open Access Journals (Sweden)

    Lee B Meakin

    2014-10-01

    Full Text Available Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading.Jiri Heřt introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gauges to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced.Experiments combining strain gauge instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats and mice has yielded significant insight into the control of strain-related adaptive (remodeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice which is now the model of choice for many studies. Together such studies have demonstrated that; over the physiological strain range, bone’s mechanically-adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles and that these are most effective when interrupted by short periods of

  18. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone

    Science.gov (United States)

    Meakin, Lee B.; Price, Joanna S.; Lanyon, Lance E.

    2014-01-01

    Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones’ strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone’s mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them

  19. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene.

    Science.gov (United States)

    Ishmukhametova, Aliya; Chen, Jian-Min; Bernard, Rafaëlle; de Massy, Bernard; Baudat, Frédéric; Boyer, Amandine; Méchin, Déborah; Thorel, Delphine; Chabrol, Brigitte; Vincent, Marie-Claire; Khau Van Kien, Philippe; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2013-08-01

    Pathogenic complex genomic rearrangements are being increasingly characterized at the nucleotide level, providing unprecedented opportunities to evaluate the complexities of mutational mechanisms. Here, we report the molecular characterization of a complex duplication-triplication rearrangement involving exons 45-60 of the DMD gene. Inverted repeats facilitated this complex rearrangement, which shares common genomic organization with the recently described duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) events; specifically, a 690-kb region comprising DMD exons from 45 to 60 was duplicated in tandem, and another 46-kb segment containing exon 51 was inserted inversely in between them. Taking into consideration (1) the presence of a predicted PRDM9 binding site in the near vicinity of the junction involving two inverted L1 elements and (2) the inherent properties of X-Y chromosome recombination during male meiosis, we proposed an alternative two-step model for the generation of this X-linked DMD DUP-TRP/INV-DUP event. © 2013 WILEY PERIODICALS, INC.

  20. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings.

    Science.gov (United States)

    Streuff, Jan; Himmel, Daniel; Younas, Sara L

    2018-04-03

    The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.

  1. Understanding the mechanism of nanotube synthesis for controlled production of specific (n,m) structures

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E.

    2010-02-11

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  2. Evaluation of Uncertainties in the Design Process of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Francesco Villecco

    2017-09-01

    Full Text Available In this paper, the problem of the evaluation of the uncertainties that originate in the complex design process of a new system is analyzed, paying particular attention to multibody mechanical systems. To this end, the Wiener-Shannon’s axioms are extended to non-probabilistic events and a theory of information for non-repetitive events is used as a measure of the reliability of data. The selection of the solutions consistent with the values of the design constraints is performed by analyzing the complexity of the relation matrix and using the idea of information in the metric space. Comparing the alternatives in terms of the amount of entropy resulting from the various distribution, this method is capable of finding the optimal solution that can be obtained with the available resources. In the paper, the algorithmic steps of the proposed method are discussed and an illustrative numerical example is provided.

  3. Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System

    Directory of Open Access Journals (Sweden)

    Konstantinos Eftaxias

    2013-11-01

    Full Text Available This review provides a summary of methods originated in (non-equilibrium statistical mechanics and information theory, which have recently found successful applications to quantitatively studying complexity in various components of the complex system Earth. Specifically, we discuss two classes of methods: (i entropies of different kinds (e.g., on the one hand classical Shannon and R´enyi entropies, as well as non-extensive Tsallis entropy based on symbolic dynamics techniques and, on the other hand, approximate entropy, sample entropy and fuzzy entropy; and (ii measures of statistical interdependence and causality (e.g., mutual information and generalizations thereof, transfer entropy, momentary information transfer. We review a number of applications and case studies utilizing the above-mentioned methodological approaches for studying contemporary problems in some exemplary fields of the Earth sciences, highlighting the potentials of different techniques.

  4. A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states.

    Directory of Open Access Journals (Sweden)

    Rupesh Kumar

    Full Text Available In this study we have constructed a mathematical model of a recently proposed functional model known to be responsible for inducing waking, NREMS and REMS. Simulation studies using this model reproduced sleep-wake patterns as reported in normal animals. The model helps to explain neural mechanism(s that underlie the transitions between wake, NREMS and REMS as well as how both the homeostatic sleep-drive and the circadian rhythm shape the duration of each of these episodes. In particular, this mathematical model demonstrates and confirms that an underlying mechanism for REMS generation is pre-synaptic inhibition from substantia nigra onto the REM-off terminals that project on REM-on neurons, as has been recently proposed. The importance of orexinergic neurons in stabilizing the wake-sleep cycle is demonstrated by showing how even small changes in inputs to or from those neurons can have a large impact on the ensuing dynamics. The results from this model allow us to make predictions of the neural mechanisms of regulation and patho-physiology of REMS.

  5. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  6. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose

  7. Understanding the mechanism of action of triazine-phosphonate derivatives as flame retardants for cotton fabrics

    Science.gov (United States)

    Countless hours of research and studies on triazine, phosphonate and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, only limited number of studies shed light on the mechanism of flame retardant cotton fabrics. The purpose...

  8. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  9. Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics

    Science.gov (United States)

    Zhu, Guangtian; Singh, Chandralekha

    2013-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…

  10. A Changing Landscape of Advanced Prostate Cancer: Understanding Mechanisms of Resistance to Potent Hormonal Therapies

    Science.gov (United States)

    2016-10-01

    mechanisms of NEPC progression using deep sequencing techniques of metastatic tumor biopsies and non-invasively using liquid biopsies including...from each site. (b) AR signaling (right) based on abundance of mRNA transcripts included in the AR signaling signature described in ref 19. Violin

  11. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  12. An Approach to Understanding Complex Socio-Economic Impacts and Responses to Climate Disruption in the Chesapeake Bay Region

    Science.gov (United States)

    Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team

    2011-12-01

    In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.

  13. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    Science.gov (United States)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  14. A complex network for studying the transmission mechanisms in stock market

    Science.gov (United States)

    Long, Wen; Guan, Lijing; Shen, Jiangjian; Song, Linqiu; Cui, Lingxiao

    2017-10-01

    This paper introduces a new complex network to describe the volatility transmission mechanisms in stock market. The network can not only endogenize stock market's volatility but also figure out the direction of volatility spillover. In this model, we first use BEKK-GARCH to estimate the volatility spillover effects among Chinese 18 industry sectors. Then, based on the ARCH coefficients and GARCH coefficients, the directional shock networks and variance networks in different stages are constructed separately. We find that the spillover effects and network structures changes in different stages. The results of the topological stability test demonstrate that the connectivity of networks becomes more fragile to selective attacks than stochastic attacks.

  15. [The clinical picture of rheumatoid arthritis--the complex of three independent mechanisms].

    Science.gov (United States)

    Fassbender, Hans Georg; Meyer-Scholten, Carola; Zorn, Kati

    2009-01-01

    The assumption of inflamation as the only cause of the complex clinical picture of rheumatoid atrhritis does not correspond to facts. We have found and proven the existence of three seemingly unconnected mechanisms, and only their combination can account for the general clinical picture of rheumatoid arthritis. They are: 1. immunologic synovitis, responsible for pain, swelling and stiffnes; 2. oncological process ("tumorlike proliferation"), responsible for the destruction of joints; 3. Primary necrotizing process, responsible for the (sometimes lethal) destructions in the heart and blood vessels.

  16. Sine-Gordon quantum mechanics on the complex plane and N=2 gauge theory

    International Nuclear Information System (INIS)

    He Wei

    2010-01-01

    We study the relation between the N=2 gauge theory in the Ω background and the quantized integral system recently proposed by Nekrasov and Shatashvili. We focus on the simplest case, the pure Yang-Mills theory with the SU(2) gauge group and the corresponding sine-Gordon integral model on the complex plane. We analyze the periodic wave function and the corresponding energy spectrum of the sine-Gordon quantum mechanics, and find this model contains information of the low energy effective theory of the gauge theory.

  17. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...ivation and deactivation bylipopolysaccharide: roles of the receptor complex. PubmedID 14609719 Title Mole...cular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  18. Studies on the mechanism of action of antitumor bis(aminophenolate) ruthenium(III) complexes.

    Science.gov (United States)

    Dömötör, Orsolya; de Almeida, Rodrigo F M; Côrte-Real, Leonor; Matos, Cristina P; Marques, Fernanda; Matos, António; Real, Carla; Kiss, Tamás; Enyedy, Éva Anna; Helena Garcia, M; Tomaz, Ana Isabel

    2017-03-01

    Two recently published Ru(III) complexes bearing (N 2 O 2 ) tetradentate bis(aminophenolate) ligands, formulated as [Ru(III)(salan)(PPh 3 )Cl] (salan is the tetradentate ligand 6,6'-(1S,2S)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(3-methoxyphenol) in complex 1, or 2,2'-(1S,2S)-cyclohexane-1,2-diylbis(azanediyl)bis(methylene)bis(4-methoxyphenol) in complex 2; PPh 3 is triphenylphosphane) and found very active against ovarian and breast adenocarcinoma human cells were studied to outline their antitumor mode of action. The human cisplatin-sensitive ovarian adenocarcinoma line A2780 was used herein as the cell model. At a 24h challenge (similarly as found before for 72h) both complexes are active, their cytotoxicity being comparable to that of cisplatin in the same conditions. As a possible target in the cell for their action, the interaction of 1 and 2 with DNA was assessed through displacement of well-established DNA fluorescent probes (ethidium bromide, EB, and 4',6-diamidino-2-phenylindole, DAPI) through steady-state and time-resolved fluorescence spectroscopy. The whole emission spectra were analyzed globally for the binary DNA-probe and ternary DNA-probe-Ru(III) complex systems. Both Ru(III) complexes can displace EB and bind to DNA with similar and moderate strong affinity with conditional stability constants of logK'=(5.05±0.01) for 1 and logK'=(4.79±0.01) for 2. The analysis of time-domain fluorescence intensity decays confirmed both qualitatively and quantitatively the model used to describe the binding and competition processes. Cell studies indicated that apoptosis is the major mechanism of cell death for both complexes, with 2 (the more active complex) promoting that process more efficiently than 1. Transmission electron micrographs revealed clear alterations on intracellular organization consistent with the induction of programmed cell death processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  20. Ecosystem function in complex mountain terrain: Combining models and long-term observations to advance process-based understanding

    Science.gov (United States)

    Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.

    2017-04-01

    Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.

  1. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  2. ADAPTATION OF N-HEPTANE AUTOIGNITION TABULATION FOR COMPLEX CHEMISTRY MECHANISMS

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2011-01-01

    Full Text Available The adaptation of auto-ignition tabulation for effective use of complex chemical mechanisms will be presented in this paper. Taking cool flame ignition phenomenon into account could improve numerical simulations of combustion in compression ignition engines. Current approaches of successful simulation of this phenomenon are based on the extraction of ignition delay times, heat releases and also reaction rates from tabulated data dependant on four parameters: temperature, pressure, equivalence ratio and exhaust gasses mass fraction. The methods described here were used to create lookup tables including cool flame using a comprehensive chemical mechanism without including reaction rates data (as used by other authors. The method proved to be stable for creating tables and these results will be shown, as well as initial implementation results using the tables in computational fluid dynamics software.

  3. Low Complexity Signed Response Based Sybil Attack Detection Mechanism in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    M. Saud Khan

    2016-01-01

    Full Text Available Security is always a major concern in wireless sensor networks (WSNs. Identity based attacks such as spoofing and sybil not only compromise the network but also slow down its performance. This paper proposes a low complexity sybil attack detection scheme, that is, based on signed response (SRES authentication mechanism developed for Global System for Mobile (GSM communications. A probabilistic model is presented which analyzes the proposed authentication mechanism for its probability of sybil attack. The paper also presents a simulation based comparative analysis of the existing sybil attack schemes with respect to the proposed scheme. It is observed that the proposed sybil detection scheme exhibits lesser computational cost and power consumption as compared to the existing schemes for the same sybil detection performance.

  4. Understanding the determinants of the complex interplay between cost-effectiveness and equitable impact in maternal and child mortality reduction.

    Science.gov (United States)

    Chopra, Mickey; Campbell, Harry; Rudan, Igor

    2012-06-01

    One of the most unexpected outcomes arising from the efforts towards maternal and child mortality reduction is that all too often the objective success has been coupled with increased inequity in the population. The aim of this study is to analyze the determinants of the complex interplay between cost-effectiveness and equity and suggest strategies that will promote an impact on mortality that reduce population child health inequities. We developed a conceptual framework that exposes the nature of the links between the five key determinants that need to be taken into account when planning equitable impact. These determinants are: (i) efficiency of intervention scale-up (requires knowledge of differential increase in cost of intervention scale-up by equity strata in the population); (ii) effectiveness of intervention (requires understanding of differential effectiveness of interventions by equity strata in the population); (iii) the impact on mortality (requires knowledge of differential mortality levels by equity strata, and understanding the differences in cause composition of overall mortality in different equity strata); (iv) cost-effectiveness (compares the initial cost and the resulting impact on mortality); (v) equity structure of the population. The framework is presented visually as a four-quadrant graph. We use the proposed framework to demonstrate why the relationship between cost-effectiveness and equitable impact of an intervention cannot be intuitively predicted or easily planned. The relationships between the five determinants are complex, often nonlinear, context-specific and intervention-specific. We demonstrate that there will be instances when an equity-promoting approach, ie, trying to reach for the poorest and excluded in the population with health interventions, will also be the most cost-effective approach. However, there will be cases in which this will be entirely unfeasible, and where equity-neutral or even inequity-promoting approaches may

  5. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological Investigation of the Kunene Complex (Angola)

    Science.gov (United States)

    Brower, A. M.; Corfu, F.; Bybee, G. M.; Lehmann, J.; Owen-Smith, T.

    2016-12-01

    The Kunene Anorthosite Complex, located in south west Angola, is one of the largest massif-type anorthosite intrusions on Earth, with an areal extent of at least 18 000 km2. Previous studies considered the Complex to consist of a series of coalesced plutons. However, the ages and relative emplacement sequence of these plutons are unknown. Understanding the relative timing of the pluton emplacement is crucial for understanding how these enigmatic magmas form and how they rise through the crust. Here we present new high precision U-Pb ID-TIMS ages (n=10) on zircons and baddeleyites for many of the coalesced plutons across the 300-km-long anorthositic complex. These new geochronological results reveal subtle variations in crystallization age between the coalesced plutons. There is no gradual age progression between plutons, but distinct groupings of ages (Fig.1). Age clusters of 1379.8 ± 2 Ma (n=5) occur north of the Red Granite NE-SW-striking intrusions, whereas in the south there is an older age grouping of 1390.4 ± 2.3 (n=3). Two additional ages of 1400.5 ± 1.3 in the centre and 1438.4 ± 1.1 Ma in the south east have been obtained. These results indicate that the Kunene anorthosites were emplaced over 60 Ma and may suggest long-lived magmatic systems and/or slowly ascending plutons. We also find a link between pluton composition and age. In general, leuconoritic domains are older than the leucotroctolitic domains. This may imply that the first pulses of magma received a greater degree of contamination, forcing the broadly basaltic magma to produce orthopyroxene as the main mafic phase. The later pulses receive less contamination as they ascend through the already partially melted crust, producing olivine as the mafic phase and deforming the older domains. This study reiterates the multiphase petrogenesis of Proterozoic anorthosites and sheds light on the assembly of crystal-rich magmas as they ascend through the crust.

  6. Hydrogen-Bonded Polymer-Small Molecule Complexes with Tunable Mechanical Properties.

    Science.gov (United States)

    Liu, Tianqi; Peng, Xin; Chen, Ya-Nan; Bai, Qing-Wen; Shang, Cong; Zhang, Lin; Wang, Huiliang

    2018-03-13

    A novel type of polymeric material with tunable mechanical properties is fabricated from polymers and small molecules that can form hydrogen-bonded intermolecular complexes (IMCs). In this work, poly(vinyl alcohol) (PVA)-glycerol hydrogels are first prepared, and then they are dried to form IMCs. The tensile strengths and moduli of IMCs decrease dramatically with increasing glycerol content, while the elongations increase gradually. The mechanical properties are comparable with or even superior to those of common engineering plastics and rubbers. The IMCs with high glycerol content also show excellent flexibility and cold-resistance at subzero temperatures. Cyclic tensile and stress relaxation tests prove that there is an effective energy dissipation mechanism in IMCs and dynamic mechanical analysis confirms their physical crosslinking nature. FTIR and NMR characterizations prove the existence of hydrogen bonding between glycerol and PVA chains, which suppresses the crystallization of PVA from X-ray diffraction measurement. These PVA-glycerol IMCs may find potential applications in barrier films, biomedical packaging, etc., in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  8. Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology.

    Science.gov (United States)

    Polo, Victor; Andres, Juan; Berski, Slawomir; Domingo, Luis R; Silvi, Bernard

    2008-08-07

    Thom's catastrophe theory applied to the evolution of the topology of the electron localization function (ELF) gradient field constitutes a way to rationalize the reorganization of electron pairing and a powerful tool for the unambiguous determination of the molecular mechanisms of a given chemical reaction. The identification of the turning points connecting the ELF structural stability domains along the reaction pathway allows a rigorous characterization of the sequence of electron pair rearrangements taking place during a chemical transformation, such as multiple bond forming/breaking processes, ring closure processes, creation/annihilation of lone pairs, transformations of C-C multiple bonds into single ones. The reaction mechanism of some relevant organic reactions: Diels-Alder, 1,3-dipolar cycloaddition and Cope rearrangement are reviewed to illustrate the potential of the present approach.

  9. Understanding the Acute Skin Injury Mechanism Caused by Player-Surface Contact During Soccer

    Science.gov (United States)

    van den Eijnde, Wilbert A.J.; Peppelman, Malou; Lamers, Edwin A.D.; van de Kerkhof, Peter C.M.; van Erp, Piet E.J.

    2014-01-01

    Background: Superficial skin injuries are considered minor, and their incidence is probably underestimated. Insight into the incidence and mechanism of acute skin injury can be helpful in developing suitable preventive measures and safer playing surfaces for soccer and other field sports. Purpose: To gain insight into the incidence and severity of skin injuries related to soccer and to describe the skin injury mechanism due to player-surface contact. Study Design: Systematic review; Level of evidence, 4. Methods: The prevention model by van Mechelen et al (1992) combined with the injury causation model of Bahr and Krosshaug (2005) were used as a framework for the survey to describe the skin injury incidence and mechanism caused by player-surface contact. Results: The reviewed literature showed that common injury reporting methods are mainly based on time lost from participation or the need for medical attention. Because skin abrasions seldom lead to absence or medical attention, they are often not reported. When reported, the incidence of abrasion/laceration injuries varies from 0.8 to 6.1 injuries per 1000 player-hours. Wound assessment techniques such as the Skin Damage Area and Severity Index can be a valuable tool to obtain a more accurate estimation of the incidence and severity of acute skin injuries. Conclusion: The use of protective equipment, a skin lubricant, or wet surface conditions has a positive effect on preventing abrasion-type injuries from artificial turf surfaces. The literature also shows that essential biomechanical information of the sliding event is lacking, such as how energy is transferred to the area of contact. From a clinical and histological perspective, there are strong indications that a sliding-induced skin lesion is caused by mechanical rather than thermal injury to the skin. PMID:26535330

  10. Understanding the Personality and Behavioral Mechanisms Defining Hypersexuality in Men Who Have Sex With Men.

    Science.gov (United States)

    Miner, Michael H; Romine, Rebecca Swinburne; Raymond, Nancy; Janssen, Erick; MacDonald, Angus; Coleman, Eli

    2016-09-01

    Hypersexuality has been conceptualized as sexual addiction, compulsivity, and impulsivity, among others, in the absence of strong empirical data in support of any specific conceptualization. To investigate personality factors and behavioral mechanisms that are relevant to hypersexuality in men who have sex with men. A sample of 242 men who have sex with men was recruited from various sites in a moderate-size mid-western city. Participants were assigned to a hypersexuality group or a control group using an interview similar to the Structured Clinical Interview for the Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition. Self-report inventories were administered that measured the broad personality constructs of positive emotionality, negative emotionality, and constraint and more narrow constructs related to sexual behavioral control, behavioral activation, behavioral inhibition, sexual excitation, sexual inhibition, impulsivity, attention-deficit/hyperactivity disorder, and sexual behavior. Hierarchical logistic regression was used to determine the relation between these personality and behavioral variables and group membership. A hierarchical logistic regression controlling for age showed a significant positive relation between hypersexuality and negative emotionality and a negative relation with constraint. None of the behavioral mechanism variables entered this equation. However, a hierarchical multiple regression analysis predicting sexual behavioral control indicated that lack of such control was positively related to sexual excitation and sexual inhibition owing to the threat of performance failure and negatively related to sexual inhibition owing to the threat of performance consequences and general behavioral inhibition Hypersexuality was found to be related to two broad personality factors that are characterized by emotional reactivity, risk taking, and impulsivity. The associated lack of sexual behavior control is influenced by sexual

  11. The effects of bariatric surgery – will understanding its mechanism render the knife unnecessary?

    OpenAIRE

    Browning, Kirsteen N; Hajnal, Andras

    2013-01-01

    The incidence of obesity is increasing worldwide at a dramatic rate, accompanied by an associated increase in comorbid conditions. Bariatric surgery is the most effective treatment for severe obesity with, until recently, Roux-en-Y gastric bypass (RYGB) being the most commonly performed procedures, yet the underlying mechanisms by which it induces a wide-array of beneficial effects remains obscure. From both basic science as well as clinical standpoints, there are several areas of current int...

  12. Understanding Freshness Perception from the Cognitive Mechanisms of Flavor: The Case of Beverages

    Science.gov (United States)

    Roque, Jérémy; Auvray, Malika; Lafraire, Jérémie

    2018-01-01

    Freshness perception has received recent consideration in the field of consumer science mainly because of its hedonic dimension, which is assumed to influence consumers’ preference and behavior. However, most studies have considered freshness as a multisensory attribute of food and beverage products without investigating the cognitive mechanisms at hand. In the present review, we endorse a slightly different perspective on freshness. We focus on (i) the multisensory integration processes that underpin freshness perception, and (ii) the top–down factors that influence the explicit attribution of freshness to a product by consumers. To do so, we exploit the recent literature on the cognitive underpinnings of flavor perception as a heuristic to better characterize the mechanisms of freshness perception in the particular case of beverages. We argue that the lack of consideration of particular instances of flavor, such as freshness, has resulted in a lack of consensus about the content and structure of different types of flavor representations. We then enrich these theoretical analyses, with a review of the cognitive mechanisms of flavor perception: from multisensory integration processes to the influence of top–down factors (e.g., attentional and semantic). We conclude that similarly to flavor, freshness perception is characterized by hybrid content, both perceptual and semantic, but that freshness has a higher-degree of specificity than flavor. In particular, contrary to flavor, freshness is characterized by specific functions (e.g., alleviation of oropharyngeal symptoms) and likely differs from flavor with respect to the weighting of each sensory contributor, as well as to its subjective location. Finally, we provide a comprehensive model of the cognitive mechanisms that underlie freshness perception. This model paves the way for further empirical research on particular instances of flavor, and will enable advances in the field of food and beverage cognition

  13. Investigating and improving student understanding of quantum mechanical observables and their corresponding operators in Dirac notation

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2018-01-01

    In quantum mechanics, for every physical observable, there is a corresponding Hermitian operator. According to the most common interpretation of quantum mechanics, measurement of an observable collapses the quantum state into one of the possible eigenstates of the operator and the corresponding eigenvalue is measured. Since Dirac notation is an elegant notation that is commonly used in upper-level quantum mechanics, it is important that students learn to express quantum operators corresponding to observables in Dirac notation in order to apply the quantum formalism effectively in diverse situations. Here we focus on an investigation that suggests that, even though Dirac notation is used extensively, many advanced undergraduate and PhD students in physics have difficulty expressing the identity operator and other Hermitian operators corresponding to physical observables in Dirac notation. We first describe the difficulties students have with expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We then discuss how the difficulties found via written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of these concepts. The QuILT strives to help students become proficient in expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We also discuss the effectiveness of the QuILT based on in-class evaluations.

  14. Statistical Mechanics of Complex Networks: From the Internet to Cell Biology

    Science.gov (United States)

    Barabási, Albert-László

    2006-03-01

    Networks with complex topology describe systems as diverse as the cell, the World Wide Web or the society. In the past few years we have learned that their evolution is driven by self-organizing processes that are governed by simple but generic scaling laws, leading to the emergence of a vibrant interdisciplinary field that uses the tools of statistical physics to explain the origin and the dynamics of real networks. One of the most surprising finding is that despite their apparent differences, cells and complex man-made networks, such as the Internet or the World Wide Web, and many communication networks share the same large-scale topology, each having a scale-free structure. I will show that the scale-free topology of these complex webs have important consequences on their robustness against failures and attacks, with implications on drug design, the Internet's ability to survive attacks and failures, and our ability to understand the functional role of genes. For further information and papers, see http://www.nd.edu/˜networks

  15. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2017-01-01

    and storage of marine PL. For example, nonenzymatic browning reactions may occur between lipid oxidation products and primary amine group from phosphatidylethanolamine or amino acid residues that are present inmarine PL. Therefore, marine PL contain products from nonenzymatic browning and lipid oxidation...... reactions, namely, Strecker aldehydes, pyrroles, oxypolymers, and other impurities that may positively or negatively affect the oxidative stability and quality of marine PL. This review was undertaken to provide the industry and academia with an overview of the current understanding of the quality changes...... taking place in PL during their production and their storage as well as with regards to their utilization for food fortification....

  16. Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes.

    Science.gov (United States)

    Du, Xueyu; Li, Jiebing; Gellerstedt, Göran; Rencoret, Jorge; Del Río, José C; Martínez, Angel T; Gutiérrez, Ana

    2013-09-09

    The effects and mechanism of pulp delignification by laccases in the presence of redox mediators have been investigated on unbleached eucalyptus kraft pulp treated with laccases from Pycnoporus cinnabarinus (PcL) and Myceliophthora thermophila (MtL) and 1-hydroxybenzotriazole (HBT) and methyl syringate (MeS) as mediators, respectively. Determination of the corrected κ number in eucalyptus pulps after the enzymatic treatments revealed that the PcL-HBT system exhibited a more remarkable delignification effect than the MtL-MeS system. To obtain further insight, lignin-carbohydrate complexes were fractionated and subsequently characterized by nuclear magnetic resonance, thioacidolysis (followed by gas chromatography and size exclusion chromatography), and pyrolysis-gas chromatography-mass spectrometry (pyrolysis-GC-MS) analyses before and after the enzymatic treatments and their controls. We can conclude that the laccase-mediator treatments altered the lignin structures in such a way that more lignin was recovered in the xylan-lignin fractions, as shown by Klason lignin estimation, with smaller amounts of both syringyl (S) and guaiacyl (G) uncondensed units, as shown by thioacidolysis and gas chromatography, especially after the PcL-HBT treatment. The laccase-mediator treatment produced oxidation at Cα and cleavage of Cα and Cβ bonds in pulp lignin, as shown by pyrolysis-GC-MS. The general mechanism of residual lignin degradation in the pulp by laccase-mediator treatments is discussed in light of the results obtained.

  17. Understanding the Atomic Scale Mechanisms that Control the Attainment of Ultralow Friction and Wear in Carbon-Based Materials

    Science.gov (United States)

    2016-01-16

    2015. 15. Invited. New Insights into Friction and Wear through In-Situ Nanotribology. Joint Symposium of the Surface Science Society of Japan and...and Carpick, R.W. Influence of Surface Passivation on the Friction and Wear Behavior of Ultrananocrystalline Diamond and Tetrahedral Amorphous Carbon...AFRL-AFOSR-JP-TR-2016-0053 Understanding the Atomic Scale Mechanism that controls the attainment of ultralow friction and wear in carbon based

  18. Genome-wide functional analysis on the molecular mechanism of specifically biosynthesized fluorescence Eu complex.

    Science.gov (United States)

    Ye, Jing; Dong, Xiawei; Jiang, Xuerui; Jiang, Hui; Li, Chen-Zhong; Wang, Xuemei

    2017-09-22

    Fluorescence imaging as an attractive diagnostic technique is widely employed for early diagnosis of cancer. Self-biosynthesized fluorescent Eu complex in situ in Hela cells have realized specifically and accurately fluorescence imaging for cancer cells. But the molecular mechanism of the in situ biosynthesized process is still unclear. In order to reveal this mechanism, we have investigated whole-genome expression profiles with cDNA microarray, incubated with Eu solution in Hela cells for 24 h. Methylthiazoltetrazolium (MTT) assay and laser confocal fluorescence microscopy study showed the low cytotoxicity and specifically fluorescence imaging of Eu complex in Hela cells. It is observed that 563 up-regulated genes and 274 down-regulated genes were differentially expressed. Meanwhile, quantitative RT-PCR was utilized to measure the expression of some important genes, which validated the results of microarray data analysis. Besides, GO analysis showed that a wide range of differential expression functional genes involved in three groups, including cellular component, molecular function and cellular biological process. It was evident that some important biological pathways were apparently affected through KEGG pathway analysis, including focal adhesion pathway and PI3K (phosphatidylinositol 3' -kinase)-Akt signaling pathway, which can influence glycolytic metabolism and NAD(P)H-oxidases metabolic pathway.

  19. The effects of students' reasoning abilities on conceptual understandings and problem-solving skills in introductory mechanics

    International Nuclear Information System (INIS)

    Ates, S; Cataloglu, E

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen/first year students' reasoning abilities, conceptual understandings and problem-solving skills in introductory mechanics. The sample consisted of 165 freshmen science education prospective teachers (female = 86, male = 79; age range 17-21) who were enrolled in an introductory physics course. Data collection was done during the fall semesters in two successive years. At the beginning of each semester, the force concept inventory (FCI) and the classroom test of scientific reasoning (CTSR) were administered to assess students' initial understanding of basic concepts in mechanics and reasoning levels. After completing the course, the FCI and the mechanics baseline test (MBT) were administered. The results indicated that there was a significant difference in problem-solving skill test mean scores, as measured by the MBT, among concrete, formal and postformal reasoners. There were no significant differences in conceptual understanding levels of pre- and post-test mean scores, as measured by FCI, among the groups. The Benferroni post hoc comparison test revealed which set of reasoning levels showed significant difference for the MBT scores. No statistical difference between formal and postformal reasoners' mean scores was observed, while the mean scores between concrete and formal reasoners and concrete and postformal reasoners were statistically significantly different

  20. Soluble 1:1 complexes and insoluble 3:2 complexes - Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin.

    Science.gov (United States)

    Schönbeck, Christian; Madsen, Tobias L; Peters, Günther H; Holm, René; Loftsson, Thorsteinn

    2017-10-15

    The molecular mechanisms underlying the drug-solubilizing properties of γ-cyclodextrin were explored using hydrocortisone as a model drug. The B S -type phase-solubility diagram of hydrocortisone with γ-cyclodextrin was thoroughly characterized by measuring the concentrations of hydrocortisone and γ-cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM -1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase in hydrocortisone solubility while the precipitation of entities with a 3:2 ratio of γ-cyclodextrin:hydrocortisone is responsible for the plateau and the ensuing strong decrease in solubility once all solid hydrocortisone is used up. The complete phase-solubility diagram is well accounted for by a model employing the 1:1 binding constant and the solubility product of the precipitating 3:2 entity (K 32 S =5.51 mM 5 ). For such systems, a small surplus of γ-cyclodextrin above the optimum concentration may result in a significant decrease in drug solubility, and the implications for drug formulations are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Influence of complexing agents on the mechanical performances of the cement conditioning matrix

    International Nuclear Information System (INIS)

    Nicu, M.; Mihai, F.; Turcanu, C.

    1998-01-01

    The safety of the radioactive waste disposal is a priority demand concerning the protection of the environment and population. For this reason, an engineering multi-barrier system is studied in order to be improved. This study aims to establish the influence of the complexing agents on the mechanical performances of the cement conditioning matrix. Radioactive effluents which contain agents as oxalic and citric acids are generated during the radioactive decontamination operation using chemical methods. The conditioning of these wastes by cementing process imposed the experimental determination of the mechanical performances of the matrix and the upper permissible level of complexing agent concentration. To determine the influence of complexing agents on the mechanical performances of cement conditioning matrix, cubic samples (20 mm x 20 mm x 20 mm) were prepared using commercial Portland cement and solutions of organic complexing acids or salts (citric acid, oxalic acid, tartaric acid, sodium citrate and ammonium oxalate). The complexation concentration varied between 0.25% and 1% in distilled and drinking water, respectively. The selected cement/water ratio was 0.5. The experiments were focused on: - establishing the firmness of the Pa 35 cement pastes and mortars in dependence on the water/cement ratio, by classical methods (Tetmeyer probe for pastes and standard cone for mortars) and by triclinic time through a funnel with 15 mm aperture; - studying the influence of the tartaric, oxalic, citric acids, ammonium oxalate and sodium citrate solution concentrations on water quantities used to obtain pastes with normal firmness and on Pa 35 cement setting; - the influence of oxalic acid, tartaric acid and ammonium oxalate solution concentrations on the strength of compression of the pastes with normal firmness; - for testing, standard test bar cubes with 20 mm sides were used and the strength of compression was tested at 28 days; - establishing the behaviour in time of

  2. Understanding of bonding and mechanical characteristics of cementitious mineral tobermorite from first principles.

    Science.gov (United States)

    Tunega, Daniel; Zaoui, Ali

    2011-01-30

    This paper reports density functional theory study of the structural and mechanical properties of tobermorite mineral (9 Å phase) as one of the main component of cementitious materials in a concrete chemistry. Calculated bulk modulus and elastic constants reflect a relatively high resistance of the tobermorite structure with respect to external isostatic compression. Moreover, the elastic constants proved the anisotropic character of the tobermorite structure. The directions parallel to the axb plane are more resistant to the compression than the perpendicular direction. The largest contribution to this resistance comes from the "dreierketten" silicate chains. The bonding analysis linked macroscopic mechanical properties and the atomic structure of the tobermorite. It was found that polar covalent Si-O bonds are stiffer than iono-covalent Ca-O bonds. The SiO(4) tetrahedra are resistant with respect to the compression and the effect of external pressure is reflected by the large mutual tilting of these tetrahedra as it is shown by changes of the Si-O-Si bridging angles. Polyhedra with the seven-fold coordinated Ca(2+) cations undergo large structural changes. Especially, axial Ca-O bonds perpendicular to the axb plane are significantly shortened. Besides, it was shown that structural parameters, more or less in parallel orientation to the axb plane, are mainly responsible for the high resistance of the tobermorite structure to external pressure. The main mechanism of a dissipation of energy entered to the structure through the compression is proceeded by the tilting of the tetrahedra of the silicate chains and by large shortening of the axial Ca-O distances. Copyright © 2010 Wiley Periodicals, Inc.

  3. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  4. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments?

    Directory of Open Access Journals (Sweden)

    Daniel D Wiegmann

    2016-03-01

    Full Text Available Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as a model system for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms.

  5. Mechanisms of charge-state determination in hydrogen-based impurity complexes in crystalline germanium

    International Nuclear Information System (INIS)

    Oliva, J.

    1984-01-01

    Recent experiments suggest that hydrogen may become bound to, and then tunnel around, substitutional carbon, silicon, or oxygen impurities in crystalline germanium. All these complexes are electrically active; [H,C] and [H,Si] are shallow acceptors, while [H,O] is a shallow donor. This paper attempts to elucidate the basic physical mechanisms controlling the charge state of such complexes as a function of the choice of the substitutional atom. A minimal-basis Bethe-cluster approach is used with the cluster comprising the ten-atom tetrahedral cage (including the substitutional atom) and enclosed H site, the latter coupled to all ten atoms of the cage. The important local correlation effect which tends to favor single occupation of the H site is modeled with a Hubbard-type term at that site. The charge state of the [H,C], [H,Si], and [H,O] complexes is associated with double occupation of the H site. Four aspects of the model are involved in favoring double occupation: (1) a low value of the H-site energy, (2) a reduced local correlation effect at the H site, (3) small hybridization between the H site and cage, and (4) a low value of the substitutional-site energy relative to that of the host. Results for the charge state for H at the cage center and for H near the substitutional atom are discussed in detail. Several useful formal results for local self-energies and local Green's functions are presented

  6. Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts

    Science.gov (United States)

    Shin, Jae Hong; Park, Joo Hyun

    2018-02-01

    The [S] content in resulfurized steel is controlled in the range of 200 to 800 ppm to ensure good machinability and workability. It is well known that "MgAl2O4(spinel)+CaS" complex inclusions are formed in molten steel during the ladle refining process, and these cause nozzle clogging during continuous casting. Thus, in the present study, the "Refractory-Slag-Metal-Inclusions (ReSMI)" multiphase reaction model was employed in conjunction with experiments to investigate the influence of slag composition and [S] content in the steel on the formation of oxide-sulfide complex inclusions. The critical [S] and [Al] contents necessary for the precipitation of CaS in the CaO-Al2O3-MgO-SiO2 (CAMS) oxide inclusions were predicted from the composition of the liquid inclusions, as observed by scanning electron microscopy-electron dispersive spectrometry (SEM-EDS) and calculated using the ReSMI multiphase reaction model. The critical [S] content increases with increasing content of SiO2 in the slag at a given [Al] content. Formation mechanisms for spinel+CaS and spinel+MnS complex inclusions were also proposed.

  7. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  8. Understanding organometallic reaction mechanisms and catalysis experimental and computational tools computational and experimental tools

    CERN Document Server

    Ananikov, Valentin P

    2014-01-01

    Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper

  9. Understanding the differing governance of EU emissions trading and renewable: feedback mechanisms and policy entrepreneurs

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2010-04-15

    This paper presents a comparative study of two central EU climate policies: the revised Emissions Trading System (ETS), and the revised Renewable Energy Directive (RES). Both were originally developed in the early 2000s and revised policies were adopted in December 2008. While the ETS from 2013 on will have a quite centralized and market-streamlined design, the revised RES stands forward as a more decentralized and technology-focused policy. Differing institutional feed-back mechanisms and related roles of policy entrepreneurs can shed considerable light on these policy differences. Due to member states' cautiousness and contrary to the preferences of the Commission, the initial ETS was designed as a rather decentralized and 'politicized' market system, creating a malfunctioning institutional dynamic. In the revision process, the Commission skillfully highlighted this ineffective dynamic to win support for a much more centralized and market-streamlined approach. In the case of RES, national technology-specific support schemes and the strong links between the renewable industry and member states promoted the converse outcome: decentralization and technology development. Members of the European Parliament utilized these mechanisms through policy networking, while the Commission successfully used developments within the global climate regime to induce some degree of centralization. (Author)

  10. Understanding the Mechanisms of Gold Shell Growth onto Polymer Microcapsules to Control Shell Thickness.

    Science.gov (United States)

    Tasker, Alison L; Hitchcock, James; Baxter, Elaine A; Cayre, Dr Olivier J; Biggs, Simon

    2017-07-04

    Polymer microcapsules have been used commercially for decades, however they have an inherent flaw which renders them impractical as a carrier of small, volatile molecules. The porous nature of the polymer shell allows for diffusion of the encapsulated molecules into the bulk. The use of metal shells is an innovative way to prevent undesired loss of small molecules from the core of microcapsules, however it is important, particularly when using expensive metals to ensure that the resulting shell is as thin as possible. Here we investigate the fundamental mechanisms controlling the gold shell thickness when a fragrance oil is encapsulated in a poly(methyl methacrylate) shell. We consider the distribution of the nanoparticles on the capsule surface, and from quantification of the adsorbed nanoparticle (NP) density and resulting shell thickness, we propose mechanisms to describe the gold shell growth for systems with high and low NP surface coverage. We suggest from our observations that the gold grows to fill in the gaps between NPs. At low NP concentrations, thicker metal shells form. We postulate that this is due to the low NP density on the surface, forcing the gold clusters to grow larger before they meet the adjacent ones. Thus, to grow the thinnest possible shells a densely packed monolayer of platinum nanoparticles is required on the capsule surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods

    Science.gov (United States)

    Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice

    2017-10-01

    In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.

  12. Atmospheric Compensation of Variations in Tropical Ocean Heat Transport: Understanding Mechanisms and Implications on Tectonic Timescales

    Science.gov (United States)

    Rencurrel, M. C.; Rose, B. E. J.

    2015-12-01

    The poleward transport of energy is a key aspect of the climate system, with surface ocean currents presently dominating the transport out of deep tropics. A classic study by Stone (1978) proposed that the total heat transport is determined by astronomical parameters and is highly insensitive to the detailed atmosphere-ocean dynamics. On the other hand, previous modeling work has shown that past continental configurations could have produced substantially different tropical ocean heat transport (OHT). How thoroughly does the atmosphere compensate for changes in ocean transport in terms of the top-of-atmosphere (TOA) radiative budget, what are the relevant mechanisms, and what are the consequences for surface temperature and climate on tectonic timescales? We examine these issues in a suite of aquaplanet GCM simulations subject to large prescribed variations in OHT. We find substantial but incomplete compensation, in which adjustment of the atmospheric Hadley circulation plays a key role. We then separate out the dynamical and thermodynamical components of the adjustment mechanism. Increased OHT tends to warm the mid- to high latitudes without cooling the tropics due asymmetries in radiative feedback processes. The warming is accompanied by hydrological cycle changes that are completely different from those driven by greenhouse gases, suggesting that drivers of past global change might be detectable from combinations of hydroclimate and temperature proxies.

  13. Psychosomatic medicine in the 21st century: understanding mechanisms and barriers to utilization.

    Science.gov (United States)

    Wise, Thomas N; Balon, Richard

    2015-01-01

    The psychosomatic approach arose in antiquity as mankind looked for explanations for illness and death. With the rise of modern medicine, the links between emotions and medical conditions, such as cardiac disease and diabetes, were described by astute clinical observers, but the mechanisms for these conditions were based on correlation from observations rather than on experimental design. Psychoanalytic theory was often utilized to explain many common diseases. For example, peptic ulcer disease was blamed upon anger and stress, but scientific methodology discovered Helicobacter pylori to be the significant causal factor of this disease and resulted in the development of more effective treatments. Nevertheless emotional factors are still linked to disease states and morbidity; for example, depression is a risk factor for mortality following myocardial infarction. Advances in neuroscience demonstrate that the reduction of telomere length by anxiety and stress leads to more rapid aging and potential disease vulnerability. Thus, neuroscientific probes may allow for the elucidation of psychosomatic mechanisms. Sadly, clinical barriers, in terms of time pressure upon physicians and the current separation of mental health services from primary care settings, continue the dualistic treatment of many conditions where psychological factors are important. It is not clear whether a mandate for the integration of behavioral health into primary care will remedy this partition and finally maximize a psychosomatic approach to medical care. © 2015 S. Karger AG, Basel.

  14. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms.

    Science.gov (United States)

    Zhang, Bingzi; Kaspar, Robert B; Gu, Shuang; Wang, Junhua; Zhuang, Zhongbin; Yan, Yushan

    2016-09-08

    Highly alkali-stable cationic groups are a critical component of hydroxide exchange membranes (HEMs). To search for such cations, we studied the degradation kinetics and mechanisms of a series of quaternary phosphonium (QP) cations. Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium [BTPP-(2,4,6-MeO)] was determined to have higher alkaline stability than the benchmark cation, benzyl trimethylammonium (BTMA). A multi-step methoxy-triggered degradation mechanism for BTPP-(2,4,6-MeO) was proposed and verified. By replacing methoxy substituents with methyl groups, a superior QP cation, methyl tris(2,4,6-trimethylphenyl)phosphonium [MTPP-(2,4,6-Me)] was developed. MTPP-(2,4,6-Me) is one of the most stable cations reported to date, with <20 % degradation after 5000 h at 80 °C in a 1 m KOD in CD3 OD/D2 O (5:1 v/v) solution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Understanding the evolution of the windlass mechanism of the human foot from comparative anatomy: Insights, obstacles, and future directions.

    Science.gov (United States)

    Griffin, Nicole L; Miller, Charlotte E; Schmitt, Daniel; D'Août, Kristiaan

    2015-01-01

    Humans stand alone from other primates in that we propel our bodies forward on a relatively stiff and arched foot and do so by employing an anatomical arrangement of bones and ligaments in the foot that can operate like a "windlass." This is a significant evolutionary innovation, but it is currently unknown when during hominin evolution this mechanism developed and within what genera or species it originated. The presence of recently discovered fossils along with novel research in the past two decades have improved our understanding of foot mechanics in humans and other apes, making it possible to consider this question more fully. Here we review the main elements thought to be involved in the production of an effective, modern human-like windlass mechanism. These elements are the triceps surae, plantar aponeurosis, medial longitudinal arch, and metatarsophalangeal joints. We discuss what is presently known about the evolution of these features and the challenges associated with identifying each of these specific components and/or their function in living and extinct primates for the purpose of predicting the presence of the windlass mechanism in our ancestors. In some cases we recommend alternative pathways for inferring foot mechanics and for testing the hypothesis that the windlass mechanism evolved to increase the speed and energetic efficiency of bipedal gait in hominins. © 2014 Wiley Periodicals, Inc.

  16. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  17. Understanding mechanisms of solid-state phase transformations by probing nuclear materials

    Science.gov (United States)

    Banerjee, Srikumar; Donthula, Harish

    2018-04-01

    In this review a few examples will be cited to illustrate that a study on a specific nuclear material sometimes lead to a better understanding of scientific phenomena of broader interests. Zirconium alloys offer some unique opportunities in addressing fundamental issues such as (i) distinctive features between displacive and diffusional transformations, (ii) characteristics of shuffle and shear dominated displacive transformations and (iii) nature of mixed-mode transformations. Whether a transformation is of first or higher order?" is often raised while classifying it. There are rare examples, such as Ni-Mo alloys, in which during early stages of ordering the system experiences tendencies for both first order and second order transitions. Studies on the order-disorder transitions under a radiation environment have established the pathway for the evolution of ordering. These studies have also identified the temperature range over which the chemically ordered state remains stable in steady state under radiation.

  18. HAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex.

    Science.gov (United States)

    Wang, Jihong; Sasaki, Jun; Tsai, Ah-Lim; Spudich, John L

    2012-06-15

    The phototaxis receptor complex composed of sensory rhodopsin II (SRII) and the transducer subunit HtrII mediates photorepellent responses in haloarchaea. Light-activated SRII transmits a signal through two HAMP switch domains (HAMP1 and HAMP2) in HtrII that bridge the photoreceptive membrane domain of the complex and the cytoplasmic output kinase-modulating domain. HAMP domains, widespread signal relay modules in prokaryotic sensors, consist of four-helix bundles composed of two helices, AS1 and AS2, from each of two dimerized transducer subunits. To examine their molecular motion during signal transmission, we incorporated SRII-HtrII dimeric complexes in nanodiscs to allow unrestricted probe access to the cytoplasmic side HAMP domains. Spin-spin dipolar coupling measurements confirmed that in the nanodiscs, SRII photoactivation induces helix movement in the HtrII membrane domain diagnostic of transducer activation. Labeling kinetics of a fluorescein probe in monocysteine-substituted HAMP1 mutants revealed a light-induced shift of AS2 against AS1 by one-half α-helix turn with minimal other changes. An opposite shift of AS2 against AS1 in HAMP2 at the corresponding positions supports the proposal from x-ray crystal structures by Airola et al. (Airola, M. V., Watts, K. J., Bilwes, A. M., and Crane, B. R. (2010) Structure 18, 436-448) that poly-HAMP chains undergo alternating opposite interconversions to relay the signal. Moreover, we found that haloarchaeal cells expressing a HAMP2-deleted SRII-HtrII exhibit attractant phototaxis, opposite from the repellent phototaxis mediated by the wild-type di-HAMP SRII-HtrII complex. The opposite conformational changes and corresponding opposite output signals of HAMP1 and HAMP2 imply a signal transmission mechanism entailing small shifts in helical register between AS1 and AS2 alternately in opposite directions in adjacent HAMPs.

  19. The renewable energy industry in Massachussetts as a complex system: Developing a shared understanding for policy making

    Science.gov (United States)

    Jones, Charles A.

    A model-based field study was conducted to understand the mental models of participants in the photovoltaic industry in Massachusetts, with the purpose of understanding of how that industry works as a complex system. Mental models of industry participants are important, both as the holders of the best system information and as the critical actors in any policy solution. Experts from manufacturing, installation, development, policy, and advocacy sectors were interviewed. The knowledge they conveyed was expressed as a set system dynamics models; these models were characterized, compared, and combined in order to answer the following research questions: What are the mental models of participants? How widely are mental models shared among participants? What is the combined model of the system? How accurate are these models? Given these models, what policies would lead to success? The system described by informants is revealed as one of distributed and embedded agency---actors have the ability to take meaningful action, but that action and its effects are limited by the complexity of the system and by the actions of other actors. Both the growth of the industry and constraints on the growth occur through dynamic processes, many however outside local control. Mental models are shared in clusters of informants, with some differences between these groupings. Informants vary on the level of aggregation needed to express their descriptions and on the most important dynamic force. However, many processes are commonly perceived across informants, they perceive the same system trajectories, and the behavior of the simulation models constructed from their mental models was similar. A combined model was constructed which included a full range of potential feedback loops within an abstracted version of the described system. Testing for policy using the combined model reveals that the structures necessary for growth are present, as expected. Under several reasonable conditions

  20. Understanding the desensitizing mechanism of olefin in explosives: shear slide of mixed HMX-olefin systems.

    Science.gov (United States)

    Zhang, Chaoyang; Cao, Xia; Xiang, Bin

    2012-04-01

    We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.

  1. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    Science.gov (United States)

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  2. Understanding the neural mechanisms involved in sensory control of voice production.

    Science.gov (United States)

    Parkinson, Amy L; Flagmeier, Sabina G; Manes, Jordan L; Larson, Charles R; Rogers, Bill; Robin, Donald A

    2012-05-15

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. Published by Elsevier Inc.

  3. The effects of bariatric surgery: will understanding its mechanism render the knife unnecessary?

    Science.gov (United States)

    Browning, Kirsteen N; Hajnal, Andras

    2014-01-01

    The incidence of obesity is increasing worldwide at a dramatic rate, accompanied by an associated increase in comorbid conditions. Bariatric surgery is the most effective treatment for morbid obesity with Roux-en-Y gastric bypass being the most commonly performed procedure, yet the underlying mechanisms by which it induces a wide-array of beneficial effects remains obscure. From basic science as well as clinical standpoints, there are several areas of current interest that warrant continued investigation. Several major focus areas have also emerged in current research that may guide future efforts in this field, particularly with regards to using novel, non-surgical approaches to mimic the success of bariatric surgery while minimizing its adverse side effects.

  4. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  5. Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism

    KAUST Repository

    Jiang, Jing

    2015-01-01

    © 2015 SPST. In the past few years, industry has made significant progress to deliver a stable high power EUV scanner and a 100 W light source is now being tested on the manufacuring scale. The success of a high power EUV source demands a fast and high resolution EUV resist. However, chemcially amplied resists encounter unprecedented challenges beyond the 22 nm node due to resolution, roughness and sensitivity tradeoffs. Unless novel solutions for EUV resists are proposed and further optimzed, breakthroughs can hardly be achieved. Oxide nanoparticle EUV (ONE) resists stablized by organic ligands were originally proposed by Ober et al. Recently this work attracts more and more attention due to its extraordinanry EUV sensitivity. This new class of photoresist utilizes ligand cleavage with a ligand exchange mechanism to switch its solubilty for dual-tone patterning. Therefore, ligand selection of the nanoparticles is extremely important to its EUV performance.

  6. Understanding Central Mechanisms of Acupuncture Analgesia Using Dynamic Quantitative Sensory Testing: A Review

    Directory of Open Access Journals (Sweden)

    Jiang-Ti Kong

    2013-01-01

    Full Text Available We discuss the emerging translational tools for the study of acupuncture analgesia with a focus on psychophysical methods. The gap between animal mechanistic studies and human clinical trials of acupuncture analgesia calls for effective translational tools that bridge neurophysiological data with meaningful clinical outcomes. Temporal summation (TS and conditioned pain modulation (CPM are two promising tools yet to be widely utilized. These psychophysical measures capture the state of the ascending facilitation and the descending inhibition of nociceptive transmission, respectively. We review the basic concepts and current methodologies underlying these measures in clinical pain research, and illustrate their application to research on acupuncture analgesia. Finally, we highlight the strengths and limitations of these research methods and make recommendations on future directions. The appropriate addition of TS and CPM to our current research armamentarium will facilitate our efforts to elucidate the central analgesic mechanisms of acupuncture in clinical populations.

  7. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osto, Luca [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Cazzaniga, Stefano [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Bressan, Mauro [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Paleček, David [Lund Univ. (Sweden). Dept. of Chemical Physics; Židek, Karel [Lund Univ. (Sweden). Dept. of Chemical Physics; Niyogi, Krishna K. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst., Dept. of Plant and Microbial Biology; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, Graduate Group in Applied Science and Technology; Zigmantas, Donatas [Lund Univ. (Sweden). Dept. of Chemical Physics; Bassi, Roberto [Univ. di Verona, Verona (Italy). Dipartimento di Biotecnologie; Consiglio Nazionale delle Ricerche (CNR), Firenze (Italy). Istituto per la Protezione delle Piante (IPP)

    2017-04-10

    Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: Energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. Here, we conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. Finally, this latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

  8. Complexity of mechanisms among human proprotein convertase subtilisin-kexin type 9 variants.

    Science.gov (United States)

    Dron, Jacqueline S; Hegele, Robert A

    2017-04-01

    There are many reports of human variants in proprotein convertase subtilisin-kexin type 9 (PCSK9) that are either gain-of-function (GOF) or loss-of-function (LOF), with downstream effects on LDL cholesterol and cardiovascular disease (CVD) risk. However, data on particular mechanisms have only been minimally curated. GOF variants are individually ultrarare, affect all domains of the protein, act to reduce LDL receptor expression through several mechanisms, are a minor cause of familial hypercholesterolemia, have been reported mainly within families, have variable LDL cholesterol-raising effects, and are associated with increased CVD risk mainly through observational studies in families and small cohorts. In contrast, LOF variants can be either ultrarare mutations or relatively more common polymorphisms seen in populations, affect all domains of the protein, act to increase LDL receptor expression through several mechanisms, have variable LDL cholesterol-lowering effects, and have been associated with decreased CVD risk mainly through Mendelian randomization studies in epidemiologic populations. There is considerable complexity underlying the clinical concept of both LOF and GOF variants of PCSK9. But despite the underlying mechanistic heterogeneity, altered PCSK9 secretion or function is ultimately correlated with plasma LDL cholesterol level, which is also the driver of CVD outcomes.

  9. Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.

    Science.gov (United States)

    Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian

    2015-07-01

    For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.

  10. Understanding the Broad Substrate Repertoire of Nitroreductase Based on Its Kinetic Mechanism*

    Science.gov (United States)

    Pitsawong, Warintra; Hoben, John P.; Miller, Anne-Frances

    2014-01-01

    The oxygen-insensitive nitroreductase from Enterobacter cloacae (NR) catalyzes two-electron reduction of nitroaromatics to the corresponding nitroso compounds and, subsequently, to hydroxylamine products. NR has an unusually broad substrate repertoire, which may be related to protein dynamics (flexibility) and/or a simple non-selective kinetic mechanism. To investigate the possible role of mechanism in the broad substrate repertoire of NR, the kinetics of oxidation of NR by para-nitrobenzoic acid (p-NBA) were investigated using stopped-flow techniques at 4 °C. The results revealed a hyperbolic dependence on the p-NBA concentration with a limiting rate of 1.90 ± 0.09 s−1, indicating one-step binding before the flavin oxidation step. There is no evidence for a distinct binding step in which specificity might be enforced. The reduction of p-NBA is rate-limiting in steady-state turnover (1.7 ± 0.3 s−1). The pre-steady-state reduction kinetics of NR by NADH indicate that NADH reduces the enzyme with a rate constant of 700 ± 20 s−1 and a dissociation constant of 0.51 ± 0.04 mm. Thus, we demonstrate simple transient kinetics in both the reductive and oxidative half-reactions that help to explain the broad substrate repertoire of NR. Finally, we tested the ability of NR to reduce para-hydroxylaminobenzoic acid, demonstrating that the corresponding amine does not accumulate to significant levels even under anaerobic conditions. Thus E. cloacae NR is not a good candidate for enzymatic production of aromatic amines. PMID:24706760

  11. A preliminary investigation of the applicability of surface complexation modeling to the understanding of transportation cask weeping

    International Nuclear Information System (INIS)

    Granstaff, V.E.; Chambers, W.B.; Doughty, D.H.

    1994-01-01

    A new application for surface complexation modeling is described. These models, which describe chemical equilibria among aqueous and adsorbed species, have typically been used for predicting groundwater transport of contaminants by modeling the natural adsorbents as various metal oxides. Our experiments suggest that this type of modeling can also explain stainless steel surface contamination and decontamination mechanisms. Stainless steel transportation casks, when submerged in a spent fuel storage pool at nuclear power stations, can become contaminated with radionuclides such as 137 Cs, 134 Cs, and 60 Co. Subsequent release or desorption of these contaminants under varying environmental conditions occasionally results in the phenomenon known as open-quotes cask weeping.close quotes We have postulated that contaminants in the storage pool adsorb onto the hydrous metal oxide surface of the passivated stainless steel and are subsequently released (by conversion from a fixed to a removable form) during transportation, due to varying environmental factors, such as humidity, road salt, dirt, and acid rain. It is well known that 304 stainless steel has a chromium enriched passive surface layer; thus its adsorption behavior should be similar to that of a mixed chromium/iron oxide. To help us interpret our studies of reversible binding of dissolved metals on stainless steel surfaces, we have studied the adsorption of Co +2 on Cr 2 O 3 . The data are interpreted using electrostatic surface complexation models. The FITEQL computer program was used to obtain the model binding constants and site densities from the experimental data. The MINTEQA2 computer speciation model was used, with the fitted constants, in an attempt to validate this approach

  12. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  13. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control.

    Science.gov (United States)

    Reis, Janine; Swayne, Orlando B; Vandermeeren, Yves; Camus, Mickael; Dimyan, Michael A; Harris-Love, Michelle; Perez, Monica A; Ragert, Patrick; Rothwell, John C; Cohen, Leonardo G

    2008-01-15

    Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.

  14. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces

    Science.gov (United States)

    Dabrowski, J.; Lippert, G.; Avila, J.; Baringhaus, J.; Colambo, I.; Dedkov, Yu S.; Herziger, F.; Lupina, G.; Maultzsch, J.; Schaffus, T.; Schroeder, T.; Kot, M.; Tegenkamp, C.; Vignaud, D.; Asensio, M.-C.

    2016-01-01

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process. PMID:27531322

  15. Study and understanding of the ageing mechanisms in lead-calcium alloys

    International Nuclear Information System (INIS)

    Rossi, F.

    2006-12-01

    The data available in the literature about ageing and over-ageing of lead-calcium alloys are often incomplete and inconsistent. It is undoubtedly due to the experimental difficulties encountered to observe the structure transformations which are numerous. As a result there is a certain confusion among the results of the different authors. Moreover, small variations in the process parameters and chemical composition may have some influence on the alloy behaviour. This work enabled us to obtain a set of TTT diagrams, more realistic and accurate than the ones available in the literature. Experimental techniques developed (particularly the preservation of the cold chain with is essential for the guaranty of the results repeatability), enabled particularly the study of the first transformations and better control the five stages of ageing and over-ageing. Our work have enabled to determine precisely the kinetics and the mechanisms of the transformations. This work constitutes a thorough analysis of the ageing and over-ageing of theses alloys. (author)

  16. ARHGEF9 mutations in epileptic encephalopathy/intellectual disability: toward understanding the mechanism underlying phenotypic variation.

    Science.gov (United States)

    Wang, Jing-Yang; Zhou, Peng; Wang, Jie; Tang, Bin; Su, Tao; Liu, Xiao-Rong; Li, Bing-Mei; Meng, Heng; Shi, Yi-Wu; Yi, Yong-Hong; He, Na; Liao, Wei-Ping

    2018-01-01

    ARHGEF9 resides on Xq11.1 and encodes collybistin, which is crucial in gephyrin clustering and GABA A receptor localization. ARHGEF9 mutations have been identified in patients with heterogeneous phenotypes, including epilepsy of variable severity and intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel mutation, c.868C > T/p.R290C, which co-segregated with epileptic encephalopathy, and validated its association with epileptic encephalopathy. Further analysis revealed that all ARHGEF9 mutations were associated with intellectual disability, suggesting its critical role in psychomotor development. Three missense mutations in the PH domain were not associated with epilepsy, suggesting that the co-occurrence of epilepsy depends on the affected functional domains. Missense mutations with severe molecular alteration in the DH domain, or located in the DH-gephyrin binding region, or adjacent to the SH3-NL2 binding site were associated with severe epilepsy, implying that the clinical severity was potentially determined by alteration of molecular structure and location of mutations. Male patients with ARHGEF9 mutations presented more severe phenotypes than female patients, which suggests a gene-dose effect and supports the pathogenic role of ARHGEF9 mutations. This study highlights the role of molecular alteration in phenotype expression and facilitates evaluation of the pathogenicity of ARHGEF9 mutations in clinical practice.

  17. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  18. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    Science.gov (United States)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  19. Understanding the mechanism of iron sulfide-induced fouling in upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B. [United States Dept. of Energy, Chicago, IL (United States). Argonne National Laboratory

    2006-07-01

    This presentation investigated the underlying mechanisms of iron sulfide-induced fouling and coking in upgrading processes. Experiments to determine the effects of dissolved metals on the rate of fouling were reviewed. It was noted that the presence of species such as active sulfur and diolefins can enhance the effect of dissolved metals. An investigation of a high temperature fouling unit was then conducted to investigate the effect of iron acetate and theiphenol additions to stable heavy gas oil. The deposition rate became strongly dependent on temperature in the presence of the dissolved metals. Fouling deposit analyses from various parts of the refining process consistently showed high concentrations of iron and sulfur. It was observed that the threshold tube-wall temperature corresponded to the decomposition temperature of iron salts. A review of current literature indicated that there is little information on the interactive effects of the thermal stability of dissolved organo-metallic compounds and the reactivity of organic species in generating fouling precursors. The creation of a predictive model of threshold fouling and coking conditions was recommended. It was suggested that the model should be used during the design phases of furnaces and heat exchangers. Other recommendations included the use of on-line sensors to detect iron sulfide formulation; and the monitoring of coking furnaces. Blending guidelines to minimize the interactive effects of dissolved metals and active sulfur compounds were also presented. refs., tabs., figs.

  20. Toward understanding the mechanics of hovering in insects, hummingbirds and bats

    Science.gov (United States)

    Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth

    2016-11-01

    We present results on the dynamical characteristics of two different mechanisms of hovering, corresponding to the behavior of hummingbirds and bats. Using a Lagrangian formulation, we have developed a dynamical model of a body (trunk) and two rectangular wings. The trunk has 3 degrees of freedom (x, z and pitch angle) and each wing has 3 modes of actuation: flapping, pronation/supination, and wingspan extension/flexion (only present for bats). Wings can be effectively massless (hummingbird and insect wings) or relatively massive (important in the case of bats). The aerodynamic drag and lift forces are calculated using a quasi-steady blade-element model. The regions of state space in which hovering is possible are computed by over an exhaustive range of parameters. The effect of wing mass is to shrink the phase space available for viable hovering and, in general, to require higher wingbeat frequency. Moreover, by exploring hovering energy requirements, we find that the pronation angle of the wings also plays a critical role. For bats, who have relatively heavy wings, we show wing extension and flexion is critical in order to maintain a plausible hovering posture with reasonable power requirements. Comparisons with biological data show good agreement with our model predictions.

  1. Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2014-04-01

    Plants are photosynthetic organisms that have evolved unique systems to adapt fluctuating environmental light conditions. In addition to well-known movement responses such as phototropism, stomatal opening, and nastic leaf movements, chloroplast photorelocation movement is one of the essential cellular responses to optimize photosynthetic ability and avoid photodamage. For these adaptations, chloroplasts accumulate at the areas of cells illuminated with low light (called accumulation response), while they scatter from the area illuminated with strong light (called avoidance response). Plant-specific photoreceptors (phototropin, phytochrome, and/or neochrome) mediate these dynamic directional movements in response to incident light position and intensity. Several factors involved in the mechanisms underlying the processes from light perception to actin-based movements have also been identified through molecular genetic approach. This review aims to discuss recent findings in the field relating to how chloroplasts move at molecular levels. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Different approaches, one target: understanding cellular mechanisms of Parkinson's and Alzheimer's diseases.

    Science.gov (United States)

    Torrão, Andréa S; Café-Mendes, Cecilia C; Real, Caroline C; Hernandes, Marina S; Ferreira, Ana F B; Santos, Taisa O; Chaves-Kirsten, Gabriela P; Mazucanti, Caio H Y; Ferro, Emer S; Scavone, Cristoforo; Britto, Luiz R G

    2012-10-01

    Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson's and Alzheimer's diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.

  3. Resistance Switching in Complex Oxides: Improvements in Understanding and Function for Use as Non-Volatile Memory

    Science.gov (United States)

    Young, Kristina Garrison

    2011-12-01

    Pro0.7Ca0.3MnO3 (PCMO) is a complex oxide that is studied for use as a non-volatile memory with potential to replace flash-type memory. PCMO functions as a resistive random access memory (RRAM) whose memory function is due to an oxygen vacancy concentration change that occurs in the top interface of the PCMO during the application of an electric field. The concentration of the oxygen ions/vacancies in this top interface region significantly affects the resistance seen in a simple thin film device. The electric field required to move ions/vacancies within PCMO is generated by a short (ns), low voltage (few V) pulse. During the pulse a high current is seen that is not commensurate with the resistance seen after the removal of the pulse. Additionally, after the removal of the pulse there is a degradation of the resistance state set by the pulse. The high current seen during the pulse has been explored using electrical characterization techniques and is believed to be due to quantum mechanical tunneling through the high resistance interface region. Modeling of conduction values confirms that quantum mechanical tunneling is the source of the high current. The degradation of the state after the removal of the pulse has been improved through the nanostructure modification of the PCMO film. A thin (barrier layer was placed immediately below the interface of the PCMO minimizing the back diffusion of ions/vacancies after removal of the pulse. The modification improved the EPIR ratio, fatigue and retention in PCMO.

  4. Final Report: Improving the understanding of the coupled thermal-mechanical-hydrologic behavior of consolidating granular salt

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States); Lampe, Brandon [Univ. of New Mexico, Albuquerque, NM (United States); Mills, Melissa [Univ. of New Mexico, Albuquerque, NM (United States); Paneru, Laxmi [Univ. of New Mexico, Albuquerque, NM (United States); Lynn, Timothy [Univ. of New Mexico, Albuquerque, NM (United States); Piya, Aayush [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-09

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositories in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report

  5. Mechanisms of energy transfer and conversion in plant Light-Harvesting Complex II

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Tiago Ferreira de

    2009-09-24

    subject of this thesis. From the results obtained during this doctoral work, five main conclusions can be drawn concerning the mechanism of qE: 1. Substitution of Vio by Zea in LHC-II is not sufficient for efficient dissipation of excess excitation energy. 2. Aggregation quenching of LHC-II does not require Vio, Neo nor a specific Chl pair. 3. With one exception, the pigment structure in LHC-II is rigid. 4. The two X-ray structures of LHC-II show the same energy transmitting state of the complex. 5. Crystalline LHC-II resembles the complex in the thylakoid membrane. Models of the aggregation quenching mechanism in vitro and the qE mechanism in vivo are presented as a corollary of this doctoral work. LHC-II aggregation quenching in vitro is attributed to the formation of energy sinks on the periphery of LHC-II through random interaction with other trimers, free pigments or impurities. A similar but unrelated process is proposed to occur in the thylakoid membrane, by which excess excitation energy is dissipated upon specific interaction between LHC-II and a PsbS monomer carrying Zea. At the end of this thesis, an innovative experimental model for the analysis of all key aspects of qE is proposed in order to finally solve the qE enigma, one of the last unresolved problems in photosynthesis research. (orig.)

  6. Final Technical Report: Application of in situ Neutron Diffraction to Understand the Mechanism of Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Ravi [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Metallurgical Engineering

    2018-02-09

    In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energy storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO2 and in graphite/LiMn2O4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean

  7. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  8. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach

    KAUST Repository

    Chen, Zhang-Fan

    2011-07-29

    Background: The barnacle Balanus amphitrite is a globally distributed biofouler and a model species in intertidal ecology and larval settlement studies. However, a lack of genomic information has hindered the comprehensive elucidation of the molecular mechanisms coordinating its larval settlement. The pyrosequencing-based transcriptomic approach is thought to be useful to identify key molecular changes during larval settlement. Methodology and Principal Findings: Using 454 pyrosequencing, we collected totally 630,845 reads including 215,308 from the larval stages and 415,537 from the adults; 23,451 contigs were generated while 77,785 remained as singletons. We annotated 31,720 of the 92,322 predicted open reading frames, which matched hits in the NCBI NR database, and identified 7,954 putative genes that were differentially expressed between the larval and adult stages. Of these, several genes were further characterized with quantitative real-time PCR and in situ hybridization, revealing some key findings: 1) vitellogenin was uniquely expressed in late nauplius stage, suggesting it may be an energy source for the subsequent non-feeding cyprid stage; 2) the locations of mannose receptors suggested they may be involved in the sensory system of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval settlement. Conclusions: Our results provide not only the basis of several new hypotheses about gene functions during larval settlement, but also the availability of this large transcriptome dataset in B. amphitrite for further exploration of larval settlement and developmental pathways in this important marine species. © 2011 Chen et al.

  9. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi (New York Univ., NY (United States). Dept. of Chemistry); France, L.L.; Sutherland, J.D. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo(a)pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  10. Photoinduced electron transfer and fluorescence mechanisms in covalently linked polynuclear aromatic-nucleotide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Geacintov, N.E.; Mao, Bing; Zhao, Rushen; Chen, Junxin; Liu, Tong Ming; Ya, Nai-Qi [New York Univ., NY (United States). Dept. of Chemistry; France, L.L.; Sutherland, J.D. [Brookhaven National Lab., Upton, NY (United States)

    1992-04-01

    The fluorescence of polycyclic aromatic hydrocarbon-nucleic acid complexes is quenched by photoinduced electron transfer mechanisms in aqueous solutions at ambient temperatures. These effects are illustrated with the biologically important compound benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a mutagenic and carcinogenic metabolite of the environmental pollutant benzo[a]pyrene, which forms covalent mutagenic lesions with 2{prime}-deoxyguanosine (dG) residues in DNA. The dependence of the fluroescence yeild and fluorescence decay times of the covalent model adduct (+)-trans-BPDE-N{sup 2}-dG as a function of temperature and methanol/water composition are described. Because of the sensitivity of the fluorescence of the pyrenyl residue to the polarity of the microenvironment, the magnitude of the fluorescence yield can be used to distinguish between highly hydrophobic (e.g. intercalation) and other more solvent-exposed BPDE-nucleic acid binding sites.

  11. Multi-Level Models For Diagnosis Of Complex Electro-Mechanical Systems

    Science.gov (United States)

    Smith, John A.; Biswas, Gautam

    1989-03-01

    This paper discusses a knowledge-based system for diagnostic problem solving based on a multi-level representational structure and associated reasoning methods. The motivation behind this approach is to combine shallow evidential models for fault diagnosis with deep qualitative models that derive behavior from structural descriptions. In addition, the reasoning scheme utilizes historical data based on past experience for diagnosis. Using this integrated framework, we concentrate on the following issues: (i) Multi-level knowledge based system design, and (ii) Reasoning systems that exploit the multi-level representational structure for diagnostic problem solving. This system is applied to the diagnosis of a complex electro-mechanical system, specifically, the upper cargo door of the DC-10 aircraft in use at Federal Express Corporation.

  12. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    Science.gov (United States)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  13. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    International Nuclear Information System (INIS)

    Prasad, R.

    2003-01-01

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH 3 ) 2 C 2 O 4 of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively

  14. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R

    2003-11-28

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH{sub 3}){sub 2}C{sub 2}O{sub 4} of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively.

  15. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation.

    Science.gov (United States)

    Cicchillitti, Lucia; Manni, Isabella; Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Dell'Anna, Maria Lucia; Dell'Omo, Giulia; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Rizzo, Maria Giulia; Gurtner, Aymone; Piaggio, Giulia

    2017-01-10

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.

  16. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    Science.gov (United States)

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic

  17. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    Science.gov (United States)

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  18. Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms.

    Science.gov (United States)

    Britton, Robert G; Kovoor, Christina; Brown, Karen

    2015-08-01

    To truly understand the mechanisms through which resveratrol exerts its biological effects, the key direct interactions between resveratrol and its target biomolecules must be identified. With an increasing number of biochemical tools to measure and quantify direct physical interactions between biomolecules, there have been around 20 proteins identified as having a specific affinity to resveratrol to date. Resveratrol has been described as a promiscuous molecule, and one would expect it to bind with numerous proteins, which would help explain why resveratrol appears to have so many health benefits and has been shown to act upon various different pathways related to a diverse range of conditions. The aim of this review is to present the direct protein targets of resveratrol that are currently known and highlight the consequences of direct binding and the methods used to identify the nature of these interactions. © 2015 New York Academy of Sciences.

  19. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures

    Science.gov (United States)

    Kang, Sung; Shan, Sicong; Kosmrlj, Andrej; Noorduin, Wim; Shian, Samuel; Weaver, James; Clarke, David; Bertoldi, Katia

    2014-03-01

    Geometrical frustration arises when a local order cannot propagate throughout the space due to geometrical constraints. It plays a major role in many natural and synthetic systems including water ice, spin ice, and metallic glasses. All of these geometrically frustrated systems are degenerate and tend to form disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that mechanical instabilities induce complex ordered patterns with tunability. For structures with low porosity, an ordered symmetric pattern emerges, which shows striking correlations with the ideal spin solid. In contrast, for high porosity systems, an ordered chiral pattern forms with a new spin configuration. Our analysis using a spin-like model reveals that the connected geometry of the cellular structure plays a crucial role in the formation of ordered states in this system. Since in our study geometrical frustration is induced by a mechanical instability that is scale-independent, our findings can be extended to different materials, stimuli, and length scales, providing a general strategy to study and visualize the physics of frustration.

  20. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  1. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  2. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  3. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes

    Directory of Open Access Journals (Sweden)

    Jolene Michelle Helena

    2018-04-01

    Full Text Available Deoxyribonucleic acid (DNA is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.

  4. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods.

    Directory of Open Access Journals (Sweden)

    Bashir A Akhoon

    Full Text Available The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum. In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance.

  5. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Science.gov (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    . Overall, a different binding mode from the one accepted for 15-LOX-1 is proposed, which provides a molecular basis for 15-LOX-2 exclusive 15-HPETE production in front of the double (although highly 15-) 12/15 regiospecificity of 15-LOX-1. Understanding how these different isoenzymes achieve their regiospecificity is expected to help in specific inhibitor design.

  6. A density functional theory study of the mechanisms of oxidation of ethylene by rhenium oxide complexes.

    Science.gov (United States)

    Aniagyei, Albert; Tia, Richard; Adei, Evans

    2013-08-14

    The oxo complexes of group VII B are of great interest for their potential toward epoxidation and dihydroxylation. In this work, the mechanisms of oxidation of ethylene by rhenium-oxo complexes of the type LReO3 (L = O(-), Cl, CH3, OCH3, Cp, NPH3) have been explored at the B3LYP/LACVP* level of theory. The activation barriers and reaction energies for the stepwise and concerted addition pathways involving multiple spin states have been computed. In the reaction of LReO3 (L = O(-), Cl, CH3, OCH3, Cp, NPH3) with ethylene, it was found that the concerted [3 + 2] addition pathway on the singlet potential energy surfaces leading to the formation of a dioxylate intermediate is favored over the [2 + 2] addition pathway leading to the formation of a metallaoxetane intermediate and its re-arrangement to form the dioxylate. The activation barrier for the formation of the dioxylate on the singlet PES for the ligands studied is found to follow the order O(-) > CH3 > NPH3 > CH3O(-) > Cl(-) > Cp and the reaction energies follow the order CH3 > O(-) > NPH3 > CH3O(-) > Cl(-) > Cp. On the doublet PES, the [2 + 2] addition leading to the formation the metallaoxetane intermediate is favored over dioxylate formation for the ligands L = CH3, CH3O(-), Cl(-). The activation barriers for the formation of the metallaoxetane intermediate are found to increase for the ligands in the order CH3 < Cl(-) < CH3O(-) while the reaction energies follow the order Cl(-) < CH3O(-) < CH3. The subsequent re-arrangement of the metallaoxetane intermediate to the dioxylate is only feasible in the case of ReO3(OCH3). Of all the complexes studied, the best dioxylating catalyst is ReO3Cp (singlet surface); the best epoxidation catalyst is ReO3Cl (singlet surface); and the best metallaoxetane formation catalyst is ReO3(NPH3) (triplet surface).

  7. From observation to understanding: Approach to analysis of wear mechanisms, Case of RCCAs and CRDM latch arms

    International Nuclear Information System (INIS)

    Hertz, D.

    2004-01-01

    Component wear can affect the ability of a component to fulfill its required function. For a designer or user, it is reasonable to expect possible wear occurrence as soon as parts are in relative motion. It is less obvious to extend this possibility to motions with small or very small amplitudes and loads. However, it has to be admitted that such cases exist. It then becomes imperative to determine the wear mechanisms so that the lifetime of the components and the optimum date of their replacement can be predicted or the degradation can be remedied. For this purpose, standard and widely accepted practice is to carry out simulator tests. Through examples of wear from nuclear reactor components such as the RCCAs (Rod Cluster Control Assembly) and the CRDM (Control Rod Drive Mechanism) latch arms, an approach for understanding the wear mechanisms and controlling their effects can be undertaken. Cases of wear have been observed on real-life parts, but the first simulator tests have shown deviations from in-reactor behaviour. Comparative examination of the wear facies of actual parts which have operated in reactor or simulators, both control rods and CRDM latch arms, was the key starting point for a new analytical approach, incorporating the formulation of wear mechanism hypotheses which can account for the observed facies. Expert assessment thus highlighted the importance of the environment by revealing that the wear featured a large component linked to friction-assisted corrosion. By including this tribo-corrosion aspect, it became possible to reach understanding of the mechanisms and account for the wear observed in reactor and on simulators. Further well-controlled simulator tests then made it possible to verify the importance of the tribo-corrosion processes in a pressurized water medium. Analysis of the physical chemical behaviour of the original materials (austenitic stainless steel) also explains why these surface modifications limit or remedy wear

  8. Mechanisms and kinetics for platelet and neutrophil localization in immune complex nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.J.; Alpers, C.E.; Pruchno, C.; Schulze, M.; Baker, P.J.; Pritzl, P.; Couser, W.G. (Univ. of Washington, Seattle (USA))

    1989-11-01

    We have previously reported that both neutrophils (PMNs) and platelets mediate proteinuria in a model of subendothelial immune complex (IC) nephritis (GN) in the rat. In order to understand the interaction of PMNs and platelets in this model, we quantitated the uptake of {sup 111}In-labelled platelets in glomeruli and correlated this with the number of PMNs observed histologically at 10 and 30 minutes, 1, 4 and 24 hours following induction of GN. Platelet accumulation was biphasic with a major peak at 10 minutes and a minor peak at four hours. Early platelet accumulation was complement dependent, and PMN-independent. PMN accumulation occurred after the initial platelet influx, peaking at one and four hours, was complement dependent, but was not affected by platelet depletion. Complement depletion significantly reduced proteinuria. This is the first documentation that platelet accumulation in glomeruli in IC GN is complement dependent. In addition, the enhancement of PMN-mediated injury by the platelet in this model does not involve effects of platelets on PMN localization, thus implying a functional interaction between these cells within the glomerulus.

  9. Mechanism and applicability of hydrolysis of peptides and proteins utilizing Pt(II) complexes

    International Nuclear Information System (INIS)

    Burgeson, I.E.

    1990-01-01

    The hydrolysis of amino acid esters and amides has been achieved by using organic reagents, strongly acidic and basic solutions, and transition metal complexes. However, enzymes have always been able to surpass these methods in terms of speed of the hydrolysis and the mild conditions necessary to observe hydrolysis. In order to understand how enzymes undergo their reactions with such remarkable speed and efficiency, researchers are studying and developing inorganic reagents which can facilitate the hydrolysis of peptide bonds. The treatment of the tripetide γ-glutamyl-cyteinylglycine with one equivalent of PtCl 4 -2 results in hydrolysis of the cysteinyl-glycine bond. The reaction is strongly dependent on the amount of chloride ion in solution and also shows a lesser dependence on ionic strength and pH. Hydrolysis is promoted through a chelate interaction of the platinum with the sulfur of cysteine and the carbonyl oxygen of the amide bond. The hydrolysis of proteins was then undertaken. Yeast cytochrome c and the subunits of hemoglobin were examined to determine if PtCl 4 -2 or Pt(en)Cl 2 could promote cleavage of the peptide bond next to a cysteine residue. It appears that hydrolysis of the peptide bond to the right of the cysteinly side chain has been realized. 51 refs., 12 figs., 12 tabs

  10. Identification of complex systems by artificial neural networks. Applications to mechanical frictions

    International Nuclear Information System (INIS)

    Dominguez, Manuel

    1998-01-01

    In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr

  11. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.

    Science.gov (United States)

    Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M; Cui, Yi; Irudayaraj, Joseph; Choi, Jong Hyun

    2014-05-14

    DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.

  12. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn.

    Science.gov (United States)

    London, Sarah E

    2017-11-20

    Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior. Copyright © 2017. Published by Elsevier B.V.

  13. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  14. NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    Science.gov (United States)

    Fernández, Claudio O; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with α-synuclein by NMR and assigned the binding site to C-terminal residues 109–140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 → +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by ∼104 and the rate of monomer addition ∼40-fold. Significant secondary structure is not induced in monomeric α-synuclein by polyamines at 15°C. Instead, NMR reveals changes in a region (aa 22–93) far removed from the polyamine binding site and presumed to adopt the β-sheet conformation characteristic of fibrillar α-synuclein. We conclude that the C-terminal domain acts as a regulator of α-synuclein aggregation. PMID:15103328

  15. Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex.

    Science.gov (United States)

    Pandey, Manjula; Elshenawy, Mohamed M; Jergic, Slobodan; Takahashi, Masateru; Dixon, Nicholas E; Hamdan, Samir M; Patel, Smita S

    2015-07-13

    The Escherichia coli replication terminator protein (Tus) binds to Ter sequences to block replication forks approaching from one direction. Here, we used single molecule and transient state kinetics to study responses of the heterologous phage T7 replisome to the Tus-Ter complex. The T7 replisome was arrested at the non-permissive end of Tus-Ter in a manner that is explained by a composite mousetrap and dynamic clamp model. An unpaired C(6) that forms a lock by binding into the cytosine binding pocket of Tus was most effective in arresting the replisome and mutation of C(6) removed the barrier. Isolated helicase was also blocked at the non-permissive end, but unexpectedly the isolated polymerase was not, unless C(6) was unpaired. Instead, the polymerase was blocked at the permissive end. This indicates that the Tus-Ter mechanism is sensitive to the translocation polarity of the DNA motor. The polymerase tracking along the template strand traps the C(6) to prevent lock formation; the helicase tracking along the other strand traps the complementary G(6) to aid lock formation. Our results are consistent with the model where strand separation by the helicase unpairs the GC(6) base pair and triggers lock formation immediately before the polymerase can sequester the C(6) base. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Two mechanisms coordinate replication termination by the Escherichia coli Tus–Ter complex

    KAUST Repository

    Pandey, Manjula

    2015-07-13

    The Escherichia coli replication terminator protein (Tus) binds to Ter sequences to block replication forks approaching from one direction. Here, we used single molecule and transient state kinetics to study responses of the heterologous phage T7 replisome to the Tus–Ter complex. The T7 replisome was arrested at the non-permissive end of Tus–Ter in a manner that is explained by a composite mousetrap and dynamic clamp model. An unpaired C(6) that forms a lock by binding into the cytosine binding pocket of Tus was most effective in arresting the replisome and mutation of C(6) removed the barrier. Isolated helicase was also blocked at the non-permissive end, but unexpectedly the isolated polymerase was not, unless C(6) was unpaired. Instead, the polymerase was blocked at the permissive end. This indicates that the Tus–Ter mechanism is sensitive to the translocation polarity of the DNA motor. The polymerase tracking along the template strand traps the C(6) to prevent lock formation; the helicase tracking along the other strand traps the complementary G(6) to aid lock formation. Our results are consistent with the model where strand separation by the helicase unpairs the GC(6) base pair and triggers lock formation immediately before the polymerase can sequester the C(6) base.

  17. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Directory of Open Access Journals (Sweden)

    David Porter

    2015-12-01

    Full Text Available Iron(II complexes of the tetradentate amines tris(2-pyridylmethylamine (TPA and N,N′-bis(2-pyridylmethyl-N,N′-dimethylethane-1,2-diamine (BPMEN are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol % or FeBPMEN (10 mol % converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxycarbamate in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+-(2R,2′R-1,1′-bis(2-pyridylmethyl-2,2′-bipyrrolidine ((R,R′-PDP.

  18. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    Science.gov (United States)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  19. Ferrous archaeological analogues for the understanding of the multi-secular corrosion mechanisms in an anoxic environment

    International Nuclear Information System (INIS)

    Saheb-Djahromi, M.

    2009-12-01

    Understanding the long term corrosion mechanisms of iron in an anoxic environment is essential in the field of the radioactive waste storage. In France, it is planned to store high level nuclear wastes in a multi-barrier system containing a glassy matrix surrounded by a stainless steel container, embedded in a low-carbon steel over-container. This system would be placed in a deep geological repository, which would impose anoxic conditions. As it must be efficient for a period of several thousands of years, one should understand the alteration mechanisms that are expected to occur in such a long time. To this purpose, a specific approach is developed on ferrous archaeological analogues with thick corrosion layer formed in natural conditions. In this study, the corrosion mechanisms have been assessed by examining nails aged of 400 years coming from the archaeological site of Glinet, selected as a reference site. The first point was a fine characterisation of the entire corrosion system metal / corrosion products / medium, through the use of coupled multi-scale analytical tools. The first results showed that the samples were corroded in an anoxic calco-carbonated environment. Moreover, the coupling of X-ray micro-diffraction, Raman microspectroscopy and dispersive energy spectroscopy has enabled to identify three corrosion systems composed of iron carbonates, siderite and chukanovite, and magnetite. Depending on the phase's layout in the system, the electronic resistance of the corrosion layers has been established, from resistive to conductive. In a second stage, re-corroding experiments in laboratory were performed. Firstly, the electrochemical behaviour of the corrosion system has shown that water reduction at the metallic interface is negligible. Furthermore, reaction tracing with copper and deuterium has allowed identifying the electron consumptions sites mainly localised on the external part, and the precipitation sites on the internal part of the corrosion

  20. Soluble 1:1 complexes and insoluble 3:2 complexes - Understanding the phase-solubility diagram of hydrocortisone and γ-cyclodextrin

    DEFF Research Database (Denmark)

    Schönbeck, Christian; Madsen, Tobias Løvgren; Peters, Günther H.

    2017-01-01

    -cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM-1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase...